特殊两位数乘法速算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊两位数乘法速算

速算是提高学生心算能力,发展学生思维的有效途径,在速算过程中,要使运算尽可能简便、快速、正确,就要注意培养学生对数字的感觉、直觉、熟记一些常用的数据。

同学们,三分学,七分练,只要耐心去练,熟能生巧,你一定会收到预期的效果,也相信你们一定会通过数学的学习,变得越来越聪明。

某些二位数的速乘法:两位数与两位数相乘是日常生活中经常遇到的事。如去买菜,西红柿每斤1.8元,买了1.2斤,该付多少钱?一个3.5米见方的房间有多少平方米?某单位给员工的午餐补贴是每天15元,19个员工每天要补贴多少钱?等等。这些问题看似简单,但在没有计算器和纸笔的情况下,要很快算出正确答案也不是一件非常容易的事。这里介绍的“某些二位数乘法的速算(心算、口算)法”将两位数的乘法转化成了一位数的乘法以及加、减法,可以快速而正确地得到答案,虽然不能涵盖所有的两位数乘法,但如能熟练掌握,仍可带来很大的方便。

一、“十位上数字相同,个位上数字互补”的两个两位数相乘

如43×47这样的两位数乘式,两个乘数十位上的数字相等(此例都是4),个位上的数字互补(所谓互补,就是其和为10。此例是3和7),这一类两位数乘法的速算口诀是:

十位乘以大一数,个位之积后面拖。

就以43×47为例来说明口诀的运用。

口诀第一句“十位乘以大一数”的操作是:用4(十位上的数)乘以5(比十位上的数大1的数),得到20。口诀第二句“个位之积后面拖”的操作是:用3乘7得积21,(个位之积)直接写在20的后面(后面拖),得2021就是答案。需要注意的是当个位数是1和9时,它们的乘积9也是个一位数,在往十位数的乘积后面“拖”的时候,在9的前面要加一个0,即把9看成09。例如91×99,答案不是909而应该是9009。

此速算法的代数证明如下:

任意一个两位数可以用10a+b来表示,(例如56就是10×5+6这里的a是5,

b是6)另一个不同的十位数则可以用10c+d来表示,两个不同的十位数相乘就可以写成:(10a+b)(10c+d)由于规定的条件是“十位上数字相同”所以上述代数式可以改写成(10a+b)(10a+d),把这个代数式展开如下:

(10a+b)(10a+d)=100a2+10ad+10ab+bd

=100a2+10a(d+b) +bd

由于规定的另一个条件是“个位上数字互补(之和等于10)”,也就是式中的d+b=10所以上式可以演化为

=100a2+100a+bd

=100a(a+1)+bd

这个式子中的a就是“十位上的数字”,而(a+1)就是“比它大1的数”,它们的乘积再乘以100就是在后面添两个0罢了。个位数的乘积bd“拖”在后面实际上是加在两个0位上。这也正是bd=9时要写成0 9的道理。

适用于此类速算法的乘式有如下45组:

11×19 12×18 13×17 14×16 15×15 21×29 22×28 23×27 24×26 25×25 31×39 32×38 33×37 34×36 35×35 41×49 42×48 43×47 44×46 45×45 51×59 52×58 53×57 54×56 55×55 61×69 62×68 63×67 64×66 65×65 71×79 72×78 73×77 74×76 75×75 81×89 82×88 83×87 84×86 85×85 91×99 92×98 93×97 94×96 95×95

速算中遇有小数点时,可先不考虑它,待算出数字后,看两个乘数中一共有几位小数点,在答案中点上就是了。例如每斤1.8元的西红柿,买了1.2斤,该多少钱?1乘2得2,后面拖16(2乘8)得216。点上两位小数点得2.16元。

二、“十位上数字互补,个位上数字相同”的两个两位数相乘

第一种速算法要求“”而这一类两位数乘法要求的条件恰恰相反,要求“十位上数字互补,个位上数字相同”。这一类两位数乘法的速算口诀是:

个位加上十位积,个位平方后面接

就以47×67为例来说明口诀的运用。

用7(“个位”上的数字)加上24(十位上两个数字的乘积)得31(就是口诀

“个位加上十位积”),在31的后面接着写上49(个位数的平方),得3149就是答案。

需要注意的是当个位数的平方也是个一位数时,在“接”的时候,在其前面要添一个0,即把1看成01;把4看成04;把9看成09。例如23×83,答案不是199而应该是1909。

此速算法的代数证明如下:

(10a+b)(10c+b)=100ac+10ab+10bc+b2

=100ac+10b(a+c) +b2

因为十位上数字互补,所以式中的a+c等于10,于是上式演化为

=100ac+100b+b2

=100(ac+b)

这(ac+b)就是“个位加上十位积”,乘100等于后面添两个0。式中的“+b2”

就是加上个位数的平方。由于个位数的平方最多也就是两位数,所以必定是加在两个0位上,实际效果就是“接”在前面数字的后面。

适用于此类速算法的乘式有如下45组:

11×91 21×81 31×71 41×61 51×51 12×92 22×82 32×72 42×62 52×52 13×93 23×83 33×73 43×63 53×53 14×94 24×84 34×74 44×64 54×54 15×95 25×85 35×75 45×65 55×55 16×96 26×86 36×76 46×66 56×56 17×97 27×87 37×77 47×67 57×57 18×98 28×88 38×78 48×68 58×58 19×99 29×89 39×79 49×69 59×59

其中加黑字体的55×55与第一种速算法重叠,也就是它既可以适用于第二种速算法,也适用于第一种速算法。

三、“十几乘十几”

如18×16这样的乘式,两个两位数十位上的数相等而且都是1,但个位上的两个数字则是任意的(并不要求其互补),这就是“十几乘十几”。这一类两位数乘法的速算口诀是:

十几乘十几,好做也好记,一数加上另数个,十倍再加个位积

相关文档
最新文档