李合生植物生理学光合作用描述
《植物生理学》课程教学大纲
《植物生理学》课程教学大纲课程名称:植物生理学课程类别:专业基础课适用专业:园艺考核方式:考试总学时、学分:48学时3学分其中实验学时:学时一、课程教学目的植物生理学是生物学的重要分支学科,理论性和实践性都很强。
课程教学的目的主要是:使学生掌握植物生命活动的基本生理过程及各生理过程相互依赖和相互制约的关系;植物各生理过程的机理及其研究最新动态;植物与环境的协调、统一关系。
在不同逆境条件下,对植物生长发育的影响以及植物对逆境的适应。
植物生理学理论是指导农业生产、林业生产的理论基础,使学生明白只有紧密结合生产实践,才能赋予本学科强大的生命力。
二、课程教学要求通过本课程的学习,要求学生了解植物生理学概念的基本内涵及其所研究的主要内容;了解植物体内的物质代谢与能量代谢的基本情况和过程及这些代谢过程之间的相互关系;掌握植物生长发育的基本规律,理解外界条件对植物生长发育进程的影响;了解植物逆境种类及其对植物的危害,理解植物抗逆性的生理基础,掌握提高植物抗逆性的原理、途径和方法;理解植物生理学是一门实验科学,通过实验教学,使学生掌握研究植物生命活动的基本方法和基本技能,培养学生观察问题和分析问题的能力,以及提高理论联系实际、掌握解决生产实践中的实际问题的途径和方法,为现代农业、林业、园艺及资源植物的开发和利用服务。
由于植物生理学涉及植物生命活动过程的各个方面,学时少,内容多,在教学上力求深入浅出,突出重点,及时反映生产过程中出现的新问题、新情况及植物生理学研究的新进展。
在重视植物生理学基本理论、基本知识和基本技能教学的同时,加强学生创新思维、实践能力和科学素质的培养。
三、先修课程植物学、物理、生物化学四、课程教学重、难点植物生理学的教学重点应放在植物的水分代谢、光合作用、呼吸作用、有机物质运输、植物的生长物质、生长生理以及开花结实生理等方面。
植物生理学的教学难点是植物的渗透作用吸水、植物对矿物质的主动吸收、光合作用机理以及植物激素的作用机理等方面。
《植物生理学》课程教学大纲
《植物生理学》课程教学大纲课程名称:植物生理学课程类别:专业选修课适用专业:生物技术考核方式:考试总学时、学分:32学时 2 学分其中实验学时:0 学时一、课程教学目的《植物生理学》是生物技术专业四年制本科学生开设的一门专业必修课,内容主要是讲授植物生命活动的基本代谢生理(包括物质代谢和能量代谢)、生长发育生理以及对不良环境的反应。
通过本课程的学习,使学生对植物生命活动的基本规律要有全面、系统的认识,并能运用所学植物生理学的知识去观察、解释和分析自然界中有关植物生命活动的现象,明确植物生理学研究的内容和任务,了解植物生理学发展简史,掌握本学科发展的前沿动态和特点以及有效的学习方法。
通过本课程的学习,为本专业学生的继续深造及将来的教育教学、科研和生产实践打下坚实的基础。
通过本课程的学习,使学生具备以下素质和能力:1. 通过植物生理学理论课的学习,具备绿色发展的意识、平衡施肥和环境保护等意识。
2. 应用植物生理学的相关知识和技术,发展现代农业、现代园林、设施农业、现代植物工厂、现代植物制药厂等的创新意识和创新能力。
3. 掌握植物生理学的基本理论,获得相关的教育教学能力,能够运用相关知识服务于中小学教育工作或进一步的科研工作及解决实际生活、生产中的植物生理学涉及的相关问题的能力。
4. 通过小组讨论和合作研究,掌握相关知识资料查询、文献检索及运用现代信息技术获取相关专业知识信息的基本方法,具有及时了解本学科前沿发展动态的能力;具备批判性思维、终生学习意识等。
二、课程教学要求通过学生学习,要求掌握植物的水分代谢、矿质营养、光合作用、有机物运输、植物激素、光的形态建成、植物的营养生长期与生殖生长的生理、植物的成熟与衰老生理,以及对多种逆境的抗性生理和抗病生理等的基本概念与机理机制。
三、先修课程无机及分析化学、有机化学、植物学、生物化学、细胞生物学等。
四、课程教学重、难点课程重点:植物水分生理、矿质营养、光合作用、植物激素、抗逆生理通论。
植物生理学(李合成)四川农业大学版课后答案
植物生理学(李合成)四川农业大学版课后答案植物生理学李合生第二版绪论至第六章课后题绪论:1.什么是植物生理学?植物生理学研究的内容和任务是什么?答:植物生理学是研究植物生命活动规律及其相互关系,揭示植物生命现象本质的科学。
P1内容:细胞生理、代谢生理、生长发育生理、信息生理、逆境生理、分子生理(及其生产应用)。
P2任务:研究和了解植物在各种环境条件下进行生命活动的规律和机制,并将这些研究成果应用于植物生产。
P22.植物生理学是如何诞生和发展的?从中可以得到哪些启示?答:孕育:1627年荷兰学者凡·海尔蒙做柳枝盆栽称重实验开始,19世纪40年代德国化学家李比希创立植物矿质营养学,约400年;p2诞生:至1904年《植物生理学》出版(半个世纪);p3发展:于20世纪进入快速发展时期。
P4启示:3.21世纪植物生理学发展趋势如何?答:①.与其他学科交叉渗透,微观与宏观相结合,向纵向领域拓展;p5②.对植物信号传递和转导深入研究,(将为揭示植物生命活动本质,调控植物生长发育开辟新的途径);p6③.物质代谢和能量转换的分子机制及其基因表达调控仍将是研究重点;p6④.植物生理学和农业科学技术的关系更加密切。
P74.如何看待中国植物生理学的过去、现在和未来?答:中国古代人民在生产实践中总结出许多有关植物生理学的知识。
我国现代植物学起步较晚,由于封建体制的限制。
新中国成立后,中国的植物生理学取得了很大的发展。
现在在某些方面的研究已经进入了国际先进水平。
P6、p75.如何理解“植物生理学是合理农业的基础”?答:植物生理学的每一次突破性进展都为农业生产技术的进步起到了巨大的推动作用。
P7.6.怎样学好植物生理学?答:①.必须有正确的观点和学习方法;②.要坚持理论联系实际。
第一章、植物细胞的亚显微结构和功能(一)名词解释真核细胞:体积较大,有核膜包裹的典型细胞核,有各种结构与功能不同的细胞器分化,有复杂的内膜系统和细胞骨架系统存在,细胞分裂方式为有丝分裂和减数分裂。
李合生植物生理学光合作用描述
PSⅠ和PSⅡ的光化学反应
PSⅠ的原初反应: P700·A0 hυ P700*·A0 P700+·A0- P680+·Pheo-
PSⅡ的原初反应: P680·Pheo hυ P680*·Pheo
在原初反应中,受光 激发的反应中心色素分 子发射出高能电子,完 成了光→电转变,随后 高能电子将沿着光合电 子传递链进一步传递。
不一定,但受光促进
不同层次和时间上的光合作用
第三节 原初反应
原初反应 是指从光合色素分子被光激发,到引 起第一个光化学反应为止的过程。 它包括: 光物理-光能的吸收、传递 光化学-有电子得失 原初反应特点 1) 速度非常快,10-12s∽10-9s内完成;
2) 与温度无关,(77K,液氮温度)(2K,液氦温度);
PSII反应中心结构模式图
组成中心天线的CP47和 CP43是指分子量分别为47 000、43 000并与叶绿素结 合的聚光色素蛋白复合体, 它们围绕P680,比LHCⅡ更 快地把吸收的光能传至PSⅡ 反应中心,所以被称为中心 天线或“近侧天线”。
PSⅡ反应中心的核心部分是 分子量分别为 32 000 和 34 000 的 D1 和 D2 两条多肽。 D1 很容易受到 光化学破坏,会发生活性逆转。 反应中心的次级电子供体 Z、 中 心 色 素 P680 、 原 初 电 子 受 体 Pheo 、次级电子受体 QA 、 QB 等都 结合在D1和D2上。 其中与 D1 结合的质体醌定名 为 QB ,与 D2 结合的质体醌定名为 QA 。 Q 有 双 重 涵 义 , 既 是 醌 (quinone) 的字首,又是荧光猝 灭剂(quencher)的字首。
ADP+Pi
光合作用的过程和能量转变
现代植物生理—李合生主编(7)
第七章植物的生长生理一、基本名词解释1、植物的生长:是指由于细胞分裂和伸长引起的植物在体积和质量(干重)上的不可逆增加。
2、植物的发育:在植物生活史中,细胞生长和分化成为执行各种不同功能的组织与器官的过程二、植物细胞的生长和分化:1、细胞是植物体的结构和功能单位。
2、细胞分化特点:植物根和茎的顶端分生组织细胞以及侧生分生组织(形成层)细胞处在不断分裂的过程中。
(1)具有分裂能力的细胞体积小,细胞质浓厚,没有液泡,细胞核大及细胞壁薄(2)从母细胞分裂后形成的子细胞到下次分裂形成两个子细胞所需要的时间称为细胞周期,分裂间期较长。
(3)控制细胞周期的关键酶是蛋白激酶(CDK),其磷酸化或去磷酸化能有效调节细胞周期的过程。
分裂期特点:1)DNA含量发生了很大变化2)呼吸速率的变化(变快)3)植物激素的影响3、细胞的伸长特点:(1)细胞体积显著增加(2)呼吸和代谢十分旺盛4、细胞的分化特点:组织与器官的分化细胞的分化调控:有特异基因表达(激素对基因表达起重要的调控所用)三、种子的萌芽:1、概念:种子萌发是指种子从吸水到胚根(很少情况下是胚芽)突破种皮期间所发生的一系列生理变化过程。
但在农业生产实践中,种子萌发是指从播种到幼苗出土之间所发生的一系列生理变化2、影响种子萌发的因素(1)内部因素:1)种子的生活力:种子的发芽潜力即种子的发芽力2)种子活力:即种子的健壮度,包括发芽潜力,生长潜力和生产潜力检测种子活力的方法:①利用组织还原力②利用原生质的着色能力③利用细胞中的荧光物质3)种子寿命:种子从采收至失去发芽力的时间。
种子寿命即与植物种类有关,也与贮藏条件有关(可分为:短命种子,中命种子,长命种子)4)种子老化(负面)种子成熟后在贮藏过程中活力逐渐降低的过程(2)外界因素1)水分:干燥种子最初依靠吸涨作用进行吸水2)氧气3)温度4)光:光不是所有种子萌发所必须的外界条件,只有少数种子萌发所必须的①需光种子:需要光照才能萌发的种子,如莴苣,烟草②需暗种子:有些种子只能在暗处萌发,光会抑制萌发过程对需光种子而言,白光和波长为660nm的红光都能有效促进萌发的作用,然而红光的效应可被随后的远红光(730nm)所抵消,红光和远红光对种子萌发的逆转作用是通过光敏色素实现的。
李合生版生理笔记
第二章植物的水分代谢本章内容提要水是植物生命的基础。
一般植物组织含水量约为70%~90%,水分在植物体内有自由水及束缚水两种形式,二者比值可反映代谢活性与抗性强弱。
植物水分代谢包括水的吸收、运输和散失过程。
植物细胞吸水有三种方式:渗透吸水、吸胀吸水和代谢性吸水,以渗透吸水为主。
典型细胞水势Ψw=Ψp+Ψπ+Ψm,具有中央大液泡的细胞水势Ψw=Ψp+Ψπ,分生细胞、风干种子的水势Ψw=Ψm,植物细胞之间或与外部溶液之间水分的移动决定于水势差。
细胞膜上存在的水通道蛋白与细胞水分的快速跨膜运动有关。
根系是植物吸水的主要器官,吸水的主要区域为根毛区,吸水的方式有主动吸水和被动吸水,其吸水动力分别为根压和蒸腾拉力。
蒸腾拉力是植物主要的吸水动力。
水分在植物体内连续不断地运输是蒸腾拉力—内聚力克服水柱张力的结果。
植物主要通过叶片蒸腾散失水分,具有重要生理意义。
气孔蒸腾是植物叶片蒸腾的主要形式。
蒸腾速率与气孔的开闭关系很大。
气孔开闭可能是通过保卫细胞内K+的积累学说和苹果酸代谢来调节的。
许多外界因子能调节气孔开闭。
维持植物水分平衡的途径有两条:减少蒸腾和增加供水,后者是主要的、积极的途径。
,作物需水因作物种类不同而异,一般而论,植物的水分临界期是花粉母细胞四分体形成期,合理灌溉要综合考虑土壤含水量、作物形态指标及生理指标。
灌溉的生理指标能即使反映植物体内的水分状况,是较为科学的。
水是植物的一个重要的先天环境条件。
植物的一切正常生命活动只有在含有一定量水分的条件下才能进行,否则就会受到阻碍,甚至死亡。
陆生植物不断地从土壤中吸取水分,以保持其正常的含水量;另一方面,植物地上部分(主要是叶片)以蒸腾作用等方式散失水分,以维持体内外的水分循环及适宜的体温。
植物对水分的吸收、运输、利用和散失的过程,称为植物的水分代谢(water metabolism)。
根系吸收的水分除极少部分参与体内的生化代谢过程外,其绝大部分通过蒸腾作用散失到周围环境中。
李合生植物生理学第九章植物成花生理
春化作用与光周期
3. 足够水分,氧气和作为呼吸底物的糖类
-
响对图
冬8
黑 麦 开 花 的 影
2 春 化 天 数
春化持续的时间对去春化效果的影响
三、春化作用的机理:
1. 春化刺激的感受和传递 2. 春化的生理生化的基础 3. 春化作用与春化素,赤霉素
及其他生长物质的关系
1. 春化刺激的感受和传递
感受春化作用的时期
3. 春化作用与春化素,赤霉素及其他生长物质的关系
嫁接试验说明,在春化的植株中产生某种开花刺激物,传递到未 春化的植物而引起开花。
德国学者Melchers将其命名为春化素(Vernalin)
GA 可代替低温和长日照。GA是低温春化过程中形成的一种开花刺激物。
低温和赤霉素对烟草开花的效应
赤霉素对需低温胡 萝卜开花的影响
相 对
短日植物 苍耳
开
花 反
临界日长
应
6 12 18 24
每天光期长度 ( h)
长日植物 相 天仙子
对 开 花 临界日长 反 应
6 12 18 24
每天光期长度 ( h)
三种主要光周
相 对
期反应类型 开
花
反
应
日中性植物
6 12 18 24 每天光期长度 ( h)
(4) 中日照植物 (intermediate-daylength plant)
现代植物生理学(李合生)课后题答案
绪论一、教学大纲基本要求通过绪论学习,了解什么是植物生理学以及它主要研究的内容、了解绿色植物代谢活动的主要特点;了解植物生理学的发展历史;了解植物生理学对农业生产的指导作用和发展趋势;为认识和学好植物生理学打下基础。
二、本章知识要点三、单元自测题1.与其他生物相比较,绿色植物代谢活动有哪些显著的特点?答:植物的基本组成物质如蛋白质、糖、脂肪和核酸以及它们的代谢都与其他生物(动物、微生物)大同小异。
但是,植物本身的代谢活动有一些独特的地方,如:①绿色植物代谢活动的一个最大特点,是它的“自养性”,绿色植物不需要摄取现成的有机物作为食物来源,而能以太阳光能作动力,用来自空气中的C02和主要来自土壤中的水及矿物质合成有机物,因而是现代地球上几乎一切有机物的原初生产者;②植物扎根在土中营固定式生活,趋利避害的余地很小,必须能适应当地环境条件并演化出对不良环境的耐性与抗性;③植物的生长没有定限,虽然部分组织或细胞死亡,仍可以再生或更新,不断地生长;④植物的体细胞具全能性,在适宜的条件下,一个体细胞经过生长和分化,就可成为一棵完整的植株。
因此作为研究植物生命活动规律以及与环境相互关系的科学--植物生理学在实践上、理论上都具有重要的意义,是大有可为的。
2.请简述植物生理学在中国的发展情况。
答:在科学的植物生理学诞生之前,我国劳动人民在生产劳动中已积累并记载下了丰富的有关植物生命活动方面的知识,其中有些方法至今仍在民间应用。
比较系统的实验性植物生理学是20世纪初开始从国外引进的。
20世纪20~30年代钱崇澍、李继侗、罗宗洛、汤佩松等先后留学回国,在南开大学、清华大学、中央大学等开设了植物生理学课程、建立植物生理实验室,为中国植物生理学的发展奠定了基础。
1949年以后,植物生理的研究和教学工作发展很快,设有中国科学院上海植物生理研究所(现改名为中国科学院上海生命科学研究院植物生理生态研究所);各大地区的植物研究所及各高等院校中,设有植物生理学研究室(组)或教研室(组);农林等部门设立了作物生理研究室(组)。
植物生理学习题及答案(1—13章)李合生主编【范本模板】
第一章植物的水分代谢一、名词解释1.自由水:距离胶粒较远而可以自由流动的水分.2.束缚水:靠近胶粒而被胶粒所束缚不易自由流动的水分。
3.渗透作用: 水分从水势高的系统通过半透膜向水势低的系统移动的现象。
):每偏摩尔体积水的化学势差。
符号:ψw。
4.水势(ψw5.渗透势(ψπ):由于溶液中溶质颗粒的存在而引起的水势降低值,符号ψπ。
用负值表示。
亦称溶质势(ψs)。
):由于细胞壁压力的存在而增加的水势值.一般为正值。
符号ψp。
初始质壁6.压力势(ψp分离时,ψp为0,剧烈蒸腾时,ψp会呈负值。
):细胞胶体物质亲水性和毛细管对自由水束缚而引起的水势降低值,以负值7.衬质势(ψm表示。
符号ψm 。
8.吸涨作用:亲水胶体吸水膨胀的现象。
9.代谢性吸水:利用细胞呼吸释放出的能量,使水分经过质膜进入细胞的过程。
10.蒸腾作用:水分以气体状态通过植物体表面从体内散失到体外的现象.11.根压:植物根部的生理活动使液流从根部上升的压力。
12.蒸腾拉力:由于蒸腾作用产主的一系列水势梯度使导管中水分上升的力量。
13.蒸腾速率:又称蒸腾强度,指植物在单位时间内,单位面积通过蒸腾作用而散失的水分量.(g/dm2·h)14.蒸腾比率:植物每消耗l公斤水时所形成的干物质重量(克)。
15.蒸腾系数:植物制造 1克干物质所需的水分量(克),又称为需水量.它是蒸腾比率的倒致。
16.内聚力学说:又称蒸腾流-内聚力—张力学说。
即以水分的内聚力解释水分沿导管上升原因的学说。
二、填空题1.植物细胞吸水有、和三种方式.渗透性吸水吸涨吸水代谢性吸水2.植物散失水分的方式有和。
蒸腾作用吐水3.植物细胞内水分存在的状态有和 .自由水束缚水4.植物细胞原生质的胶体状态有两种,即和。
凝胶溶胶5.一个典型的细胞的水势等于 ;具有液泡的细胞的水势等于 ;形成液泡后,细胞主要靠吸水;干种子细胞的水势等于。
ψπ + ψp + ψm; 渗透性ψp + ψm;吸涨作用ψm6.植物根系吸水方式有:和。
李合生植物生理学第三章矿质营养
的动 力学 饱和 效应
关于载体的作用方式,这里介绍扩散方式和变构方式
1.扩散方式 离子
CIC
P
AC
P
ATP
磷酸 激酶 ADP
携带离子的载体 磷酸基团
CIC
IC
P
线 粒 体
IC 未活化载体
AC 活化载体
磷酸 脂酶
Pi
外
膜
内
细胞质
图 载体运输离子通过质膜示意图
2
变 构 方 式
A.ATP和底物靠近变构酶; B.ATP和底物与变构酶结合; C.由 于ATP效应物的作用,构象转换,变构酶由状态1转变为状态2, 底物就被运送到膜另一侧;D.ATP转变为ADP;E.ADP不适于变构 部位,脱离变构酶,底物也释放出来,变构酶就恢复为状态1。
吸 收 溶 质 量
转入水中
Ⅱ
正常条件
Ⅰ
抑制呼吸 转入水中
时间
植物细胞吸收矿质的方式
被动吸收
简单扩散 协助扩散 主动吸收(主要方式) 胞饮作用
一、被动吸收
指由于扩散作用或其他物理过程而进行的 溶质吸收,不需要代谢能量,故又称非代 谢性吸收。
被动吸收特点: 顺浓度梯度或电化学势梯度 进行,不需提供能量
氮、磷、钾三种元素植物需求量大,而土壤中往往 缺乏此三种元素,所以被称为“肥料的三要素”。
4、硫 硫酸根离子---含硫氨基酸。 (1).生理作用 (2).缺乏
硫不足时,幼叶先表现失绿症状,叶呈黄白易脱落。 硫过多对植物产生毒害作用。
甜菜叶
5、钙
Ca2+----植物体内的钙有呈离子状态,有呈盐形式, 有与有机物结合。
2、载体
膜上的内在蛋 白,载体上有 专一的结合部 位,被运转的 物质必需与结 合部位结合, 载体才能将其 运到膜的另一 侧,所以载体 也叫透过酶。
李合生植物生理学第五章光合作用1
由前质体发育而来。 在光照下合成叶绿 素,使前质体发育 成叶绿体。
3.分布
4.运动
1.发育 2.形态
3.分布 4.运动
扁平椭圆形, 每个细胞中叶 绿体的大小与 数目依植物种 类、组织类型 以及发育阶段 而异。 一个叶肉细 胞中约有20至 数百个叶绿体, 其长3~6μm, 厚2~3μm。
细胞液
叶绿体
分级离心 500g去沉淀,3000g去上清液,沉淀悬浮, 冰浴保存
2. 从原生质体分离(酶解法) 离心 酶解 挤压 叶组织 质膜与细胞器 原生质体 叶绿体
<20μm尼龙网 果胶酶,纤维素酶 0.5mol/L甘露醇 pH5.0~pH5.5 ,40℃, 振荡 Chlor被膜 完整度较高
(二)叶绿体的发育、形态及分布
图5 主要光合色素的结构式
光合色素种类
(一)光合色素的结构和性质
1.叶绿素
使植物呈现绿色的色素。
叶绿素a 叶绿素b 叶绿素c 叶绿素d
高等植物
藻类中
叶绿素
细菌叶绿素—— 光合细菌
叶绿素是双羧酸的酯,一个 羧基被甲醇所酯化 ,另一个 羧基被叶绿醇所酯化。 叶绿素a与b的不同之处是叶 绿素 a 比 b 多两个氢少一个氧。 两者结构上的差别仅在于叶 叶绿素结构 绿素 a 的第Ⅱ吡咯环上一个甲 含有由中心原子Mg连接四个吡咯环的卟林环结 基(-CH3)被醛基(-CHO)所取 构和一个使分子具有疏性长的碳氢链。 代。
卟啉环 另外卟啉环还有一个含羰基的同素环 (Ⅴ环上含相同元素),其上一个羧 基以酯键与甲醇相结合。 环Ⅵ上有一个丙酸侧链以酯键与叶绿 醇相结合,叶绿醇是由四个异戊二烯 单位所组成的双萜,具有亲脂性。
叶绿醇
叶绿素的提取
李合生植物生理学chap11
➢ 御逆性:指植物处于逆境时,其生理过程不受或 少受逆境的影响,仍能保持正常的生理活性。
➢ 这类植物通常具有根系发达,吸水、吸肥能力强, 物质运输阻力小,角质层较厚,还原性物质含量 高,有机物质的合成快等特点。
➢ 如仙人掌,其一方面在组织内贮藏大量的水分; 另一方面,在白天关闭气孔,降低蒸腾,这样就 避免干旱对它的影响。
➢ ABA主要通 过关闭气孔,保持组织内的水分平衡,增强 根的透性,提高水的通导性等来增加植物的抗性。
➢ 在低温、高温、干旱和盐害等多种胁迫下,体内ABA含量 大幅度升高,这种现象的产生是由于逆境胁迫增加了叶绿 体膜对ABA的通透性,并加快根系合成的ABA向叶片的运 输及积累所致。
➢黄瓜幼苗在低温(3±2℃)和盐胁迫(0.25mol·L-1 )下 处理3d,子叶内源ABA含量分别增加16倍和22倍;
图 11-1 逆境的种类
图22. 1 多种因素决定植物如何适应环境胁迫的:植物的基因型和 发育环境,胁迫的严重程度和持续时间,和植株适应胁迫和任何多 重胁迫的协同效应的时间多少。植物通过多种反应机制抵抗胁迫。 无法补偿均衡严重胁迫导致植株死亡。
(二)
➢ 抗性是植物在对环境的逐步适应过程中形成的。
➢ 低温(8~10℃)3d,水稻幼苗叶内源ABA含量增加21 倍(表11-1),且这种增加是发生在严重的电解质渗漏 之前。
➢ 但是当植株受到低温伤害后,内源ABA的积累速率 就会降低。
图25.3 光下叶绿体中ABA的积累。光刺激了质子吸收进入基粒,使得基质 变得更 加碱性。上升的碱性使弱酸性的ABA·H分离成H+和ABA-阴离子。基质中 ABA·H的浓度下降到胞质中的浓度之下,且浓度的差异驱动了ABA·H跨叶绿体膜 的被动的扩散。在同一时间,基质中的ABA-的浓度上升了,但叶绿体膜对阴离 子(红箭头)几乎是不通透的,因此,ABA-仍然被包围着,这个过程不断地进 行,直到基质中的ABA·H浓度与胞液中的相等。但只要基质中保持更高的碱性, 基质中总的ABA浓度(ABA·H+ABA-)要大大超过胞液中的浓度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共振传递示意图
在共振传递过程中,供体和受体分子可以是同种,也可以是异种 分子。分子既无光的发射也无光的吸收,也无分子间的电子传递 。
通过上述色素分子间的能量传递,聚光色素吸 收的光能会很快到达并激发反应中心色素分子,启 动光化学反应。
图
光合作用过程中能量运转的基本概念
图 聚光系统到反应中心能量激发呈漏斗状
(二)激发态的命运
1.放热 2.发射荧光与磷光
3.色素分子间的能量传递
4.光化学反应
1.放热
激发态的叶绿素分子在 能级降低时以热的形式释 放能量,此过程又称内转 换或无辐射退激。
Chl* → Chl+热 Chl* → Chபைடு நூலகம்T +热 ChlT → Chl+热
另外吸收蓝光处于第二单线态的叶绿素分子,其具有的能量虽 远大于第一单线态的叶绿素分子。但超过部分对光合作用是无用的, 在极短的时间内以热能释放。 由于叶绿素是以第一单线态参加光合作用的。在能量利用上蓝 光没有红光高。 ??
2. 发射荧光与磷光
激发态的叶绿素分子 回至基态时,可以光 子形式释放能量。 荧光。 磷光。
Chl* 10-9s Chl + hν 荧光发射 ChlT 10-2s Chl + hν 磷光发射 磷光波长比荧光波长长,转换的时间也较长,而强度只有荧 光的1%,故需用仪器才能测量到。
激子传递
激子通常是指非金属晶体 中由电子激发的量子,它 能转移能量但不能转移电 荷。 这种在相同分子内依靠激 子传递来转移能量的方式 称为激子传递。
共振传递
在色素系统中,一个色素分子吸 收光能被激发后,其中高能电子 的振动会引起附近另一个分子中 某个电子的振动(共振),当第二 个分子电子振动被诱导起来,就 发生了电子激发能量的传递。这 种依靠电子振动在分子间传递能 量的方式就称为“共振传递”。
光合作用的过程
H 2O
光解 光能 吸收
色素分子
O2
2C3
酶
[H]
ATP
还
固
CO2
供能
多种酶 定 C5
原
(CH2O)
酶
酶
ADP+Pi
暗反应阶段
CO2的固定: CO2+C5 C3化合物还原:2 C3
6
光反应阶段
水的光解:H2O
光解
2[H]+1/2 O2
酶
酶
2C3
光合磷酸化:ADP+Pi+能量
ATP
[H], 酶 (CH2O) ATP
去镁叶绿素
副叶绿素
去镁叶绿素
副叶绿素 胡萝卜素
配对叶绿素
光系统‖的反应中心
ADP+Pi
光合作用的过程和能量转变
光合作用的实质是将光能转变成化学能。 根据能量转变的性质,将光合作用分为三个阶段: 1.原初反应:光能的吸收、传递和转换成电能; 2.电子传递和光合磷酸化:电能转变为活跃化学能; 3.碳同化:活跃的化学能转变为稳定的化学能。
表1 光合作用中各种能量转变情况
对提取的叶绿体色素浓溶液照光, 在与入射光垂直的方向上可观察到呈 暗红色的荧光。
离体色素溶液为什么易发荧光?
因为溶液中缺少能量受体或电子受 体的缘故。 荧光猝灭剂:在色素溶液中,如加 入某种受体分子,能使荧光消失。常 用Q表示。在光合作用的光反应中,Q 即为电子受体。 色素发射荧光的能量与用于光合作 用的能量是相互竞争的,这就是叶绿 素荧光常常被认作光合作用无效指标 的依据。
•
能量转变 光能
贮能物质 量子 转变过程
电能
电子
活跃的化学能
ATP、NADPH2 光合磷酸化
稳定的化学能
碳水化合物等 碳同化 101-102 叶绿体间质
原初反应
电子传递
时间跨度(秒)10-15-10-9 10-10-10-4 100-101 反应部位
PSⅠ、PSⅡ颗粒 类囊体膜 类囊体
是否需光
需光
不一定,但受光促进
(一) 激发态的形成 能量的最低状态─基态。 色素分子吸收了一个光子 后-----高能的激发态。
Chl(基态)+hυ
10-15s
Chl*
( 激发态)
图8 叶绿素分子对光的吸收及能量的释放示意图 各能态之间因分子内振动和转动还表现出若干能级。
叶绿素分子受光激发后的能级变化
叶绿素: 红光区 : 被红光激 发,电子跃迁到 能量较低的第一 单线态 蓝光区 : 被蓝光激 发,电子跃迁到 第二单线态。 配对电子的自旋 方向:单线态; 三线态;第一单 图8 叶绿素分子对光的吸收及能量的释放示意图 虚 线 态 ; 第 二 单 线 线表示吸收光子后所产生的电子跃迁或发光, 态 实线表示能量的释放, 半箭头表示电子自旋方向
不一定,但受光促进
不同层次和时间上的光合作用
第三节 原初反应
原初反应 是指从光合色素分子被光激发,到引 起第一个光化学反应为止的过程。 它包括: 光物理-光能的吸收、传递 光化学-有电子得失 原初反应特点 1) 速度非常快,10-12s∽10-9s内完成;
2) 与温度无关,(77K,液氮温度)(2K,液氦温度);
3.色素分子间的能量传递
激发态的色素分子把激发能传递给处于基态的同种 或异种分子而返回基态的过程。 Chl*1+ Chl2 Chl1+Chl*2
供体分子 受体分子
一 般 认 为 , 色 素 分 子间激发能不是靠分 子间的碰撞传递的 , 也不是靠分子间电荷 转移传递的 ,可能是 通过“激子传递”或 “共振传递 ”方式传 递。
3) 量子效率接近1
反应中心色素:少数特殊状
态的chl a分子,它具有光化学活性,
概念
是光能的“捕捉器”、“转换器”。
聚光色素(天线色素):
没有光化学活性,只有收集光能的
作用,包括大部分 chla 和全部 chlb、 胡萝卜素、叶黄素。
光合单位
光合膜上能进行完整光反应的最小结构单位
一、光能的吸收与传递
二、光化学反应
(一)反应中心与光化学反应 1.反应中心 原初反应的光化学反应是在 光系统的反应中心进行的。 反应中心是发生原初反应的最小单位。 由反应中心色素分子、原初电子受体、次级电子受体 与供体等电子传递体,以及维持这些电子传递体的微 环境所必需的蛋白质等成分组成的。
反应中心中的原初 电子受体是指直接接 收反应中心色素分子 传来电子的电子传递 体 反应中心色素分子 是光化学反应中最先 向原初电子受体供给 电子的,因此反应中 心色素分子又称原初 电子供体。