控制阀的设计分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

减温减压控制阀的设计分析

减温减压控制阀是1种在蒸汽系统既能减低温度、又能降低压力且具有调节性能的

自动控制阀。文中对减温减压控制阀设计中的关键技术进行分析,提出阀门各部分

的结构的优化设计方案和材质的选用。

减温减压控制阀是1种在蒸汽系统既能减低温度、又能降低压力且具有调节性能的自动控制阀。文中对减温减压控制阀设计中的关键技术进行分析,提出阀门各部分的结构的优化设计方案和材质的选用。

目前国内还没有针对减温减压控制阀进行更深入的研制和开发,而国内炼油化工企业对减温减压控制阀的需求量还很大。因减温减压控制阀的短缺且无替代产品,每年都需要花费大量外汇从国外进口这种减温减压控制阀。该产品的研制成功,将替代国外进口的产品,满足炼油化工企业的生产需要、节省大量投资。

由于减温减压控制阀使用工况条件比较恶劣,主要用于控制温度高、压差较大的调节。设计选择了输出力大的ZMSZ-4型多弹簧气动薄膜执行机构。即采用8组组合弹簧均匀地分布于膜头之内,这样采用较小的弹簧组替代较大的独立弹簧的方式,降低了加工成本,缩小了整体尺寸,使轴向长度缩短为原来普通结构的1/3左右,特别是减温减压控制阀采用这种结构后体积大大缩小,降低了安装难度,方便了工艺配管的设计。同时节约了材料,降低了制造难度,控制了制造成本,上海明精提高了产品零配件的通用程度。

1.2 阀内件

阀内件是减温减压控制阀的关键部件,它直接影响减温减压控制阀的流量特性。过去通常采用普通单座阀芯、阀座,但这种型式阀内件的可调比较小,使用压差较低。由于现场工作条件苛刻,经过几年冲刷,阀芯的流量特性发生了较大变化,控制阀的减温减压的工作特性逐渐变坏,就经常出现因汽、水分配不匀而产生打水锤现象,伴随着阀芯震动又出现了阀芯转动、卡滞的现象对生产造成较大影响。因此,对减温减压控制阀阀内件型式进行了研究和设计;针对阀芯所受的不平衡力,阀门可调比较小的具体情况,将阀内件设计成为笼式双座结构。提高减温减压控制阀工作稳定性,增大可调比,消除了噪音.

1.3 分流配水器的结构

分流器配水不均一直是困扰减温减压控制阀应用的难题。目前减温减压控制阀分流配水方式主要有2种顶部配水(阀芯中间)和底部配水结构。采用底部配水结构,在阀的底部配水,不将水直接注入在阀芯上使水不在阀芯上汽化,从而避免了阀芯震动的可能。上海明精为了提高注入与过热蒸汽的换热面积,将分流配水器设计成导流罩的形状,同时在上面开出导流槽,水从导流槽里的孔中喷出与被导向的过热蒸汽充分换热汽化。采用分流配水器的结构和阀内件笼式双座结构具有较为先进水平。

2 材料的性能分析

2.1 机械性能

对于阀门的密封面的硬度指标,最重要的是在高温下材料硬度的变化,高温下控制阀材质的硬度变化见图1。

1-铬化硼合金;2-司太立合金;3-9Cr18Mo;

图1 高温下材质的硬度变化

当减温减压控制阀的工况温度超过400℃时,在实际使用过程中阀门材质会出现蠕变和断裂的情况。上海明精减温减压控制阀部件在高温条件下长时间受载时,所受力超出其蠕变极限值,此情况下材质除产生弹性变形外,还会产生材质的蠕变。实际使用中还发现应力小于对应温度下材料的屈服极限,但仍产生变形的情况,在设计过程中需要对这些情况进行考虑。

在同一温度下,应力与蠕变速度成正比关系;在同一应力下,温度与蠕变速度成正比关系。所以材质所受的应力和材质的温度决定了其蠕变速度。在化工装置的减温减压控制阀设计中,工艺管道系统的条件决定了阀体的工作温度,而工艺介质的腐蚀性、粘度等条件又决定了阀门的材质,所以在减温减压控制阀设计中关键的是许用应力的计算确认。如果为了使控制阀材质不产生蠕变,一味的提高材质物理蠕变极限来设计,那么结果一是造成控制阀体积和质量过大,给现场安装带来问题,二是将造成控制阀制造成本上升,浪费人力物力。所以首先要充分熟悉控制阀材质的蠕变速度规律,确定一个合适的应力,在保证控制阀能达到正常使用年限的基础上,减少总的蠕变发生,简化控制阀结构,降低成本。

在实际使用过程中,减温减压控制阀出现过由于长时间处于高温载荷的工况下而出现控制阀部件断裂现象,造成控制阀故障。金属材质在高温短时荷载作用下,金属材料的塑性增加,但在高温长时间荷载作用下,塑性却显著降低,缺口敏感性增加,往往出现脆性断裂的现象。实际使用中控制阀部件常常出现这样的现象:工作应力未达到蠕变极限值,但由于部件长时间在高温载荷下使用,最终出现了断裂的情况。所以在设计中应仔细对比控制阀材质的蠕变性能和断裂性能,选取适当的许用应力。

2.2 热胀量的差别

决定热胀量差别的原因主要有材料热胀系数、材料承受热载的差别和材料所处约束条件的差别,这些差别作为减温减压控制阀设计中慎重确定的内容。当高温工艺介质进入温度较低的控制阀时,阀芯迅速浸没在高温工艺介质中,由于阀芯所处的结构位置不利于温度的迅速传导,仅能通过阀杆向外散热,所以阀芯迅速达到管线工艺介质的温度。阀座与阀芯同时接触高温工艺介质,由于阀座的具有较大的散热面积以及阀体的线胀量常常小于阀座的径向膨胀。而底部配水结构,使水从导流槽里的孔中喷出与被导向的过热蒸汽充分换热汽化又降低阀芯、阀座的温度。所以确定减温减压控制阀部件间的工作间隙量时,应充分考虑上述情况产生的热胀量的差别,预防控制阀部件出现擦伤、卡死的情况。

2.3 热交变的影响

流经减温减压控制阀工艺介质的热交变会导致阀门部件的过盈配合或连接部位松动,从而造成泄漏。所以应考虑使用封焊或点焊的方式来代替原有的螺纹连接。上海明精对于较大口径控制阀可以使用本体堆焊阀座的方式来进行处理。

减温减压控制阀高温热交变会产生交变应力,阀门部件长期受交变应力影响会降低阀门部件的使用寿命。热交变工况下使用弹性阀座的密封结构会达到较好的应用效果。

2.4 擦伤问题

在化工装置实际生产应用中,常见的造成控制阀内件擦伤的原因多是由工艺介质中夹杂了大的硬杂质,在其通过控制阀时对阀座和阀芯表面造成擦伤,偶尔也会出现由机械振动冲击造成的擦伤。

相关文档
最新文档