新高考浙江理科数学试题及答案解析版

合集下载

2022年全国普通高等学校招生统一考试数学试卷+浙江卷(含解析)(参考版)

2022年全国普通高等学校招生统一考试数学试卷+浙江卷(含解析)(参考版)

2022年普通高等学校招生全国统一考试浙江卷数学试卷选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{1,2}A=,{2,4,6}B=,则A B =( )A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}2.已知a,b∈R,3i(i)ia b+=+(i为虚数单位),则( )A.1a=,3b=- B.1a=-,3b= C.1a=-,3b=- D.1a=,3b=3.若实数x,y满足约束条件20,270,20,xx yx y-≥⎧⎪+-≤⎨⎪--≤⎩则34z x y=+的最大值是( )A.20B.18C.13D.64.设x∈R,则“sin1x=”是“cos0x=”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是( )A.22πB.8πC.22π3D.16π36.为了得到函数2sin3y x=的图象,只要把函数π2sin35y x⎛⎫=+⎪⎝⎭图象上所有的点( )A.向左平移π5个单位长度 B.向右平移π5个单位长度C.向左平移π15个单位长度 D.向右平移π15个单位长度 7.已知25a =,8log 3b =,则34a b -=( ) A.25B.5C.259D.538.如图,已知正三棱柱111ABC A B C -,1AC AA =,E ,F 分别是棱BC ,11A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A.αβγ≤≤B.βαγ≤≤C.βγα≤≤D.αγβ≤≤9.已知a ,b ∈R ,若对任意x ∈R ,|||4||25|0a x b x x -+---≥,则( ) A.1a ≤,3b ≥B.1a ≤,3b ≤C.1a ≥,3b ≥D.1a ≥,3b ≤10.已知数列{}n a 满足11a =,()2*113n n n a a a n +=-∈N ,则( ) A.100521002a <<B.100510032a << C.100731002a <<D.100710042a << 非选择题部分(共110分)二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分。

2022浙江高考理数试卷及答案

2022浙江高考理数试卷及答案

2022浙江高考理数试卷及答案【一】:2022年高考浙江卷理数试题及答案2022年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、已知集合P=,Q=,则P=,则A。

[2,3]B。

(-2,3]C。

[1,2)D。

2、已知互相垂直的平面A。

B。

C。

交于直线l,若直线m,n满足D。

3、在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线+y-2=0上的投影构成的线段记为AB,则,AB,=A。

B。

4C。

D。

6使得”的否定形式是B。

D。

则的最小正周期使得使得4、命题“A。

C。

5、设函数使得使得A。

与b有关,且与c有关B。

与b有关,但与c无关C。

与b无关,且与c无关D。

与b无关,但与c有关6。

如图,点列分别在锐角的两边上,且,(若A。

表示点P与Q不重合),为的面积,则是等差数列,。

是等差数列B。

C。

是等差数列D。

是等差数列7。

已知椭圆与双曲线的焦点重合,则A。

C。

且且B。

D。

则则则则且且分别为的离心率,8。

已知实数A。

若B。

若C。

若D。

若二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

9。

若抛物线10。

已知上的点M到焦点的距离为10,则M到y轴的距离是。

,则A=,b=。

11、几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm,体积是cm。

12、已知,若,则a=,b=。

13、设数列的前n项和为,若,则=,=。

14、如图,在中,AB=BC=2,。

若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是。

15、已知向量a,b,a,=1,b,=2,若对任意单位向量e,均有,a·e,+,b·e,的最大值是。

三、解答题:本大题共5小题,共74分。

解答应写出文字说明,证明过程或演算步骤。

16。

2024年浙江高考数学真题及答案

2024年浙江高考数学真题及答案

2024年浙江高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2- B.1- C.1D.24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m- B.3m -C.3m D.3m5.()A. B. C. D.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f < D.(20)10000f <二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >> D.(2)0.8P Y ><10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2-B.1- C.1D.2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m -B.3m -C.3m D.3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5.()A. B. C. D.【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r =即=,故3r =,故圆锥的体积为1π93⨯=.故选:B.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞【答案】B 【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1a a -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤,即a 的范围是[1,0]-.故选:B.7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.8【答案】C 【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x ⎛⎫=-⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f <D.(20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >>D.(2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC.10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A;利用函数的单调性可判断B;根据函数()f x 在()1,3上的值域即可判断C;直接作差可判断D.【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A:设曲线上的动点(),P x y ,则2x >-4x a -=,04a -=,解得2a =-,故A 正确.对于24x +=,而2x >-,()24x +=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C:由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D:当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .【答案】(1)π3B =(2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得22222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而2sin 2C ==,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.【小问2详解】由(1)可得π3B =,2cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ232162sin sin sin 124622224A ⎛⎫⎛⎫==+=⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而623136,4222a cbc +====,由三角形面积公式可知,ABC 的面积可表示为211316233sin 222228ABC S ab C c c c +==⋅⋅= ,由已知ABC 的面积为3+,可得23338c =,所以c =16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3260x y --=或20x y -=.【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,2AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则5352d ==,则将直线AP 沿着与AP 垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,5=,解得6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,设()00,B x y,则220012551129x y =⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离5d =,设(),3sin B θθ,其中[)0,2θ∈π1255=,联立22cos sin 1θθ+=,解得cos 21sin 2θθ⎧=-⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443k x k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,5=,解得32k =,此时33,2B ⎛⎫-- ⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PAB d S ==⋅ ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .【答案】(1)证明见解析【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而//AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即42sin 7DFE ∠=,即tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,42DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故242tan 4DFE x∠==x =AD =.18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析(3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6(2)证明见解析(3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.31/31而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>=++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。

2022年理数高考试题答案及解析-浙江

2022年理数高考试题答案及解析-浙江

绝密★考试结束前2022年普通高等学校招生全国同一考试〔浙江卷〕数 学〔理科〕本试题卷分选择题和非选择题两局部.全卷共5页,选择题局部1至3页,非选择题局部4至5页.总分值150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题局部〔共50分〕本卷须知:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.每题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干 净后,再选涂其它答案标号。

不能答在试题卷上.参考公式:如果事件A ,B 互斥,那么 柱体的体积公式如果事件A ,B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高 ()()()P A B P A P B ⋅=⋅ 锥体的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()()()1,0,1,2,,n kk kn n P k C p p k n -=-=球的外表积公式台体的体积公式 24πS R =()1213V h S S = 球的体积公式其中12,S S 分别表示台体的上底、下底面积, 34π3V R =h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},那么A ∩(C R B )=A .(1,4)B .(3,4)C .(1,3)D .(1,2) 【解析】A =(1,4),B =(-3,1),那么A ∩(C R B )=(1,4). 【答案】A 2.i 是虚数单位,那么3+i1i-= A .1-2i B .2-i C .2+i D .1+2i 【解析】3+i 1i -=()()3+i 1+i 2=2+4i2=1+2i .【答案】D3.设a ∈R ,那么“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行〞的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0显然平行;假设直线l 1与直线l 2平行,那么有:211a a =+,解之得:a =1 or a =﹣2.所以为充分不必要条件. 【答案】A4.把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x —1)+1,再向下平移1个单位长度得:y 3=cos(x —1).令x =0,得:y 3>0;x =12π+,得:y 3=0;观察即得答案. 【答案】B5.设a ,b 是两个非零向量.A .假设|a +b |=|a |-|b |,那么a ⊥bB .假设a ⊥b ,那么|a +b |=|a |-|b |C .假设|a +b |=|a |-|b |,那么存在实数λ,使得a =λbD .假设存在实数λ,使得a =λb ,那么|a +b |=|a |-|b |【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,那么a ,b 共线,即存在实数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :假设a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D :假设存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立. 【答案】C6.假设从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,那么不同的取法共有A .60种B .63种C .65种D .66种【解析】1,2,2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,那么取法有:4个都是偶数:1种;2个偶数,2个奇数:225460C C =种; 4个都是奇数:455C =种.∴不同的取法共有66种. 【答案】D7.设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,那么以下命题错误的选项是......A .假设d <0,那么数列{S n }有最大项B .假设数列{S n }有最大项,那么d <0C .假设数列{S n }是递增数列,那么对任意的n ∈N*,均有S n >0D .假设对任意的n ∈N*,均有S n >0,那么数列{S n }是递增数列【解析】选项C 显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n }是递增数列,但是S n >0不成立.【答案】C8.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a ,b >0)的左右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .假设|MF 2|=|F 1F 2|,那么C 的离心率是 A 23 B 6C 2D 3【解析】如图:|OB |=b ,|OF 1|=c .∴k PQ =b c,k MN =﹣b c.直线PQ 为:y =b c (x +c ),两条渐近线为:y =b a x .由()b y x c c b y x a ⎧⎪⎪⎨⎪⎪⎩=+=,得:Q (ac c a -,bc c a -);由()b y x c cb y xa ⎧⎪⎪⎨⎪⎪⎩=+=-,得:P (ac c a -+,bc c a +).∴直线MN 为:y -bc c a +=﹣b c(x -acc a -+), 令y =0得:x M =322c c a -.又∵|MF 2|=|F 1F 2|=2c ,∴3c =x M =322c c a -,解之得:2232a c e a==,即e 6.【答案】B9.设a >0,b >0A .假设2223a b a b +=+,那么a >bB .假设2223a b a b +=+,那么a <bC .假设2223a b a b -=-,那么a >bD .假设2223a b a b -=-,那么a <b【解析】假设2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,那么()2ln 220x f x '=⋅+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除. 【答案】A10.矩形ABCD ,AB =1,BC 2∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD 〞,“AB 与CD 〞,“AD 与BC 〞均不垂直【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C 是正确的. 【答案】C2022年普通高等学校招生全国同一考试〔浙江卷〕数 学〔理科〕非选择题局部〔共100分〕本卷须知:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每题4分,共28分. 11.某三棱锥的三视图(单位:cm)如下列图,那么该三棱锥的体积等于___________cm 3.【解析】观察三视图知该三棱锥的底面为一直角三角 11312123⨯⨯⨯⨯=. 形,右侧面也是一直角三角形.故体积等于【答案】112.假设程序框图如下列图,那么该程序运行后输出的值是______________.【解析】T ,i 关系如以下列图: T 1 12 16 124 1120i 23 4 5 6【答案】112013.设公比为q (q >0)的等比数列{a n }的前n 项和为{S n }.假设2232S a =+,4432S a =+,那么q =______________.q 表示的式子.【解析】将2232S a =+,4432S a =+两个式子全部转化成用1a ,即111233111113232a a q a q a a q a q a q a q +=+⎧⎨+++=+⎩,两式作差得:2321113(1)a q a q a q q +=-,即:2230q q --=,解之得:312q or q ==-(舍去). 【答案】3214.假设将函数()5f x x =表示为其中0a ,1a ,2a ,…,5a 为实数,那么3a =______________. 【解析】法一:由等式两边对应项系数相等.即:545543315544310100a C a a a C a C a a =⎧⎪+=⇒=⎨⎪++=⎩. 法二:对等式:()()()()2550125111f x x a a x a x a x ==+++++++两边连续对x 求导三次得:2234560624(1)60(1)x a a x a x =++++,再运用赋值法,令1x =-得:3606a =,即310a =.【答案】1015.在∆ABC 中,M 是BC 的中点,AM =3,BC =10,那么AB AC ⋅=______________. 【解析】此题最适合的方法是特例法.假设∆ABC 是以AB =AC 的等腰三角形,如图, AM =3,BC =10,AB =AC 34 cos ∠BAC =3434102923434+-=⨯.AB AC ⋅=cos 29AB AC BAC ⋅∠=【答案】2916.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离, 那么实数a =______________.【解析】C 2:x 2+(y +4) 2 =2,圆心(0,—4),圆心到直线l :y =x 的距离为:0(4)222d --==C 2到直线l :y =x 的距离为22d d r d '=-== 另一方面:曲线C 1:y =x 2+a ,令20y x '==,得:12x =,曲线C 1:y =x 2+a 到直线l :y =x 的距离的点为(12,14a +),111()72442422a ad a -++'==⇒=. 【答案】7417.设a ∈R ,假设x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,那么a =______________. 【解析】此题按照一般思路,那么可分为一下两种情况: (A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解; (B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为此题可能是错题或者解不出此题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个),在各自的区间内恒正或恒负.(如下答图) 我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,1). 考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:2a =,舍去2a =,得答案:2a = 【答案】2a =三、解答题:本大题共5小题,共72分,解容许写出文字说明、证明过程或演算步骤. 18.(本小题总分值14分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .cos A =23,sin B 5C . (Ⅰ)求tan C 的值;(Ⅱ)假设a 2∆ABC 的面积.【解析】此题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点。

2021年全国统一高考数学试卷(浙江卷)(含详细解析)

2021年全国统一高考数学试卷(浙江卷)(含详细解析)

2021年全国统一高考数学试卷(浙江卷)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑。

如需改动,用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(共10题;共40分)1. ( 4分 ) 设集合 A ={x|x ≥1} , B ={x|−1<x <2} ,则 A ∩B = ( ) A. {x|x >−1} B. {x|x ≥1} C. {x|−1<x <1} D. {x|1≤x <2}2. ( 4分 ) 已知 a ∈R , (1+ai)i =3+i ,(i 为虚数单位),则 a = ( ) A. -1 B. 1 C. -3 D. 33. ( 4分 ) 已知非零向量 a ⃗,b ⃗⃗,c ⃗ ,则“ a ⃗⋅c ⃗=b ⃗⃗⋅c ⃗ ”是“ a ⃗=b⃗⃗ ”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分又不必要条件 4. ( 4分 ) 某几何体的三视图如图所示,则该几何体的体积是( )A. 32 B.3 C. 3√22D. 3√25. ( 4分) 若实数x,y满足约束条件{x+1≥0 x−y≤02x+3y−1≤0,则z=x−12y的最小值是()A. -2B. −32C. −12D. 1106. ( 4分) 如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A. 直线A1D与直线D1B垂直,直线MN//平面ABCDB. 直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C. 直线A1D与直线D1B相交,直线MN//平面ABCDD. 直线A1D与直线D1B异面,直线MN⊥平面BDD1B17. ( 4分) 已知函数f(x)=x2+14,g(x)=sinx,则图象为如图的函数可能是()A. y=f(x)+g(x)−14B. y=f(x)−g(x)−14C. y=f(x)g(x)D. y=g(x)f(x)8. ( 4分) 已知α,β,γ是互不相同的锐角,则在sinαcosβ,sinβcosγ,sinγcosα三个值中,大于12的个数的最大值是()A. 0B. 1C. 2D. 39. ( 4分) 已知a,b∈R,ab>0,函数f(x)=ax2+b(x∈R).若f(s−t),f(s),f(s+t)成等比数列,则平面上点(s,t)的轨迹是()A. 直线和圆B. 直线和椭圆C. 直线和双曲线D. 直线和抛物线10. ( 4分) 已知数列{a n}满足a1=1,a n+1=n1+√a ∈N∗).记数列{an}的前n项和为S n,则()A. 12<S100<3 B. 3<S100<4 C. 4<S100<92D. 92<S100<5二、填空题(共7题;共36分)11. ( 4分) 我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为S1,小正方形的面积为S2,则S1S1=________.12. ( 4分) 已知a∈R,函数f(x)={x2−4,x>2|x−3|+a,x≤2,若f[f(√6)]=3,则a=________.13. ( 4分) 已知平面向量a⃗,b⃗⃗,c⃗,(c⃗≠0)满足|a⃗|=1,|b⃗⃗|=2,a⃗⋅b⃗⃗=0,(a⃗−b⃗⃗)⋅c⃗=0.记向量d⃗在a⃗,b⃗⃗方向上的投影分别为x,y,d⃗−a⃗在c⃗方向上的投影为z,则x2+y2+z2的最小值为________.14. ( 6分) 已知多项式(x−1)3+(x+1)4=x4+a1x3+a2x2+a3x+a4,则a1=________,a2+ a3+a4=________.15. ( 6分) 在△ABC中,∠B=60°,AB=2,M是BC的中点,AM=2√3,则AC=________,cos∠MAC=________.16. ( 6分) 袋中有4个红球m个黄球,n个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m−n=________,E(ξ)=________.17. ( 6分) 已知椭圆x2a2+y2b2=1(a>b>0),焦点F1(−c,0),F2(c,0)(c>0),若过F1的直线和圆(x−12c)2+y2=c2相切,与椭圆在第一象限交于点P,且PF2⊥x轴,则该直线的斜率是________,椭圆的离心率是________.三、解答题:本大题共5小题,共74分。

高考真题——理科数学(浙江卷)解析版(1) Word版含答案

高考真题——理科数学(浙江卷)解析版(1) Word版含答案

数学理试题(浙江卷)一.选择题1、已知i 是虚数单位,则=-+-)2)(1(i iA. i +-3B. i 31+-C. i 33+-D.i +-12、设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )( A. ]1,2(- B. ]4,(--∞ C. ]1,(-∞ D.),1[+∞ 答案:C 解析:如图1所示,由已知得到考点定位:此题考查集合的使用之补集和并集体,考查一元二次不等式的解法,利用数轴即可解决此题,体现数形结合思想的应用,此考点是历年来高考必考考点之一,属于简单题; 3、已知y x ,为正实数,则 A.y x yx lg lg lg lg 222+=+ B.y x y x lg lg )lg(222•=+ C.y x yx lg lg lg lg 222+=• D.y x xy lg lg )lg(222•=答案:D解析:此题中,由考点定位:此题考查对数的运算法则和同底数幂的乘法的运算法则;4、已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件 答案:B 解析:考点定位:充分条件的判断和三角函数的奇偶性性质知识点;5、某程序框图如图所示,若该程序运行后输出的值是59,则 A.4=a B.5=a C. 6=a D.7=a 答案:A解析:由图可知考点定位:此题考查算法及数列的列项相消求和的方法;6、已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43 C.43- D.34- 答案:C解析:由已知得到:考点定位:此题考查同角三角函数商数关系和平方关系的灵活应用,考查二倍角正切公式的应用,考查学生的运算求解水平;7、设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P PC PB 00•≥•。

2021年浙江省高考数学(含解析版)

2021年浙江省高考数学(含解析版)

A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
答案:
B
解析:
若 c a 且 c b ,则 a c b c 0 ,但 a 不一定等于 b ,故充分性不成立,
若 a b ,则 a c b c ,必要性成立,故为必要不充分条件.
故选 B.
, E( )
.
6
3
答案:
1 8 9
解析:
P(
2)
C42 C2
mn4
6 C2
mn4
1 6
C
2 mn
4
36
,所以 m n 4 9 ,
P(一红一黄)
C41 Cm1 C2
mn4
4m 36
m 9
1 3
m
3
,所以 n
2 ,则 m n
1,
P(
2)
1 6

P(
1)
C41 C51 C92
45 36
13.已知多项式 (x 1)3 (x 1)4 x4 a1x3 a2 x a3x a4 ,则 a1
; a2 a3 a4
.
答案:
5 10
解析:
根据二项式通项公式: a1x3 C30 x3 (1)0 C41x311 5x3 ,故 a1 5 ;
同理, a2 x2 C31x2 (1)1 C42 x212 3x2 6x2 3x2 a2 3 ,
a
,故 e
5
.
5
解析二:不妨假设 c 2 , sin PF1F2
sin HF1M
HM F1M
2 , HM 3
c 2
2
2

F1M

【高三】浙江2021年高考数学理科试卷(附答案和解释)

【高三】浙江2021年高考数学理科试卷(附答案和解释)

【高三】浙江2021年高考数学理科试卷(附答案和解释)浙江卷数学(理)试题答案与解析选择题部分(共50分)一、选择题:每小题5分,共50分.1.已知i是虚数单位,则(?1+i)(2?i)=A.?3+iB.?1+3i C.?3+3i D.?1+i【命题意图】本题考查复数的四则运算,属于容易题【答案解析】B2.设集合S={xx>?2},T={xx2+3x?4≤0},则(?RS)∪T=A.(?2,1]B.(?∞,?4]C.(?∞,1]D.[1,+∞)【命题意图】本题考查集合的运算,属于容易题【答案解析】C 因为(?RS)={xx≤?2},T={x?4≤x≤1},所以(?RS)∪T=(?∞,1]. 3.已知x,y为正实数,则A.2lgx+lgy=2lgx+2lgyB.2lg(x+y)=2lgx ? 2lgyC.2lgx ? lgy=2lgx+2lgy D.2lg(xy)=2lgx ? 2lgy【命题意图】本题考查指数和对数的运算性质,属于容易题【答案解析】D 由指数和对数的运算法则,易知选项D正确4.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ?R),则“f(x)是奇函数”是“φ=π2”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题【答案解析】B 由f(x)是奇函数可知f(0)=0,即cosφ=0,解出φ=π2+kπ,k?Z,所以选项B正确5.某程序框图如图所示,若该程序运行后输出的值是95,则A.a=4B.a=5C.a=6D.a=7【命题意图】本题考查算法程序框图,属于容易题【答案解析】A6.已知α?R,sin α+2cos α=102,则tan2α=A.43B.34C.?34D.?43【命题意图】本题考查三角公式的应用,解法多样,属于中档题【答案解析】C 由(sin α+2cos α)2=1022可得sin2α+4cos2α+4sin αcos α sin2α+cos2α=104,进一步整理可得3tan2α?8tan α?3=0,解得tan α=3或tanα=?13,于是tan2α=2tan α1?tan2α=?34.7.设△ABC,P0是边AB上一定点,满足P0B=14AB,且对于AB上任一点P,恒有→PB?→PC≥→P0B?→P0C,则A.?ABC=90?B.?BAC=90?C.AB=ACD.AC=BC【命题意图】本题考查向量数量积的几何意义,不等式恒成立的有关知识,属于中档题【答案解析】D 由题意,设→AB=4,则→P0B=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,→PB?→PC=→PH→PB=(→PB ?(a+1))→PB,→P0B?→P0C=?→P0H→P0B=?a,于是→PB?→PC≥→P0B?→P0C恒成立,相当于(→PB?(a+1))→PB≥?a恒成立,整理得→PB2?(a+1)→PB+a≥0恒成立,只需?=(a+1)2?4a=(a?1)2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC8.已知e为自然对数的底数,设函数f(x)=(ex?1)(x?1)k(k=1,2),则A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【命题意图】本题考查极值的概念,属于中档题【答案解析】C 当k=1时,方程f(x)=0有两个解,x1=0,x2=1,由标根法可得f(x)的大致图象,于是选项A,B错误;当k=2时,方程f(x)=0有三个解,x1=0,x2=x3=1,其中1是二重根,由标根法可得f(x)的大致图象,易知选项C正确。

年高考浙江卷理科数学试题及详细解答

年高考浙江卷理科数学试题及详细解答

普通高等学校招生全国统一考试数学(理科)浙江卷本试题卷第Ⅰ卷和第Ⅱ卷两部分。

全卷共4页,第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1至2页,第Ⅱ卷3至4页 满分150分,考试时间120钟请考生按规定用笔将所有试题的答案涂、写在答题纸上。

第Ⅰ卷(共 50 分)注意事项:1. 答第 1 卷前,考生务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。

2. 每小题选出正确答案后,用2B 铅笔把答题纸上对应题目的答案标号填黑.叁考正式:如果事件 A , B 互斥,那么P ( A+ B ) = P( A)+ P( B) S=24R πP( A+ B)= P( A). P( B) 其中 R 表示球的半径 如果事件A 在一次试验中发生的概念是p 球的体积公式V=234R π 那么n 次独立重复试验中恰好发生 其中R 表示球的半径 k 次的概率:k n kn n p p C k P +-=)1()(4一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=(A)[0,2] (B)[1,2] (C)[0,4] (D)[1,4] (2) 已知=+-=+ni m i n m ni im是虚数单位,则是实数,,,其中11 (A)1+2i (B) 1-2i (C)2+i (D)2-I (3)已知0<a <1,log 1m <log 1n <0,则(A)1<n <m (B) 1<m <n (C)m <n <1 (D) n <m <1(4)在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤≥+-≥-+2,02,02x y x y x 表示的平面区域的面积是(A) (B)4(C) (D)2(5)双曲线122=-y m x 上的点到左准线的距离是到左焦点距离的31,则m=( ) (A)21 (B)23 (C)81 (D)89(6)函数y=21sin2x+sin 2x,x R ∈的值域是 (A)[-21,23] (B)[-23,21] (C)[2122,2122++-] (D)[2122,2122---] (7)“a >b >c ”是“ab <222b a +”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不允分也不必要条件(8)若多项式=+-+++++=+911102910012a ,)1(a )1(a )1(则x x x a a x x(A)9 (B)10 (C)-9 (D)-10(9)如图,O 是半径为l 的球心,点A 、B 、C 在球面上,OA 、OB 、OC 两两垂直,E 、F 分别是大圆弧AB 与AC 的中点,则点E 、F 在该球面上的球面距离是(A)4π (B)3π (C)2π(D)42π(10)函数f:{1,2,3}→{1,2,3}满足f(f(x))= f(x),则这样的函数个数共有(A)1个 (B)4个 (C)8个 (D)10个第Ⅱ卷(共100分)注意事项:1. 用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2022年浙江省新高考数学试题及参考答案

2022年浙江省新高考数学试题及参考答案

2022年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至3页;非选择题部分3至4页.满分150分,考试时间120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:如果事件A ,B 互斥,则 柱体的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,则 其中S 表示柱体的底面积,h 表示柱体的高()()()P AB P A P B =⋅ 锥体的体积公式若事件A 在一次试验中发生的概率是p ,则n 次 13V Sh =独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()C (1)(0,1,2,,)k k n k n n P k p p k n -=-= 球的表面积公式台体的体积公式 24S R =π()112213V S S S S h =球的体积公式 其中12,S S 表示台体的上、下底面积, 343V R =π h 表示台体的高 其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2},{2,4,6}A B ==,则A B =( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6} 2.已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( )A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==3.若实数x ,y 满足约束条件20,270,20,x x y x y -≥⎧⎪+-≤⎨⎪--≤⎩则34z x y =+的最大值是( )A .20B .18C .13D .64.设x ∈R ,则“sin 1x =”是“cos 0x =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .22πB .8πC .22π3 D .16π36.为了得到函数2sin3y x =的图象,只要把函数π2sin 35y x ⎛⎫=+ ⎪⎝⎭图象上所有的点( ) A .向左平移π5个单位长度 B .向右平移π5个单位长度 C .向左平移π15个单位长度 D .向右平移π15个单位长度7.已知825,log 3ab ==,则34a b-=( )A .25B .5C .259D .538.如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC AC 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤ 9.已知,a b ∈R ,若对任意,|||4||25|0x a x b x x ∈-+---≥R ,则( )A .1,3a b ≤≥B .1,3a b ≤≤C .1,3a b ≥≥D .1,3a b ≥≤10.已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则 A .100521002a << B .100510032a << C .100731002a << D .100710042a <<非选择题部分(共110分)二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分.11.我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2,3,2a b c ===,则该三角形的面积S =___________.12.已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.13.若3sin sin 10,2παβαβ-=+=,则sin α=__________,cos2β=_________.14.已知函数22,1,()11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩则12f f⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________;若当[,]x a b ∈时,1()3f x ≤≤,则b a -的最大值是_________.15.现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==__________,()E ξ=_________.16.已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.17.设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++的取值范围是_______.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c . 已知345,cos 5a c C ==. (Ⅰ)求sin A 的值;(Ⅱ)若11b =,求ABC △的面积.19.(本题满分15分)如图,已知ABCD 和CDEF 都是直角梯形,AB DC ∥,DC EF ∥,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(Ⅰ)证明:FN AD ⊥;(Ⅱ)求直线BM 与平面ADE 所成角的正弦值.20.(本题满分15分)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N.(Ⅰ)若423260S a a -+=,求n S ;(Ⅱ)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.21.(本题满分15分)如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点10,2Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(Ⅰ)求点P 到椭圆上点的距离的最大值; (Ⅱ)求||CD 的最小值.22.(本题满分15分)设函数e()ln (0)2f x x x x=+>. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明: (ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭; (ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea a x x a --+<+<-.是自然对数的底数)(注:e 2.718282022年普通高等学校招生全国统一考试(浙江卷)数学参考答案选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. D2. B3. B4. A5. C6. D7. C8. A9. D 10. B非选择题部分(共110分)二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分.11.234. 12.①. 8 ②. 2- 13. ①.310②. 4514. ①. 3728②. 333+3 15.①.1635, ②. 127##51716.3617. [1222,16]+三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(15; (2)22.19.(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点交于点G 、H . ∵四边形ABCD 和EFCD 都是直角梯形,//,//,5,3,1AB DC CD EF AB DC EF ===,60BAD CDE ∠=∠=︒,由平面几何知识易知,2,90DG AH EFC DCF DCB ABC ==∠=∠=∠=∠=︒,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt EGD 和Rt DHA ,23EG DH ==∵,DC CF DC CB ⊥⊥,且CF CB C ⋂=,∴DC ⊥平面,BCF BCF ∠是二面角F DC B --的平面角,则60BCF ∠=, ∴BCF △是正三角形,由DC ⊂平面ABCD ,得平面ABCD ⊥平面BCF ,∵N 是BC 的中点,∴FN BC ⊥,又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN CD ⊥,而BC CD C ⋂=,∴FN ⊥平面ABCD ,而AD ⊂平面ABCD FN AD ∴⊥. (25720.(1)235(N )2n n nS n *-=∈(2)12d <≤ 21.(11211; (265. 22.(1)()f x 的减区间为e 02⎛⎫ ⎪⎝⎭,,增区间为e ,2⎛⎫+∞⎪⎝⎭. (2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =, 故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根, 该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭, 设()()21e e ln 22g x x a x b x x x ⎛⎫=----+ ⎪⎝⎭, 则()()22321e 1e 1e 22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭ ()()31e x x a x=---, 当0e x <<或x a >时,0g x ;当e x a <<时,0g x ,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数, 因为()g x 有3个不同的零点,故()e 0g <且()0>g a , 故()21e e e ln e 0e 2e 2e a b ⎛⎫----+<⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫----+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a>+=, 此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<+-+-+=-- ⎪ ⎪⎝⎭⎝⎭, 设()3e ln 22u a a a =--,则()2e-202a u a a '=<, 故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=, 故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭. (ⅱ)当0e a <<时,同(ⅱ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数, 不妨设123x x x <<,则1230e x a x x <<<<<, 因为()g x 有3个不同的零点,故()0g a <且()e 0g >, 故()21e e e ln e 0e 2e 2e a b ⎛⎫----+>⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫----+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+, 因为123x x x <<,故1230e x a x x <<<<<, 又()2e e 1ln 2a ag x x b x x+=-+-+, 设e t x =,()0,1eam =∈,则方程2e e 1ln 02a a x b x x +-+-+=即为: 2e ln 0e 2e a a t t t b +-+++=即为()21ln 02mm t t t b -++++=, 记123123e e e,,,t t t x x x === 则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根, 设3131e1x t k t x a ==>>,1ea m =<, 要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea a t t a --+<+<-,即证:13132166m mt t m --<+<-, 即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎪⎝⎭⎝⎭, 即证:()()()2131313122236m m m t t m m t t --++--<+, 而()21111ln 02m m t t t b -++++=且()23331ln 02m m t t t b -++++=, 故()()()22131313ln ln 102m t t t t m t t -+--+-=, 故131313ln ln 222t t t t m m t t -+--=-⨯-, 故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+, 即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=-->⎪⎝⎭-, 设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>, 故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--, 记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+, 则()()()()()()()2232322132049721330721721m m m m m mm m m m m ω---+-+'=>>++,所以()m ω在0,1为增函数,故()()10m ωω<=,故()()()()211312ln0721m m m mmm---++<+即()()()213121ln172m m mm mm--+++>-,故原不等式得证:。

2022年新高考浙江数学高考真题文档版(含答案)

2022年新高考浙江数学高考真题文档版(含答案)

2022年普通高等学校招生全国统一考试(浙江卷)数学姓名________ 准考证号_________________本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至3页;非选择题部分3至4页.满分150分,考试时间120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:如果事件A ,B 互斥,则 柱体的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,则 其中S 表示柱体的底面积,h 表示柱体的高()()()P AB P A P B =⋅ 锥体的体积公式若事件A 在一次试验中发生的概率是p ,则n 次 13V Sh =独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()C (1)(0,1,2,,)k k n k n n P k p p k n -=-= 球的表面积公式台体的体积公式 24S R =π()112213V S S S S h =球的体积公式 其中12,S S 表示台体的上、下底面积, 343V R =π h 表示台体的高 其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2},{2,4,6}A B ==,则A B =( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6} 2.已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( )A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==3.若实数x ,y 满足约束条件20,270,20,x x y x y -≥⎧⎪+-≤⎨⎪--≤⎩则34z x y =+的最大值是( )A .20B .18C .13D .64.设x ∈R ,则“sin 1x =”是“cos 0x =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .22πB .8πC .22π3 D .16π36.为了得到函数2sin3y x =的图象,只要把函数π2sin 35y x ⎛⎫=+ ⎪⎝⎭图象上所有的点( ) A .向左平移π5个单位长度 B .向右平移π5个单位长度 C .向左平移π15个单位长度 D .向右平移π15个单位长度7.已知825,log 3ab ==,则34a b-=( )A .25B .5C .259D .538.如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC AC 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤ 9.已知,a b ∈R ,若对任意,|||4||25|0x a x b x x ∈-+---≥R ,则( )A .1,3a b ≤≥B .1,3a b ≤≤C .1,3a b ≥≥D .1,3a b ≥≤10.已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则 A .100521002a << B .100510032a << C .100731002a << D .100710042a <<非选择题部分(共110分)二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分.11.我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2,3,2a b c ===,则该三角形的面积S =___________.12.已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.13.若3sin sin 10,2παβαβ-=+=,则sin α=__________,cos2β=_________.14.已知函数22,1,()11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩则12f f⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________;若当[,]x a b ∈时,1()3f x ≤≤,则b a -的最大值是_________.15.现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==__________,()E ξ=_________.16.已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.17.设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++的取值范围是_______.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c . 已知345,cos 5a c C ==. (Ⅰ)求sin A 的值;(Ⅱ)若11b =,求ABC △的面积.19.(本题满分15分)如图,已知ABCD 和CDEF 都是直角梯形,AB DC ∥,DC EF ∥,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(Ⅰ)证明:FN AD ⊥;(Ⅱ)求直线BM 与平面ADE 所成角的正弦值.20.(本题满分15分)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N.(Ⅰ)若423260S a a -+=,求n S ;(Ⅱ)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.21.(本题满分15分)如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点10,2Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(Ⅰ)求点P 到椭圆上点的距离的最大值; (Ⅱ)求||CD 的最小值.22.(本题满分15分)设函数e()ln (0)2f x x x x=+>. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明: (ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭; (ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea a x x a --+<+<-.(注:e 2.71828=是自然对数的底数)2022年普通高等学校招生全国统一考试(浙江卷)数学参考答案选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. D2. B3. B4. A5. C6. D7. C8. A9. D10. B非选择题部分(共110分)二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分.11.2312.①. 8②. 2-13. ①. 310②.4514. ①. 3728②. 333+315.①. 1635,②.127##51716. 36 417. [1222,16]+三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(15;(2)22.19.(1)过点E、D分别做直线DC、AB的垂线EG、DH并分别交于点交于点G、H.∵四边形ABCD 和EFCD 都是直角梯形,//,//,5,3,1AB DC CD EF AB DC EF ===,60BAD CDE ∠=∠=︒,由平面几何知识易知,2,90DG AH EFC DCF DCB ABC ==∠=∠=∠=∠=︒,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt EGD 和Rt DHA ,23EG DH ==∵,DC CF DC CB ⊥⊥,且CF CB C ⋂=,∴DC ⊥平面,BCF BCF ∠是二面角F DC B --的平面角,则60BCF ∠=, ∴BCF △是正三角形,由DC ⊂平面ABCD ,得平面ABCD ⊥平面BCF ,∵N 是BC 的中点,∴FN BC ⊥,又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN CD ⊥,而BC CD C ⋂=,∴FN ⊥平面ABCD ,而AD ⊂平面ABCD FN AD ∴⊥. (25720.(1)235(N )2n n nS n *-=∈(2)12d <≤ 21.(11211; (265. 22.(1)()f x 的减区间为e 02⎛⎫ ⎪⎝⎭,,增区间为e ,2⎛⎫+∞⎪⎝⎭. (2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =, 故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根, 该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+=⎪⎝⎭, 设()()21e e ln 22g x x a x b x x x ⎛⎫=----+ ⎪⎝⎭, 则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭ ()()31e x x a x=---, 当0e x <<或x a >时,0g x ;当e x a <<时,0g x ,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数, 因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫----+> ⎪⎝⎭, 整理得到:12e a b <+且()eln 2b a f a a>+=, 此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a⎛⎫⎛⎫---<+-+-+=-- ⎪ ⎪⎝⎭⎝⎭, 设()3e ln 22u a a a =--,则()2e-202a u a a'=<, 故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=, 故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭. (ⅱ)当0e a <<时,同(ⅱ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数, 不妨设123x x x <<,则1230e x a x x <<<<<, 因为()g x 有3个不同的零点,故()0g a <且()e 0g >, 故()21e e e ln e 0e 2e 2e a b ⎛⎫----+>⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫----+< ⎪⎝⎭, 整理得到:1ln 2e 2ea ab a +<<+, 因为123x x x <<,故1230e x a x x <<<<<, 又()2e e 1ln 2a ag x x b x x+=-+-+, 设e t x =,()0,1eam =∈,则方程2e e 1ln 02a a x b x x +-+-+=即为: 2e ln 0e 2e a a t t t b +-+++=即为()21ln 02mm t t t b -++++=, 记123123e e e,,,t t t x x x === 则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e1x t k t x a ==>>,1ea m =<, 要证:22122e 112e e 6e 6e a ax x a --+<+<-,即证13e 2e e 26e 6ea a t t a --+<+<-, 即证:13132166m mt t m --<+<-, 即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎪⎝⎭⎝⎭, 即证:()()()2131313122236m m m t t m m t t --++--<+, 而()21111ln 02m m t t t b -++++=且()23331ln 02m m t t t b -++++=, 故()()()22131313ln ln 102m t t t t m t t -+--+-=, 故131313ln ln 222t t t t m m t t -+--=-⨯-, 故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+, 即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k k k ϕ⎛⎫'=--> ⎪⎝⎭-, 设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>, 故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--, 记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m m m m m mm m m m m ω---+-+'=>>++,所以()m ω在0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:。

2021年浙江省高考数学试卷(理科)解析

2021年浙江省高考数学试卷(理科)解析

2021年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每题5分,共40分2021年一般高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2021•浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},那么(∁R P)∩Q=()A .[0,1)B.(0,2]C.(1,2)D.[1,2]2.(5分)(2021•浙江)某几何体的三视图如下图(单位:cm),那么该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2021•浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,假设a3,a4,a8成等比数列,那么()A .a1d>0,dS4>B.a1d<0,dS4<C.a1d>0,dS4<D.a1d<0,dS4>4.(5分)(2021•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2021•浙江)如图,设抛物线y2=4x的核心为F,不通过核心的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,那么△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2021•浙江)设A,B是有限集,概念:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2021•浙江)存在函数f(x)知足,对任意x∈R都有()A .f(sin2x)=sinx B.f(sin2x)=x2+x C.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|8.(5分)(2021•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,那么()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2021•浙江)双曲线=1的焦距是,渐近线方程是.10.(6分)(2021•浙江)已知函数f(x)=,那么f(f(﹣3))=,f(x)的最小值是.11.(6分)(2021•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2021•浙江)假设a=log43,那么2a+2﹣a=.13.(4分)(2021•浙江)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N别离是AD,BC的中点,那么异面直线AN,CM所成的角的余弦值是.14.(4分)(2021•浙江)假设实数x,y知足x2+y2≤1,那么|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2021•浙江)已知是空间单位向量,,假设空间向量知足,且关于任意x,y∈R,,那么x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解许诺写出文字说明、证明进程或演算步骤.16.(14分)(2021•浙江)在△ABC中,内角A,B,C所对的边别离为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)假设△ABC的面积为3,求b的值.17.(15分)(2021•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2021•浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b知足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2021•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2021•浙江)已知数列{a n}知足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2021年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每题5分,共40分2021年一般高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card (A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:确定双曲线中的几何量,即可求出焦距、渐近线方程.解答:解:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(6分)考函数的值.点:专题:计算题;函数的性质及应用.分析:根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.点评:本题主要考查了分段函数的函数值的求解,属于基础试题.11.(6分)考点:两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的求值.分析:由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考对数的运算性质.点:函数的性质及应用.专题:分直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.析:解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点评:本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.15.(6分)考点:空间向量的数量积运算;平面向量数量积的运算.专题:创新题型;空间向量及应用.分析:由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解答:解:∵•=||||cos<•>=cos<•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点评:本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5小题,共74分.解许诺写出文字说明、证明进程或演算步骤.16.(14分)余弦定理.考点:专解三角形.题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,析:a=.利用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。

2021年全国统一新高考数学试卷(浙江卷)含详解

2021年全国统一新高考数学试卷(浙江卷)含详解

2021年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{|1}A x x = ,{|12}B x x =-<<,则(A B = )A.{|1}x x >-B.{|1}x x C.{|11}x x -<<D.{|12}x x < 2.已知a R ∈,(1)3(ai i i i +=+为虚数单位),则(a =)A.1-B.1C.3-D.33.已知非零向量a,b ,c ,则“a c b c ⋅=⋅ ”是“a b = ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.某几何体的三视图如图所示(单位:)cm ,则该几何体的体积(单位:3)cm 是()A.32B.3C.322D.325.若实数x ,y 满足约束条件1002310x x y x y +⎧⎪-⎨⎪+-⎩,则12z x y =-的最小值是()A.2-B.32-C.12-D.1106.如图,己知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A.直线1A D 与直线1D B 垂直,直线//MN 平面ABCD B.直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD B C.直线AD 与直线1D B 相交,直线//MN 平面ABCD D.直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B 7.已知函数21()4f x x =+,()sin g x x =,则图象为如图的函数可能是()A.1()()4y f x g x =+-B.1()()4y f x g x =--C.()()y f x g x =D.()()g x y f x =9.已知a ,b R ∈,0ab >,函数2()()f x ax b x R =+∈.若()f s t -,()f s ,()f s t +成等比数列,则平面上点(,)s t 的轨迹是()A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线10.已知数列{}n a 满足11a =,1*)1n n na n N a +=∈+.记数列{}n a 的前n 项和为n S ,则()A.100132S <<B.10034S <<C.100942S <<D.100952S <<二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2024年浙江省高考数学真题及参考答案

2024年浙江省高考数学真题及参考答案

2024年浙江省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。

(word版)浙江高考理科数学试题和解析

(word版)浙江高考理科数学试题和解析

WORD完美格式2021年普通高等学校招生全国统一考试〔浙江卷〕数学〔理科〕选择题局部〔共50分〕1.(2021年浙江)集合P={x|-1<x<1},Q={0<x<2},那么P∪Q=〔〕A.〔1,2〕 B.〔0,1〕 C.〔-1,0〕D.〔1,2〕【解析】利用数轴,取P,Q所有元素,得P∪Q=〔-1,2〕.22x y2.(2021年浙江)椭圆+=1的离心率是〔〕9413525 A.B.C.9 333D.9-45【解析】e=3= 3.应选B.3.4.5.6.7.(2021年浙江)某几何体的三视图如下图〔单位:cm〕,那么该几何体的体积〔单位:cm3〕是〔〕〔第3题图〕A.1B.3C.3D.33 12222 3.A【解析】根据所给三视图可复原几何体为半个圆锥和半个棱锥拼接而的成合组体,所12π×11以,几何体的体积为V=33××〔π2 +2×2×1〕=2+1故.选A.x≥0,4.(2021年浙江)假设x,y满足约束条件x+y-≥30,那么z=x+2y的取值范围是〔〕x-2y≤0,..整理分享..WORD完美格式A.[0,6] B.[0,4] C.[6,+∞〕 D .[4,+∞〕4.D 【解析】如图,可行域为一开放区域,所以直线过点(2,1)时取最小值 4,无最大值,选D.25.(2021年浙江)假设函数f(x)=x+ax+b在区间[0,1]上的最大值是 M,最小值是 m,那么M–m〔〕A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关2a a5.B 【解析】因为最值f〔0〕=b,f〔1〕=1+a+b,f〔- 2〕=b-4中取,所以最值之差一定与b无关.应选B.(2021年浙江)等差数列{an}的公差为d,前n项和为Sn,那么“d>0〞是“S4+S6>2S5〞的〔〕A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.C 【解析】由S4+S6-2S51d>0时,有465>0,=10a+21d-〔25a+10d〕=d,可知当S+S-2S 即S4+S6>2S5,反之,假设S4+S6>2S5,那么d>0,所以“d>0〞是“S4+S6>2S5〞的充要条件,选C.7.(2021年浙江)函数y=f(x)的导函数y=f′〔x〕的图象如下图,那么函数y=f(x)的图象可能是〔〕..整理分享..WORD完美格式〔第7题图〕7.D 【解析】原函数先减再增,再减再增,且x=0位于增区间内.应选 D. 18.(2021年浙江)随机变量ξi满足〔i=1〕=i,〔ξi=0〕=1–i,=1,2.假设0<1<2< PξpP pipp,2那么〔〕E ξEξDξDξ)EξEξDξDξA.()<(),()<(B.()<(),()>( 1212121E ξEξDξDξ)EξEξDξDξC.()>(),()<(D.()>(),()>( 12121218.A【解析】∵E(ξ1)=p1,E(ξ2)=p2,∴E(ξ1)<E(ξ2),∵D(ξ1)=p1(1-p1),D(ξ2)=p2(1-p2),∴D(ξ1)-D(ξ2)=(p1-p2)(1-p1-p2)<0.应选A.9.(2021年浙江)如图,正四面体–〔所有棱长均相等的三棱锥〕,,,分别DABC PQR为AB,BC,CA上的点,AP=PB,BQCR==2,分别记二面角D–PR–Q,D–PQ–R,D–QR–PQCRA的平面角为α,β,γ,那么〔〕〔第9题图〕A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α9.B【解析】设O为三角形ABC中心,那么O到PQ距离最小,O到PR距离最大,O到RQ距离居中,而高相等,因此αγβ<<.应选B...整理分享..WORD完美格式(2021年浙江)如图,平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点→→→→→→〕O,记I=OA·OB,I=OB·OC,I=OD,那么〔123OC·〔第10题图〕A.I1<I2<I3C.I3<I1<I210.C【解析】因为∠B.I1<I3<I2D .I2<I1<I3AOB=∠COD>90,°OA <OC ,OB <OD ,所以→OB·O→C>0>→OA·→OB>→ →O C·OD 故.选C.非选择题局部〔共100分〕11.(2021年浙江)我国古代数学家刘徽创立的 “割圆术〞可以估算圆周率 π,理论上能把π的值计算到任意精度. 祖冲之继承并开展了 “割圆术〞, 将π的值精确到小数点后七位,其结果领先世界一千多年.“割圆术〞的第一步是计算单位圆内接正六边形的面积S6,S =.6336个等边三角形,那么S6 ×〔111.【解析】将正六边形分割为2=62×1×1×sin60°〕 3 . 222 2,12.(2021年浙江),∈R,〔a+bi 〕=3+4i 〔i 是虚数单位〕那么a+b=a b=___________.ab2-b2=3,2=4,2【解析】由题意可得a2+2abi=3+4i,那么a a2-bab=2,解得22-b+b=5,ab=2.b2=1,那么a2=1,那么a..整理分享..WORD 完美格式3 254 3 213.(2021年浙江)多项式〔 12345,,那么a4,x+1〕〔x+2〕=x+ax+ax+ax+ax+a=5 .a=13.164【解析】由二项式展开式可得通项公式为Cr3x2-m2-mr+m=Cr3Cm2··2·x ,rCm2·2rCm2·22=4.分别取r=0,m=1和r=1,m=0可得45a=4+12=16,取r=m ,可得a=1×214.(2021年浙江 )△ABC ,AB=AC=4,BC=2. 点D 为AB 延长线上一点, BD=2,连结CD ,那么△BDC 的面积是 ,cos∠BDC=___________.1510BE114.24【解析】取BC中点E,由题意,AE⊥BC,△ABE中,cos∠ABE=AB=4,∴cos1∠115115∵∠∠,∠DBC=-,DBC=1-16=4,∴S △BCD×××∠2.4sin=2BDBCsinDBC=ABC=2BDC2110104,解得cos∠BDC=4或cos∠BDC=-4〔舍去〕.∴cos∠ABC=cos∠2BDC=2cos∠BDC-1=1510综上可得,△BCD面积为2,cos∠BDC= 4.15.(2021年浙江)向量a,b满足|a|=1,|b|=2,那么|a+b|+|a-b|的最小值是,最大值是.15.4,2 5【解析】设向量 a,b的夹角为θ,由余弦定理有|a-b|= 12+2-21×2×cosθ= 5-4cosθ,|a+b|= 12+2-2×1×2×cos(π-θ)= 5+4cosθ,那么|+|+|-|=5+4cosθ+5-4cosθ,令y=5+4cosθ+5-4cosθ,那么ababy2=10+225-16cos 2θ∈[16,20],据此可得(|+|+|-|)max=202=10+225-16cosabab =25,(|a+b|+|a-b|)min=16=4,即|a+b|+|a-b|的最小值是4,最大值是25.16.(2021年浙江)从6男2女共8名学生中选出长队1人,副队长1人,普通队员2人组..整理分享..WORD完美格式成4人效劳队,要求效劳队中至有少1名女生,共有种不同的选法.〔用数字作答〕660【解析】由题意可得,“从8名学生中选出队长1人,副队长1人,普通队员2人组成4人效劳队〞中的选择方法为C48C1×4C1×3〔种〕方法,其中“效劳队中没有女生〞的选法有C46C1×4C1×3〔种〕方法,那么满足题意的选法有C48C1×4C1×3-C4 6×C14C1×3=660〔种〕.17.(2021年浙江)aR,函数f〔x〕=|x+-a|+a在区间[1,4]上的最大值是5,那么 a 的取值范围是.17.〔-∞,92【解析】∈a≥5时,f〔x〕=a-x-][1,4],x+∈[4,5],分类讨论:①当4x44+a=2a-x-,函数的最大值2a-4=5,∴a=,舍去;②当a≤4时,f〔x〕=x+-a+a=x+xx x≤5,此时命题成立;③当4<a<5时,[f(x)]max|4-a|+a≥|5-a|+a,=max{|4-a|+a,|5-a|+a},那么|4-a|+a=5或|4-a|+a<,9 9-∞,9|5-a|+a解得a=或a <.综上可得,实数a 的取值范围是〔 2|4-a|+a=52 2].23sinxc os〔∈R〕.–cos –218.(2021年浙江)函数〔〕=sinxxxx1〕求f 〔2π〕的值.32〕求f 〔x 〕的最小正周期及单调递增区间.18.解:〔1〕由sin2π=32π13,cos=-2π 323,1122-23×f 〔〕=〔〕-2×〔-23 〔-2〕 〕.22-〔-2π〕=2.得f 〔32x-sin 2x 与sin2x=2sinxcosx ,〔2〕由cos2x=cos得f(x)=-cos2x-3sin2x=-2sin(2x+π).6所以f(x)的最小正周期是π.由正弦函数的性质得ππ3π+2kπ,k∈Z,+2kπ≤2x+≤226π3π+2kπ,k∈Z,解得+kπ≤x≤2 6所以,f〔x〕的单调递增区是间[π3π,∈.+kπ,π+2k]kZ 62(2021年浙江)如图,四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点...整理分享..WORD完美格式PEDAB C〔第19题图〕1〕证明:CE∥平面PAB;2〕求直线CE与平面PBC所成角的正弦值.19.解:〔1〕如图,设PA中点为F,连接 EF,FB.因为E,F分别为 PD,PA中点,1所以EF∥AD且EF=AD,21又因为BC∥AD,BC=AD,2所以EF∥BC且EF=BC,即四边形BCEF为平行四边形,所以CE∥BF,因此CE∥平面PAB.〔2〕分别取BC,AD的中点为M,N,连接PN交EF于点Q,连接 MQ. 因为E,F,N分别是PD,PA,AD的中点,所以Q为EF中点,在平行四边形BCEF中,MQ∥CE.由△PAD为等腰直角三角形得PN⊥AD...整理分享..WORD完美格式由DC⊥AD,N是AD的中点得BN⊥AD.所以AD⊥平面PBN,由BC//AD得BC⊥平面PBN,那么平面PBC⊥平面PBN.过点Q作PB的垂线,垂足为H,连接MH.MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.设CD=1.在△PCD中,由PC=2,CD=1,PD=2得CE=2,1在△PBN中,由PN=BN=1,PB=3得QH=,41在Rt△MQH中,QH=,MQ=2,4所以sin∠QMH=,82所以直线CE与平面PBC所成角的正弦值是.820.(2021年浙江)函数()=〔–2x-1〕e1fxx〕.-x〔x≥2-x〔x≥〔1〕求f(x)的导函数;12〕求f(x)在区间[,+∞)上的取值范围.220.解:〔1〕因为〔1,〔e--x,–2x-1〕′=1-x2x-1x〕′=-e-x〕′=-e-x所以f〔x〕=〔1-1(1-x)(2x-1-2)e1 2x-12x-1(x>).-x-〔–2x-1〕e-x=2〕ex-x-〔–2x-1〕e-x=x-x〔2〕由f′(x)=(1-x)(2x-1-2)e=02x-15解得x=1或x=.2因为1155x〔,1〕1〔1,〕2222f′(x)–0+0〔〕11x25〔2,+∞〕–5-2-1e↘e2↘0↗21又f〔x〕=〔2x-1-1〕2e-x≥0,2..整理分享..WORD 完美格式所以f 〔x 〕在区间[1[0,1,+∞)上的取值范围是 221e].21.(2021年浙江)如图,抛物线x113 91,,22=y ,点A 〔-〕,〔Bp(x,y)(-2=y ,点A 〔-〕,抛物线上的点24243<x <2).过点 B 作直线 AP 的垂线,垂足为 Q .〔第 19题图〕1〕求直线AP 斜率的取值范围;2〕求|PA|·|PQ|的最大值.解:〔1〕设直线AP的斜率为k,11422-,2-k ==x-1x+23 1因为-22斜率的取值范围是〔,〕.<x<,所以直线AP-1111kx-y+k+=0,〔2〕联立直线AP与BQ的方程243x+ky-42k-=0,-kQ的横坐标是2+4k+3解得点xQ=2(k2+1).因为|PA|=1+k122(x+21+k )=(x+2(k+1),2(k+1),|PQ |=2,1+k Q(k-1)(k+1)2(x-x)=-k2+1 2(x2+1所以|PA|·|PQ|=-(k-1)(k+1)3.3令f(k)=-(k-1)(k+1) ,因为f′(k)=-(4k-2)(k+1)2,所以11f(k)在区间(-1,,1)上单调递减,2)上单调递增,(2 ..整理分享..WORD完美格式1 27因此当k=时,|PA||PQ|·取得最大值.2 1622.(2021年浙江)数列{xn}满足x1=1,xn=xn+1+ln(1+xn+1)〔n∈N *〕.*证明:当n∈N时,〔1〕0<xn+1<xn;xnxn+1〔2〕2xn+1- xn≤2;1 1〔3〕n-1≤xn≤n-2.2 222.解:〔1〕用数学归纳法证明xn>0.当n=1时,x1=1>0.假设n=k时,xk>0,那么n=k+1时,假设x≤0,那么0<x=x +ln〔1+〕≤0,矛盾,故x>0.k+1k k+1k+1k+1因此xn>0〔n∈N*〕.所以xn=xn+1+ln〔1+xn+1〕>xn+1,因此0<xn+1<xn〔n∈N*〕.2〕由xn=xn+1+ln 〔1+xn+1〕,得xx-4x+2x=x+〔x+2〕ln 〔1+x 〕.nn+1n+1nn+1n+1 n+1n+12-2x2-2x记函数 f 〔x 〕=x2-2x+〔x+2〕ln 〔1+x 〕〔x≥0〕,2x2+xf′〔x 〕= +ln 〔1+x 〕>0〔x >0〕,x+1函数f 〔x 〕在[0,+∞]上单调递增,所以 f 〔x 〕≥f〔0〕=0,因此xn+1n+1〔 n+1〕ln〔n+1〕〔n+1〕≥ , 2-2x+x+2 1+x=fx2-2x故2xn+1nxnxn+1〔n∈N-x≤*〕.*〕.23〕因为xn=xn+1+ln 〔1+xn+1〕≤x n+1+xn+1=2xn+1,1所以xn ≥ n-1, 2 xnxn+1 由≥2x n+1-xn ,123 241得-≥x n+121所以-xn12〔-2xn〕>0,11111≥2〔-2x-2n-2,2x〕≥?≥2〕=2n-11n-1〔n-2,n-1〔..整理分享..(word版)浙江高考理科数学试题和解析WORD完美格式1故xn≤n-2.211综上,≤xn≤〔n∈Nn-1n-22*〕.*〕.2..整理分享..31 / 3131。

2022年新高考浙江卷数学高考真题(解析版)

2022年新高考浙江卷数学高考真题(解析版)

2022年新高考浙江卷数学高考真题一、单选题1.设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}【答案】D【分析】利用并集的定义可得正确的选项.【详解】{}1,2,4,6A B =U ,故选:D.2.已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( )A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【答案】B【分析】利用复数相等的条件可求,a b .【详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=,故选:B.3.若实数x ,y 满足约束条件20,270,20,x x y x y -≥⎧⎪+-≤⎨⎪--≤⎩则34z x y =+的最大值是( )A .20B .18C .13D .6【答案】B【分析】在平面直角坐标系中画出可行域,平移动直线34z x y =+后可求最大值.【详解】不等式组对应的可行域如图所示:当动直线340x y z +-=过A 时z 有最大值.由2270x x y =⎧⎨+-=⎩可得23x y =⎧⎨=⎩,故()2,3A ,故max 324318z =⨯+⨯=,故选:B.4.设x ∈R ,则“sin 1x =”是“cos 0x =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解.【详解】因为22sin cos 1x x +=可得:当sin 1x =时,cos 0x =,充分性成立;当cos 0x =时,sin 1x =±,必要性不成立;所以当x ∈R ,sin 1x =是cos 0x =的充分不必要条件.故选:A.5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .22πB .8πC .22π3D .16π3233故选:C .6.为了得到函数2sin 3y x =的图象,只要把函数π2sin 35y x ⎛⎫=+ ⎪⎝⎭图象上所有的点( )A .向左平移π5个单位长度B .向右平移π5个单位长度C .向左平移π15个单位长度D .向右平移π15个单位长度7.已知825,log 3ab ==,则34a b -=( )A .25B .5C .259D .538.如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤【答案】A【分析】先用几何法表示出αβγ,,,再根据边长关系即可比较大小.【详解】如图所示,过点F 作FP AC ⊥于P ,过P 作PM BC ⊥于M ,连接PE ,则EFP α=∠,FEP β=∠tan 1PE PE FP AB α==≤,所以αβγ≤≤,故选:A .9.已知,a b ∈R ,若对任意,|||4||25|0x a x b x x ∈-+---≥R ,则( )A .1,3a b ≤≥B .1,3a b ≤≤C .1,3a b ≥≥D .1,3a b ≥≤由图可知,3a ≥,13b ≤≤,或1a ≤<故选:D .10.已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a <<C .100731002a <<D .100710042a <<二、填空题11.我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =___________.12.已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.【答案】 8 2-【分析】第一空利用二项式定理直接求解即可,第二空赋值去求,令0x =求出0a ,再令1x =即可得出答案.【详解】含2x 的项为:()()3232222244C 12C 14128x x x x x x ⋅⋅⋅-+⋅⋅⋅-=-+=,故28a =;令0x =,即02a =,令1x =,即0123450a a a a a a =+++++,∴123452a a a a a ++++=-,故答案为:8;2-.13.若3sin sin 2παβαβ-=+=,则sin α=__________,cos 2β=_________.14.已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a 的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.415.设点P 在单位圆的内接正八边形128A A A L 的边12A A 上,则222182PA PA PA +++L 的取值范围是_______.则1342222(0,1),,,(1,0),222A A A A ⎛⎫⎛ ⎪ ⎪ ⎝⎭⎝822,22A ⎛⎫- ⎪ ⎪⎝⎭,设(,)P x y ,于是21PA +u u u r 因为cos 22.5||1OP ≤≤o,所以1cos 452+是[1222,16]+.故答案为:[1222,16]+.三、解答题16.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC V 的面积.17.如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.18.已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N .(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.19.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.20.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828=L 是自然对数的底数)四、双空题21.已知函数()22,1,11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________;若当[,]x a b ∈时,1()3f x ≤≤,则b a -的最大值是_________.【答案】3728322.现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==__________,()E ξ=_________.【答案】1635,127##517。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年普通高等学校招生全国统一考试(浙江卷)数学(理科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2016年浙江,理1,5分】已知集合{}|13P x R x =∈≤≤,{}2|4Q x R x =∈≥,则()R P Q U ð( )(A )[]2,3 (B )(]2,3- (C )[)1,2 (D )(][),21,-∞-+∞U【答案】B【解析】{}{}2|22|4Q x R x x R x x =∈≥=∈≥≤-或,即有{}|22R Q x R x -=<∈<ð,则()(]2,3R P Q =-U ð,故选B . 【点评】本题考查集合的运算,主要是并集和补集的运算,考查不等式的解法,属于基础题. (2)【2016年浙江,理2,5分】已知互相垂直的平面α,β交于直线l .若直线m ,n 满足//m α,n β⊥,则( )(A )//m l (B )//m n (C )n l ⊥ (D )m n ⊥ 【答案】C【解析】∵互相垂直的平面α,β交于直线l ,直线m ,n 满足//m α,∴//m β或m β⊂或m β⊥,l β⊂,∵n β⊥,∴n l ⊥,故选C .【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养. (3)【2016年浙江,理3,5分】在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线20x y +-=上的投影构成的线段记为AB ,则AB =( )(A )22(B )4 (C )32 (D )6【答案】C 【解析】作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线20x y +-=上的投影构成线段R Q '',即SAB ,而R Q RQ ''=,由3400x y x y -+=⎧⎨+=⎩得11x y =-⎧⎨=⎩,即()1,1Q -,由20x x y =⎧⎨+=⎩得22x y =⎧⎨=-⎩,即()2,2R -,则()()2212129932AB QR ==--++=+=,故选C .【点评】本题主要考查线性规划的应用,作出不等式组对应的平面区域,利用投影的定义以及数形结合是解决本题的关键.(4)【2016年浙江,理4,5分】命题“x ∀∈R ,n N *∃∈,使得2n x >”的否定形式是( )(A )x ∀∈R ,n N *∃∈,使得2n x < (B )x ∀∈R ,n N *∀∈,使得2n x < (C )x ∃∈R ,n N *∃∈,使得2n x < (D )x ∃∈R ,n N *∀∈,使得2n x < 【答案】D【解析】因为全称命题的否定是特称命题,所以,命题“x ∀∈R ,n N *∃∈,使得2n x >”的否定形式是:x ∃∈R ,n N *∀∈,使得2n x <,故选D .【点评】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定.(5)【2016年浙江,理5,5分】设函数()2sin sin f x x b x c =++,则()f x 的最小正周期( )(A )与b 有关,且与c 有关 (B )与b 有关,但与c 无关(C )与b 无关,且与c 无关 (D )与b 无关,但与c 有关 【答案】B【解析】∵设函数()2sin sin f x x b x c =++,∴c 是图象的纵坐标增加了c ,横坐标不变,故周期与c 无关,当0b =时,()211sin sin cos222f x x b x c x c =++=-++的最小正周期为22T ππ==,当0b ≠时,()11cos2sin 22f x x b x c =-+++,∵cos2y x =的最小正周期为π,sin y b x =的最小正周期为2π,∴()f x 的最小正周期为2π,故()f x 的最小正周期与b 有关,故选B .【点评】本题考查了三额角函数的最小正周期,关键掌握三角函数的图象和性质,属于中档题. (6)【2016年浙江,理6,5分】如图,点列{}n A 、{}n B 分别在某锐角的两边上,且112n n n n A A A A +++=,1n n A A +≠,n N *∈,112n n n n B B B B +++=,1n n B B +≠,n N *∈,(P Q ≠表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +∆的面积,则( ) (A ){}n S 是等差数列 (B ){}2n S 是等差数列(C ){}n d 是等差数列 (D ){}2n d 是等差数列 【答案】A【解析】设锐角的顶点为O ,1OA a =,1OB b =,112n n n n A A A A b +++==,112n n n n B B B B d +++==,由于a ,b 不确定,则{}n d 不一定是等差数列,{}2nd 不一定是等差数列,设1n n n A B B+∆的底边1n n B B +上的高为n h ,由三角形的相似可得()111n n n n a n b h OA h OA a nb +++-==+,()22111n n n n a n bh OA h OA a nb++++++==+,两式相加可得,21222n n n h h a nb h a nb ++++==+,即有212n n n h h h +++=,由12n n S d h =⋅,可得212n n n S S S +++=, 即为211n n n n S S S S +++=--,则数列{}n S 为等差数列,故选A .【点评】本题考查等差数列的判断,注意运用三角形的相似和等差数列的性质,考查化简整理的推理能力,属于中档题.(7)【2016年浙江,理7,5分】已知椭圆()2212:11x C y m m +=>与双曲线()2212:10x C y n n-=>的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则( ) (A )m n >且121e e > (B )m n >且121e e < (C )m n <且121e e > (D )m n <且121e e < 【答案】A【解析】∵椭圆()2212:11x C y m m +=>与双曲线()2212:10x C y n n-=>的焦点重合,∴满足22211c m n =-=+,即2220m n -=>,∴22m n >,则m n >,排除C ,D ,则2221c m m -<=,2221c n n =+>,则c m <.c n >,1c e m =,2c e n =,则212c c c e e m n mn ⋅=⋅=,则()()()222222212222211m n c c c c e e m n m n m n -+⎛⎫⎛⎫=⋅=⋅= ⎪⎪⎝⎭⎝⎭()22222222222222112111111m n m n m n m n m n m n m n+-----==+=+=+>,∴121e e >,故选A . 【点评】本题主要考查圆锥曲线离心率的大小关系的判断,根据条件结合双曲线和椭圆离心率以及不等式的性质进行转化是解决本题的关键.考查学生的转化能力.(8)【2016年浙江,理8,5分】已知实数a ,b ,c ( )(A )若221a b c a b c +++++≤,则222100a b c ++<(B )若22|1|a b c a b c ++++-≤,则222100a b c ++<(C )若221||a b c a b c ++++-≤,则222100a b c ++<(D )若22|1|a b c a b c ++++-≤,则222100a b c ++< 【答案】D 【解析】A .设10a b ==,110c =-,则2201a b c a b c +++++=≤,222100a b c ++>;B .设10a =,100b =-,0c =,则221||0a b c a b c ++++-=≤,222100a b c ++>;C .设100a =,100b =-,0c =,则22|0|1a b c a b c ++++-=≤,222100a b c ++>,故选D .【点评】本题主要考查命题的真假判断,由于正面证明比较复杂,故利用特殊值法进行排除是解决本题的关键.第Ⅱ卷(非选择题 共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.(9)【2016年浙江,理9,6分】若抛物线24y x =上的点M 到焦点的距离为10,则M 到y 轴的距离是 . 【答案】9【解析】抛物线的准线为1x =-,∵点M 到焦点的距离为10,∴点M 到准线1x =-的距离为10,∴点M 到y 轴的距离为9.【点评】本题考查了抛物线的性质,属于基础题. (10)【2016年浙江,理10,6分】已知()()22cos sin 2sin 0x x A x b A ωϕ+=++>,则A = ,b = . 【答案】2;1【解析】∵2222cos sin 21cos 2sin 212cos 2sin 212sin 214x x x x x x x π⎛⎫⎛⎫+=++=+++=++ ⎪ ⎪ ⎪⎝⎭⎭,2A ∴=,1b =.【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键. (11)【2016年浙江,理11,6分】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是cm 2,体积是 cm 3. 【答案】72;32【解析】由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,则其表面积为()2224672⨯-=cm 2,其体积为34232⨯=.【点评】本题考查了由三视图求几何体的体积和表面积,解题的关键是判断几何体的形状及相关数据所对应的几何量,考查空间想象能力.(12)【2016年浙江,理12,4分】已知1a b >>,若5log o 2l g a b b a +=,ba ab =,则a = ,b = .【答案】4;2【解析】设log b t a =,由1a b >>知1t >,代入5log o 2l g a b b a +=得152t t +=,即22520t t -+=,解得2t =或12t =(舍去),所以log 2b a =,即2a b =,因为b a a b =,所以2b a b b =,则22a b b ==,解得2b =,4a =.【点评】本题考查对数的运算性质,是基础的计算题.(13)【2016年浙江,理13,4分】设数列{}n a 的前n 项和为n S ,若24S =,121n n a S +=+,*n N ∈,则1a = __,5S = __.【答案】1;121【解析】由1n =时,11a S =,可得2112121a S a =+=+,又24S =,即124a a +=,即有1314a +=,解得11a =;由11n n n a S S ++=-,可得131n n S S +=+,由24S =,可得334113S =⨯+=,4313140S =⨯+=,53401121S =⨯+=.【点评】本题考查数列的通项和前n 项和的关系:n=1时,a 1=S 1,n >1时,a n =S n ﹣S n ﹣1,考查运算能力,属于中档题.(14)【2016年浙江,理14,4分】如图,在ABC ∆中,2AB BC ==,120ABC ∠=︒.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体PBCD 的体积的最大值是 .【答案】12【解析】如图,M 是AC 的中点.①当3AD t AM =<=时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AE ,3DM t =-,由ADE BDM ∆∆∽,可得 ()2131ht=-+,()231h t=-+,()()(()()22233111231,0,33263131tV t t tt--=⋅⋅-⋅⋅=⋅∈-+-+②当3AD t AM =>=时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AH ,3DM t =-,由等面积,可得1122AD BM BD AH ⋅⋅=⋅⋅,∴()21113122t t ⋅⋅=-+,∴()231h t=-+,∴()()(()()22233111231,3,233263131tV t t tt--=⋅⋅-⋅⋅=⋅∈-+-+,综上所述,(()()22331,0,23631tV t t--=⋅∈-+,令()[)2311,2m t=-+∈,则2146m V m-=⋅,∴1m =时,12max V =. 【点评】本题考查体积最大值的计算,考查学生转化问题的能力,考查分类讨论的数学思想,对思维能力和解题技巧有一定要求,难度大.(15)【2016年浙江,理15,5分】已知向量a r ,b r ,1a =r ,2b =r ,若对任意单位向量e r ,均有6a e b e ⋅+⋅≤r r r r,则a b ⋅r r的最大值是 .【答案】12【解析】∵()6a b e a e b e a e b e +⋅=⋅+⋅≤⋅+⋅≤r r r r r r r r r r r ,∴()6a b e a b +⋅=+≤r r r r r ,平方得:2226a b a b ++⋅≤r r r r,即221226a b ++⋅≤r r ,则12a b ⋅≤r r ,故a b ⋅r r 的最大值是12.【点评】本题主要考查平面向量数量积的应用,根据绝对值不等式的性质以及向量三角形不等式的关系是解决本题的关键.综合性较强,有一定的难度.三、解答题:本大题共5题,共74分.解答应写出文字说明,演算步骤或证明过程. (16)【2016年浙江,理16,14分】在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=.(1)证明:2A B =;(2)若ABC ∆的面积24a S =,求角A 的大小.解:(1)由正弦定理得sin sin 2sin cos B C A B +=,()2sin cos sin sin sin sin cos cos sin A B B A B B A B A B =++=++,于是()sin sin B A B =-.又(),0,A B π∈,故0A B π<-<,所以()B A B π=--或B A B =-,因此A π=(舍去)或2A B =,所以,2A B =.(2)由24a S =得21sin 24a ab C =,故有1sin sin sin 2sin cos 2B C B B B ==,因sin 0B ≠,得sin cos C B =.又(),0,B C π∈,所以2C B π=±.当2B C π+=时,2A π=;当2C B π-=时,4A π=.综上,2A π=或4A π=.【点评】本题考查了正弦定理,解三角形,考查三角形面积的计算,考查二倍角公式的运用,属于中档题. (17)【2016年浙江,理17,15分】如图,在三棱台ABC DEF -中,已知平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =. (1)求证:EF ⊥平面ACFD ;(2)求二面角B AD F --的余弦值. 解:(1)延长AD ,BE ,CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,且AC BC ⊥,; 所以,AC ⊥平面BCK ,因此,BF AC ⊥.又因为//EF BC ,1BE EF FC ===,2BC =,所以BCK ∆ 为等边三角形,且F 为CK 的中点,则BF CK ⊥.所以BF ⊥平面ACFD .(2)解法1:过点F 作FQ AK ⊥,连结BQ .因为BF ⊥平面ACK ,所以BF AK ⊥,则AK ⊥平面BQF ,所以BQ AK ⊥.所以,BQF ∠是二面角B AD F --的平面角.在Rt ACK ∆中,3AC =,2CK =,得313FQ =.在Rt BQF ∆中,313FQ =,3BF =,得3cos BQF ∠=.所以,二面角B AD F --的平面角的余弦值为3. 解法2:如图,延长AD ,BE ,CF 相交于一点K ,则BCK ∆为等边三角形.取BC 的 中点O ,则KO BC ⊥,又平面BCFE ⊥平面ABC ,所以,KO ⊥平面ABC .以点O 为原 点,分别以射线OB ,OK 的方向为x ,z 的正方向,建立空间直角坐标系Oxyz .由题意得()1,0,0B ,()1,0,0C -,()0,0,3K ,()1,3,0A --,13,0,2E ⎛⎫ ⎪ ⎪⎝⎭,13,0,2F ⎛⎫- ⎪ ⎪⎝⎭.因此,()0,3,0AC =u u u r ,()1,3,3AK =u u u r,()2,3,0AB =u u u r .设平面ACK 的法向量为()111,,m x y z =u r,平面ABK 的法向量为()222,,n x y z =r .由0AC m AK m ⎧⋅=⎪⎨⋅=⎪⎩u u u r u ru u u r u r ,得111130330y x y z =⎧⎪⎨++=⎪⎩,取()3,0,1m =-u r ; 由00AB n AK n ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r,得22222230330x y x y z +=⎧⎪⎨++=⎪⎩,取()3,2,3n =-r .于是,3cos ,4m n m n m n ⋅==⋅r r r r r r . 所以,二面角B AD F --的平面角的余弦值为34. 【点评】本题考查了空间位置关系、法向量的应用、空间角,考查了空间想象能力、推理能力与计算能力,属于中档题.(18)【2016年浙江,理18,15分】已知3a ≥,函数(){}2min 21,242F x x x ax a =--+-,其中(),min ,,p p qp q q p q ≤⎧=⎨>⎩.(1)求使得等式()2242F x x ax a =-+-成立的x 的取值范围;(2)(i )求()F x 的最小值()m a ;(ii )求()F x 在[]0,6上的最大值()M a .解:(1)由于3a ≥,故当1x ≤时,()()()22242212120x ax a x x a x -+---=+-->,当1x >时,()()()22422122x ax a x x x a -+---=--.所以,使得等式()2242F x x ax a =-+-成立的x 的取值范围为[]2,2a .(2)(i )设函数()21f x x =-,()2242g x x ax a =-+-,则()()min 10f x f ==,()()2min 42g x g a a a ==-+-,所以,由()F x 的定义知()()(){}min 1,m a f g a =,即()20,32242,22a m a a a a ⎧≤≤+⎪=⎨-+->+⎪⎩. (ii )当02x ≤≤时,()()()(){}()max 0,222F x f x f f F ≤≤==,当26x ≤≤时,()()()(){}{}()(){}max 2,6max 2,348max 2,6F x g x g g a F F ≤≤=-=.所以,()348,342,4a a M a a -≤<⎧=⎨≥⎩.【点评】本题考查新定义的理解和运用,考查分类讨论的思想方法,以及二次函数的最值的求法,不等式的性质,考查化简整理的运算能力,属于中档题.(19)【2016年浙江,理19,15分】如图,设椭圆()222:11x C y a a+=>.(1)求直线1y kx =+被椭圆截得到的弦长(用a ,k 表示);(2)若任意以点()0,1A 为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.解:(1)设直线1y kx =+被椭圆截得的线段为AP ,由22211y kx x y a=+⎧⎪⎨+=⎪⎩得()2222120a k x a kx ++=,故10x =,222221a k x a k=-+.因此222221a k AP x a k =-=⋅+. (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP AQ =. 记直线AP ,AQ 的斜率分别为1k ,2k ,且1k ,20k >,12k k ≠.由(1)知,AP =AQ =,故=,所以()()22222222121212120kk k k a a k k ⎡⎤-+++-=⎣⎦.由于12k k ≠,1k ,20k >得()2222221212120k k a a k k +++-=,因此()222212111112a a k k ⎛⎫⎛⎫++=+- ⎪⎪⎝⎭⎝⎭①因为①式关于1k ,2k 的方程有解的充要条件是:()22121a a +->,所以a >.因此,任意以点()0,1A 为圆心的圆与椭圆至多有3个公共点的充要条件为12a <≤,由c e a ==得,所求离心率的取值范围为0e <≤【点评】本题考查直线与椭圆的位置关系的综合应用,椭圆与圆的位置关系的综合应用,考查分析问题解决问题的能力,考查转化思想以及计算能力.(20)【2016年浙江,理20,15分】设数列满足11,2n n aa n N *+-≤∈.(1)求证:()()1*122n n a a n N ≥∈﹣﹣; (2)若32nn a ⎛⎫≤ ⎪⎝⎭,*n N ∈,证明:2n a ≤,*n N ∈.解:(1)由112n n a a +-≤得1112n n a a +-≤,故111222n n n n na a ++-≤,n *∈N , 所以31112211223122222222nn n n n n a a a a a a a a --⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121111222n -≤++⋅⋅⋅+1<, 因此()1122n n a a -≥-. (2)任取n *∈N ,由(1)知,对于任意m n >,1121112122222222n m n n n n m m nmnn n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11111222n n m +-≤++⋅⋅⋅+112n -<,故11222m n n n m a a -⎛⎫<+⋅ ⎪⎝⎭11132222mnn m-⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3224mn⎛⎫=+⋅ ⎪⎝⎭.从而对于任意m n >,均有3224mn n a ⎛⎫<+⋅ ⎪⎝⎭.由m 的任意性得2n a ≤ ①否则,存在0n *∈N ,有02n a >,取正整数000342log 2n n a m ->且00m n >,则003402log 23322244n n a m m n n a -⎛⎫⎛⎫⋅<⋅=- ⎪⎪⎝⎭⎝⎭,与①式矛盾.综上,对于任意n *∈N ,均有2n a ≤.【点评】本题考查了不等式的应用与证明,等比数列的求和公式,放缩法证明不等式,难度较大.。

相关文档
最新文档