结构力学第十四章结构振动与稳定

合集下载

钢结构设计原理知识点

钢结构设计原理知识点

钢结构设计原理知识点钢结构是现代建筑领域广泛应用的一种结构形式,具有强度高、刚度好、可塑性强等优点。

在钢结构设计中,掌握一些基本的设计原理是非常重要的。

本文将介绍钢结构设计中的一些知识点,帮助读者更好地理解和应用钢结构设计原理。

一、材料力学知识在钢结构设计中,材料力学是基础。

首先,我们需要了解钢材的强度和刚度特性,包括屈服强度、抗拉强度、弹性模量等。

这些参数将直接影响到钢材的使用性能和结构的承载能力。

二、结构力学知识在钢结构设计中,结构力学是必须掌握的知识。

了解结构受力原理、受力形式以及受力计算方法对于设计出安全可靠的钢结构非常重要。

1. 静力学静力学是钢结构设计中最基本的力学原理。

它研究物体处于静止或匀速直线运动时的受力平衡条件。

在钢结构设计中,我们需要应用静力学原理来确定杆件的受力状态,包括梁的弯矩、剪力和轴力等。

2. 动力学动力学是钢结构设计中考虑结构在振动或冲击力作用下的响应。

钢结构在地震、车辆行驶和风荷载等外部力的作用下会发生振动,因此需要考虑结构的自振频率、振型和阻尼等参数。

三、结构稳定性知识钢结构在受到外力作用下,需要保持稳定。

在钢结构设计中,我们需要考虑结构的屈曲和稳定性,以确保结构在使用寿命内不会发生失稳。

了解结构的稳定性条件和计算方法对于设计具有稳定性的钢结构至关重要。

四、连接方式与设计钢结构中的连接方式对结构的安全性和可靠性有着重要影响。

了解各种连接方式的特点和设计原理,选择适当的连接方式,能够确保结构连接的强度和刚度满足设计要求。

五、局部稳定与极限设计在钢结构设计中,局部稳定和极限设计是非常关键的。

了解杆件的局部稳定问题和极限状态下的设计要求,能够合理选择截面尺寸和设计参数,保证结构的安全可靠。

六、施工与监控最后,钢结构设计在施工和监控阶段也需要考虑。

通过合理的施工工艺和监控手段,可以确保钢结构的正确安装和使用。

因此,熟悉施工和监控方面的知识也是设计者需要具备的能力。

总结:钢结构设计原理的知识点非常广泛,本文仅涵盖了一些基本的知识点。

《结构力学》第十四章 结构振动与稳定剖析

《结构力学》第十四章 结构振动与稳定剖析

D
)2
1(c 2m )
y(t ) (c1 c2t )et 不振动
cr 2m --临界阻尼系数 c c ---阻尼比 cr 2m
不振动
y(t ) et (c1 sin Dt c2 cos Dt ) (0) y 0 y 由初始条件 y(0) y0 ,大阻尼情况 0 y0 ) / D , c2 y0 c1 ( y y(t ) Aet sin( Dt D )
l
=1
11
l
=1
1 12 EI m 11 7ml 3
l
l/2
7ml 3 T 2 12 EI
2
例二.求图示体系的自振频率和周期.
解:
m/2
EI EI
m
l
EI
l
=1
2 l 11 3 EI
3
l

1 3 2l 3 m 2 3EI
EI ml 3
l
ml 3 T 2 EI
(t ) R(t ) cy
2.计阻尼自由振动 1).运动方程及其解
c-----阻尼系数
运动方程
m
y(t )
(t ) cy
(t ) m y
cy k11 y 0 m y 令 c / 2m 2y 2 y 0 y

k11 y(t )
A
单自由度体系不计阻尼时的自由振动是简谐振动.

振幅 初相位角
3.自振频率和周期的计算 利用计算公式
k11 1 m m 11 W mg, st W 11 g 2 st
2
算例 例一.求图示体系的自振频率和周期. 解:

结构力学第十四章 结构动力学

结构力学第十四章 结构动力学

1) 集中质量法
m
将实际结构的质量看成(按一定规则)
集中在某些几何点上,除这些点之外物体是
无质量的。这样就将无限自由度系统变成一
有限自由度系统。
2) 广义坐标法
y(x) aii (x) i 1
ai ---广义坐标
i ( x) ---基函数
i (0) i (l) 0
m y(x)
广义坐标个数即 为自由度个数
1.在质量上沿位移正向加惯性力;
2.求发生位移y所需之力;
2.求外力和惯性力引起的位移;
3.令该力等于体系外力和惯性力。
3.令该位移等于体系位移。
一、柔度法
P(t) m my(t) =1 11
y(t)
l EI
11[P(t) my(t)]
P(t) my(t)
y(t) 11[P(t) my(t)]
刚度法: 柔度法:
Fs(t) FI (t) 0 k11y(t) my(t) 0
y(t) 11[my(t)]
令 2 k11 1 m m11
y(t) 2 y(t) 0
1.在质量上沿位移正向加惯性力;
m
2P.求(t)外力[和m惯y(性t)力] 引0起的位移;
P(t) my(t) 形式3上.令的该平位衡移方等程于,体实系质位上移的。运动方程
一、柔度法
P(t) m my(t) y(t)
l EI
=1 11
l
11[P(t) my(t)]
P(t) my(t)
y(t) 11[P(t) my(t)]
k11 k21
k12 k22
y1 y2
my ky P 刚度矩阵
1
k11
y1
k12

(整理)《结构力学2》习题集同济版.

(整理)《结构力学2》习题集同济版.

南华大学《结构力学II》习题集(适合于大土木工程各专业方向)组编:刘华良班级:姓名:学号:建筑工程与资源环境学院道路桥梁工程教研室衡阳2005年前言本习题集取材于第九章位移法9-l 确定下列各结构的位移法未知数目,并绘出基本结构。

9-2~9-3 用位移法计算下列结构内力.并绘出其弯矩图、剪力图和轴力图。

题9-2图题9-3图9-4~9-11 用位移法绘制下列结构弯矩图。

题9-4图题9-5图题9-6图题9-7图题9-8图题9-9图题9-10图题9-11图9-12~9-15 用位移法绘制下列具有斜杆的刚架的弯矩图。

题9-12图题9-13图题9-14图题9-15图9-16~9-17 列出下列结构的位移法典型方程式,并求出所有系数和自由项。

题9-16图题9-17图9-18~9-23 用位移法绘制下列具有无限刚性杆结构的M图。

题9-18图题9-19图题9-20图题9-21图题9-22图题9-23图9-24~9-26 用位移法绘制下列刚架M图。

题9-24图题9-25图题9-26图9-27 用位移法绘制图9-27所示结构弯矩图,并求桁架杆的轴向力。

题9-27图9-28 用位移法求图9-28所示桁架各杆轴向力。

题9-28图9-29 图9-29所示为一个三角形刚架,考虑杆件的轴向变形,试写出位移法的典型方程,并求出所有系数和自由项。

题9-29图9-30~9-31 用位移法计算图示有剪力静定杆组成的刚架的M图。

题9-30图题9-31图9-32~9-41 利用对称性,用位移法求作下列结构的M图。

题9-32图题9-33图题9-34图题9-35图题9-36图题9-37图题9-38图题9-39图题9-40图题9-41图9-42~9-48 试直接按平衡条件建立位移法方程计算题9-2、9-5、9-8、9-11、9-12、9-24、9-35,并绘出M图。

题9-42图题9-43图题9-44图题9-46图题9-47图题9-48图9-49~9-52 试用位移法求作下列结构由于支座位移产生的M图。

结构力学稳定理论课件2

结构力学稳定理论课件2

2 0
A
6 EI l
A
0 1 ( Pl
) 2 0 (1)
Pl ( 1 2 ) 3 EI l
B
3 EI l
l
2 0
AC:
M
6 EI l
1
( Pl
) 1 ( Pl
) 2 0 ( 2 )
0 •由位移参数不全为零得稳定方程: Pl 6 EI l 3 EI 6 EI 3 EI 解得: P1 2 P2 2 , Pcr P1 2 l l l
l
例1:图示体系中AB、BC、CD各杆为刚性杆。使用两种方 法求其临界荷载。 -1C A B D P 解:1)静力法 1 k k l l l •设变形状态 λ P 求支座反力 P A D y1 M B 0 YA y2 B左 B k YA=Py1/l k C M C 0 YD YD=Py2/l C右 R1=ky1 R2=ky2 •列变形状态 的平衡方程
A点为稳定平衡, 偏离A点δΠ>0其 势能将增加,故知 稳定平衡位置的势 能为最小。
A
B C 刚性小球运动稳 定性与能量的关系 设静止点A、B、C点Π=0
对于弹性变形体系,其稳定性与能量的关系与刚性小球情 况相似。设原始平衡状态为零势能点,让体系微小偏移,荷载 在位移上做功W(外力势能UP=-W)使体系偏移,内力在变 形上产生变性能U,使体系恢复原位置。总势能Π=U+ UP即总 势能的增量δΠ。 Π=0 P P 如总势能Π=U+ UP >0(δΠ>0),体系能 恢复原位置,平衡是稳定的; B B´ λ 如总势能Π=U+ UP =0(δΠ=0),体系能 在任意位置平衡,平衡为中性的; EI=∞ 如总势能Π=U+ UP <0(δΠ<0),体系不 能恢复原位置,平衡是不稳定的。 θ 用能量法求临界荷载,依据于临界状态的 平衡条件,它等价于势能驻值原理: 弹性体系在临界状态,其总势能为驻值,即 (用于多自由度体系) δΠ=0 或:Π=0 (单自由度体系)

结构力学之结构弹性稳定

结构力学之结构弹性稳定
2l3 2l
2EI
Pcr l 2
学习文档
例:求图示体系的临界荷载.
x
解:
2.设
y(x)
4a l2
(lx
x
2
)
P
l/2 l/2
y(x)
Pcr
12EI l2
误差:+21.6%
3.设杆中作用集中荷载所引起的位 移作为失稳时的位移.
l
y(x) y
EI
x
y(x)
Q
(l2x
x3 )
(0 x l )
EIy(x) Py Q(l x) 或 y(x) P y Q (l x)
EI EI 令 n2 P
EI y(x) n2 y n2 Q (l x)
P
通解为
y(x) Acos nx B sin nx Q (l x) P
由边界条件
y(0) 0, y(0) 0, y(l) 0学习文档
l
EI
y
xM
y
得 A Ql 0 Bn PQ 0 P Acos nl B sin nl 0
1
0l
0
n 1 0
cosnl sin nl 0 稳定方程
nl cos nl sin nl 0 tan nl nl
y
y(nl) nl y(nl) tannl
x
P
P
Q
Q
l
EI
y
xM
3
5 nl
y
2
二.第二类稳定问题(极值点失稳) P
P
第二类稳定问题
非完善体系
三.分析方法 大挠度理论。 小挠度理论。
静力法 能量法
偏心受压 有初曲率
四 .稳定自由度

《振动力学结构力学》课件

《振动力学结构力学》课件

静力学基础
静力学基本概念:力的平衡、力矩平衡、力系平衡等 静力学基本原理:牛顿三大定律、胡克定律等 静力学基本方法:力法、位移法、能量法等 静力学基本应用:结构分析、结构设计等
弹性力学基础
弹性力学的定义:研究弹性体在外力作用下的变形和应力分布的学科 弹性力学的基本假设:连续性假设、小变形假设、均匀性假设、各向同性假设 弹性力学的基本方程:胡克定律、泊松比定律、弹性模量定律 弹性力学的应用:结构设计、地震工程、航空航天等领域
相位:振动 的起始位置
振型:振动 的形态和形 状
阻尼:振动 的衰减程度
共振:振动 的放大效应
振动系统的基本组成
阻尼:阻碍振动的力,影响 振动的衰减和能量损失
弹簧:连接物体和支撑物的 弹性元件,影响振动的频率 和振幅
质量:物体本身的质量,影 响振动的频率和振幅
支撑物:支撑物体的物体, 影响振动的频率和振幅
振添加动副力标学题 结构力学 PPT课件
汇报人:
目录
PART One
振动力学概述
PART Two
结构力学基本概念
PART Three
振动力学中的基本 理论
PART Five
振动力学与结构力 学的应用
PART Four
结构力学中的基本 理论
PART Six
案例分析
振动力学概述
振动的定义和分类
振动:物体 在平衡位置 附近做往复 运动
振动分类: 自由振动物体在平衡 位置附近做 往复运动, 没有外力作 用
受迫振动: 物体在平衡 位置附近做 往复运动, 受到外力作 用
自激振动: 物体在平衡 位置附近做 往复运动, 没有外力作 用,但受到 自身振动的 影响
振动的物理量描述

振动力学结构力学

振动力学结构力学

03
结构的边界条件和支撑条件
这些条件对结构的振动行为有显著影响,限制了振动力学的行为。
01
结构的刚度和质量分布
结构的刚度和质量分布影响振动的传递和分布,进而影响振动力学的行为。
02
结构的阻尼特性
阻尼是结构对振动的消耗能力,对振动力学的行为有重要影响。
结构力学对振动力学行为的制约
利用结构力学知识设计和优化振动控制系统,改善结构的振动响应。
结构力学是研究结构在各种力和力矩作用下的响应和行为的学科。
结构力学概述
研究结构在静力载荷作用下的响应,包括力的平衡、变形和应力分布等。
静力学原理
研究结构在动力载荷作用下的响应,包括振动、冲击和动力稳定性等。
动力学原理
研究弹性结构在各种力和力矩作用下的响应,包括弹性变形、应力和应变等。
弹性力学原理
结构分析的基本原理
结构优化设计案例
THANKS
感谢您的观看。
详细描述
振动测试案例
总结词
振动控制是利用一定的控制策略和技术手段减小或抑制结构振动的措施,以达到提高结构稳定性和减小振动对周围环境的影响。
要点一
要点二
详细描述
在振动控制案例中,首先需要确定控制目标和设计控制策略,如主动控制、被动控制和混合控制等。然后,选择合适的控制装置和传感器,进行系统建模和仿真分析。在实施控制策略时,需要确保系统的实时性和准确性,并对控制效果进行评估和调整。最后,对控制结果进行详细分析,包括性能指标分析和优化设计等,以达到最佳的控制效果。
振动控制
结合振动力学和结构力学的方法,对结构进行健康监测和损伤识别。
结构健康监测
利用振动力学和结构力学的原理,设计和实施有效的振动隔离和减振措施。

结构力学—结构稳定

结构力学—结构稳定
无限自由度体系sincosnlnlsincossincossincosnlnlnlnlnlsincosnlnlsincossincosnlnlnlnlnltannlnlnlnlnl经试算493nl485nleieiei具有弹性支座压杆的稳定143具有弹性支座压杆的稳定sincossincossincosnlnlpltannleinlnl解方程可得nl的最小正根eisincosnlnlpltannleinlnl解方程可得nl的最小正根einlnlnlnlnlnltanklnleinlnl正对称失稳反对称失稳正对称失稳时tannleinlnlnlnleiei正对称失稳反对称失稳反对称失稳时12tannlnleieieiei144能量法势能原理2
杆件伸长量 杆件轴力 应变能 外力势能

2 / 2
N EA / l 2EA / 2l 2 1 1 EA Ve N 2 EA2 P 2l 2 2l * EP (1 ) P 1 1 1 VP P 1 2l 2 EA
1
dEP EA ( 1 ) 0 d l

稳定方程
l
EI
1 0
Pcr 20.19 EI / l 2
cos nl sin nl
nl tan nl EI 1 (nl) 2 k l Pcr n 2 EI 解方程可得nl的最小正根
P

l
EI
k 0 tan nl 0 sin nl 0 nl 2 EI Pcr 2 l
P
k
k
1
nl tan nl
k l EI
12
0
2 EI k 3 12 EI / l l/2 P
nl 1.45

结构力学第十四章总结

结构力学第十四章总结

中南大学
退出
返回
10:54
第十四章
结构动力学总结
结构力学
例:图a所示结构频率为ωi,求图b所示结构频率ω。
ki (a) k1 k2 (b) k3
解:图b体系为并联弹簧,其刚度系数k等于各弹簧 刚度系数ki之和. k=k1+k2+k3
k1 k2 k3 k 2 2 2 1 2 3 m m
中南大学
退出
返回
10:54
第十四章
结构动力学总结
结构力学
(3) 最大位移和最大内力的计算 振动体系的最大位移为最大动位移与静位移之和; 最大内力为最大动内力与静内力之和。动位移和动内力有 正负号的变化,在与静位移和内力叠加时应予以注意。 5. 阻尼对振动的影响 r 1 2 (1) 考虑阻尼时体系的自振频率 c 其中, 为阻尼比, c为阻尼系数。 2m 通常ξ很小,一般结构可取 r≈ 。 (2) 阻尼比的确定。 利用有阻尼体系自由振动时振 幅衰减的特性,可以用实验方法确定体系的阻尼比。 y 1 ln k
2
T1 T2 T3
中南大学
退出
返回
10:54
第十四章
结构动力学总结
结构力学
例:图a所示体系中,已知横梁B端侧移刚度为k1, 弹簧刚度为k2,求竖向振动频率。
A k1 B k2 m (a) k1 k2 m (b)
解:体系可简化为图b所示的串联弹簧体系, 竖向振动频率为

k m
k1 k 2 m(k1 k 2 )
返回
y1 (t ) F sin t 1P FI111
2 EI [ Y " ( x )] dx 2 i 2 2 m [ Y ( x )] d x m Y 0 i i l 0

振动力学(结构力学)

振动力学(结构力学)
2.2 自由振动系统
从方程的解中还可以看出,系统属于周 期振动,振动的周期为
T 2 n
周期是系统振动一次所需要的时间,单位 为秒(s)。
周期的倒数称为频率,是系统每秒钟振动 的次数,单位为1/秒(1/s)或赫兹(Hz)。记作 f
f 1 n T 2
2.2 自由振动系统
固有频率n和频率 f 只相差常数2,因
振动微分方程的解(P6)
mxkx0
1. 方程的解 设
则方程变为
2 n
k m
xn2x0
通解为
xb 1cosntb 2sinnt

xAsin(ntf)
2.2 自由振动系统
设系统的初始条件为:t=0时,x=x0,x x0
则可确定上述解中的常数为:
b1 x0 ,
b2
x0
n
A
2
x02x0n ,
farctannx0
分为自由振动、强迫振动和自激振动。 自由振动:系统受到初始激励作用后,仅靠其本身 的弹性恢复力“自由地”振动,其振动的特性仅决定 于系统本身的物理特性(质量和刚度);(如摆钟) 受迫振动或称强迫振动:系统受到外界持续的激励 作用而“被迫地”进行振动,其振动特性除决定于系
统本身的物理特性外,还决定于激励的特性; 工程中的大部分振动都属于此类振动(振动机械、
x0
2.2 自由振动系统
2. 概念与名词(P6-7) 一阶线性振动微分方程的解是时间 t 的
简谐函数,因此这种振动为简谐振动。
方程的解中n只决定于系统本身的参数
m和k,而与系统的初始条件无关,是系统本 身所固有的特性,所以称为固有频率,或称 圆频率或角频率。
方程解中的A称为振幅,是质量偏离静平

结构力学教案第14章结构的稳定计算

结构力学教案第14章结构的稳定计算

结构力学教案第14章结构的稳定计算P第十四章结构的稳定计算14.1 两类稳定问题概述一、结构设计应满足三方面的要求1、强度2、刚度3、稳定性。

二、基本概念1、失稳:当荷载达到某一数值时,体系由稳定平衡状态转变为不稳定状态,而丧失原始平衡状态的稳定性,简称“失稳”。

工程中由于结构失稳而导致的事故时有发生,如加拿大魁北克大桥、美国华盛顿剧院的倒塌事故,1983年北京某科研楼兴建中的脚手架的整体失稳等,都是工程结构失稳的典型例子。

2、临界状态:由稳定平衡状态过度到不稳定状态的中间状态(中性平衡状态)。

3、临界荷载:临界状态时相应的荷载。

三、结构失稳的两种基本形式1、第一类失稳(分支点失稳):结构变形产生了性质上的突变,带有突然性。

2、第二类失稳(极值点失稳):虽不出现新的变形形式,但结构原来的变形将增大或材料的应力超过其许可值,结构不能正常工作。

c rc r14.2 确定临界荷载的静力法和能量法一、静力法1、临界状态的静力特征(1)体系失稳前在弹性阶段工作a 、应力、应变成线性关系。

b 、挠曲线近似微分方程成立。

(2)静力特征临界荷载具有“平衡状态的二重性”,因为它是由稳定平衡状态过渡到不稳定状态的极限状态。

2、定义:假定体系处于微弯失稳的临界状态,列出相应的平衡微分方程,进而求解临界荷载的方法。

3、步骤:(1)建立坐标系、取隔离体、绘受力图。

(2)列静力平衡方程。

(3)将挠曲线方程代入平衡方程后,利用边界条件求稳定方程。

(4)解稳定方程,求临界荷载。

4、举例试求图示结构的临界荷载。

x解“超越方程”的两种方法: 1、逐步逼近法(试算法):2、图解法:以αl 为自变量,分别绘出z= αl 和z=tg αl 的图形,求大于零的第一个交点,确定αl 。

取最小根αl =4.493例14?1 图14?6(a )所示一端固定、一端自由的杆件,BC 段为刚性,A B 段弯曲刚度为EI 。

试建立临界荷载的稳定方程。

结构力学课件—结构动力学

结构力学课件—结构动力学

中南大学
退出
返回
17:04
§14-1 概述
二、动力荷载的分类
1. 周期荷载
结构力学
周期荷载—— 随时间周期地变化的荷载。其中最简单、最重要的是 简谐荷载(按弦或余弦函数规律变化)。 F
r
m
F (t) F t
θ t
o
简谐荷载
l/ 2
l/ 2
非简谐性周期荷载
F (t)
例:打桩时落锤撞击所产生的荷载。
o
退出
返回
17:04
§14-3 单自由度结构的自由振动
结构力学
(2)柔度法。即列位移方程。当质点m振动时,把惯性力看作静力荷载作用在体 系的质量上,则在其作用下结构在质点处的位移y应当为:
y F111 my11

my k11 y 0
同刚度法所得方程
此二阶线性常系数齐次微分方程的通解为:
振动微分方程的建立方法:
(1)刚度法。即列动力平衡方程。设质点m在振动的任一时刻位移为y,取质点 m为隔离体,不考虑质点运动时受到的阻力,则作用于质点m上 的力有: (a) 弹簧恢复力
Fc k11 y
(b) 惯性力
该力有将质点拉回静力平衡位置的趋势,负号表示其方 向恒与位移y的方向相反,即永远指向静力平衡位置。
产生自由振动的原因:结构在振动初始时刻受到干扰。 初始干扰的形式: (1)结构具有初始位移 m (2)结构具有初始速度 Δ st 静平衡位置 (3)上述二者同时存在
yd
结构力学
自由振动:结构在振动进程中不受外部干扰力作用的振动形式。
k11
m
FS (t )
yd
W
FI ( t )
1. 不考虑阻尼时的自由振动

结构力学 结构稳定计算

结构力学 结构稳定计算
杆件伸长量 杆件轴力
2 F p1 / 2 45 45 FN 1l 2 F p1l 杆件伸长量 EA 2 EA l l A Fp1l A点竖向位移 1 2 FP1 EA 2 Fp1l * 外力势能 Ve Fpi i Fp11 E 2 EA F p1l 1 Fp21l Ve FN 1 2 应变能 2 2 EA 2 2 2 Fp1l Fp1l Fp1l 2 EA * EP Ve VP 结构势能 1 2 EA EA 2 EA
第十五章《结构的稳定计算》
§15-1 两类稳定问题概述
稳定分析的几点预备知识:
1、三种平衡状态:稳定平衡状态、不稳定平衡状态、中性平衡状 态。 2、两种分析理论:小挠度理论、大挠度理论。
3、两种失稳状态:分支点失稳、极值点失稳。
4、 计算要在结构变形后的几何形状和位置上进行, 属几何非线性,叠加原理已不再适用。两种方法 :静力 法和能量法
EI 1 (l ) 2 k l l 1 (l ) 2 / 4
l 3.83
FPcr 2 EI 14.67 EI / l 2
例:求图示刚的临界荷载.
Fp
I1 2I
Fp
I
Fp
Fp
Fp
Fp
l
I
l
反对称失稳时
正对称失稳 反对称失稳
Fp
k
k
1
l tanl
k l EI
tan l

l
EI 1 (l ) 2 k l

解此方程可得 l 最小正根
F p cr EI
2
k 0
k
FP
EI
FP
l
EI

《结构力学》第十四章 结构振动与稳定

《结构力学》第十四章 结构振动与稳定

y(t ) Aet
特征方程
2 2 2 0
根为
i 1 2
小阻尼情况
1(c 2m )
方程的通解为
A
y (
2 0
y0 y
2 令 D 1 临界阻尼情况
0 y0 ) tan D y0 D /( y
m
y(t )
EI
P(t ) P sin t
P ---荷载幅值 运动方程 或
l

---荷载频率
(t ) k11 y(t ) P sin t m y
P (t ) y (t ) sin t y m
2

y* (t ) A sin t
P A m( 2 2 )
P P A 2 2 2 m m( )
1
P(t)
m
y(t )
EI
A yst
---稳态振幅
2 1 2
l
P y st P 11 ---荷载幅值作为静荷载所引起的静位移 2 m 1 ---动力系数 || 2 2 1 /

---频比 1 1
§14—1 概述
一.动荷载的定义 大小、方向和作用点随时间变化;在其作用下,结构上的惯性力 与外荷比不可忽视的荷载。
自重、缓慢变化的荷载,其惯性力与外荷比很小,分析时仍视作 静荷载。 静荷只与作用位置有关,而动荷是坐标和时间的函数。
二.动荷载的分类
简谐荷载 周期 非简谐荷载 确定 冲击荷载 非周期 突加荷载 动荷载 其他确定规律的动荷载 风荷载 地震荷载 不确定 其他无法确定变化规律的荷载
代入方程,可得
二阶线性非齐次常微分方程 通解 其中

结构力学-参考答案

结构力学-参考答案

结构⼒学-参考答案模块1参考答案1.结构有哪⼏种分类?答:结构主要有:杆件结构,薄壁结构和实体结构三类。

2.结构⼒学的研究对象和研究任务是什么?答:结构⼒学的研究对象:结构⼒学的研究对象是杆件结构,薄壁结构和实体结构的受⼒分析将在弹性⼒学中进⾏研究。

严格地说,⼀般的杆件结构是空间结构,但它们中的⼤多数均可简化为平⾯结构。

所以,本门课程主要研究平⾯杆件结构,即组成结构的所有杆件及结构所承受的外荷载都在同⼀平⾯内的结构。

结构⼒学是研究结构的合理形式以及结构在受⼒状态下内⼒、变形、动⼒反应和稳定性等⽅⾯的规律性的科学。

研究的⽬的是使结构满⾜安全性、适⽤性和经济⽅⾯的要求。

建筑物、构筑物、结构物在各类⼯程中⼤量存在:(1)住宅、⼚房等⼯业民⽤建筑物;(2)涵洞、隧道、堤坝、挡⽔墙等构造物;(3)桥梁、轮船、潜⽔艇、飞⾏器等结构物。

结构⼒学的任务:结构⼒学与材料⼒学、弹性⼒学有着密切的联系,他们的任务都是讨论变形体系的强度、刚度和稳定性,但在研究对象上有所区别。

材料⼒学基本上是研究单个杆件的计算,结构⼒学主要是研究杆件的结构,⽽弹性⼒学则研究各种薄壁结构和实体结构,同时对杆件也作更精确的分析。

结构⼒学研究杆件结构的强度、刚度和稳定性问题,其具体任务包括以下⼏个⽅⾯:(1)杆件结构的组成规律和合理的组成⽅式。

(2)杆件结构内⼒和变形的计算⽅法,以便进⾏结构强度和刚度的验算。

(3)杆件结构的稳定性以及在动⼒荷载作⽤下的反应。

结构⼒学是⼟⽊⼯程专业的⼀门重要的专业基础课,在各门课程的学习中起着承上启下的作⽤。

结构⼒学的计算⽅法很多,但所有⽅法都必须满⾜以下⼏个三个基本条件:(1)⼒系的平衡条件。

在⼀组⼒系作⽤下,结构的整体及其中任何⼀部分都应满⾜⼒系的平衡条件。

(2)变形的连续条件,即⼏何条件。

连续的结构发⽣变形后,仍是连续的,材料没有重叠和缝隙;同使结构的变形和位移应该满⾜⽀座和结点的约束条件。

(3)物理条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档