matlab非线性参数拟合估计_很好的参考材料
实验二讲稿:MATLAB拟合
YOUR LOGO
THANK YOU
汇报人:XX
汇报时间:20XX/01/01
拟合过程中要关注参数的取 值范围和物理意义
拟合结果的评价与验证
拟合效果的评估
残差分析:计算残差平方和, 评估拟合效果
诊断图:绘制诊断图,检查异 常值和拟合趋势
拟合统计量:计算拟合优度统 计量,评估拟合效果
预测误差:预测未来数据,评 估预测误差
异常值的处理
识别:通过图形或统计方法识别异常值 处理:根据实际情况选择删除或保留异常值 重新拟合:在处理异常值后重新进行拟合 验证:验证拟合结果是否符合预期
MATLAB拟合的注意事项
04
数据的预处理
数据清洗:去除异常值、缺失值和重复值 数据转换:将数据转换为适合拟合的形式,如对数转换、多项式转换等 数据缩放:将数据缩放到合适的范围,以提高拟合精度 数据分割:将数据分成训练集和测试集,以评估模型的泛化能力
拟合参数的选择
参数初始值的设定要合理
根据数据特点选择合适的拟 合函数
适用场景:当标准拟合函数无法满足需求时,可以使用自定义函数拟合
步骤:编写自定义函数,并使用MATL AB的fminsearch或fminunc等优化 函数进行拟合 注意事项:自定义函数需要符合数学函数的规范,且需要能够计算函数的 导数
MATLAB拟合的实例
03
一元线性拟合
实例数据:一元线性数据集
拟合的步骤
导入数据
设定拟合模型
执行拟合操作
评估拟合结果
MATLAB拟合的常用方法
02
多项式拟合
定义:多项式拟合是一种通过多项式逼近数据的方法,通过最小化误差平方和来求解最 佳拟合多项式
实现方式:使用MATLAB中的polyfit函数进行多项式拟合,该函数可以求解一元或多 元多项式拟合
非线性拟合
[x,renorm]=lsqcurvefit(@myfun,x0,xdata,ydata); %确定待定系数
disp(x);
disp(renorm);
function F=myfun(x,xdata)
F=x(1)*(xdata.^2)+x(2)*sin(xdata)+x(3)*(xdata.^3); %预定义函数关系式
matlab中nlinfit和lsqcurvefit的功能和用法有什么区别?
悬赏分:5 - 解决时间:2009-5-31 10:36
如题!
提问者: 珊珊小魔女 - 助理 三级 最佳答案
如果你懂英语,就用matlab最强大的函数help(一般人我不告诉他)
help nlinfit
help lsqcurvefit
f = A + B exp(C*x)+D*exp(E*x)
对数据集x与y进行拟合,其中y是在给定x的情况下的期望输出(可以是方程给出数组,也可以是单独数据组成的数组)。
为了解决这个问题,先建立下面的名为 fit_simp.m的函数,它利用数据x与y,将他们作为优化输入参数传递给LSQNONLIN。
关于采用matlab进行指定非线性方程拟合的问题
一。优化工具箱函数
LSQNONLIN 解决非线性最小二乘法问题,包括非线性数据拟合问题
LSQCURVEFIT 解决非线性数据拟合问题
下面给出利用这两个函数的例子:
LSQNONLIN:利用这个函数最小化连续函数只能够找到句柄解。下面的例子说明利用LSQNONLIN函数用下面的函数进行拟合:
也就是说,给定输入数据xdata,以及观测的输出数据ydata,找到系数x,使得函数F(x,xdata)能够最好的拟合向量值
MATLAB 数据拟合资料
y0 = 5.3660
一元多项式曲线拟合——例题
【例1】对以下数据进行拟合。
x0=[0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00]; y0=[0.00 0.10 0.85 1.05 3.08 3.50 6.07 7.90 9.70 13.96 14.68];
x 37 37.5 38 38.5 39 39.5 40 40.5 41 41.5 42 42.5 43 y 3.4 3 3 2.27 2.1 1.83 1.53 1.7 1.8 1.9 2.35 2.54 2.9
确定x和y,绘制散点图 观察散点图选择多项式次数 调用polyfit函数,拟合出系数,写函数 调用polyval函数,预测给定x0的y0值
y=[41.4,51.8,61.70,67.90,68.70,77.50,95.90,137.40,155.0,175.0];
% 作散点图
plot(x,y,'r*')
%作散点图
xlabel('x(职工工资总额)')
%横坐标名
ylabel('y(商品零售总额)')
%纵坐标名
%数据拟合及预测
p=polyfit(x,y,1)
(1)工资总额与零售总额是否有关系?
散点图
(2)能否能根据工资总额预测出零售总额? 数据拟合
(1)工资总额x与零售总额y关系的一元线性函数
yˆ 2.7991x 23.5493
一元多项式曲线拟合——例题
(1)工资总额与零售总额是否有关系?
散点图
(2)能否能根据工资总额预测出零售总额? 数据拟合
(2)假设工资总额为80,零售总额y可能是多少? 代入 x=80:
在Matlab中进行数据拟合和曲线拟合的方法
在Matlab中进行数据拟合和曲线拟合的方法在科学研究或工程应用中,数据拟合和曲线拟合是常见的计算任务之一。
Matlab作为一种强大的数值计算软件,提供了丰富的工具和函数,方便我们进行数据拟合和曲线拟合的操作。
本文将介绍在Matlab中进行数据拟合和曲线拟合的几种方法。
一、线性回归线性回归是最简单的数据拟合方法之一,常用于建立变量之间的线性关系模型。
在Matlab中,可以使用polyfit函数进行线性回归拟合。
该函数可以根据输入数据点的横纵坐标,拟合出一条直线,并返回直线的斜率和截距。
例如,以下代码演示了如何使用polyfit函数进行线性回归拟合:```matlabx = [1, 2, 3, 4, 5];y = [2, 3, 4, 5, 6];coefficients = polyfit(x, y, 1);slope = coefficients(1);intercept = coefficients(2);```在上述代码中,数组x和y分别表示数据点的横纵坐标。
polyfit函数的第三个参数1表示拟合的直线为一阶多项式。
函数返回的coefficients是一个包含斜率和截距的数组,可以通过coefficients(1)和coefficients(2)获取。
二、多项式拟合在实际应用中,线性模型并不适用于所有情况。
有时,数据点之间的关系可能更复杂,需要使用更高阶的多项式模型来拟合。
Matlab中的polyfit函数同样支持多项式拟合。
我们可以通过调整多项式的阶数来拟合不同次数的曲线。
以下代码展示了如何使用polyfit函数进行二次多项式拟合:```matlabx = [1, 2, 3, 4, 5];y = [2, 6, 10, 16, 24];coefficients = polyfit(x, y, 2);a = coefficients(1);b = coefficients(2);c = coefficients(3);```在上述代码中,polyfit的第三个参数2表示拟合的多项式为二阶。
使用Matlab进行数据拟合的方法
使用Matlab进行数据拟合的方法概述:数据拟合是数据分析中常用的一种技术,它通过找到适合特定数据集的数学模型,在给定数据范围内预测未知变量的值。
在科学研究、工程分析和金融建模等领域,数据拟合起到了至关重要的作用。
而Matlab作为一种强大的数值计算工具,提供了丰富的函数和工具箱来实现各种数据拟合方法。
本文将介绍几种常见的使用Matlab进行数据拟合的方法。
一、线性回归线性回归是一种基本的数据拟合方法,它用于建立自变量和因变量之间的线性关系。
Matlab中可以使用`polyfit`函数来实现线性拟合。
具体步骤如下:1. 导入数据集。
首先需要将数据集导入到Matlab中,可以使用`importdata`函数读取数据文件。
2. 根据自变量和因变量拟合一条直线。
使用`polyfit`函数来进行线性拟合,返回的参数可以用于曲线预测。
3. 绘制拟合曲线。
使用`plot`函数绘制原始数据点和拟合曲线,比较其拟合效果。
二、多项式拟合多项式拟合是一种常见的非线性拟合方法,它通过拟合多项式函数来逼近原始数据集。
Matlab中使用`polyfit`函数同样可以实现多项式拟合。
具体步骤如下:1. 导入数据集。
同线性回归一样,首先需要将数据集导入到Matlab中。
2. 选择多项式次数。
根据数据集的特点和实际需求,选择适当的多项式次数。
3. 进行多项式拟合。
使用`polyfit`函数,并指定多项式次数,得到拟合参数。
4. 绘制拟合曲线。
使用`plot`函数绘制原始数据点和拟合曲线。
三、非线性拟合有时候,数据集并不能通过线性或多项式函数来准确拟合。
这时,需要使用非线性拟合方法,通过拟合非线性方程来逼近原始数据。
Matlab中提供了`lsqcurvefit`函数来实现非线性拟合。
具体步骤如下:1. 导入数据集。
同样,首先需要将数据集导入到Matlab中。
2. 定义非线性方程。
根据数据集的特点和实际需求,定义适当的非线性方程。
MATLAB神经网络(2)BP神经网络的非线性系统建模——非线性函数拟合
MATLAB神经⽹络(2)BP神经⽹络的⾮线性系统建模——⾮线性函数拟合2.1 案例背景在⼯程应⽤中经常会遇到⼀些复杂的⾮线性系统,这些系统状态⽅程复杂,难以⽤数学⽅法准确建模。
在这种情况下,可以建⽴BP神经⽹络表达这些⾮线性系统。
该⽅法把未知系统看成是⼀个⿊箱,⾸先⽤系统输⼊输出数据训练BP神经⽹络,使⽹络能够表达该未知函数,然后⽤训练好的BP神经⽹络预测系统输出。
本章拟合的⾮线性函数为y=x12+x22该函数的图形如下图所⽰。
t=-5:0.1:5;[x1,x2] =meshgrid(t);y=x1.^2+x2.^2;surfc(x1,x2,y);shading interpxlabel('x1');ylabel('x2');zlabel('y');title('⾮线性函数');2.2 模型建⽴神经⽹络结构:2-5-1从⾮线性函数中随机得到2000组输⼊输出数据,从中随机选择1900 组作为训练数据,⽤于⽹络训练,100组作为测试数据,⽤于测试⽹络的拟合性能。
2.3 MATLAB实现2.3.1 BP神经⽹络⼯具箱函数newffBP神经⽹络参数设置函数。
net=newff(P, T, S, TF, BTF, BLF, PF, IPF, OPF, DDF)P:输⼊数据矩阵;T:输出数据矩阵;S:隐含层节点数;TF:结点传递函数。
包括硬限幅传递函数hardlim、对称硬限幅传递函数hardlims、线性传递函数purelin、正切型传递函数tansig、对数型传递函数logsig;x=-5:0.1:5;subplot(2,6,[2,3]);y=hardlim(x);plot(x,y,'LineWidth',1.5);title('hardlim');subplot(2,6,[4,5]);y=hardlims(x);plot(x,y,'LineWidth',1.5);title('hardlims');subplot(2,6,[7,8]);y=purelin(x);plot(x,y,'LineWidth',1.5);title('purelin');subplot(2,6,[9,10]);y=tansig(x);plot(x,y,'LineWidth',1.5);title('tansig');subplot(2,6,[11,12]);y=logsig(x);plot(x,y,'LineWidth',1.5);title('logsig');BTF:训练函数。
用MATLAB解析实验数据与拟合非线性方程
用MATLAB解析实验数据与拟合非线性方程引言在科学研究和工程实践中,我们经常需要分析实验数据并拟合非线性方程模型。
然而,由于实验数据的复杂性和非线性方程的高维度,这项任务往往具有一定的挑战性。
幸运的是,利用MATLAB这样强大的计算工具,我们可以轻松地完成这个任务。
数据导入和预处理首先,我们需要将实验数据导入MATLAB中进行进一步的分析。
在MATLAB 中,我们可以使用多种方式来导入数据,例如使用readtable函数来读取Excel文件中的数据,或使用importdata函数来导入文本文件中的数据。
导入数据后,我们可以对数据进行一些预处理的操作,例如去除异常值、缺失值填充、数据平滑等。
MATLAB提供了众多的函数和工具箱,可以帮助我们轻松地完成这些操作。
数据可视化在分析实验数据之前,我们通常需要先对数据进行可视化,以便更好地理解数据的特征和趋势。
MATLAB提供了丰富的绘图函数,可以帮助我们绘制各种类型的图表,例如折线图、散点图、柱状图等。
通过绘制图表,我们可以观察到数据的变化趋势、异常情况和相关性等。
此外,MATLAB还提供了交互式的绘图工具,可以使我们更加灵活地调整图表的样式和布局。
数据分析和建模在数据可视化的基础上,我们可以进一步对实验数据进行分析。
MATLAB提供了丰富的统计分析函数和工具箱,可以帮助我们计算数据的各种统计指标,例如均值、方差、相关系数等。
另外,如果我们已经有了一定的理论基础,可以根据实验数据建立起合适的非线性方程模型。
MATLAB提供了优化工具箱,可以帮助我们拟合非线性方程模型,并估计模型参数。
通过拟合,我们可以得到模型的函数形式和参数值,进而对实验数据进行解析和预测。
非线性方程拟合非线性方程拟合是实验数据分析的关键步骤之一。
MATLAB提供了多种非线性方程拟合的方法和函数,例如最小二乘法、非线性最小二乘法、逐步回归等。
在进行非线性方程拟合时,我们需要选择合适的模型函数和初值,并设置适当的拟合算法和参数。
利用Matlab进行统计模型拟合的方法与示例
利用Matlab进行统计模型拟合的方法与示例通过多年的发展,统计模型已经成为了描述和理解现实世界中各种现象的重要工具。
利用统计模型可以通过收集到的数据信息来解决实际问题,同时也可以预测未来的趋势。
Matlab作为一种强大的数值计算和数据处理工具,可以用来进行统计模型的拟合和分析。
本文将介绍一些利用Matlab进行统计模型拟合的方法,并通过一些实例来说明其应用。
首先,为了进行统计模型的拟合,我们需要先了解数据的分布情况。
在现实生活中,很多现象都可以用一些已知的概率分布来描述。
例如,服从正态分布的数据在自然界中非常常见,所以在许多情况下,我们可以假设数据服从正态分布。
如果数据不符合正态分布,我们可以尝试其他的概率分布,如泊松分布、指数分布等。
Matlab提供了丰富的概率分布函数,可以帮助我们判断数据的分布情况。
其次,对于给定的数据集,我们需要选择合适的统计模型来进行拟合。
通常,我们可以通过观察数据的特点来选择适当的模型。
例如,如果数据呈现出线性关系,我们可以选择线性回归模型进行拟合。
如果数据是非线性的,我们可以选择多项式回归模型或者指数回归模型。
此外,还有一些特殊的模型,如逻辑回归模型、广义线性模型等。
在Matlab中,可以使用拟合函数来拟合数据,并根据不同的模型选择合适的拟合算法。
接下来,我们可以利用拟合函数返回的结果来对拟合的模型进行评估。
这是非常重要的一步,因为模型的质量会直接影响到我们的分析结果。
我们可以使用一些统计指标来评估模型的拟合程度,如拟合优度(Goodness of fit)、均方根误差(Root Mean Squared Error)等。
此外,还可以绘制拟合曲线和残差图来直观地观察模型的拟合情况。
这些评估指标和图形化展示在Matlab中都有相应的函数和工具可以使用。
最后,我们可以利用已经拟合好的统计模型进行预测和分析。
预测是统计模型的一个重要应用方向。
通过利用已有的数据信息,我们可以建立一个可靠的模型来预测未来的趋势。
关于采用matlab进行指定非线性方程拟合的问题
关于采用matlab进行指定非线性方程拟合的问题(1)※1。
优化工具箱的利用函数描述LSQLIN 有约束线性最小二乘优化LSQNONNEG 非负约束线性最小二乘优化问题当有约束问题存在的时候,应该采用上面的方法代替Polyfit与反斜线(\)。
具体例子请参阅优化工具箱文档中的相应利用这两个函数的例子。
d. 非线性曲线拟合利用MATLAB的内建函数函数名描述FMINBND 只解决单变量固定区域的最小值问题FMINSEARCH 多变量无约束非线性最小化问题(Nelder-Mead 方法)。
下面给出一个小例子展示一下如何利用FMINSEARCH1.首先生成数据>> t=0:.1:10;>> t=t(:);>> Data=40*exp(-.5*t)+rand(size(t)); % 将数据加上随机噪声2.写一个m文件,以曲线参数作为输入,以拟合误差作为输出function sse=myfit(params,Input,Actural_Output)A=params(1);lamda=params(2);Fitted_Curve=A.*exp(-lamda*Input);Error_Vector=Fitted_Curve-Actural_Output;%当曲线拟合的时候,一个典型的质量评价标准就是误差平方和sse=sum(Error_Vector.^2);%当然,也可以将sse写作:sse=Error_Vector(:)*Error_Vector(:);3.调用FMINSEARCH>> Strarting=rand(1,2);>> options=optimset('Display','iter');>> Estimates=fiminsearch(@myfit,Strarting,options,t,Data);>> plot(t,Data,'*');>> hold on>> plot(t,Estimates(1)*exp(-Estimates(2)*t),'r');Estimates将是一个包含了对原数据集进行估计的参数值的向量。
MATLAB实现非线性曲线拟合最小二乘法
非线性曲线拟合最小二乘法、问题提出设数据(Xj,yJ 3(i=0,1,2,3,4).由表给出,表中第四行为lnyZl«,可以看出数学模型为y二aebx,用最小二乘法确定a及b。
、理论基础根据最小二乘拟合的定义:在函数的最佳平方逼近中f(x). C[a,b],如果f(x)只在一组离散点集{Xi,i=O,1,…,m},上给定,这就是科学实验中经常见到的实验数据{ ( Xj,%),i=O,1,・・・,m}的曲线拟合,这里yi二f(xj,i=O,1,・・・,n% 要求一个函数y二S(x)与所给数据{ ( Xi, yi) m}拟合,若记误差i 二 S*(xJ-% ,i=O,1m,、=(O,1, ,、m)T,设\(x), \(x)/,:n(x)是C[a,b]上线性无尖函数族,在」-spar( A(X), : l(x), (x)}中找一函数S(x),使误差平方和m m m2、2八、F 八[s(Xi)・y_2 =min,目凶呦2,i=0 i=0 S(x)邯im这里S(x)二a。
o(x) 4 !(x) ann(x) (n<m)这就是一般的最小二乘逼近,用几何语言来说,就称为曲线拟合的最小二乘法。
在建模的过程中应用到了求和命令(sum)、求偏导命令(diff)、化简函数命令(simple)〉用迭代方法解二元非线性方程组的命令(fsolve),画图命令(plot)等。
三、实验内容用最小二乘法求拟合曲线时,首先要确定S(x)的形式。
这不单纯是数学问题,还与所研究问题的运动规律及所得观测数据( Xi,% )有尖;通常要从问题的运动规律及给定数据描图,确定s(x)的形式,并通过实际计算选出较好的结果。
S(x)的一般表达式为线性形式,若\(x)是k次多项式,S(x)就是n次多项式,为了使问题的提法更有一般性,通常在最小二乘法中2都考虑为加权平方和m:2八(X讥S(Xj) - f(xj]2.i=0这里r(x)_o是[a,b]上的权函数,它表示不同点(Xi, f(xj)处的数据比重不同。
matlab非线性参数拟合估计_很好的参考材料
使用nlinfit 、fminsearch 在matlab 中实现基于最小二乘法的非线性参数拟合(整理自网上资源) 最小二乘法在曲线拟合中比较普遍。
拟合的模型主要有1. 直线型2. 多项式型3. 分数函数型4. 指数函数型5. 对数线性型6. 高斯函数型一般对于 LS 问题,通常利用反斜杠运算“”、 fminsearch 或优化工具箱提供的极小化函数求解。
在 Matlab 中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。
在命令提示符后键入: cftool ,即可根据数据,选择适当的拟合模型。
“”命令1. 假设要拟合的多项式是:y=a+b*x+c*xT.首先建立设计矩阵X:X=[o nes(size(x)) x x A2];执行:para=X\ypara 中包含了三个参数: para(1)=a;para(2)=b;para(3)=c;这种方法对于系数是线性的模型也适应。
2. 假设要拟合: y=a+b*exp(x)+cx*exp(xA2)设计矩阵 X 为X=[ones(size(x)) exp(x) x.*exp(x.A2)];para=X\y3. 多重回归(乘积回归)设要拟合: y=a+b*x+c*t ,其中 x 和 t 是预测变量, y 是响应变量。
设计矩阵为X=[ones(size(x)) x t] % 注意 x,t 大小相等!para=X\y polyfit 函数polyfit 函数不需要输入设计矩阵,在参数估计中, polyfit 会根据输入的数据生成设计矩阵。
1. 假设要拟合的多项式是: y=a+b*x+c*xA2 p=polyfit(x,y,2)然后可以使用 polyval 在 t 处预测: y_hat=polyval(p,t)polyfit 函数可以给出置信区间。
[p S]=polyfit(x,y,2) %S 中包含了标准差[y_fit,delta] = polyval(p,t,S) % 按照拟合模型在 t 处预测在每个 t 处的 95%CI为:(y_fit-1.96*delta, y_fit+1.96*delta)2. 指数模型也适应假设要拟合: y = a+b*exp(x)+c*exp(x.?2) p=polyfit(x,log(y),2)fminsearch 函数fminsearch 是优化工具箱的极小化函数。
matlab 向量回归svr非参数方法进行拟合 -回复
matlab 向量回归svr非参数方法进行拟合-回复Matlab中可以使用支持向量回归(Support Vector Regression,SVR)的非参数方法来进行向量拟合。
SVR是一种强大的回归分析工具,它可以解决非线性回归问题,并且对于异常值也具有较好的鲁棒性。
SVR基于支持向量机(Support Vector Machine,SVM)的理论,通过将回归问题转化为一个优化问题,并利用核函数来进行非线性映射,实现了对非线性模式的拟合。
非参数方法意味着我们不需要事先设定模型的形式,因此可以更灵活地应对各种复杂的拟合问题。
下面我们将详细介绍如何使用Matlab中的SVR非参数方法进行向量拟合。
首先,我们需要准备需要拟合的数据。
假设我们有一个包含两个变量的回归问题,可以使用Matlab中的向量来表示:matlabX = [-3:0.1:3]'; 自变量Y = sin(X) + 0.5*randn(size(X)); 因变量,带噪声在这个例子中,自变量X是一个从-3到3的向量,步长为0.1。
因变量Y 是根据sin函数生成的,其中加入了一个服从正态分布的随机噪声。
接下来,我们需要创建SVR模型并进行训练。
在Matlab中,可以使用fitrsvm函数来创建和训练SVR模型。
fitrsvm函数的输入参数包括自变量X、因变量Y以及一些其他的参数,如核函数的选择和其它正则化参数。
下面是一个示例:matlabMdl = fitrsvm(X, Y, 'KernelFunction', 'gaussian', 'KernelScale', 'auto'); 在这个示例中,我们选择了高斯核函数,并自动选择了适当的核尺度。
接下来,我们可以使用训练好的SVR模型进行预测。
Matlab中的predict 函数可以用来进行预测:matlabY_pred = predict(Mdl, X);这里的Y_pred表示使用模型预测得到的因变量的预测值。
matlab_多元与非线性回归即拟合问题regressnlinfit
回归(拟合)自己的总结(20100728)1:学三条命令:polyfit(x,y,n)---拟合成一元幂函数(一元多次) regress(y,x)----可以多元,nlinfit(x,y,’fun ’,beta0) (可用于任何类型的函数,任意多元函数,应用范围最主,最万能的)2:同一个问题,可能这三条命令都可以使用,但结果肯定是不同的,因为拟合的近似结果,没有唯一的标准的答案。
相当于咨询多个专家。
3:回归的操作步骤:(1) 根据图形(实际点),选配一条恰当的函数形式(类型)---需要数学理论与基础和经验。
(并写出该函数表达式的一般形式,含待定系数)(2) 选用某条回归命令求出所有的待定系数所以可以说,回归就是求待定系数的过程(需确定函数的形式)配曲线的一般方法是: (一)先对两个变量x 和y 作n 次试验观察得n i y x ii,...,2,1),,( 画出散点图,散点图(二)根据散点图确定须配曲线的类型. 通常选择的六类曲线如下:(1)双曲线xb a y +=1 (2)幂函数曲线y=a bx , 其中x>0,a>0(3)指数曲线y=a bx e 其中参数a>0.(4)倒指数曲线y=a xb e/其中a>0,(5)对数曲线y=a+blogx,x>0(6)S 型曲线x be a y -+=1(三)然后由n 对试验数据确定每一类曲线的未知参数a 和b.一、一元多次拟合polyfit(x,y,n)一元回归polyfit多元回归regress---nlinfit(非线性)二、多元回归分析(其实可以是非线性,它通用性极高)对于多元线性回归模型:e x x y p p ++++=βββ 110设变量12,,,p x x x y的n 组观测值为12(,,,)1,2,,i i ip i x x x y i n=.记 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=np n n p p x x x x x x x x x x 212222111211111,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y y 21,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=p ββββ 10 的估计值为排列方式与线性代数中的线性方程组相同()拟合成多元函数---regress 使用格式:左边用b=或[b, bint, r, rint, stats]= 右边用regress(y, x) 或regress(y, x, alpha)---命令中是先y 后x,---须构造好矩阵x(x 中的每列与目标函数的一项对应) ---并且x 要在最前面额外添加全1列/对应于常数项 ---y 必须是列向量---结果是从常数项开始---与polyfit 的不同。
用MATLAB作线性和非线性最小二乘法拟合
新乡学院数学与信息科学系实验报告
实验名称插值与拟合Ⅱ
所属课程数学软件与实验
实验类型综合型实验
专业信息与计算科学
班级 2011级1班
学号
姓名李欢丽
指导教师朱耀生老师
4.结论及分析
经多次试验可知分析无误
问题二增加生产、发展经济所依靠的主要因素有增加投资、增加劳动力以及技术革新等,在研究国民经济产值与这些因素的数量关系时,由于技术水平不像资金、劳动力那样容易定量化,作为初步的模型,可认为技术水平不变,只讨论产值和资金、劳动力之间的关系。
在科学技术发展不快时,如资本主义经济发展的前期,这种模型是有意义的。
用Q,K,L分别表示产值、资金、劳动力,要寻求的数量关系。
经过简化假设与分析,在经济学中,推导出一个著名的Cobb-Douglas生产函数:(*)
式中
要由经济统计数据确定。
现有美国马萨诸塞州1900—1926年上述三个经济指数的统计数据,如下表,试用数据拟合的方法,求出式(*)中的参数。
表2
t Q K L t Q K L
1900 1.05 1.04 1.05 1901 1.18 1.06 1.08 1902 1.29 1.16 1.18 1903 1.30 1.22 1.22 1914 2.01 3.24 1.65 1915 2.00 3.24 1.62 1916 2.09 3.61 1.86 1917 1.96 4.10 1.93。
matlab:最小二乘法线性和非线性拟合
0.0056 0.0063 0.2542
0.0059 0.0063
4)结论:a=0.0063, b=-0.0034, k=0.2542
0.0061 0.0063
24
解法 2 用命令lsqnonlin
f(x)=F(x,tdata,ctada)= (a be0.02kt1 c1,, a be0.02kt10 c1)T
R=[(x.^2)' x' ones(11,1)]; A=R\y'
MATLAB(zxec1)
2)计算成果: A = -9.8108 20.1293 -0.0317
f (x) 9.8108x2 20.1293x 0.0317 16
解法2.用多项式拟合旳命令
1)输入下列命令: x=0:0.1:1;
9
线性最小二乘法旳求解:预备知识
超定方程组:方程个数不小于未知量个数旳方程组
r11a1
r12a2
r1mam
y1
(n m)
rn1a1 rn2a2 rnmam yn
即 Ra=y
r11 r12 r1m
a1
y1
其中 R
,
a
,
y
rn1 rn2 rnm
am
yn
2. 将数据 (xi,yi) i=1, …n 作图,经过直观判断拟定 f(x):
f=a1+a2x +
++
++
f=a1+a2x+a3x2 +
+
+ +
+
f=a1+a2x+a3x2
++ +
【最新资料】MATLAB在非线性曲线拟合中的应用研究
MATLAB 在非线性曲线拟合中的应用小结摘要:归纳总结了非线性曲线拟合的方法、求解步骤和上机操作过程关键词:曲线拟合非线性MA TLAB正文:1.曲线拟合的基本原理已知一组测定的数据(例如N 个点(xi,yi )去求得自变量x 和因变量y 的一个近似解析表达式y=φ(x )。
若记误差δi=φ(xi )-yi ,i=1,2,…N ,则要使误差的平方和最小,即要求:∑==N i i Q 12δ为最小,这就是常用的最小二乘法原理。
2 .MATLAB 曲线拟合的相关方法2.1.函数形式:(1)多项式拟合函数polyfit ,调用格式为:p=polyfit (x,y ,n )其中x ,y 为参与曲线拟合的实验数据,n 为拟合多项式的次数,函数返回值为拟合多项式的系数(按降幂排列)。
n=1时,就为线性拟合。
例1:给出表1数据,试用最小二乘法求一次和二次拟合多项式。
表1 数据在MATLAB 命令窗口中输入:clear;close;x=-1:0.25:1;y=[-0.2209,0.3295,0.8826,1.4392,2.0003,2.5645,3.1334,3.7061,4.2836]p1=polyfit(x,y ,1)p2=polyfit(x,y ,2)y1=polyval(p1,x);y2=polyval(p2,x);plot(x,y ,'+',x,y1,'r:',x,y2,'k-.')运行结果:拟合多项式为:y*=2.0516+2.0131和y*=0.0313x2+2.2516x+2.20001(2)非线性数据拟合函数lsqcurvefit 调用格式为:c=lsqcurvefi (t'fun',x0,xdata,ydata )其中'fun'为拟合函数的M -函数文件名,x0为初始向量,xdata,ydata 为参与曲线拟合的实验数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使用nlinfit、fminsearch在matlab中实现基于最小二乘法的非线性参数拟合(整理自网上资源)最小二乘法在曲线拟合中比较普遍。
拟合的模型主要有1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型......一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。
在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。
在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。
“\”命令1.假设要拟合的多项式是:y=a+b*x+c*x^2.首先建立设计矩阵X:X=[ones(size(x)) x x^2];执行:para=X\ypara中包含了三个参数:para(1)=a;para(2)=b;para(3)=c;这种方法对于系数是线性的模型也适应。
2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2)设计矩阵X为X=[ones(size(x)) exp(x) x.*exp(x.^2)];para=X\y3.多重回归(乘积回归)设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。
设计矩阵为X=[ones(size(x)) x t] %注意x,t大小相等!para=X\ypolyfit函数polyfit函数不需要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵。
1.假设要拟合的多项式是:y=a+b*x+c*x^2p=polyfit(x,y,2)然后可以使用polyval在t处预测:y_hat=polyval(p,t)polyfit函数可以给出置信区间。
[p S]=polyfit(x,y,2) %S中包含了标准差[y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处预测在每个t处的95%CI为:(y_fit-1.96*delta, y_fit+1.96*delta)2.指数模型也适应假设要拟合:y = a+b*exp(x)+c*exp(x.?2)p=polyfit(x,log(y),2)fminsearch函数fminsearch是优化工具箱的极小化函数。
LS问题的基本思想就是残差的平方和(一种范数,由此,LS产生了许多应用)最小,因此可以利用fminsearch函数进行曲线拟合。
假设要拟合:y = a+b*exp(x)+c*exp(x.?2)首先建立函数,可以通过m文件或函数句柄建立:x=[......]';y=[......]';f=@(p,x) p(1)+p(2)*exp(x)+p(3)*exp(x.?2) %注意向量化:p(1)=a;p(2)=b;p(3)=c;%可以根据需要选择是否优化参数%opt=options()p0=ones(3,1);%初值para=fminsearch(@(p) (y-f(p,x)).^2,p0) %可以输出Hessian矩阵res=y-f(para,x)%拟合残差曲线拟合工具箱提供了很多拟合函数,对大样本场合比较有效!非线性拟合nlinfit函数clear all;x1=[0.4292 0.4269 0.381 0.4015 0.4117 0.3017]';x2=[0.00014 0.00059 0.0126 0.0061 0.00425 0.0443]';x=[x1 x2];y=[0.517 0.509 0.44 0.466 0.479 0.309]';f=@(p,x)2.350176*p(1)*(1-1/p(2))*(1-(1-x(:,1).^(1/p(2))).^p(2)).^2.*(x(:,1).^ (-1/p(2))-1).^(-p(2)).*x(:,1).^(-1/p(2)-0.5).*x(:,2);p0=[8 0.5]';opt=optimset('TolFun',1e-3,'TolX',1e-3);%[p R]=nlinfit(x,y,f,p0,opt)2.多项式型的一个例子1900-2000年的总人口情况的曲线拟合clear all;close all;%cftool提供了可视化的曲线拟合!t=[1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000]';y=[75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 249.633 281.4220]';%t太大,以t的幂作为基函数会导致设计矩阵尺度太差,列变量几乎线性相依。
变换为[-1 1]上s=(t-1950)/50;%plot(s,y,'ro');%回归线:y=a+bxmx=mean(s);my=mean(y);sx=std(s);sy=std(y);r=corr(s,y);b=r*sy/sx;a=my-b*mx;rline=a+b.*s;figure;subplot(3,2,[1 2])plot(s,y,'ro',s,rline,'k');%title('多项式拟合');set(gca,'XTick',s,'XTickLabel',sprintf('%d|',t));%hold on;n=4;PreYear=[2010 2015 2020];%预测年份tPreYear=(PreYear-1950)/50;Y=zeros(length(t),n);res=zeros(size(Y));delta=zeros(size(Y));PrePo=zeros(length(PreYear),n);Predelta=zeros(size(PrePo));for i=1:n[p S(i)]=polyfit(s,y,i);[Y(:,i) delta(:,i)]=polyval(p,s,S(i));%拟合的Y[PrePo(:,i) Predelta(:,i)]=polyval(p,tPreYear,S(i));%预测res(:,i)=y-Y(:,i);%残差end% plot(s,Y);%2009a自动添加不同颜色% legend('data','regression line','1st poly','2nd poly','3rd poly','4th poly',2)% plot(tPreYear,PrePo,'>');% hold off% plot(Y,res,'o');%残差图r=corr(s,Y).^2 %R^2%拟合误差估计CIYearAdd=[t;PreYear'];tYearAdd=[s;tPreYear'];CFtit={'一阶拟合','二阶拟合','三阶拟合','四阶拟合'};for col=1:nsubplot(3,2,col+2);plot(s,y,'ro',s,Y(:,col),'g-');%原始数据和拟合数据legend('Original','Fitted',2);hold on;plot(s,Y(:,col)+2*delta(:,col),'r:');%95% CIplot(s,Y(:,col)-2*delta(:,col),'r:');plot(tPreYear,PrePo(:,col),'>');%预测值plot(tPreYear,PrePo(:,col)+2*Predelta(:,col));%预测95% CIplot(tPreYear,PrePo(:,col)-2*Predelta(:,col));axis([-1.2 1.8 0 400]);set(gca,'XTick',tYearAdd,'XTickLabel',sprintf('%d|',YearAdd)); title(CFtit{col});hold off;endfigure;%残差图for col=1:nsubplot(2,2,col);plot(Y(:,i),res(:,i),'o');end一个非线性的应用例子(多元情况)要拟合y=a*x1^n1+b*x2^n2+c*x3^n3%注:只是作为应用,模型不一定正确!!!%x2=x3!!!y=[1080.94 1083.03 1162.80 1155.61 1092.82 1099.26 1161.06 1258.05 1299.03 1298.30 1440.22 1641.30 1672.21 1612.73 1658.64 1752.42 1837.99 2099.29 2675.47 2786.33 2881.07]';x1=[1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2]';x2=[1 1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.225 1.250 1.275 1.3 1.325 1.350 1.375 1.4 1.425 1.45 1.475 1.5]';x3=[1 1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.225 1.250 1.275 1.3 1.325 1.350 1.375 1.4 1.425 1.45 1.475 1.5]';x=[x1 x2 x3];f=@(p,x) p(1)*x(:,1).^p(2)+p(3)*x(:,2).^p(4)+p(5)*x(:,3).^p(6);p0=ones(6,1);p=fminsearch(@(p)sum(y-f(p,x)).^2,p0)res=y-f(p,x);res2=res.^2 %失败的模型Matlab 自定义函数自定义函数的途径:M文件函数(M file function)在线函数(Inline Function)匿名函数(Anonymous Function)1.M文件函数范例function c=myadd(a,b)%这里可以写函数的使用说明,前面以%开头%在工作区中,help myadd将显示此处的说明c=a+b;%end %非必须的第一行function告诉Matlab这是一个函数,a,b是输入,c是输出,myadd是函数名。