第三章简单随机抽样

合集下载

Chap03简单随机抽样

Chap03简单随机抽样

N i j
(Yi
Y
)(Yj
Y
)

1 nN
1
n 1 N 1
N i 1
(Yi
Y
)2
n 1 N 1

N i 1
(Yi
Y
2 )


1 n

N N
n

1 N 1
N i 1
(Yi
Y
)2
1 f S2
n
证明Ⅱ:仍引进随机变量 ai :
N 1 n 1

N n


n N
ˆ
f
E(ai )
n N

f
(3.5)
借助 ai ,样本均值 y 可以表示成:
y

1 n
N i 1
aiYi
(3.6)
E( y) 1
n
N
E(ai )Yi
i 1
1 n
n N
N
Yi
i 1
Y
推论: Y 的简单估计量Yˆ Ny 也是无偏的,即: E(Ny ) Y
所有可能的样本求平均: E( y)
N 1 y n

N n

个样本中,包含特定单元
Yi
的样
本数为

N 1 n 1
,也有同样多样
本含有任何其他单元,因此
y 1
n
( y1
y2

yn )

1 n

N 1 n 1
数,则编号为这些随机数的 n 个单元组成一个简单随机样本。
随机数的产生可使用随机数骰子或随机数表。
图 3.1 随机数骰子 随机数骰子:标上 0~9 数字的正 20 面体(每个数字出现在两面)

应用抽样技术课后习题答案

应用抽样技术课后习题答案

=(0.0907,0.4433)
N1的95%的置信区间为: (159,776) 95%的置信区间为 (159, 的置信区间为:
(3)N=1750,n=30, (3)N=1750,n=30,n1=8, t=1.96, p=0.267, q=1q=1-0.267=0.733 由此可计算得: t 2q 1.962 × 0.733 n0 = 2 = =1054.64 r p 0.01× 0.267 n = n0/[1+(n0—1)/N] = 1054.64/[1+1053.64/1750]=658.2942 = 659 计算结果说明,至少应抽取一个样本量为659的简单随机 样本,才能满足95%置信度条件下相对误差不超过10%的精度 要求。
t=1.96 (2)易知,N=1750,n=30, n = 8 1 n 8 N − n 1750 − 30 1− f p= 1 = = 0.267 = = = 0.03389 n −1 (n −1)N 29 ×1750 n 30
pq = p(1 − p) = 0.267 × 0.733 = 0.1957
5.5 证明:由(5.6)得:
V ( yR ) ≈ 1− f n (Yi − RX i )2 ∑
i =1 N
N −n 2 令 Sd = V , Nn
2 d
N −1
=
N −n 2 Sd Nn
则n(NV + S ) = NS ,
2 d
S 2 NSd 从而n = = V 2 2 NV + Sd Sd 1+ NV
第五章 比率估计与回归估计
5.2 N=2000, n=36, 1-α=0.95, t=1.96, ˆ f = n/N=0.018, v(R) = 0.000015359, ˆ se(R) =0.00392 置信区间为[40.93%,42.47%]。 置信区间为[40.93%,42.47%]。

第三章抽样的原理及类型

第三章抽样的原理及类型

五、抽样设计得原则
1、目得性原则 2、可行性原则 3、高效性原则
第三节 样本规模与抽样误差
一、 样本规模及其计算
1所、含定元义素:样得本多规少模。又确称定样样本本容规量模,就指是得每就一是项样具本体中 得社会调查所必须解决得问题之一。
不能少于100个元素
2、简单随机抽样中样本规模计算公式: a,推论总体平均数
4、 实际抽取样本
实际抽取样本得工作就就是在上述几个步 骤得基础上,严格按照所选定得抽样方法,从抽样 框中抽取一个个得抽样单位,构成样本。依据抽 样方法得不同,以及依据抽样框就是否可以事先 得到等因素,实际得抽样工作既可能在研究者到 达实地之前就完成,也可能需要到达实地后才能 完成。即既可能先抽好样本,再下去直接对预先 抽好得对象进行调查或研究;也可能一边抽取样 本一边就开始调查或研究。
继续保持安静
置信区间
指在一定得置信度下,样本统计值与总体 参数值之间得误差范围。反映得就是抽样得 精确性程度。
二、抽样得作用
向人们提供一种实现“由部分认识整 体”这一目标得途径和手段。
日常生活中得抽样
第二节 抽样得类型与抽样程序
一、抽样得类型 从大得方面看,各种抽样都可以归为概率
抽样与非概率抽样两大类,这就是两种有 着本质区别得抽样类型。
抽样
从组成某个整体得所有元素得集合中,按 一定得方式选择或抽取一部分元素得过程。
比如,从1000户家庭构成得总体中,按一定 得方式抽取一个由100户家庭构成得样本得 过程。
抽样单位
抽样单位就就是一次直接得抽样所使用得 基本单位。抽样单位与构成总体得元素有时 就是相同得,有时又就是不同得。
如从32万名大学生抽取1000大学生,单个 大学生既就是元素,又就是抽样单位;但就是,抽 取40个班级(假定正好就是1000名)时,抽样单位 与构成总体得元素就不一样了。

第三章-简单随机抽样

第三章-简单随机抽样
不放回也称不重复抽样,每次从总体中随机抽取 一个样本单位,经调查观测后,不再将该单位放 回总体参加下一次抽样,然后再在剩下的总体单 位中随机抽取下一个样本单位进行调查观测,直 到抽够n个样本单位为止。
N!
考虑顺序可能的样本为 N n !
每个样本被抽中的概率为 ( N n)! N!


s2 1358.41, v( y) (1 f )s2 / n 37.6444, se( y) 6.1355
对该校大学生某月电信消费人均支出额的估计为 53.64元,在置信度95%下,临界值1.96,可以说以 95%的把握说明该校大学生该月的人均支出在 [53.64+(-)1.96*6.1355],即41.61~65.67元。
n 1
2n
正态近似产生的误差 主要与nP有关,特别 当nP比较小时,产生 的误差甚大,在95% 置信度下,P<0.5时正 态分布需要的最小nP 值与n值如下表。
P
nP
0.5
0.4
0.3
0.2
0.1
0.05
0
n
15
30
20
50
24
80
40 200
60 600
70 1400
80 无穷
试以95%的置信度估计上例大学生月电信消费超 过80元的人数及其比例。
N n S2 N n
nN
为调查某校大学生的电信消费水平,在全 校N=15230名学生用简单随机抽样抽取 n=36名学生,调查上月电信支出数据。试 以95%的置信度估计该校大学生该月电信 消费的平均支出额。
样本序号 消费元/月 样本序号 消费
样本序号 消费
1
45
13

统计学 第三章抽样与抽样分布

统计学 第三章抽样与抽样分布

=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取

初级1 -第三章简单随机抽样

初级1 -第三章简单随机抽样
n
n
n 1 N 1 n N
n 1 N 1
二、实施方法 • 抽签 制作N个同质的签,充分混合。从中一次抽出n个签, 或者先抽出一个签但不放回,再抽下一个签直到抽 满n个签为止。抽出的这n个签对应的单元入选样本, 这是不放回简单随机抽样;若从充分混合的N个签 中抽取一个,记录后放回,再抽取下一个,如此进 行,直到抽满n个为止,则是放回简单随机抽样。 抽签法的实施起来比较麻烦,尤其是当总体单元数 N较大时,所以该方法的使用场合为当总体单元数 N比较小,签的制作比较方便时。
第三章 简单随机抽样

第一节
基本问题
一、什么是简单随机抽样
从 N个单元的总体中抽取 n个单元组成的样本。总体单元数为 N,
样本量为 n。 若抽样是放回的,每次都是从 个总体单元中随机抽取1个单元,独 立重复抽取n次,得到 个单元组成的样本,叫做放回简单随机抽样。 若抽样是不放回的,每次都是从剩下的总体单元中随机抽取1个单 元,相继依次抽取n次,得到n个单元组成的样本,叫做不放回简单 随机抽样。
精度margin of error
对精度的要求通常以允许最大绝对误差
差限)或允许最大相对误差 (相对误差限)来表 示。
r
d(绝对误
d 1 P
P r 1


样本量足够大时,可用正态分布近似
ˆ tS ˆ d t V
2
第三章 基本概念
N n N 1
N n N
为 修正系数
2
为 S 修正系数
n f ,称抽样比, N
2

N n 1 f 有限总体调整系数 故, N 2
S V ( y ) (1 f ) n

第三章 抽样设计

第三章  抽样设计

一、方便抽样
又称任意抽样。一般由调研人员从工作的 方便出发,在调研对象的范围内随意抽取 一定数量的样本进行调查。
最常用的两种方法是“街头拦截法” 最常用的两种方法是“街头拦截法”和 “空间抽样法” 空间抽样法” 特点: 节约费用和时间,但样本的信息不 适用于总体参数的推断。
注意:
方便抽样一般用于非正式的探索性调查, 只有在调查总体各单位之间的差异不大时, 抽取的样本才有较高的代表性。
抽取样本的数量
允许误差 % 1 2 3 4 5 6 7 可信程度(把握程度)% 95 99 9600 16589 2400 4147 1067 1849 600 1037 384 663 267 461 196 339
一、简单随机抽样
适用范围:调查总体中各个体之间差异程 度较小的情况下,或者调研对象不明,难 以分组、分类的情况。 常用方法: 1、抽签法 2、随机数表法
二、系统抽样
又称等距抽样,就是先将调查总体的各个 体按照一定的标志排列起来,然后按照固 定的顺序和一定间隔来抽取样本个体。
排队的标志有两种: 1、按调查项目有关的标志排队 2、按调查项目无关的标志排队
(独立控制配额)按年龄分组: 独立控制配额)按年龄分组:
按年龄分组 18-29岁 18-29岁 30-40岁 30-40岁 41-55岁 41-55岁 56岁 56岁 合计 人数 40 60 70 30 200
按性别分组
性别 人数 100 100 200


合计
相互控制配额抽样
合计 40 60 70 30 收入 性别 年龄 18-29岁 18-29岁 30-40岁 30-40岁 41-55岁 41-55岁 56岁以上 56岁以上 合计 高 男 3 6 6 3 18 女 4 5 6 3 18 中 男 7 11 13 6 37 女 8 11 13 5 37 低 男 9 13 16 7 45 女 9 14 16 6 45

第3章 抽样分布

第3章 抽样分布

样本方差s2
s2取值的概率
0.0 0.5
4/16 6/16
2
4.5
39
4/16
2/16
0.00 0.0 0.5 s的取值 2.0 4.5
(用Excel计算2分布的概率)
1. 利用Excel提供的CHIDIST统计函数,计算2分布 右单尾的概率值
2. 语法为 CHIDIST(x,df) ,其中 df 为自由度, x 是随 机变量的取值 3. 给定自由度和统计量取值的右尾概率,也可以利 用“插入函数”命令来实现 4. 计算自由度为8,统计量的取值大于10的概率
σ2 =1.25
23
x 2.5
x2 0.625
样本均值的抽样分布
当总体服从正态分布N(μ,σ2)时,来自该总体的所有 容量为n的样本的均值x也服从正态分布,x 的数 学期望为μ,方差为σ2/n。即x~N(μ,σ2/n)
=10
n=4 x 5 n =16 x 2.5
37
2分布
(图示)
选择容量为n 的 不同容量样本的抽样分布
n=1 n=4 n=10
总体
简单随机样本


计算样本方差s2
计算卡方值
n=20
2 = (n-1)s2/σ2
计算出所有的
2
2值
38
2分布
(例题的图示)
16个样本方差的分布
s取值的概率
0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05
13
三种不同性质的分布
1 2 3
14
总体分布 样本分布 抽样分布
总体分布
(population distribution)

03第三章 简单随机抽样

03第三章  简单随机抽样

首先,在理论上最符合随机原则.对此可有二 种理解:一种是总体中各个单位被抽中的机会 相等.设总体有N个单位,各单位被抽中的概 1 率均为 N.另一种是总体中各个样本被抽中的 概率相等.我们知道,一个总体N中可以抽取 许多个容量为n 的样本,通常情况下按组合形 n C N个样本,那么,在一次抽样中,某个样 式有 1 本被抽中的概率为C ,这个概率对每个可能的 样本都相等.简单随机抽样遵循这种等可能性 原则,为进行抽样估计,计算抽样误差,提供 了重要前提条件.
Y3 + Y4 2
可见,样本均值 y 是 Y 的一个无偏估计量,因为
1 Yi + Y j 1 3 4 E ( y ) = ∑∑ ( ) = ∑∑ (Yi + Y j ) 2 12 i =1 j i i =1 j i 6
3 4
而每个单元均可能在三个样本内出现,故
1 4 E ( y ) = ∑ 3Yi = Y 12 i =1
颜色 蓝 绿 红 白 黄 合计
人的编号 1 14 28 15 25 18 2 26 21 12 23 18 3 20 15 20 20 25 4 12 21 22 19 26
期望 数字 20 20 20 20 20 100
100 100 100 100
可见四个人都对颜色存在偏好,如第一个人偏爱绿色, 第二个人偏爱蓝色等.这种由于对颜色偏好所引起的偏估 类型,可称之为颜色偏误. 结论:随意抽样≠随机抽样
n N
其次,它是设计其他更复杂抽样形式的基础. 例如,设计分层抽样,将总体划分为若干层, 然后对各个层实施简单随机抽样.对一个非常 大的总体,需要分若干个阶段进行抽样.例如, 进行全国性抽样调查,第一阶段可以由全国抽 取若干个省份,第二阶段再由抽中的省份抽取 若干个县(市);第三阶段再由抽中的县(市)抽 取若干个乡(街道);第四阶段再由抽中的乡 (街道)抽取若干个村(居委会)等等.在这种多 阶段抽样中,每个阶段中抽取样本单位均可采 用简单随机抽样方法.

第三章抽样和抽样分布

第三章抽样和抽样分布
第三章抽样和抽样分布
Probability Sample
• Probability Sample • A probability sample is a sample chosen
by chance. We must know what samples are possible and what chance, or probability, each possible sample has.
第三章抽样和抽样分布
统计应用
“抓阄”征兵计划
➢ 然而结果是,有73个较小的号码被分配给了前半
年的日子,同时有110个较小的号码被分配给了后 半年的日子。换句话说,如果你生于后半年的某 一天,那么,你因为被分配给一个较小号码而去 服兵役的机会要大于生于前半年的人
➢ 在这种情况下,两个数字之间只应该有随机误差,
convenience sampling chooses the individuals
easiest to reach. Here is an example
of convenience sampling.
Both voluntary response samples and
convenience samples produce samples that are almost guaranteed not to represent the entire
被分配的号码较大的人也许永远轮不上到军队服役
➢ 这种抓阄看起来对决定应该被征召入伍是一个相当不错
的方法。然而,在抓阄的第二天,当所有的日子和它们 对应的号码公布以后,统计学家们开始研究这些数据。 经过观察和计算,统计学家们发现了一些规律。例如, 我们本应期望应该有差不多一半的较小的号码(1到183) 被分配给前半年的日子,即从1月份到6月份;另外一半 较小的号码被分配给后半年的日子,从7月到12月份。 由于抓阄的随机性,前半年中可能不会分到正好一半较 小的号码,但是应当接近一半

第三章简单随机抽样(抽样调查理论与方法-北京商学院,

第三章简单随机抽样(抽样调查理论与方法-北京商学院,

100,95,92,88,83,75,71,62,60,50
平均分为77.6。先从中任选3个为一组样本,其选法共有120种
每种选法都有概率1/120。以4组样本为例(100,95,92),(100,83,
50),(88,83,62),(62,60,50)它们的样本平均数分别为95.67,
77.67,77.67,57.33。 从抽样调查的角度来看,我们希望抽到第二或第三组样
(3.6)
N 1 n
Nn
对随机有放回抽样,由于各次抽取是相互独立的,由概率论 的知识可以求得,此时:
2
Var( y) n
1 S2 (或 (1 ) ) (3.7)
Nn
比较(3.6)式与(3.7)式,发现同样用样本平均数来估计总体平 均数,它们都是无偏估计,但随机无放回时的方差小于随机
有放回时的方差。 y 的方差表示新盒子的离散程度,也就是 表示了 y 取值范围的大小,方差小表明 y 取值远离中心Y 的 可能性较小,这样随机的一组样本得到 y 的实现值距Y 很近
相当小,此时(3.6)式告诉我们 y 的方差将随着 n 的减少而增 大,此时 1-f 在 1 附近,对Var( y)的影响不大。事实上,
抽取样本越少,抽样误差越大。
可见实际抽样调查中用 y 估计Y 所产生的随机误差,也 即 y 的方差,主要受到样本容量 n 的影响,因子1-f 的影响
几乎可以忽略。
当然,影响 y 的方差的另一个重要因素是 2或 S 2。设
通常取决于总体单元个数N,满足10m1 N 10m。记m个 骰子按约定颜色而确定的顺序读得随机数R0,若R0 N,则 此 R0即为一次合格的随机数;否则予以放弃,重新摇取,直
到取到n个合格的随机数为止。 ③利用计算机产生随机数:不少现成的统计软件都可提供此 类服务。但必须指出,这样产生的随机数一般不能保证其随 机性,称为“伪随机数”。因此,提倡前述方法产生随机数。

第三章随机抽样和抽样散布

第三章随机抽样和抽样散布

第三章随机抽样和抽样散布在前两章的讨论中,咱们明白了随机现象常常通过随机变量及其概率散布和数字特点来描述,但是,在实际问题中,要准确明白概率散布和数字特点,有时是很困难的。

例如,咱们要以药丸的崩解时刻或药片的溶解速度为指标来考察某一批药品的质量。

假设把这批药品全数进行一下实验,其散布函数及其有关的数字特点都可求出。

可是,由于测定这些指标的实验,一样是破坏性的,报废了全数药品即便求出了有关指标也无心义。

还有一些查验指标,如蜜丸的重量、体积等,对它们的查验虽不是破坏性的,但要成批逐个查验,不管从人力仍是物力上都会受到条件限制。

事实上,人们老是通过对部份产品的实验结果作分析,推断出全数产品的情形。

这确实是数理统计研究的一个要紧问题。

本章先讨论样本和统计量等大体概念,然后讨论常见的几种抽样散布,为进一步讨论统计推断方式打下必要的理论基础。

§3-1 随机抽样整体与样本整体与样本是数理统计中两个要紧概念。

整体是指研究对象的全部,组成整体的每一个单元称为个体。

整体能够包括有限个个体,也能够包括无穷多个个体。

某个整体是有限的,但在个体相当多的情形下,往往把它作为无穷整体来对待。

在数理统计中,咱们不笼统地研究所关切的对象,只考察它的某一种数值指标,例如,考察某批中成药丸的质量时,能够考察崩解时刻、溶解速度、丸重等项指标。

那个地址,若是咱们只需注意药丸的重量,固然,每一丸都有一个确信的重量如:6g,,,,…。

咱们就把所有这些丸重数值当做丸重的整体;每一个丸重值确实是一个个体。

如此,丸重X事实上是一个随机变量,它的取值的全部是一个整体,每一个可能取值确实是它的个体。

由于随机变量是用其概率散布F(x)(或密度函数f x)来刻画,因此假设X具有散布函数F(X),那么称这一整体为具有散布函数F(X)的整()体。

为了研究整体,需在整体中抽取假设干个个体,这就得出样本的概念。

概念1在一个整体X中抽取n个个体X1,X2,…,X n,这n个个体称为整体X的一个容量为n的样本。

数理统计第3章 随机抽样与抽样分布

数理统计第3章 随机抽样与抽样分布

E ( X i ) = E ( X ) = µ , D( X i ) = D( X ) = σ 2 , i = 1,2,L , n
1 n 1 n 所以 E ( X ) = E ( ∑ X i ) = ∑ E ( X i ) = µ , n i =1 n i =1
1 1 . D ( X ) = D( ∑ X i ) = 2 ∑ D( X i ) = n n i =1 n i =1
11
它反映了总体 二、样本数字特征 均值的信息 它反映了总体 1 n 样本均值 X = ∑Xi 方差的信息 n i=1 1 n 1 n 2 2 2 2 样本方差 S = ∑( Xi − X) = n −1 ∑Xi − nX n −1 i=1 i =1
推导: 推导:
( Xi − X)2 = ∑( Xi2 − 2Xi X + X 2 ) ∑
因此, 应视为一组随机变量, 因此,抽样值 ( x1 , x2 ,L, xn ) 应视为一组随机变量,我们把 的一个样本 子样), 样本( ),其中 称为该样本的容量 容量。 它称为总体 X 的一个样本(或子样),其中 n 称为该样本的容量。
7
二、简单随机抽样
由于抽样的目的是为了对总体的分布进行统 计推断, 计推断,为了使抽取的样本能很好地反映总体的 信息,必须考虑抽样方法 信息,必须考虑抽样方法. 最常用的一种抽样方法叫作“ 最常用的一种抽样方法叫作“简单随机抽 它要求抽取的样本满足下面两点: 样”,它要求抽取的样本满足下面两点: 1. 代表性: X1,X2,…,Xn中每一个与所考察的总体 代表性: 有相同的分布. 有相同的分布 2. 独立性: X1,X2,…,Xn是相互独立的随机变量 独立性: 是相互独立的随机变量. 由简单随机抽样得到的样本称为简单随机样本 简单随机样本, 由简单随机抽样得到的样本称为简单随机样本, 今后如不加声明,均指简单随机样本。 今后如不加声明,均指简单随机样本。

抽样技术简单随机抽样

抽样技术简单随机抽样
第三章 简单随机抽样
第一节 概述
一、简单随机抽样的概念

1. 简单随机抽样 也叫纯随机抽样,完全随机抽样。

简单随机抽样是直接从总体的N个 单位中完全随机的抽取n个单位,并使总 体中的每个单位都有同等被抽中概率的 抽样组织形式。
简单随机样本的图示
一、简单随机抽样的概念

2 有重复抽样和不重复抽样两种形 式。 3 严格意义上的简单随机抽样是指 逐个不放回的、即不放回抽样。
4.33 10.33 114.33 184.33 9.33 100.33 165.33 94.33 156 160.33 6.33 93 156.33 86.33 146.33 146.33 66.33 121.33 108.33 86.33 100.8
例:
一、简单估计及其无偏性 N Yi 1 总体均值 Y i 1 N
总体总量
Y N Y
2 简单估计: 用样本均值估计总体均值 总体均值的简单估计
1 ˆ Y y yi n i 1
n
总体总量的简单估计
N ˆ ˆ Y N Y N y yi n
3 样本均值是总体均值的无偏估计
E( y) Y
二、估计量的方差
1 总体方差:
1 (Yi Y ) 2 N 1 2 2 S ( Y Y ) i N 1
i 1 2 3 4 5 6 7 8 9 10 11 12
xi 7 4 5 2 0 4 6 6 15 0 8 6
yi 670 450 370 130 0 250 1230 900 1240 0 1450 540
i 13 14 15 16 17 18 19 20 21 22 23 24
xi 3 10 6 2 1 4 3 2 6 1 4 8

简单随机抽样

简单随机抽样
25
对于简单随机抽样,总体均值的估计量为:
yi ˆ Y y i 1 n
n
其中,n是样本量,yi是样本中第i个单元的值, 对应某特定样本的值即是估计值。也就是说,将样 本中所有yi的值加起来再除以样本量就得到了总体 平均数的估计值。
26
在简单随机抽样中,y 既是总体均值的一致 估计,也是总体均值 Y 的无偏估计。
29
ˆ 2 的 选 取 , 我 们通 常 使用 样 本 方 对 于估 计 量 S 2 n 差s 。 ( yi y ) 2 可以证明: 2 i
s
N i

n 1
是总体方差 S 2
2 ( y Y ) i
N 1
的无偏估计量。
30
三、其他估计量 当总体为正态分布时,用 Me(中位数)来估 计Y 。 可以证明:
第三章 简单随机抽样(SRS)
第一节 概述
第二节
第三节
估计量及其误差
样本量的确定
1
第一节
一、定义
概述
二、抽取方法
三、方法评估 四、两个试验
2
一、定义
所有概率抽样的出发点和理论基础都是简单 随机抽样。简单随机抽样是一种一步抽样法,它 保证样本量为n的每个可能的样本都有相同的被抽 中的概率p=n/N。
24
如果一个估计量对于所有可能样本计算的估 计值的平均数等于参数的真值,称这个估计量是 无偏的。 另一个所需要的估计量的性质是它的抽样分 布应与其平均数尽可能地靠拢。对这种性质的一 个度量指标是抽样方差。 我们通常希望估计量具有一些好的性质:其 中的一个性质就是估计量应是无偏的或近似无偏 的,另一个是抽样方差较小的估计量被认为是精 确的:抽样方差越小,估计的精度越高。

8社会研究方法之概率抽样方法

8社会研究方法之概率抽样方法
4
二、系统抽样
步骤
方法
特点
首先将总体中各 单位按一定顺序 排列,根据样本 容量要求确定抽 选间隔,然后随 机确定起点,每 隔一定的间隔抽 取一个单位的一 种抽样方式。是 纯随机抽样的变 种
先将总体从1~N 相继编号,并计算 抽样距离K=N/n。 式中N为总体单位 总数,n为样本容 量。然后在1~K中 抽一随机数k1,作 为样本的第一个单 位,接着取 k1+K,k1+2K…… ,直至抽够n个单 位为止
的情况。
9
想一想:
假设某地区有高中生2400人,初 中生10900人,小学生11000人。 此地区教育部门为了了解本地区中 小学生的近视情况及其形成原因, 要从本地区的中小学生中抽取1% 的学生进行调查。你认为应当怎样 抽取样本?能在14300人中任意取 143个吗?能将143个份额均分到 这三部分中吗?
当总体是由差异 明显的几部分 组成时,往往 选择分层抽样 的方法
7
三、分层抽样/类型抽样
想一想:如何把图示补充完整
分类
随机 抽样
总体
分层
样本
8
分层抽样的特点:
当一个总体内部分1 层明显时,能克服简单随机抽样和
等距抽样的缺点。
在不增加样本规模2的前提下降低抽样误差,提高抽样
精度。
有些研究不仅要了3解总体的情况,还要了解某些类别
(二)特点
按抽样元素的隶属关 系或层次关系,把抽 样分为几个阶段进行。
e.g.大学—院系—班级—学生
优点:不需要总体全 部名单,抽样较容易; 节约人力物力 缺点:每级抽样都会 有误差,故误差较大
15
例:假设某市共有2.4万名教师,分布在10个区200所 学校中,现抽取一个由1200名教师组成的样本,按照 三阶段抽样的方法,抽样方案有:

卫生统计学第八版第三章 数据的产生

卫生统计学第八版第三章 数据的产生
3. 统计推断(statistical inference) 从样本数据推理而得到关于总体的结论。
.
第四节 样本的可靠性与代表性
.
第四节 样本的可靠性与代表性
.
第四节 样本的可靠性与代表性
当用统计量来估计总体参数时,统计量会随着抽样结果的不同而不同, 该现象可能影响我们采用统计量来估计总体参数的质量。 由抽样引起的统计量与统计量之间或者统计量与总体参数之间的变异不 是无规律的,而是具有某种潜在的模式。
.
第二节 随机对照试验
(一)设计原则
3. 重复(repeat)
(1)每组只有一个试验对象,那么试验结果可能只依赖于具有这类潜在 特质的人被分到了哪个组,但是,如果试验对象足够多,这类人的效应就 能够被平均化,两组的区别就会减少。 (2)重复思想:运用足够多的样本来降低试验的随机误差。
.
第二节 随机对照试验
(1)观察性研究中,研究者观察并测量研究对象的一个或多个变量,但不施 加任何干预措施。 (2)实验性研究中,研究者对研究对象施加处理因素即干预措施,并测量一 个或多个变量。
.
第一节 数据的来源
(二)抽样调查数据与实验数据
2. 抽样调查数据
(1)抽样调查的基本思想就是对总体中的一部分,即样本进行了解进而得到总 体的信息。 (2)特点:观察者对被观察事物或现象在不进行任何干预的情况下所作的观察。
(1)随机抽样:总体中每个个体有相同的机会被选中作为样本参与调查,降低样本 的选择偏倚。 (2)简单随机抽样:从总体中以相同机会抽取的n个个体称为一个简单随机样本,n 为样本量。
.
第三节 简单随机抽样
(二)潜在的问题
1. 抽样涵盖不全
(1)志愿者应答样本:总体中பைடு நூலகம்更有意愿完成调查的部分对象组成的样 本,不是总体的一个具有代表性的样本。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档