概率论与数理统计习题2及答案
概率论与数理统计(II)期末考试样卷2参考答案
命题人或命题小组负责人签名: 教研室(系)主任签名: 分院(部)领导签名:概率论与数理统计(II )期末考试样卷2参考答案注意:所有数据结果保留小数点后两位,本试卷可能用的数据如下:20.9750.9750.02520.9750.9750.95(1.5)0.933, 1.96,(24) 2.064,(2.10)0.98,(24)12.40,(24)39.36,(10) 2.23,(2,21) 3.47,U t t F χχΦ===Φ=====一、填空题( 每小题3分,共24分)1. 在总体~(5,16)X N 中随机地抽取一个容量为36的样本,则样本均值x 落在4与6之间的概率为 0.87 .2. 设1234,,,X X X X 是取自正态总体~(0,4)X N 的简单随机样本且()()221234234Y a X X b X X =-+-,则a = 0.05 ,b = 0.01 时,统计量Y 服从2χ分布。
3.设161,,x x 是来自(8,4)N 的样本,则(1)(5)P x >= 16(0.933) . 4.设1,,n X X 为来自(0,)(0)U θθ>的一个样本,11,ni ni X X ==∑则未知参数θ的矩估计量是 2X ,最大似然估计是 1max(,,)n X X .5.设总体分布为()P λ,则其费希尔信息量为 1λ .6.设1,,n X X 为来自2(,)N μσ的一个样本,欲使1ˆni i c X X σ==-∑为σ的无偏估计,则常数 c 7.由来自正态总体2~(,0.9),X N μ容量为9的简单随机样本,若得到样本均值0.5X =,则未知参数μ的置信度为0.95的置信区间为 [-0.088,1.088] 。
8.设1,,n X X 为来自2(,)N μσ的一个样本,22111()ni n i S X X -==-∑,其中参数2,μσ未知,要检验假设2200:H σσ=应用 2χ 检验法,检验的统计量是2201n S σ-() 。
概率论与数理统计(第三版)课后答案习题2
第二章 随机变量2.1 X 2 3 4 5 6 7 8 9 10 11 12 P 1/361/181/121/95/361/65/361/91/121/181/362.2解:根据1)(0==∑∞=k k XP ,得10=∑∞=-k kae,即1111=---eae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=1122020*********2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P {0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++=11[1()]1441314k k lim→∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯= 1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
《概率论与数理统计》习题及答案 第二章
《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
概率论与数理统计 习题参考答案
概率论与数理统计习题二参考答案1、将一颗骰子抛掷两次,以X 1表示两次所得点数之和,以X 2表示两次得到的点数的最小者,试分别求X 1和X 2的分布律。
解:X 1可取2、3、4、5、6、7、8、9、10、11、123616161)1,1()2(1=×===P X P36261616161)"1,2""2,1(")3(1=×+×=∪==P X P 363616161616161)"1,3""2,2""3,1(")4(1=×+×+×=∪∪==P X P …… 所以X 1的分布律为X 1 2 3 4 5 6 7 8 9 10 11 12 P k 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 X 2可取的数有1、2、3、4、5、6P (X 2=1)=P ()="1,6""1,5""1,4""1,3""1,2""6,1""5,1""4,1""3,1""2,1""1,1"∪∪∪∪∪∪∪∪∪∪3611所以X 2的分布律为 X 2 1 2 3 4 5 6 P k 11/36 9/36 7/36 5/36 3/36 1/36 2、10只产品中有2只是次品,从中随机地抽取3只,以X 表示取出次品的只数,求X 的分布律。
解:X 可取0、1、2{}310380C C X P ==157={}15713102812===C C C X P {}15123101822===C C C X P3、进行重复独立试验。
《概率论与数理统计》课后习题答案2
1. 试分别给出随机变量的可能取值为可列、有限的实例.解 用X 表示一个电话交换台每小时收到呼唤的次数,X 的全部可能取值为可列的 0,1,2,3,…,;用Y 表示某人掷一枚骰子出现的点数,Y 的全部可能取值为有限个 1,2,3,4,5,6 ;2. 试给出随机变量的可能取值至少充满一个实数区间的实例.解 用X 表示某灯泡厂生产的灯泡寿命(以小时记),X 的全部可能取值为区间 (0,+∞)3. 设随机变量X 的分布函数()F x 为()F x = 2 1, >20, 2A x xx ⎧-⎪⎨⎪≤⎩ 确定常数A 的值,计算(04)P X ≤≤.解 由(20)(2),F F +=可得10, =44AA -= (04)(04)(4)(0)0.75P X P X F F ≤≤=<≤=-=.4.试讨论:A 、B 取何值时函数()arctan3xF x A B =+ 是分布函数. 解 由分布函数的性质,有()()0,1F F -∞=+∞=,可得0,211,,21,2A B A B A B πππ⎧⎛⎫+-= ⎪⎪⎪⎝⎭⇒==⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩于是()11arctan ,.23xF x x π=+-∞<<+∞1.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的概率分布.解 由题意知,X 的取值可以是0,1,2,3.而X 取各个值的概率为{}{}70,103771,10930P X P X ====⨯= {}{}32772,1098120321713.10987120P X P X ==⨯⨯===⨯⨯⨯= 因此X 的概率分布为012 377711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦2.从分别标有号码1 ,2 ,… ,7的七张卡片中任意取两张, 求余下的卡片中最大号码的概率分布.解 设X 为余下的卡片的最大号码 ,则X 的可能取值为5、6、7,且1{5}21P X ==5{6}21P X ==15{7}21P X ==即所求分布为567 1515212121X ⎡⎤⎢⎥⎢⎥⎣⎦ 3.某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数的概率分布.解 设此人将门打开所需的试开次数为X ,则X 的取值为1,2,3,...,k n =,事件{}{}1X k k k ==-前次未打开,第次才打开,且{}11P X n ==, {}11121n P X n n n-==⋅=-,… …,{}()121112111,2,....,n n n k P X k n n n k n k k n n ---+==⋅⋅⋅⋅--+-+== 故所需试开次数的分布为12~111X n nn ⎡⎤⎢⎥⎢⎥⎣⎦ ... n .... 4.随机变量X 只取1 、2 、3共三个值,并且取各个值的概率不相等且组成等差数列,求X 的概率分布.解 设{}{}{}1,2,3P X a P X b P X c ======,则由题意有1a b c c b b a ++=⎧⎨-=-⎩解之得2313a c b ⎧+=⎪⎪⎨⎪=⎪⎩设三个概率的公差为d ,则11,33a d c d =-=+,即X 的概率分布为 12 3111333X d d⎡⎤⎢⎥⎢⎥-+⎢⎥⎣⎦,103d << 5.设随机变量X 的全部可能取值为1 ,2 ,… ,n ,且()P X k = 与k 成正比,求X 的概率分布.解 由题意,得{}() 1,2,,k P X k p ck k n ====其中c 是大于0的待定系数.由11nkk p==∑,有12....1nk k cp c c n c ==+++=∑ 即()112n n c +=,解之得 ()21c n n =+.把()21c n n =+代入k p ,可得到X 的概率分布为{}()2,1,2,...,.1kP X k k n n n ===+6.一汽车沿街道行驶时须通过三个均设有红绿灯的路口.设各信号灯相互独立且红绿两种信号显示的时间相同,求汽车未遇红灯通过的路口数的概率分布.解 设汽车未遇红灯通过的路口数为X ,则X 的可能值为0,1,2,3.以()1,2,3i A i =表示事件“汽车在第i 个路口首次遇到红灯”,则123,,A A A 相互独立,且()()1,1,2,32i i P A P A i ===.对0,1,2,3k =,有{}()1102P X P A ==={}()()()1212211142P X P A A P A P A ===== {}()123311282P X P A A A ==== {}()123311382P X P A A A ==== 所以汽车未遇红灯通过的路口数的概率分布为012 311112488X ⎡⎤⎢⎥⎢⎥⎣⎦7.将一颗骰子连掷若干次,直至掷出的点数之和超过3为止.求掷骰子次数的概率分布.解 设掷骰子次数为X ,则X 可能取值为1,2,3,4,且31{1}62P X === 141515{2}6666612P X ==⨯+⨯+=;115111117{3}6666666216P X ==⨯⨯+⨯+⨯=; 1111{4}666216P X ==⨯⨯=所以掷骰子次数X 的概率分布为123 415171212216216X ⎡⎤⎢⎥⎢⎥⎣⎦ 8.设X 的概率分布为试求(1)X 的分布函数并作出其图形;(2) 计算{11}P X -≤≤ ,{0 1.5}P X ≤≤ ,{2}P X ≤ . 解(1)由公式 (){}()k kx xF X P X x p x ≤=≤=-∞<<+∞∑,得()0,00.2,010.5,120.6,231,3x x F X x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2) {}11(1)(10)0.500.5P X F F -≤≤=---=-= {}0 1.5(1.5)(00)0.500.5P X F F ≤≤=--=-={}2(2)0.6P X F ≤==9.设随机变量X 的分布函数为010.210()0.70212x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩,,,,试求(1) 求X 的概率分布;(2) 计算1322P X ⎧⎫-<≤⎨⎬⎩⎭,{1}P X ≤- ,{03}P X ≤< ,{1|0}P X X ≤≥解 (1)对于离散型随机变量,有{}()()0P X k F k F k ==--,因此,随机变量X 的概率分布为10 2 0.20.50.3X -⎡⎤⎢⎥⎣⎦ (2) 由分布函数计算概率,得13310.52222P X F F ⎧⎫⎛⎫⎛⎫-<≤=--=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭;{}()110.2P X F ≤-=-=;{}()0330(00)10.20.8P X F F ≤<=---=-=; {}{}{}{}{}1,0100010.50.625.00.8P X X P X X P X P X P X ≤≥≤≥=≥≤≤===≥10.已知随机变量X 服从0—1分布,并且{0}P X ≤=0.2,求X 的概率分布 . 解 X 只取0与1两个值,{0}P X =={0}P X ≤-{0}P X <=0.2,{1}1{0}0.8P X P X ==-==11.已知{}P X n == nP ,n =1,2,3,⋯,求P 的值 .解 因为1{}1,n P X n ∞===∑ 有 11=,1n n pp p∞==-∑解此方程,得0.5p =. 12.商店里有5名售货员独立地售货.已知每名售货员每小时中累计有15分钟要用台秤.(1) 求在同一时刻需用台秤的人数的概率分布;(2) 若商店里只有两台台秤,求因台秤太少而令顾客等候的概率.解 (1) 由题意知,每名售货员在某一时刻使用台秤的概率为150.2560p ==, 设在同一时刻需用台秤的人数为X , 则()~5,0.25X B , 所以{}550.250.75(0,1,2,3,4,5)kk k P X k C k -===(2) 因台秤太少而令顾客等候的概率为{}{}55553320.250.75k k k k k P X P X k C -==>===∑∑332445550.250.750.250.750.250.1035C C =++≈13.保险行业在全国举行羽毛球对抗赛,该行业形成一个羽毛球总队,该队是由各地区的部分队员形成.根据以往的比赛知,总队羽毛球队实力较甲地区羽毛球队强,但同一队中队员之间实力相同,当一个总队运功员与一个甲地区运动员比赛时,总队运动员获胜的概率为0.6,现在总队、甲队双方商量对抗赛的方式,提出三种方案:(1)双方各出3人; (2)双方各出5人; (3)双方各出7人.3种方案中得胜人数多的一方为胜利.问:对甲队来说,哪种方案有利?解 设以上三种方案中第i 种方案甲队得胜人数为(1,2,3),i X i =则上述3种方案中,甲队胜利的概率为(1){}331322(0.4)(0.6)0.352k k k k P X C -=≥=≈∑(2){}552533(0.4)(0.6)0.317k k k k P X C -=≥=≈∑(3){}773744(0.4)(0.6)0.290kk k k P X C -=≥=≈∑因此第一种方案对甲队最为有利.这和我们的直觉是一致的。
概率论与数理统计习题解答 (2)
x<0 0 ≤ x <1 x ≥1
1/ 2
P{ X < 1 / 2} = P{X > 3 / 2} =
−∞ ∞
∫ f ( x)dx = ∫ 2 xdx =1/ 4 或 P{X < 1/ 2} = F (1/ 2) = 1/ 4
0
1/ 2
3/ 2
∫
∞
f ( x)dx =
3/ 2
∫ 0dx = 0
或
P{X > 3 / 2} = 1 − P{X ≤ 3 / 2} = 1 − F (3 / 2) = 1 − 1 = 0
x<0 0 ≤ x <1 x ≥1
求
(1)常数 A
(2)概率密度函数
(3) P{X < 1 / 2} ; P{X > 3 / 2} ;
P{0 ≤ X ≤ 2} 。
解法一:由于连续型随机变量 X 的分布函数是连续的
⎧0 ⎪ ∴ 1 = F( 1 ) = lim F ( x) = lim Ax = A f ( x) = F ' ( X ) = ⎨ 2 x x⎯ ⎯→ 1 x⎯ ⎯→ 1 ⎪0 ⎩
+∞
所以一年中该地区受台风袭击次数为 3~5 的概率为 0.547027 11、有 10 台机床,每台发生故障的概率为 0.08, 而 10 台机床工作独立,每台 故障只需一个维修工人排除。问至少要配备几个维修工人,才能保证有故障而 不能及时排除的概率不大于 5%。 解:随机变量 X 示发生故障的机床的台数则 设配备 n 个维修工人 (0 ≤ n < 10) 则“有故障而不能及时排除”事件为
−1 r k −r (2) P{X = k } = Ckr − , k = r , r + 1,...... 1 p (1 − p )
概率论与数理统计2.第二章练习题(答案)
概率论与数理统计2.第⼆章练习题(答案)第⼆章练习题(答案)⼀、单项选择题1. 已知连续型随机变量X 的分布函数为3.若函数f(x)是某随机变量X 的概率密度函数,则⼀定成⽴的是(C ) A. f(x)的定义域是[0, 1] B. f(x)的值域为[0,1]4.设X - N(l,l),密度函数为f(x),则有(C )5.设随机变量X ~ N (/M6), Y ?N 仏25),记 P1 = P (X “ + 5), 则正确的是(A)对任意“,均有Pi = p 2 (B)对任意“,均有Pi v p?(c)对任意〃,均有Pl > Pi (D )只对“的个别值有P1 = P26.设随机变量x ?N(10^s 2) 9 则随着s 的增加 P{|X- 10|< s} ( C )F(x) =o,kx+b 、 x<0 0 < x< x>则常数&和〃分别为 (A) k = —b = 0龙, (B) k = 0,b 丄 (C) k = —,b = 0 (D) k = 0,b= 1 n In In2.下列函数哪个是某随机变量的分布函数(A ) z 7fl -cosx ; 2 0, f sinx,A. f(x)』沁,xnO C. f (x)= a (a>0);B. f (x)1, x < 0[cosx, — - < X < - 1 2 2 D. f (x) 其他 0, 0 < X < 7T 其他 —-< x < - 2 2 其他 C- f(x)⾮负D. f (x)在(-叫+00)内连续A. P {X O }B. f(x)= f(-x)C. p{xl} D ? F(x) = l-F(-x)A.递增B.递减C.不变D.不能确定7.设⽚3与E(⼒分别为随机变量X、兀的分布函数,为使F(沪aF?—胡(⼒是某⼀随机变量的分布函数,在下列给定的多组数值中应取(A )&设⼼与⼈是任意两个相互独⽴的连续型随机变量,它们的概率密度函数分别为ft (⼒和f2(⼒,分布函数分别为川⼒和E (⼒,则(A)亡(⼒+負(⼒必为某个随机变量的概率密度;(B) f⼼)临(⼒必为某个随机变量的概率密度;(C)川⼒+£(⼒必为某个随机变量的分布函数;(D)FAx)吠(⼒必为某个随机变量的分布函数。
概率论与数理统计第二章课后习题及参考答案.
概率论与数理统计第二章课后习题及参考答案1.离散型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=≤=.4,1,42,7.0,21,2.0,1,0)()(x x x x x X P x F 求X 的分布律.解:)0()()(000--==x F x F x X P ,∴2.002.0)01()1()1(=-=----=-=F F X P ,5.02.07.0)02()2()2(=-=--==F F X P ,3.07.01)04()4()4(=-=--==F F X P ,∴X 的分布律为2.设k a k X P 32()(==, ,2,1=k ,问a 取何值时才能成为随机变量X 的分布律.解:由规范性,a a a n n k k 2321]32(1[32lim)32(11=--=⋅=+∞→∞+=∑,∴21=a ,此时,k k X P 32(21)(⋅==, ,2,1=k .3.设离散型随机变量X 的分布律为求:(1)X 的分布函数;(2)21(>X P ;(3))31(≤≤-X P .解:(1)1-<x 时,0)()(=≤=x X P x F ,11<≤-x 时,2.0)1()()(=-==≤=X P x X P x F ,21<≤x 时,7.0)1()1()()(==+-==≤=X P X P x X P x F ,2≥x 时,1)2()1()1()()(==+=+-==≤=X P X P X P x X P x F ,∴X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=.2,1,21,7.0,11,2.0,1,0)(x x x x x F .(2)方法1:8.0)2()1()21(==+==>X P X P X P .方法2:8.02.01)21(121(1)21(=-=-=≤-=>F X P X P .(3)方法1:1)2()1()1()31(==+=+-==≤≤-X P X P X P X P .方法2:101)01()3()31(=-=---=≤≤-F F X P .4.一制药厂分别独立地组织两组技术人员试制不同类型的新药.若每组成功的概率都是0.4,而当第一组成功时,每年的销售额可达40000元;当第二组成功时,每年的销售额可达60000元,若失败则分文全无.以X 记这两种新药的年销售额,求X 的分布律.解:设=i A {第i 组取得成功},2,1=i ,由题可知,1A ,2A 相互独立,且4.0)()(21==A P A P .两组技术人员试制不同类型的新药,共有四种可能的情况:21A A ,21A A ,21A A ,21A A ,相对应的X 的值为100000、40000、60000、0,则16.0)()()()100000(2121====A P A P A A P X P ,24.0)()()()40000(2121====A P A P A A P X P ,24.0)()()()60000(2121====A P A P A A P X P ,36.0)()()()0(2121====A P A P A A P X P ,∴X 的分布律为5.对某目标进行独立射击,每次射中的概率为p ,直到射中为止,求:(1)射击次数X 的分布律;(2)脱靶次数Y 的分布律.解:(1)由题设,X 所有可能的取值为1,2,…,k ,…,设=k A {射击时在第k 次命中目标},则k k A A A A k X 121}{-== ,于是1)1()(--==k p p k X P ,所以X 的分布律为1)1()(--==k p p k X P , ,2,1=k .(2)Y 的所有可能取值为0,1,2,…,k ,…,于是Y 的分布律为1)1()(--==k p p k Y P , ,2,1,0=k .6.抛掷一枚不均匀的硬币,正面出现的概率为p ,10<<p ,以X 表示直至两个面都出现时的试验次数,求X 的分布律.解:X 所有可能的取值为2,3,…,设=A {k 次试验中出现1-k 次正面,1次反面},=B {k 次试验中出现1-k 次反面,1次正面},由题知,B A k X ==}{,=AB ∅,则)1()(1p p A P k -=-,p p B P k 1)1()(--=,p p p p B P A P B A P k X P k k 11)1()1()()()()(---+-=+=== ,于是,X 的分布律为p p p p k X P k k 11)1()1()(---+-==, ,3,2=k .7.随机变量X 服从泊松分布,且)2()1(===X P X P ,求)4(=X P 及)1(>X P .X 100000060000400000P0.160.240.240.36解: )2()1(===X P X P ,∴2e e2λλλλ--=,∴2=λ或0=λ(舍去),∴224e 32e !42)4(--===X P .)1()0(1)1(1)1(=-=-=≤-=>X P X P X P X P 222e 31e 2e 1----=--=.8.设随机变量X 的分布函数为⎩⎨⎧<≥+-=-.0,0,0,e )1(1)(x x x x F x 求:(1)X 的概率密度;(2))2(≤X P .解:(1)⎩⎨⎧<≥='=-.0,0,0,e )()(x x x x F x f x ;(2)2e 31)2()2(--==≤F X P .9.设随机变量X 的概率密度为xx Ax f e e )(+=-,求:(1)常数A ;(2))3ln 210(<<X P ;(3)分布函数)(x F .解:(1)⎰⎰+∞∞--+∞∞-+==xAx x f xx d e e d )(1A A x A x x x 2|e arctan d e 21e 2π==+=∞+∞-∞+∞-⎰,∴π2=A .(2)61|e arctan 2d e e 12)3ln 210(3ln 2103ln 210==+=<<⎰-x xx x X P ππ.(3)x xx x xx t t f x F e arctan 2d e e 12d )()(ππ=+==⎰⎰∞--∞-.10.设连续型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧>≤<-+-≤=.a x a x a a x B A a x x F ,1,,arctan ,,0)(其中0>a ,试求:(1)常数A ,B ;(2)概率密度)(x f .解:(1) 2arcsin (lim )0()(0)(π⋅-=+=+-=-=+-→B A a x B A a F a F a x ,1)(lim )0()(2==+==⋅++→x F a F a F B A a x π,∴21=A ,π1=B .(2)⎪⎩⎪⎨⎧≥<-='=.a x a x x a x F x f ,0,,1)()(22π.11.设随机变量X 的概率密度曲线如图所示,其中0>a .(1)写出密度函数的表达式,求出h ;(2)求分布函数)(x F ;(3)求)2(a X aP ≤<.解:(1)由题设知⎪⎩⎪⎨⎧≤≤-=其他.,0,0,)(a x x ah h x f 2d )(d )(10ahx x a h h x x f a=-==⎰⎰+∞∞-,∴ah 2=,从而⎪⎩⎪⎨⎧≤≤-=其他.,0,0,22)(2a x x a a x f .y hO a x(2)0<x 时,0d 0d )()(===⎰⎰∞-∞-xxt t t f x F ,a x <≤0时,220202d )22(d 0d )()(a x a x t t a a t t t f x F xx-=-+==⎰⎰⎰∞-∞-,a x ≥时,1)(=x F ,∴X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.a x a x axa x x x F ,1,0,2,0,0)(22.(3)41411(1)2()()2(=--=-=≤<a F a F a X a P .12.设随机变量X 在]6,2[上服从均匀分布,现对X 进行三次独立观察,试求至少有两次观测值大于3的概率.解:由题意知⎪⎩⎪⎨⎧≤≤=其他.,0,62,41)(x x f ,记3}{>=X A ,则43d 41)3()(63==>=⎰x X P A P ,设Y 为对X 进行三次独立观测事件}3{>X 出现的次数,则Y ~43,3(B ,所求概率为)3()2()2(=+==≥Y P Y P Y P )(()(333223A P C A P A P C +=3227)43(41)43(333223=+⋅=C C .13.设随机变量X 的概率密度为⎩⎨⎧<<=其他.,0,10,3)(2x x x f 以Y 表示对X 的三次独立重复观察中事件}21{≤X 出现的次数,求:(1)}21{≤X 至少出现一次的概率;(2)}21{≤X 恰好出现两次的概率.解:由题意知Y ~),3(p B ,其中81d 321(2102==≤=⎰x x X P p ,(1)}21{≤X 至少出现一次的概率为512169)811(1)1(1)0(1)1(33=--=--==-=≥p Y P Y P .(2)}21{≤X 恰好出现两次的概率为51221811(81()1()2(223223=-=-==C p p C Y P .14.在区间],0[a 上任意投掷一个质点,以X 表示这个质点的坐标.设这个质点落在],0[a 中任意小区间内的概率与这个小区间的长度成正比例.试求X 的分布函数.解:0<x 时,事件}{x X ≤表示X 落在区间],0[a 之外,是不可能事件,此时0)()(=≤=x X P x F ;a x ≤≤0时,事件}{x X ≤发生的概率等于X 落在区间],0[x 内的概率,它与],0[x 的长度x 成正比,即x k x X P x F =≤=)()(,a x =时,1)(=≤x X P ,所以a k 1=,则此时axx F =)(;a x ≥时,事件}{x X ≤是必然事件,有1)(=x F ,综上,⎪⎪⎩⎪⎪⎨⎧≥<≤<=,a x a x a x x x F ,1,0,,0,0)(.15.设X ~),2(2σN ,又3.0)42(=<<X P ,求)0(>X P .解:)24222()42(σσσ-<-<-=<<X P X P 3.0)0(2(=Φ-Φ=σ,∴8.03.0)0()2(=+Φ=Φσ,∴8.0)2()2(1)0(1)0(=Φ=-Φ-=≤-=>σσX P X P .16.设X ~)4,10(N ,求a ,使得9.0)10(=<-a X P .解:)10()10(a X a P a X P <-<-=<-)22102(a X a P <-<-=)2()2(a a -Φ-Φ=9.01)2(2=-Φ=a,∴95.0)2(=Φa,查标准正态分布表知645.12=a,∴290.3=a .17.设X ~)9,60(N ,求分点1x ,2x ,使得X 分别落在),(1x -∞,),(21x x ,),(2∞x 的概率之比为3:4:5.解:由题知5:4:3)(:)(:)(2211=><<<x X P x X x P x X P ,又1)()()(2211=>+<<+<x X P x X x P x X P ,∴25.041)(1==<x X P ,33.031)(21==<<x X x P ,125)(2=>x X P ,则5833.0127)(1)(22==>-=≤x X P x X P .25.0)360()360360()(111=-Φ=-<-=<x x X P x X P ,查标准正态分布表知03601<-x ,∴03601>--x ,则75.0)360(1)360(11=-Φ-=--Φx x 查标准正态分布表,有7486.0)67.0(=Φ,7517.0)68.0(=Φ,75.02)68.0()67.0(=Φ+Φ,∴675.0268.067.03601=+=--x ,即975.571=x .5833.0360()360360()(222=-Φ=-≤-=≤x x X P x X P ,查标准正态分布表知5833.0)21.0(=Φ,∴21.03602=-x ,即63.602=x .18.某高校入学考试的数学成绩近似服从正态分布)100,65(N ,如果85分以上为“优秀”,问数学成绩为“优秀”的考生大致占总人数的百分之几?解:设X 为考生的数学成绩,则X ~)100,65(N ,于是)85(1)85(≤-=>X P X P )1065851065(1-≤--=X P 0228.09772.01)2(1=-=Φ-=,即数学成绩为“优秀”的考生大致占总人数的2.28%.19.设随机变量X 的分布律为求2X Y =的分布律.解:Y 所有可能的取值为0,1,4,9,则51)0()0(====X P Y P ,307)1()1()1(==+-===X P X P Y P ,51)2()4(=-===X P Y P ,3011)3()9(====X P Y P ,∴Y 的分布律为20.设随机变量X 在)1,0(上服从均匀分布,求:(1)X Y e =的概率密度;(2)X Y ln 2-=的概率密度.解:由题设可知⎩⎨⎧<<=其他.,0,10,1)(x x f ,(1)当0≤y 时,=≤}{y Y ∅,X 2-1-013P5161511513011X 0149P51307513011∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;e 0<<y 时,)e ()()(y P y Y P y F X Y ≤=≤=)(ln )ln (y F y X P X =≤=,此时,yy f y y y F y F y f X XY X 1)(ln 1)(ln )(ln )()(=='⋅'='=;e ≥y 时,1)()(=≤=y Y P y F Y ,0)(=y f Y ;∴⎪⎩⎪⎨⎧<<=其他.,0,e 0,1)(y y y f Y .(2)当0≤y 时,=≤}{y Y ∅,∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;当0>y 时,)e ()ln 2()()(2y Y X P y X P y Y P y F -≥=≤-=≤=)e (1)e (122y X y F X P ---=<-=,此时,222e 21)e ()e ()()(yy y X Y X F y F y f ---='⋅'-='=;∴⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY .21.设X ~)1,0(N ,求:(1)X Y e =的概率密度;(2)122+=X Y 的概率密度;(3)X Y =的概率密度.解:由题知22e 21)(x X xf -=π,+∞<<∞-x ,(1)0≤y 时,=≤=}e {y Y X ∅,∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;0>y 时,)(ln )ln ()e ()()(y F y X P y P y Y P y F X X Y =≤=≤=≤=,此时,2)(ln 2e 21)(ln 1)(ln )(ln )()(y X XY X y f yy y F y F y f -=='⋅'='=π;综上,⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2)(ln 2y y y f y Y π.(2)1<y 时,=≤+=}12{2y X Y ∅,∴0)()(=≤=y Y P y F Y ;1≥y 时,21()12()()(22-≤=≤+=≤=y X P y X P y Y P y F Y )2121(-≤≤--=y X y P 当1=y 时,0)(=y F Y ,故1≤y 时,0)(=y F Y ,0)(=y f Y ;当1>y 时⎰⎰------==210221212d e22d e21)(22y x y y x Y x x y F ππ,此时,41e)1(21)()(---='=y Y Y y y F y f π,综上,⎪⎩⎪⎨⎧≤>-=--.1,0,1,e )1(21)(41y y y y f y Y π.(3)0<y 时,=≤=}{y X Y ∅,∴0)()()(=≤=≤=y X P y Y P y F Y ,0≥y 时,)()()()(y X y P y X P y Y P y F Y ≤≤-=≤=≤=)()(y F y F X X --=,0=y 时,0)(=y F Y ,∴0≤y 时,有0)(=y F Y ,0)(=y f Y ;0>y 时,22e 22)()()()()(y X X Y Y Y yf y f y F y F y f -=-+=-'+'=π,综上,⎪⎩⎪⎨⎧≤>=-.0,0,0,e 22)(22y y y f yY π.22.(1)设随机变量X 的概率密度为)(x f ,+∞<<∞-x ,求3X Y =的概率密度.(2)设随机变量X 的概率密度为⎩⎨⎧>=-其他.,00,e )(x x f x 求2X Y =的概率密度.解:(1)0=y 时,0)()(=≤=y Y P y F Y ,0)(=y f Y ;0≠y 时,)()()()()(333y F y X P y X P y Y P y F X Y =≤=≤=≤=,3233331())(()()(-⋅=''='=y y f y y F y F y f XY Y ;∴⎪⎩⎪⎨⎧=≠=-.0,0,0),(31)(332y y y f y y f Y .(2)由于02≥=X Y ,故当0<y 时,}{y Y ≤是不可能事件,有0)()(=≤=y Y P y F Y ;当0≥y 时,有)()(()()()(2y F y F y X y P y X P y Y P y F X X Y --=≤≤-=≤=≤=;因为当0=y 时,0)0()0()(=--=X X Y F F y F ,所以当0≤y 时,0)(=y F Y .将)(y F Y 关于y 求导数,即得Y 的概率密度为⎪⎩⎪⎨⎧≤>-+=.,;,000)](([21)(y y y f y f y y f X X Y ,⎪⎩⎪⎨⎧≤>+=-.0,0,0),e e (21y y yyy .23.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他.,0,0,2)(2ππx xx f 求X Y sin =的概率密度.解:由于X 在),0(π内取值,所以X Y sin =的可能取值区间为)1,0(,在Y 的可能取值区间之外,0)(=y f Y ;当10<<y 时,使}{y Y ≤的x 取值范围是),arcsin []arcsin ,0(ππy y - ,于是}arcsin {}arcsin 0{}{ππ<≤-≤<=≤X y y X y Y .故)arcsin ()arcsin 0()()(ππ<≤-+≤<=≤=X y P y X P y Y P y F Y ⎰⎰-+=ππyX y X x x f x x f arcsin arcsin 0d )(d )(⎰⎰-+=ππππyy x xx xarcsin 2arcsin 02d 2d 2,上式两边对y 求导,得22222121)arcsin (21arcsin 2)(yyy yyy f Y -=--+-=ππππ;综上,⎪⎩⎪⎨⎧<<-=其他.,0,10,12)(2y y y f Y π.。
概率论与数理统计阶段练习2_参考答案
《概率论与数理统计》阶段练习2参考答案1、一报童卖报, 每份元,其成本为元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.2、设随机变量X 的概率分布为:0,,2,1,0,!}{>===λλ k k a K X P k.试确定常数a .解 依据概率分布的性质:,1}{0}{⎪⎩⎪⎨⎧==≥=∑k k X P k X P欲使上述函数为概率分布应有,0≥a ,1!0==∑∞=k kae K a λλ 从中解得.λ-=e a 注: 这里用到了常见的幂级数展开式.!0∑∞==k kK e λλ3、X 具有离散均匀分布, 即,,,2,1,/1)(n i n x X P i ===求X 的分布函数.解 将X 所取的n 个值按从小到大的顺序排列为)()2()1(n x x x ≤≤≤则)1(x x <时,,0}{)(=≤=x X P x F)2()1(x x x <≤时,,/1}{)(n x X P x F =≤=)3()2(x x x <≤时,,/2}{)(n x X P x F =≤=……)1()(+<≤k k x x x 时,,/}{)(n k x X P x F =≤=)(n x x ≥时,1}{)(=≤=x X P x F故 )(x F ⎪⎪⎩⎪⎪⎨⎧<=≥<),,max(,1),,2,1(),,min(,/),,min(,0111n j n n x x x x k n j x x x x n k x x x 当个不大于中恰好有且当当 4、设随机变量X 的概率分布为 4/12/14/1421i p X -, 求X 的的分布函数,并求{},2/1≤X P {},2/52/3≤<X P {}.32≤≤X P 5、设随机变量X 的密度函数为⎪⎩⎪⎨⎧≤≤--=其它,011,12)(2x x x f π 求其分布函数)(x F .解 ⎰∞-=≤=x dt t f x X P x F )(}{)( 当,1-<x ;0)(=x F当,11≤≤-x ⎰⎰--∞--+⋅=x dt t dt x F 121120)(π21arcsin 112++-=x x xππ 当,1>x ,1)(=x F 故 ⎪⎩⎪⎨⎧>≤≤-++--<=.1,111,21arcsin 111,0)(2x x x x x x x F ππ 6、设随机变量X 具有概率密度⎪⎪⎩⎪⎪⎨⎧≤≤-<≤=.,0,43,22,30,)(其它x x x kx x f }.2/71{)3();()2(;)1(≤<X P x F X k 求的分布函数求确定常数解 (1) 由⎰+∞∞-=,1)(dx x f 得,1224330=⎪⎭⎫ ⎝⎛-+⎰⎰dx x kxdx 解得,6/1=k 于是X 的概率密度为.,043,2230,6)(⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-<≤=其它x x x x x f(2) X 的分布函数为)(x F ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤⎪⎭⎫ ⎝⎛-+<≤<=⎰⎰⎰4,143,22630,60,03030x x dt t dt t x dt t x x x .4,143,4/2330,12/0,022⎪⎪⎩⎪⎪⎨⎧≥<≤-+-<≤<=x x x x x x x (3) ⎰=≤<2/71)(}2/71{dx x f X P ⎰⎰⎪⎭⎫ ⎝⎛-+=2/73312261dx x xdx 2/73231242121⎪⎪⎭⎫ ⎝⎛-+=x x x ,4841= 或)1()2/7(}2/71{F F X P -=≤<.48/41=7、设某项竞赛成绩N X ~(65, 100),若按参赛人数的10%发奖,问获奖分数线应定为多少解 设获奖分数线为,0x 则求使1.0}{0=≥x X P 成立的.0x)(1}{1}{000x F x X P x X P -=<-=≥,1.0106510=⎪⎭⎫ ⎝⎛-Φ-=x 即,9.010650=⎪⎭⎫ ⎝⎛-Φx 查表得,29.110650=-x 解得,9.770=x 故分数线可定为78分. 8、在电源电压不超过200伏,在200~240伏和超过240伏三种情形下,某种电子元件损坏的概率分别为,和. 假设电源电压X 服从正态分布N (220,252),试求:(1) 该电子元件损坏的概率α;(2) 该电子元件损坏时,电源电压在200~240伏的概率β.解 引入事件=1A {电压不超过 200 伏},=2A {电压不超过 200~240 伏},=3A {电压超过240伏}; =B {电子元件损坏}.由条件知),25,220(~2N X 因此⎭⎬⎫⎩⎨⎧-≤-=≤=2522020025220}200{)(1X P X P A P ;212.0)8.0(1)8.0(=Φ-=-Φ= }240200{)(2≤≤=X P A P ⎭⎬⎫⎩⎨⎧≤-≤-=8.0252208.0X P .576.01)8.0(2=-Φ= }240{1}240{)(3≤-=>=X P X P A P .212.0)8.0(1=Φ-=(1) 由题设条件,,1.0)|(1=A B P ,001.0)|(2=A B P 2.0)|(3=A B P于是由全概率公式, 有.0642.0)|()()(31===∑=i i i A B P A P B P α (2) 由贝叶斯公式, 有 .009.0)()|()()|(222≈==B P A B P A P B A P β 9、已知某台机器生产的螺栓长度X (单位:厘米)服从参数,05.10=μ06.0=σ的正态分布. 规定螺栓长度在12.005.10±内为合格品, 试求螺栓为合格品的概率.解 根据假设),06.0,05.10(~2N X记,12.005.10-=a ,12.005.10+=b 则}{b X a ≤≤表示螺栓为合格品. 于是}{b X a P ≤≤⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫ ⎝⎛-Φ=σμσμa b )2()2(-Φ-Φ= )]2(1[)2(Φ--Φ=1)2(2-Φ=19772.02-⨯=.9544.0=即螺栓为合格品的概率等于.10.已知)5.0,8(~2N X ,求(1) );7(),9(F F(2) }105.7{≤≤X P ; (3) };1|8{|≤-X P (4) }.5.0|9{|<-X P11.某种型号电池的寿命X 近似服从正态分布),(2σμN , 已知其寿命在250小时以上的概率和寿命不超过350小时的概率均为%, 为使其寿命在x -μ和x +μ之间的概率不小于, x 至少为多少12、设)1,0(~N X , 求2X Y =的密度函数.解 记Y 的分布函数为),(x F Y 则}.{}{)(2x X P x Y P x F Y ≤=≤=显然, 当0<x 时,;0}{)(2=≤=x X P x F Y当0≥x 时, }{)(2x X P x F Y ≤=.1)(2}{-Φ=<<-=x x X x P从而2X Y =的分布函数为⎪⎩⎪⎨⎧<≥-Φ=0,00,1)(2)(x x x x F Y 于是其密度函数为⎪⎩⎪⎨⎧<≥='=0,00),(1)()(x x x x x F x f Y Y ϕ.0,00,212/⎪⎩⎪⎨⎧<≥=-x x e x x π注: 以上述函数为密度函数的随机变量称为服从)1(2χ分布, 它是一类更广泛的分布)(2n χ在1=n 时的特例. 关于)(2n χ分布的细节将在第五章中给出.13、设随机变量X 服从参数为λ的指数分布, 求}2,min{X Y =的分布函数.解 根据已知结果, X 的分布函数⎩⎨⎧≤>-=-0,00,1)(x x e x F x X λ Y 的分布函数}}2,{min{}{)(y X P y Y P y F Y ≤=≤=}}2,{min{1y X P >-=}.2,{1y y X P >>-= 当2<y 时,),(}{}{1)(y F y X P y X P y F X Y =≤=>-=当2≥y 时,.1)(=y F Y代入X 的分布函数中可得.2,120,10,0)(⎪⎩⎪⎨⎧≥<<-≤=-y y e y y F y Y λ注:在本例中, 虽然X 是连续型随机变量, 但Y 不是连续型随机变量, 也不是离散型 随机变量, Y 的分布在2=y 处间断.14、设随机变量X 在)1,0(上服从均匀分布, 求X Y ln 2-=的概率密度.解 在区间 (0,1) 上, 函数,0ln <x 故,0ln 2>-=x y 02<-='xy 于是y 在区间),0(+∞上单调下降, 有反函数2/)(y e y h x -==从而 ⎪⎩⎪⎨⎧<<=---其它,010,)()()(2/2/2/y y y X Y e dy e d e f y f 已知X 在在(0,1)上服从均匀分布,⎩⎨⎧<<=其它,010,1)(x x f X代入)(y f Y 的表达式中, 得⎪⎩⎪⎨⎧>=-其它,00,21)(2/y e y f y X即Y 服从参数为1/2的指数分布.15. 设X 的分布列为10/310/110/110/15/12/52101i p X - 试求: (1) 2X 的分布律; (2) 2X 的分布律.16. 设随机变量X 的概率密度为⎩⎨⎧<<=.,0,0,/2)(2其它ππx x x f 求X Y sin =的概率密度.。
概率论与数理统计-第二章习题附答案
概率论与数理统计-第二章习题附答案习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生.写出随机变量X 的分布律. 解X0 1P1-p p2. 已知随机变量X 只能取-1,0,1,2四个值,且取这四个值的相应概率依次为c c c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠<X X P .解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++= 所以3716c =.所求概率为P {X <1| X≠}=258167852121}0{}1{=++=≠-=cc c c X P X P .3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p 的二项分布, 若{P X ≥51}9=, 求{P Y ≥1}. 解 注意p{x=k}=kk n knC p q -,由题设5{9P X =≥21}1{0}1,P X q =-==- 故213q p =-=. 从而{P Y≥32191}1{0}1().327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927, 求每次试验成功的概率.解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278. 即278)1(3=-p , 故 p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解 由泊松分布的分布律可知6=λ.6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大号码, 写出随机变量X 的分布律.解 X 的分布律是X3 4 5 P 110 31035 习题2-3X -1 01P0.15 0.200.65求分布函数F (x ), 并计算概率P {X <0}, P {X <2},P {-2≤X <1}.解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1;(4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩(2){11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+- 11111().24242ππππ=+⋅---= 3. 设随机变量X 的分布函数为F (x )=0, 0, 01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解 P {X 1}(1)0F -=-=≤,P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.习题2-41. 选择题(1) 设2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩如果c =( ), 则()f x 是某一随机变量的概率密度函数.(A) 13. (B) 12. (C) 1. (D) 32. 本题应选(C ).(2) 设~(0,1),X N 又常数c 满足{}{}P X c P X c =<≥, 则c 等于( ).(A) 1. (B) 0. (C) 12. (D) -1. 本题应选(B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A) cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它. (B) 1,2,()20,x f x <=⎧⎪⎨⎪⎩其它.(C)22()2,0,()20,0.≥x x f x x μσπσ--=<⎧⎪⎨⎪⎩ (D)e ,0,()0,0.≥x x f x x -=<⎧⎨⎩本题应选(D).(6) 设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{1}{1},P X P Y μμ-<>-< 则下式中成立的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1<μ2. (D) μ1 >μ2.答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A) 2u α . (B) 21α-u . (C) 1-2u α.(D)α-1u .答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布, 要使1{2}4P k X k <<=成立, 应当怎样选择数k ? 解X 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知221{2}(2)()(1e )(1e )e e 4k k k kP k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3. 设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它,要使{}{}≥P X a P X a =<(其中a >0)成立, 应当怎样选择数a ?解 由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是34d 0.5ax x =⎰, 因此42a =. 4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 由()()F x f x '=得2,01,()0,其它.x x f x <<⎧=⎨⎩(2) 22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )= 2,01,0,x x ⎧⎨⎩ ≤≤ 其它,求P {X ≤12}与P {14X <≤2}. 解{P X≤12201112d 2240}x x x ===⎰; 1{4P X <≤12141152}2d 1164x x x ===⎰.6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得1222011201111d ()d []122x x A x x x Ax x A =+-=+-=-⎰⎰, 于是 2A =; (2) 由公式()()d x F x f x x -∞=⎰可得(过程简略)220,0,1()221, 2.1,021,12x F x x x x x x x =->⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它,对X 独立观察3次, 求至少有2次的结果大于1的概率. 解 2115{1}(1)d 48P X x x >=+=⎰.所以, 3次观察中至少有2次的结果大于1的概率为223333535175()()()888256C C +=.8. 设~(0,5)X U , 求关于x 的方程24420x Xx ++=有实根的概率.解 若方程有实根, 则 21632X -≥0, 于是2X ≥2. 故方程有实根的概率为P {2X ≥2}=21{2}P X -<1{22}P X =--<<21d 5x =-215=-10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解 因为()~2,X N σ2,所以~(0,1)X Z N μσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--, 于是22()10.3Φσ-=, 从而2()0.65Φσ=. 所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=.习题2-52. 设~(1,2),23X N Z X =+, 求Z 所服从的分布及概率密度.解 若随机变量2~(,)X N μσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a μσ=++ 这里1,2μσ==所以Z ~(5,8)N .概率密度为()f z =2(5)16,4x x π---∞<<+∞. 3. 已知随机变量X 的分布律为X-1137P 0.37 0.05 0.2 0.13 0.25(1) 求Y =2-X 的分布律; (2) 求Y =3+X 2分布律.解 (1)2-X-5 -1 1 2 3P 0.25 0.13 0.2 0.05 0.37 (2) 3+X 23 4 12 52P 0.05 0.57 0.13 0.254. 已知随机变量X 的概率密度为()X f x =1142ln 20x x <<⎧⎪⎨⎪⎩, , , 其它,且Y =2-X , 试求Y 的概率密度.解 )(y F Y={P Y ≤}{2y P X =-≤}{y P X =≥2}y -1{2}P X y =-<-=1-2()d yX f x x--∞⎰. 于是可得Y 的概率密度为121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2Y X =的概率密度.解 因为对于0<y <4,(){Y F y P Y=≤2}{y P X =≤}{y P y =-X y ()()XX F y F y =--.于是随机变量2Y X =的概率密度函数为()Y f y ()22X X f y f y yy=-0 4.4y y=<< 即 ()04,40,.其它f y y y=<<⎩。
概率论与数理统计习题及答案第二章.doc
习题 2-21. 设 A 为任一随机事件 , 且 P ( A )= p (0< p <1). 定义随机变量1, 发生 ,XA0, 不发生 .A写出随机变量 X 的分布律 .解 { =1}= ,{ =0}=1- p .P X p P X或者X 0 1P1- pp2. 已知随机变量X 只能取 -1,0,1,2 四个值 , 且取这四个值的相应概率依次为1 , 3 , 5 , 7. 试确定常数 c ,并计算条件概率 P{ X1 | X0} .2c 4c 8c 16c解 由离散型随机变量的分布律的性质知,1 3 571,2c4c8c 16c37所以 c .161P{ X1}8所求概率为{ <1|X0 }=2c.P XP{ X 0}1 5 7252c 8c 16c3. 设随机变量 X 服从参数为 2, p 的二项分布 , 随机变量 Y 服从参数为 3, p 的二项分布 ,若P{X ≥1}5, 求P{Y ≥1}.9解 注意 p{x=k}=C n k p k q n k , 由题设 5P{ X ≥1}1 P{ X0} 1 q 2 ,9故 q1 p2 从而.3P{Y ≥1} 1 P{ Y 0}1 (2 )3 19 .3 274. 在三次独立 的重复试验中 , 每次试验成功的概率相同 , 已知至少成功一次的概率19为, 求每次试验成功的概率 .27解设每次试验成功的概率为p , 由题意知至少成功一次的概率是19,那么一次都27没有成功的概率是8 . 即 (1 p)38 ,故p = 1 .272735. 若 X 服从参数为的泊松分布 ,且P{X1} P{ X 3}, 求参数 .解 由泊松分布的分布律可知 6 .6. 一袋中装有 5 只球 , 编号为 1,2,3,4,5.在袋中同时取 3 只球, 以 X 表示取出的 3 只球中的最大号码 , 写出随机变量 X 的分布律 .解 从 1,2,3,4,5 中随机取 3 个,以 X 表示 3 个数中的最大值, X 的可能取值是 3,4,5,在 5 个数中取 3 个共有C 5310 种取法 .{ =3} 表示取出的 3 个数以 3 为最大值, P{=3}=C 22= 1;C 53 10{ =4} 表示取出的 3 个数以 4 为最大值, P{=4}=C 323 ;C 53 10 { =5} 表示取出的 3 个数以 5 为最大值, P{=5}=C 423 .5 C 53X 的分布律是X 3 45P13310105习题 2-31. 设 X 的分布律为X -11P求分布函数( ), 并计算概率 { <0},{ <2},{-2 ≤ <1}.F xPXPXPX0, x 1, 解 (1)0.15, 1≤ x 0,F ( x )=0≤ x 1,0.35, 1,x ≥1.(2) P { X <0}= P { X =-1}=; (3) P { X <2}= P { X =-1}+ P { X =0}+P { X =1}=1; (4) P {-2 ≤ x <1}= P { X =-1}+ P { X =0}=.2. 设随机变量 X 的分布 函数为( ) = + arctan x - ∞< <+∞.F xA Bx试求 : (1) 常数 A 与 B ; (2)X 落在 (-1, 1] 内的概率 .解 (1) 由于 (- ∞)=0,(+∞)=1, 可知F FA B()1 12A, B.A B( )122于是F ( x) 1 1arctan x, x .2(2) P{ 1X ≤1} F (1) F ( 1)1 1 1 1arctan( 1))( arctan1) (2 21 1 1 1 () 1 .2424 23. 设随机变量 X 的分布函数为F ( x )=0,x 0, x,0≤x 1,1,x ≥1,求 P { X ≤ -1}, P { < X <}, P {0< X ≤ 2}.解 P {X ≤ 1} F( 1) 0,P {< X <}= F - F {}- P { X =}=, P {0< X ≤2}= F (2)- F (0)=1.5.X 的绝对值不大于1;P{ X1}1 1}1 假设随机变量 ,P{X; 在事件{ 1 X 1} 出现的条件下 ,84X 在 (-1,1) 内任一子区间上取值的条件概率与该区间的长度成正比 . (1) 求 X 的分布函数 F ( x) P{ X ≤ x }; (2)求 X 取负值的概率 p .解 (1) 由条件可知 ,当 x1时,F ( x) 0 ;当 x 1 时 , F ( 1) 1;当 x 1时 , 8F (1)= P { X ≤ 1}= P ( S )=1.所以P{ 1 X1} F (1) F ( 1)P{X 1}1 1 514.88易见 , 在 X 的值属于 (1,1) 的条件下 , 事件 { 1 X x} 的条件概率为P{ 1 X ≤ x | 1X 1} k[ x( 1)],取 x =1 得到 1= k (1+1),所以 k = 1.2x 1 . 因此P{ 1 X ≤x | 1 X 1}于是 , 对于1 x 1 ,有2P{ 1X ≤ x} P{ 1X ≤ x, 1 X 1}P{ 1 X 1} P{ 1 X ≤ x | 1 X 1}5 x 1 5x 5 . 对于 x ≥1,8 2 16有 F ( x) 1. 从而0, x 1, F ( x)5x 7 , 1x 1,161, ≥x1.(2) X 取负值的概率p P{ X0} F(0) P{ X0} F (0) [F(0)F (0 )] F (0 )7 . 习题 2-4161. 选择题设 f ( x)2x, x [0, c],则 f ( x) 是某一随机变量的概率(1)0,x如果 c =(),[0, c].密度函数 .(A)1(B)1.(C) 1.(D)3.2.3c2f ( x)dx 11 ,于是 c 1解 由概率密度函数的性质可得2xdx, 故本题应选 (C ).(2) 设 X ~ N (0,1), 又常数 c 满足 P{ X ≥ c} P{ X c} , 则 c 等于 ( ).(A) 1.(B) 0.(C)1 (D) -1..2解因为P{ X ≥ c} P{ X c} ,所以 1 P{ X c} P{ X c} , 即2P{ Xc} 1, 从而 P{X c} 0.5 , 即 ( c) 0.5 , 得 c =0. 因此本题应选 (B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).cos x, x [0, ],1x2,(A)f (x)(B)f (x),0,其它 .20,其它 .1( x) 2x≥22e,≥ 0,e , x0, (C)f (x) (D)f ( x)20, x0.0,x 0.解 由概率密度函数的性质f ( x)dx 1 可知本题应选 (D).(4) 设随机变量X ~ N(,42) , Y~N(,52), P 1P{X ≤4 },P 2 PY ≥ 5 }, 则( ).(A) 对任意的实数 , P 1P 2 . (B) 对任意的实数 , P 1 P 2 .(C) 只对实数的个别值 ,有P 1 P 2 . (D) 对任意的实数 , P P .12解 由正态分布函数的性质可知对任意的实数, 有P 1( 1) 1 (1) P 2 .因此本题应选 (A).Xf xf (x)f ( x)F x(5) 设随机变量 的概率密度为 , 且 , 又( )为分布函数 , 则对任意实数 a , 有 ( ).a(A)F ( a) 1∫0 f (x)dx .(B)F ( a)(C) F ( a)F ( a) . (D) Fa解由分布函数的几何意义及概率密度的性质知答案为1 a2 ∫0f ( x)dx.2F ( a) 1 .(B).(6) 设随机变量X 服从正态分布N (1, 12 ) , Y 服从正态分布 N ( 2, 22) ,且P{ X11} P{ Y21},则下式中成立的是 (). (A) σ1 < σ2 .(B)σ 1 > σ 2 .(C)μ1 <μ2 .(D)μ1 >μ2 .解 答案是 (A). XN(0 1)u 满足(7) 设随机变量 服从正态分布对给定的正数, 数(0,1),P{ X u }, 若P{X x}, 则 x 等于 ().(A)u .(B)u.(C)u 1-.(D)u 1.2122解 答案是 (C).2. 设连续型随机变量 X 服从参数为的指数分布 ,要使P{ kX 2k}1成立 ,4应当怎样选择数 k ?解 因为随机变量 X 服从参数为的指数分布 , 其分布函数为F ( x)1 e x , x 0,0,x ≤ 0.由题意可知1 P{ k X 2k} F(2k) F ( k) (1 e2 k )(1 e k ) e k e 2 k .4于是kln 2.3. 设随机变量 X 有概率密度f ( x) 4 x 3 , 0 x 1, 0,其它 ,要使 P{ X ≥ a}P{ Xa} ( 其中 a >0) 成立 , 应当怎样选择数 a ?解由条件变形 , 得到 1P{ Xa} P{ Xa},可知P{ X a} 0.5 ,于是a3dx 0.5,因此 a14x.424. 设连续型随机变量 X 的分布函数为0,x 0,F ( x)x 2 , 0≤x ≤1,1,x 1,求: (1)X 的概率密度 ; (2) P{0.3 X 0.7} .解 (1)根据分布函数与概率密度的关系F ( x)f ( x) ,可得f (x)2x, 0 x 1,0, 其它 .(2)P{0.3 X0.7}F (0.7) F (0.3) 0.720.320.4 .5. 设随机变量 X 的概率密度为2x,0≤ x ≤1,f ( x ) =其它 ,0,求P {X ≤ 1}与P {1< X ≤2}.241}11 1解P{X ≤ 22xdx x 22 ;24P{ 1 X ≤2}1 2 xdx x 2 1 15 .1444 166. 设连续型随机变量 X 具有概率密度函数x,0 x ≤1,f ( x) Ax,1x ≤2,0,其它 .求 : (1) 常数 A ; (2) X 的分布函数 F ( x ).解 (1) 由概率密度的性质可得11 2( A x)dx1 x2xdx12于是A 2;(2) 由公式 F ( x) xf ( x)dx可得当 x ≤0 时 , F ( x) 0 ; 当 0x ≤1时 ,F( x)x1 x2 ;xdx2当 1x ≤2时 ,F ( x)1x(2xdx1当 x >2 时,F ( x) 1.0,1 x2 , 所以F ( x)2 x 22x1,2112[ Ax x 2]A 1,21x 2 x)dx 2x1;2x ≤ 0,0 x ≤ 1,1 x ≤ 2,1,x2.7. 设随机变量 X 的概率密度为1f ( x) 4( x 1), 0 x 2,0, 其它 ,对 X 独立观察 3 次, 求至少有 2 次的结果大于 1 的概率 . 解根据概率密度与分布函数的关系式P{ a X ≤ b} F (b) F ( a)b f ( x)dx ,a可得P{ X 1} 21 ( x 1)dx 54.1 8 所以 , 3 次观察中至少有2 次的结果大于 1 的概率为C 2(5)2(3) C 3 ( 5)3 175 .8 8 2568 4x 2 8. 设 X ~U(0,5) , 求关于 x 的方程 4 Xx 2 0 有实根的概率 .解 随机变量 X 的概率密度为1, ≤ x 5,f ( x)50, 其它 ,若方程有实根 , 则16 X 232≥0, 于是 X 2 ≥ 2. 故方程有实根的概率为P { X 2 ≥2}= 1P{ X 2 2}1 P{2 X2}1 21dx0 512 .59. 设随机变量 X ~ N(3,22) .(1)计算 P{2 X ≤5} , P{ 4 X ≤10}, P{| X | 2}, P{X 3};(2)确定 c 使得P{ X c} P{ X ≤ c}; (3) 设 d 满足 P{ X d}≥0.9 , 问 d 至多为多少?解 (1) 由 P { a <x ≤ b }= P { a3 X 3 ≤ b 3 } Φ( b 3 ) Φ( a 3)公式,得到2 2 2 22XΦ(1) Φ( 0.5) 0.5328P,{2< ≤5}=P {-4< X ≤10}= Φ(3.5) Φ( 3.5) 0.9996,P{|X|2}=P{X2} +P{X2}=1 2 32 3Φ() +Φ(2 ) =,2P{ X 3} =1 P{ X ≤3} 1Φ( 3 3 ) 1 Φ(0) = .2(2) 若P{Xc}P{ X ≤ c} , 得 1P{ X ≤ c}P{ x ≤ c} ,所以P{ X ≤ c} 0.5由 Φ(0) =0 推得c3 0, 于是 c =3.2 Φ(d3(3)P{ X d}≥ 0.9 即1)≥ 0.9 , 也就是2Φ( d 3 )≥ 0.9 Φ(1.282) ,2因分布函数是一个不减函数, 故(d 3)≥ 1.282,2解得d ≤ 3 2 ( 1.282) 0.436 .10. 设随机变量 X ~ N (2, 2) , 若 P{0 X4} 0.3 , 求 P{X 0} .解 因为X ~ N2,所以 ZX~ N(0,1). 由条件 P{0 X4} 0.3可知0.3 P{0 X4}0 2X 24 22(2P{}( )) ,于是 222 ( )10.3从而 ( )0.65 .,P{X 0}P{X202}(22 所以) 1( ) 0.35.习题 2-5 1. 选择题(1) 设 X 的分布函数为 F ( x ), 则 Y 3 X 1 的分布函数 G y 为( ).(A) F (1 1 (B)F (3 y 1) .y) .3311(C)3F ( y) 1.(D)F ( y).3 3解 由随机变量函数的分布可得 , 本题应选 (A).(2) 设X~N 01 ,令YX 2, 则Y ~().(A)N( 2, 1). (B)N(0,1) . (C) N( 2,1) . (D)N (2,1) .解 由正态分布函数的性质可知本题应选 (C).2. 设 X ~ N(1,2), Z 2X 3 , 求 Z 所服从的分布及概率密度 . 解 若随机变量 X ~ N(,2) , 则 X 的线性函数 YaX b 也服从正态分布 , 即Y aX b ~ N( a b,( a ) 2). 这里 1,2 , 所以 Z ~ N(5,8) .概率密度为1 ( x 5) 2f (z)16,x.e43. 已知随机变量 X 的分布律为X -1137P(1) 求 =2- X 的分布律; (2) 求 =3+ 2分布律 .YYX解 (1)2-X-5-1123P(2)3+X 23 41252P4. 已知随机变量 X 的概率密度为1, 1 x 4,f X ( x)=2 x ln 20,其它,且 Y =2- X , 试求 Y 的概率密度 .解 先求Y的分布函数F Y ( y):F Y ( y) = P{ Y ≤ y}P{2X ≤ y}P{X ≥2 y}2 y1 P{ X 2y} =1-f X ( x)dx.于是可得 Y 的概率密度为1, 1 2 y4,f Y ( y)f X (2y)(2 y)=2(2 y) ln 20,其它 .1, 2 y1,f Y ( y)即2(2 y) ln 20,其它 .5. 设随机变量 X 服从区间 (-2,2) 上的均匀分 布, 求随机变量 YX 2 的概率密度 .解 由题意可知随机变量 X 的概率密度为f X ( x)1 ,2 x2,40, 其它 .因为对于 0<y <4,F Y ( y) P{ Y ≤ y} P{ X 2 ≤ y} P{y ≤ X ≤ y }F X ( y ) F X ( y ) .于是随机变量YX 2 的概率密度函数为f Y ( y)1 f X ( y )11 , 0 y 4.f X ( y )y4 2 y2 yf ( y)1 , 0 y 4,即4 y0,其它 .总习题二1. 一批产品中有 20%的次品 , 现进行有放回抽样 , 共抽取 5 件样品 . 分别计算这 5 件样品中恰好有 3 件次品及至多有 3 件次品的概率 .解 以 X 表示抽取的 5 件样品中含有的次品数 . 依题意知 X ~ B(5,0.2) .(1) 恰好有 3 件次品的概率是 P X C 5 0.2 3 0.8 .{ =3}= 3 23(2) 至多有 3 件次品的概率是C 5k 0.2k 0.85 k .k 02. 一办公楼装有 5 个同类型的供水设备 . 调查表明 , 在任一时刻 t 每个设备被使用 的概率为 . 问在同一时刻(1) 恰有两个设备被使用的概率是多少? (2) 至少有 1 个设备被使用的概率是多少? (3) 至多有 3 个设备被使用的概率是多少?(4) 至少有 3 个设备被使用的概率是多少?解 以 X 表示同一时刻被使用的设备的个数,则X ~B (5,,{ = }=k k5 kP X kC 50.1 0.9, k =0,1, ,5.(1) 所求的概率是 P XC 50.1 0.90.0729 ;{ =2}=223(2)所求的概率是 P X(1 0.1)5 0.40951 ;{ ≥ 1}=1(3)所求的概率是{ ≤ 3}=1-P{ =4}- { =5}=;P XXP X(4) 所求的概率是 P { X ≥ 3}= P { X =3}+ P { X =4}+ P { X =5}=.3. 设随机变量 X 的概率密度为xkf ( x)e , x ≥0,0, x0,1且已知k θ, 求常数.,2k x解由概率密度的性质可知dx1得到 k =1.e1x1由已知条件1, 得.1 e dx2ln 24. 某产品的某一质量指标 X ~ N(160, 2 ) , 若要求 P{120 ≤X ≤ 200} ≥, 问允许最大是多少 ?解 由P{120 ≤ ≤ 200} P{ 120 160 X160 200 160X≤ ≤ }= ( 404040) (1( ))2 ( ) 1≥,( 40 ) ≥ , 40最大值为 .得到 查表得 ≥ , 由此可得允许5.设随机变量 X 的概率密度为( x ) = e -| x | , - ∞< <+∞.φX A x试求 : (1) 常数 ; (2) {0< <1}; (3)的分布函数 .AP X解 (1)由于(x)dxAe |x|dx 1, 即2 Ae x dx 1故 2A = 1, 得1到A = .2所以φ( x ) =1 e -|x |.2(2) P {0< X <1} = 11 xdx1 ( e x 11 e 10.316.e2 ) 220 (3)因为 F ( x)x1 e |x| 得到2 dx,11当 x <0 时 , F ( x)x x x ,2 e dx 2e当 x ≥0 时,F ( x)1 0x1 xe x1 x,2e dx2dx 1 e21e x ,x0,所以 X 的分布函数为F ( x)21 ex,1 x ≥ 0.2。
高等教育出版社,袁德美主编的概率论与数理统计习题二的答案.解析
P( X 18)
C 0.8 0.2 C 0.8 0.2 C 0.8
18 20 18 2 19 20 19 20 20
20
0.206
2.13设X服从泊松分布,且已知P(X=1)=P(X=2),求P(X=2), 解 设X~P(λ)
x 0
0.8 lim 0.5e x 0.3
x 0
(2) P{ X 0} lim F ( x ) lim 0.5e 0.5
x
x 0
x 0
0.5e x , x 0 2.4 设随机变量X的分布函数 F ( x ) 0.8 , 0 x 1 1, x1
求(1)P{X=0};(2)P(X<0);(3)P(0<X≤1.5);(4)P(X>3) 解 (3) P{0 X 1.5} F (1.5) F (0) 0.2
(4) P{ X 3} 1 P{ X 3} 1 F (3) 0
2.5 掷一枚骰子,用X表示掷出的点数,求X的分布列及 分布函数
解
1 0 F1 ( x) 1
°
2 对x1 x2 , 都有F1 ( x1 ) F1 ( x2 )
°
00 3 F1 () lim F1 ( x ) xlim
° x
F1 () lim F1 ( x ) lim 1 1
x x
2.2 指出下列函数是否是分布函数?
2
°
2 1 f1 ( x )dx 2 sin xdx cos x 0
f1 ( x)是概率密度函数
2.19 指出下列函数是否是概率密度函数?
概率论与数理统计第二章习题与答案
概率论与数理统计习题 第二章 随机变量及其分布习题2-1 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X 表示取出的3只球中的最大,写出X 随机变量的分布律.解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101习题2-2 进行重复独立试验,设每次试验成功的概率为p ,失败的概率为p -1)10(<<p .(1)将试验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律.(此时称X 服从以p 为参数的几何分布.)(2)将试验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律.(此时称Y 服从以p r ,为参数的巴斯卡分布.)(3)一篮球运动员的投篮命中率为%45.以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率.解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111Λ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }=Λ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P习题2-3 一房间有同样大小的窗子,其中只有一扇是打开的。
概率论与数理统计习题二答案
概率论与数理统计习题二答案概率论与数理统计习题二答案概率论与数理统计是一门重要的数学学科,广泛应用于各个领域。
习题是学习这门学科的重要方式之一,通过解答习题可以巩固理论知识,提高问题解决能力。
本文将针对概率论与数理统计习题二给出详细的答案解析。
1. 设事件A和事件B为两个相互独立的事件,且P(A) = 0.3,P(B) = 0.4。
求P(A并B)和P(A或B)。
解析:由于事件A和事件B是相互独立的,所以P(A并B) = P(A) * P(B) = 0.3 * 0.4 = 0.12。
而P(A或B) = P(A) + P(B) - P(A并B) = 0.3 + 0.4 - 0.12 = 0.58。
2. 一批产品中有10%的次品,从中随机抽取5个产品进行检验,求恰好有3个次品的概率。
解析:设事件A为恰好有3个次品,事件B为抽取的5个产品中有3个次品。
根据二项分布的概率公式,P(B) = C(5, 3) * (0.1)^3 * (0.9)^2 = 10 * 0.001 * 0.81 = 0.0081。
因此,恰好有3个次品的概率为0.0081。
3. 一批产品的质量服从正态分布,已知平均值为μ,标准差为σ。
从中随机抽取一个样本,样本容量为n。
求样本均值的期望值和方差。
解析:样本均值的期望值为总体均值μ,样本均值的方差为总体方差除以样本容量n。
因此,样本均值的期望值为μ,方差为σ^2/n。
4. 设X和Y是两个随机变量,它们的协方差为Cov(X, Y) = 5,方差分别为Var(X) = 9,Var(Y) = 16。
求随机变量Z = 2X + 3Y的方差。
解析:根据随机变量的性质,Var(Z) = Var(2X + 3Y) = 4Var(X) + 9Var(Y) +12Cov(X, Y) = 4 * 9 + 9 * 16 + 12 * 5 = 36 + 144 + 60 = 240。
5. 设X服从参数为λ的指数分布,即X ~ Exp(λ)。
概率论与数理统计 第二章 习题2
1 y
,1
y
e
0,0 y 1或y
e
(2)当 y 0 时, fY ( y) 0
当 y 0 时 ,FY (y) P{Y y} P{2ln X y} P{X ey/2} 1 P{X e y / 2} 1 F X (e y / 2 )
fY
(
y)
f
X
(ey / 2
)(1/
2e y
36
2 一大楼装有5个同类型的供水设备。调查表明在 任一时刻每个设备被使用的概率为,问在同一 时刻(1)恰有2个设备被使用的概率是多少? (2)至少有3个设备被使用的概率是多少? (3)至多有3个设备被使用的概率是多少? (4)至少有1个设备被是使用的概率是多少?
解:以 X 表示同一时刻被使用的设备的个数,则
2 fK (x)dx
1
fK (x)dx
5 1dx 25
1 0dx 3
5
6 设随机变量 X 在 (0,1)服从均匀分布.(1)求 Y e X 的概率密度;(2)求 Y 2ln X 的概率密度。
解:X 的概率密度为
1,0 x 1 f (x) 0,其它
分别记 X ,Y 的分布函数为 FX (x), FY ( y).
y)2
2
arcsin
y.
所以当 0 y 1
时,fY
( y)
d dy
FY
( y)
2 1 y2
因此,所求的概率为
fY ( y)
2 ,0 y 1, 1 y2
0, 其它
8 一工厂生产的某种元件的寿命(以小时计)服从参数 为 160, ( 0) 的正态分布。若要 P{120 X 200} 0.80
4x2 4Kx K 2 0 有实根的概率.
概率论与数理统计试题及答案 (2)
一.选择题(18分,每题3分)1. 如果 1)()(>+B P A P ,则 事件A 与B 必定 ( ))(A 独立; )(B 不独立; )(C 相容; )(D 不相容.2. 已知人的血型为 O 、A 、B 、AB 的概率分别是0.4; 0.3;0.2;0.1。
现任选4人,则4人血型全不相同的概率为: ( ))(A 0.0024; )(B 40024.0; )(C 0. 24; )(D 224.0.3. 设~),(Y X ⎩⎨⎧<+=.,0,1,/1),(22他其y x y x f π 则X 与Y 为 ( ))(A 独立同分布的随机变量; )(B 独立不同分布的随机变量;)(C 不独立同分布的随机变量;)(D 不独立也不同分布的随机变量. 4. 某人射击直到中靶为止,已知每次射击中靶的概率为0.75. 则射击次数的数学期望与方差分别为 ( ))(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与.5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( ))(A 32112110351ˆX X X ++=μ; )(B 3212949231ˆX X X ++=μ; )(C 3213216131ˆX X X ++=μ; )(D 32141254131ˆX X X ++=μ. 6. 检验假设222201:10,:10H H σσ≤>时,取统计量)(~10)(22212n Xini χμχ-=∑=,其拒域为(1.0=α) ( ))(A )(21.02n χχ≤;)(B )(21.02n χχ≥;)(C )(205.02n χχ≤;)(D )(205.02n χχ≥.二. 填空题(15分,每题3分)1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P .2. 设随机变量X 的分布律为⎪⎪⎭⎫⎝⎛-+c b a 4.01.02.04321,则常数c b a ,,应满足的条件 为 .3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率=>>),(b Y a X P .4. 设随机变量)2,2(~-U X ,Y 表示作独立重复m 次试验中事件)0(>X 发生的次数,则=)(Y E ,=)(Y D . 5.设),,,(21n X X X 是从正态总体),(~2σμN X 中抽取的样本,则 概率 =≤-≤∑=)76.1)(37.0(222012012σσX XP ii .5. 设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信 度为1α-的单侧置信区间的下限为 . 三. 计算题 (54分,每题9分)1.自动包装机把白色和淡黄色的乒乓球混装入盒子,每盒装12只,已知每盒内装有的白球的个数是等可能的。
概率论与数理统计 第二章习题附答案
习题4-11. 设随机变量求()E X ;E (2-3 X ); 2()E X ;2(35)E X +.解 由定义和数学期望的性质知2.03.023.004.0)2()(-=⨯+⨯+⨯-=X E ; (23)23()23(0.2) 2.6E X E X -=-=-⨯-=;8.23.023.004.0)2()(2222=⨯+⨯+⨯-=X E ; 4.1358.235)(3)53(22=+⨯=+=+X E X E .2. 设随机变量X 的概率密度为,0,()0,0.xe xf x x -⎧>⎪=⎨⎪⎩≤求Xe Z X Y 22-==和的数学期望.解 0()(2)2()22x E Y E X E X x x ∞-====⎰e d ,2201()()3X x x E Z E e e e dx ∞---==⋅=⎰. 3. 游客乘电梯从底层到电视塔顶观光, 电梯于每个整点的第5分钟、第25分钟和第55分钟从底层起行. 假设一游客在早八点的第X 分钟到达底层侯梯处, 且X 在区间[0, 60]上服从均匀分布. 求该游客等候电梯时间的数学期望. 解已知X 在[0,60]上服从均匀分布, 其概率密度为1,060,()600,.x f x =⎧⎪⎨⎪⎩≤≤其它记Y 为游客等候电梯的时间,则5,05,25,525,()55,2555,65,5560.X X X X Y g X X X X X -<-<==-<-<⎧⎪⎪⎨⎪⎪⎩≤≤≤≤因此, 6001()[()]()()()60E Y E g X g x f x dx g x dx ∞-∞===⎰⎰()5255560525551(5)(25)(55)(65)60x dx x dx x dx x dx =-+-+-+-⎰⎰⎰⎰=11.67(分钟)..习题4-21. 选择题(1) 已知(1,(3))E D X X =-= 则2[3(2)]()E X -=.(A) 9. (B) 6. (C) 30. (D) 36.应选(D).(2) 设~(,),(6,( 3.6))B n p E D X X X ==, 则有( ).(A) 10, 0.6n p ==. (B) 20, 0.3n p ==. (C) 15, 0.4n p ==. (D) 12, 0.5n p ==.应选(C).(3) 设X 与Y 相互独立,且都服从2(,)N μσ, 则有( ).(A) ()()()E X Y E X E Y -=+. (B) ()2E X Y μ-=.(C) ()()()D X Y D X D Y -=-. (D) 2()2D X Y σ-=.选(D).(4) 在下列结论中, 错误的是( ).(A) 若~(,),().X B n p E X np =则(B) 若()~1,1X U -,则()0D X =. (C) 若X 服从泊松分布, 则()()D X E X =. (D) 若2~(,),X N μσ 则~(0,1)X N μσ-.选(B).2. 已知X , Y 独立, E (X )= E (Y )=2, E (X 2)= E (Y 2)=5, 求E (3X -2Y ),D (3X -2Y ). 解 由数学期望和方差的性质有E (3X -2Y )= 3E (X )-2 E (Y )=3×2-2×2=2,(32)9()4()D X Y D X D Y -=+ })]([)({4})]([)({92222Y E Y E X E X E -⨯+-⨯= 13)45(4)45(9=-⨯+-⨯=. 5. 设随机变量]2,1[~-U X , 随机变量⎪⎩⎪⎨⎧<-=>=.0,1,0,0,0,1X X X Y求期望()E Y 和方差)(Y D .解 因为X 的概率密度为1,12,()30,.X x f x -=⎧⎪⎨⎪⎩≤≤其它于是Y 的分布率为--11{1}{0}31()d d 3X P Y P X f x x x ∞=-=<===⎰⎰, {0}{0}0P Y P X ====,+22{1}{0}31()d d 3X P Y P X f x x x ∞==>===⎰⎰. 因此121()1001333E Y =-⨯+⨯+⨯=,222212()(1)001133E Y =-⨯+⨯+⨯=.故有 2218()()[()]199D Y E Y E Y =-=-=.习题4-31. 选择题(1) 在下列结论中, ( )不是随机变量X 与Y 不相关的充分必要条件(A) E (XY )=E (X )E (Y ). (B) D (X +Y )=D (X )+D (Y ). (C) Cov(X ,Y )=0. (D) X 与 Y 相互独立.选(D).(2) 设随机变量X 和Y 都服从正态分布, 且它们不相关, 则下列结论中不正确的是( ).(A) X 与Y 一定独立. (B) (X , Y )服从二维正态分布. (C) X 与Y 未必独立. (D) X +Y 服从一维正态分布.选(A).(3) 设(X , Y )服从二元正态分布, 则下列说法中错误的是( ).(A) (X , Y )的边缘分布仍然是正态分布.(B) X 与Y 相互独立等价于X 与Y 不相关. (C) (X , Y )是二维连续型随机变量.(D)由(X , Y )的边缘分布可完全确定(X , Y )的联合分布. 选(D)2 设D (X )=4, D (Y )=6, ρXY =0.6, 求D (3X -2Y ) .解 (32)9()4()12Cov(,)D X Y D X D Y X Y -=+-)()(126449Y D X D XY ⨯⨯-⨯+⨯=ρ 727.24626.0122436≈⨯⨯⨯-+=.3. 设随机变量X , Y 的相关系数为5.0, ,0)()(==Y E X E 22()()2E X E Y ==, 求2[()]E X Y +.解222[()]()2()()42[Cov(,)()()]E X Y E X E XY E Y X Y E X E Y +=++=++42420.526.XY ρ=+=+⨯⨯=4. 设随机变量(X , Y )若E (XY )=0.8, 求常数a ,b 解 首先由∑∑∞=∞==111i j ijp得4.0=+b a . 其次由0.8()100.420110.2210.22E XY a b b ==⨯⨯+⨯⨯+⨯⨯+⨯⨯=+得=b于是 故 Cov(,)()()()0.8 1.40.50.1X Y E XY E X E Y =-=-⨯=.7.证明: 对随机变量(X , Y ), E (XY )=E (X )E (Y )或者D (X ±Y )=D (X )+D (Y )的充要条件是X 与Y 不相关.证 首先我们来证明)()()(Y E X E XY E =和()()()D X Y D X D Y ±=+是等价的. 事实上, 注意到()()()2Cov(,)D X Y D X D Y X Y ±=+±. 因此()()()D X Y D X D Y ±=+Cov(,)0()()()X Y E XY E X E Y ⇔=⇔=.其次证明必要性. 假设E (XY )=E (X )E (Y ), 则Cov(,)()()()0X Y E XY E X E Y =-=.进而0XY ρ==, 即X 与Y 不相关.最后证明充分性. 假设X 与Y 不相关, 即0=XY ρ, 则Cov(,)0X Y =. 由此知)()()(Y E X E XY E =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当时,F 故X 的分布函数(X)=P (XWx) =10,X < 022—,0<x<I 35 34 - A —,1 < x < 2 35x>2习题3•设在15只同类型零件中有2只为次品,在英中取3次,毎次任取1只,作不放回抽样. 以X 表示取出的次品个数,求: (1) (2) (3) X 的分布律: X 的分布函数并作图; P{X<lhP{I<X <-),P)I<%<-),P{l<x<2}・ 2 2 2 【解】 x=at2・CP(X=O) = »±・C ;5 35 心)半』C ; 35C" 1P(X=2) =卑=丄・C :5 35故X 的分布律为(2)当 xvO 时,F (X)=P (X<x) =0当OWxvl 时, 当lWxv2时,22 F (X)=P(XWx) =P(X=O)= —3534F (X)=P (XWx) =P(X=O)+P{X=1)= —1 I 22P (X<l) = F(i) = —,2 2 353 3 34 34P (KX <-) = F(-)-F(l) = --- — = 02 2 35 353 3 12P (1<X <-) = P(X = 1) + P(1<X<-)亠2 2 3534 1 P(1<X<2)=F(2)-F(1)-P(X =2) = 1-衣-务=0.4•射手向目标独立地进行了 3次射击,每次击中率为,求3次射击中击中目标的次数的分布 律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示击中目标的次数•则X<K 1. 2, 3.p(x = 0) = (0.2)3 =0・008 p(x =1) = C ;O.8(O.2)2 = 0.096 P(X = 2) = C^(0.8)'0.2 = 0.384 p(x= 3) = (0.8)3 =0.512故X 的分布律为 XP分布函数0, 0.00&F(X ) = W ・104.0.48&P(X > 2) = P(X = 2) + P(X = 3) = 0.8965. (1)设随机变量X 的分布律为P(X=.}=Z.k\尖中后0, r 2,…,人>0为常数,试确定常数G (2)设随机变虽X 的分布律为 p{X=k )=a/N, k=l. 2,…,N,x<0 0<%<1 1<%<2 2<x<3x>3试确世常数G【解】(1)由分布律的性质知1=》P(X =k) = u》——=ad D k!{2)由分布律的性质知N N\ = ^P{X=k}=^- = aA-l £-1 N即 a =6.甲、乙两人投篮,投中的概率分别为“今^$投3次,求:(1)两人投中次数柑等的概率;(2)甲比乙投中次数多的概率•【解】分别令X、y表示甲、乙投中次数,则XF (3,) y~b(3.(1)p(x = r)= p(x=o,y=o)+p(x=ty = i)+p(x = 2,r=2)+p(X=3.y=3)=(0・4)'(0・3)' + C"0.6(0.4)-C"0.7(03)- +C;(O・6)2O・4C;(O・7)2O・3 + (O・6)3(O・7)3=0.32076⑵ p(x>y)= p(x = i,r=o)+p(x = 2,y=o)+p(x=3,r = o)+p(x = 2,y=i)+p(x=3,y = i)+p(x=xr = 2)=C;O・6(O・4)2(O・3)3 +C;(O・6)2O・4(O・3)3 +(O・6)3(O・3)3 +C;(O・6)2O・4C;O・7(O・3)2 +(O・6)3C;O・7(O・3)2 + (O・6)3C;(O・7)2O・37•设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为,且设齐飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑逍的概率小于(每条跑道只能允许一架飞机降落)【解】设X为某一时刻需立即降落的飞机数,则X~b(200八设机场需配备W条跑逍,则有P(X > TV) <0,01200为 C 爲(0.02)气0.98严"vO.Olt-N'+i利用泊松近似A = np = 200 X 0.02 = 4. » 宀4*P(X>N)= Z ——<0.01 jt-A+i k!査表得WM9.故机场至少应配备9条跑道.8.已知在五重伯努利试脸中成功的次数X 满足P{X=1}=P{X=2},求概率P{X=4}. 【解】设在每次试验中成功的概率为P,则P(X=4) = Ct(-/- = —. '3 3 2439.设事件A 在每一次试验中发生的概率为,当人发生不少于3次时,指示灯发出信号, (1) (2) 【解】 所以进行了 5次独立试验,试求指示灯发出信号的概率:进行了 7次独立试验,试求指示灯发出信号的概率. (1)设X 表示5次独立试验中A 发生的次数,则X~6(5,) 5P(X >3) = XC ;(O ・3)Z(O ・7)I =0.16308(2)令y 表示7次独立试验中人发生的次数,则Y-b (7r)P{Y > 3) = 2^C ;(03/ (0・7)F = 0.35293X-310•某公安局在长度为f 的时间间隔内收到的紧急呼救的次数X 服从参数为(坨)t 的泊松分布,而与时间间隔起点无关(时间以小时计).<1)求某一天中午12时至下午3时没收到呼救的概率; (2)求某一天中午12时至下午5时至少收到1次呼救的概率..3【解】(1) P(X=0) = e"^5(2) P(X >1) = 1-P(X =0) = l-e"^11•设 P{X=k}=C*/(l-p)--\ 后012P{y=m}=CS"(l - 〃)m=0,1,23/4分别为随机变Sx, y 的概率分布,如果已知P{xMi}=#,试求p{Y^i},54【解】因为P(X>l) = j,故P(X<1) = £.P(X<1) = P(X=O) = (1 — “)2(1-卩)冷,P (r> I ) = l-P (r = 0) = 1-(1-/?/= — «.0.802478112•某教科书岀版了 2000册,因装订等原因造成错误的概率为,试求在这2000册书中恰有 5册错误的概率.【解】令X 为2000册书中错误的册数,则XF (2000,・利用泊松近似计算,A = np = 2000 X 0.001 =2p(x= 5” ^^ = 0.00185!3 I13•进行某种试验,成功的概率为一,失败的概率为丄•以X 表示试验首次成功所需试验的次4 4数,试写出X 的分布律,并计算X 取偶数的概率.【解】X =12…人…P(X = 2) + P(X=4)+…+ P(X=2幻 + … =1.2+(1/2+...+(丄严4 4 4 4 4 43 4 1 =—• =— 4-($5414. 有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡 的概率为,毎个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险 公司领取2000元赔偿金•求: (1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1)在1月1日,保险公司总收入为2500X12=30000元. 设1年中死亡人数为X,则X~b (25g,则所求概率为故得从而P(2000X >30000) = P(X>15) = \-P(X < 14)由于I)很大,p很小• A=np=5.故用泊松近似,有M e时P(X > 15)^1-工^^总0・000069*•<)k!(2) P(保险公司获利不少于10000)=P(3OOOO-2OOOX > 10000) = P(X < 10)即保险公司获利不少于10000元的概率在98%以上P (保险公司获利不少于 20000) = P(30000-2000X > 20000) = P(X <5)5 ■呻迄一“.6窗即保险公司获利不少于20000元的概率约为62%15.已知随机变量X的密度函数为/(x)=^e ni, 8*+8. 求:(1〉人值:(2) P{O<X<1}; (3)F(x)・【解】(1)由/(x)d.r = 1得=J = 2J0 Ae"*d.v = 2A/?(0 < X < 1)=丄[「dx =丄(1 一 e")2" 2当 x<0 时,F(x) = J — e*dv = — e"2 2当心0时,F(x) = J ■^e~'^Av = J ¥&+[£「血十产F(x) =17•在区间[0, o]上任意投掷一个质点,以X表示这质点的坐标,设这质点落在[0, g] 中任意小区间内的概率与这小区间长度成正比例,试求X的分布函数.【解】由题意知X-U[0.o],密度函数为八1 2P(X>3) = J^-dv = -故所求概率为厂C 净出;(討=等19•设顾客在某银行的窗口等待服务的时间X(以分钟计)服从指数分布£(-).某顾客在窗口等待服务,若超过10分钟他就离开•他一个月要到银行5次,以y 表示一个月内他未等 到服务而离开窗口的次数,试写出Y 的分布律,并求P{g?l}・ 【解】依题意知X~E(-) •即英密度函数为^5-e 蔦 X > 0 0,x<0该顾客未等到服务而离开的概率为1 2P(X>10) = p-e"'dLv = e-'y~b(5・r),即其分布律为f(x) = 一,0<x<« a0, 其他故当xvO 时F (X)=0当 0 WxWo 时 F(x)=『f(t}dt = J ; yaM =J^idZ = - 当 x>a 时,F (X)=1 即分布函数0,x<0F(x)=Q<x<a x>a18•设随机变量X 在[2, 值大于3的概率. 【解】XP ⑵5),即5]上服从均匀分布•现对X 进行三次独立观测,求至少有两次的观测2<%<5/W = b'0, 其他P (y = £) = C (mi-r )Lk =0,12345P (r> I ) = l-P (y = 0) = l-(l-e--/=0.516720.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服 从W (40, 102);第二条路程较长,但阻塞少,所需时间X 服从W (50, 4?). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些 (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些 【解】(1)若走第一条路,X-N (40. 102),则若泄:第二条路,X-N (50, 42),则p(X<60) = Px-40 60-40----- < ------- 10 10= 0(2) = 0.97727P(X<60) = P(X-5Q 60-50、---------- <I 4= 0(2.5) = 0.9938 卄故走第二条路乘上火车的把握大些. (2) 若 X"/(40, 102〉,贝I]P{X < 45) = pf X二° <45 j = 0(0.5) = 0.6915若 X~N (50, 42〉,则p(X <45) = P(X-5Q 45-501---------- <I 4= 0(-1.25)= 1-0(1.25) = 0.1056故走第一条路乘上火车的把握大些.21•设 X~N (3, 22),CD 求 P{2<X<5}» P{ 4<X<10}> P{|X| >2}, P{X>3}; (2)确总 c 使 P{X>c}=P{X^c}.【解】(1)P (2<X<5) = P=0(1) — 0 —一 =0 ⑴-1 + 0 -I 2丿 (2 = 0.8413-1 + 0.6915 = 0.5328 12P(-4<X <10) = P(-4-3X-3 10-3、 -------- < ----------- < -----------I 2 22 J2 12丿=0.9996P(l Xl>2) = P(X>2) + P(X <-2)P(X>3) = P(^^^>—) = 1-0(0) = 0.52 2⑵C=322•由某机器生产的螺栓长度(cm ) X-N C ),规定长度在±内为合格品,求一螺栓为不合格品 的概率•=1-0(2) + 0(-2) = 2[1- 0(2)] =0.045623•—工厂生产的电子管寿命X (小时)服从正态分布N (160, 02),若要求P{120VXW200} 允许。