第17届华罗庚金杯少年数学邀请赛笔试初赛试题及答案(小学中年级组)
第十七届华罗庚金杯少年数学邀请赛_试题及答案_小学高年级组
第十五届华罗庚金杯少年数学邀请赛初赛试卷(小学组)一、选择题(每小题10分,满分60分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1.如图所示,平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的()。
2.两条纸带,较长的一条为23cm,较短的一条为15 cm。
把两条纸带剪下同样长的一段后,剩下的两条纸带中,要求较长的纸带的长度不少于较短的纸带长度的两倍,那么剪下的长度至少是()cm。
(A)6 (B)7 (C)8 (D)93.两个水池内有金鱼若干条,数目相同。
亮亮和红红进行捞鱼比赛,第一个水池内的金鱼被捞完时,亮亮和红红所捞到的金鱼数目比是3:4;捞完第二个水池内的金鱼时,亮亮比第一次多捞33条,与红红捞到的金鱼数目比是5:3。
那么每个水池内有金鱼()条。
(A)112 (B)168 (C)224 (D)3364.从中去掉两个数,使得剩下的三个数之和与最接近,去掉的两个数是()。
5.恰有20个因数的最小自然数是()。
(A)120 (B)240 (C)360 (D)4326.如图的大正方形格板是由81个1平方厘米的小正方形铺成,B,C是两个格点。
若请你在其它的格点中标出一点A,使得△ABC的面积恰等于3平方厘米,则这样的A点共有()个。
(A)6 (B)5 (C)8 (D)107.算式的值为,则m+n 的值是 。
8.“低碳生活”从现在做起,从我做起。
据测算,1公顷落叶阔叶林每年可吸收二氧化碳14吨。
如果每台空调制冷温度在国家提倡的26℃基础上调到27℃,相应每年减排二氧化碳21千克。
某市仅此项减排就相当于25000公顷落叶阔叶林全年吸收的二气化碳;若每个家庭按3台空调计,该市家庭约有 万户。
(保留整数)9.从0、1、2、3、4、5、6、7、8、9这十个数字中,选出九个数字,组成一个两位数、一个三位数和一个四位数,使这三个数的和等于2010,那么其中未被选中的数字是 。
第十七届华杯赛决赛小高笔试C答案
第十七届华罗庚金杯少年数学邀请赛决赛笔试试题C 参考答案(小学高年级组)一、填空(每题 10 分, 共80分)一、填空题(每小题 10分, 共80分)1. 算式30715111257546-⎪⎭⎫ ⎝⎛+÷ 的值为 . 30715111257546-⎪⎭⎫ ⎝⎛+÷ =4625447()756030+÷-=46607756930⨯- =184734530- =69323010= 2. 箱子里已有若干个红球和黑球, 放入一些黑球后, 红球占全部球数的四分之一;再放入一些红球后, 红球的数量是黑球的二分之一. 若放入的黑球和红球数量相同, 则原来箱子里的红球与黑球数量之比为 .解:由放入一些黑球后, 红球占全部球数的四分之一,得:红球与变化后的黑球的比值是13。
由再放入一些红球后, 红球的数量是黑球的二分之一得到变化后的红球与黑球的比值是12。
从13到12,说明红球增加了变化后的黑球总量的16。
由放入的黑球和红球数量相同,得到原来黑球总量是变化后的黑球总量的56。
由放入一些黑球后, 红球占全部球数的四分之一,得:红球与变化后的黑球的比值是13知道,原来红球作为1看,原来黑球的总量是55362⨯=。
52125÷= 答案:253. 设某圆锥的侧面积是10π, 表面积是19π, 则它的侧面展开图的圆心角是 .解:根据19π,10π知道圆锥的底面积是9π。
底面的半径是3,底面的周长是6π,圆锥的侧面积是10π,根据扇形面积公式计算出侧面展开图所在圆的半径=103,所在圆的周长是203π。
2063603ππ÷⨯=324答案: 32404. 设b a ∆ 和b a ∇分别表示取a 和b 两个数的最小值和最大值, 如, 343=∆,443=∇. 那么对于不同的自然数x , ()()546∆∇∆x 的取值共有 个. 解: 分类讨论 1 5x ≥时:()()546∆∇∆x =52 5x <时:()()546∆∇∆x =4答案:2。
第十七届华杯初赛试卷(小学中年级组 笔试版)答案
第十七届华罗庚金杯少年数学邀请赛初赛试卷(小学中年级组笔试版)一、选择题(每小题10分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的括号内。
)1、在下面的加法算式中,每个汉字代表一个非零数字,不同的汉字代表不同的数字。
当算式成立时,贺+新+春=()。
A、24B、22C、20D、18【解析】就是一道数字谜的题目,根据规律我们试得,173+286=459,那么“贺新春”相加为18。
2、北京时间16时,小龙从镜子里看到挂在身后墙上的4个钟表(如下图),其中最接近16时的是()。
【解析】从镜中看到的时间与原来钟表中的时间左右对称。
时间分别为:8:05,7:50,4:10,3:50。
3、平面上有四个点,任意三个点都不在一条直线上,以这四个点为端点连接六条线段,在所组成图形中,最少可以形成()个三角形。
A、3B、4C、6D、8【解析】一个三角形中三个顶点,里面有一点,分别和三角形的三个顶点相连,又出现3条线段,一共4个三角形,此时最少。
【详细解答】平面上四个点且任意三个点都不在同一条直线上,连出的6条线段所能组成的图形会是什么呢这个是解题的关键。
老师可以站在组合的高度知道最多也是能连出6条线段。
关键是构图的思路:先画出三个点不在同一条直线上,两两相连能组成一个三角形,再选择第四点的位置,为了保证任意三个点不在同一条直线上,这时只有二种可能性:一是第四个点在此三角形之外,二是第四个点在此三角形之内,除此之外,还有没有第三种情形,不妨让学生们讨论一下。
这种构图方法比起先画好四个点再来连线的好处是明显的,分类很明确,不会遗漏,也不容怀疑。
二个图形一画好就很容易知道最少及最多有多少个三角形。
答案是最少4个,故选B。
注:此题变通一下可以考学生最多能构成多少个三角形。
4、在10□10□10□10□10的四个□中填入“+”、“-”、“×”、“÷”运算符号各一个,所以的算式的最大值是()。
第十七届“华罗庚金杯”少年数学邀请赛网试决赛试卷(小中组)
2012年第十七届“华罗庚金杯”少年数学邀请赛网试决赛试卷(小中组)一、填空题(每题10分,共80分)1.(10分)计算:28×7×25+12×7×25+7×11×3+44=.2.(10分)字母 A,B,C 分别代表 1~9 中不同的数字.在使得如图的加法算式成立的所有情形中,三个字母 A,B,C 都不可能取到的数字的乘积是.3.(10分)鸡兔同笼,共有头51个,兔的总脚数比鸡的总脚数的3倍多4只,那么笼中共有兔子只.4.(10分)抽屉里有若干个玻璃球,小军每次操作都取出抽屉中球数的一半再放回一个球.如此操作了2012次后,抽屉里还剩有2个球.那么原来抽屉里有个球.5.(10分)如图是由1平方分米的正方形瓷砖铺砌的墙面的残片.问:图中由格点 A,B,C,D 为顶点的四边形ABCD的面积等于多少平方分米?6.(10分)一只小虫沿如图中的线路从A爬到B.规定:图中标示箭头的边只能沿箭头方向行进,而且每条边在同一路线中至多通过一次.问:小虫从A到B的不同路线有多少条?7.(10分)有一些自然数,它们中的每一个与7相乘,其积的末尾四位数都为2012,那么在这些自然数中,最小的数是.8.(10分)将棱长为1米的正方体木块分割成棱长为1厘米的小正方体积木,设想孙悟空施展神力将所有的小积木一个接一个地叠放起来,成为一根长方体“神棒”,直指蓝天.已知珠穆朗玛峰的海拔高度为8844米,则“神棒”的高度超过珠穆朗玛峰的海拔高度米.二、回答下列各题(每题10分,共40分,写出答案即可)9.(10分)已知被除数比除数大78,并且商是 6,余数是 3,求被除数与除数之积.10.(10分)今年甲、乙俩人年龄的和是70岁.若干年前,当甲的年龄只有乙现在这么大时,乙的年龄恰好是甲年龄的一半.问:甲今年多少岁?11.(10分)有三个连续偶数,它们的乘积是一个五位数,该五位数个位是0,万位是2,十位、百位和千位是三个不同的数字,那么这三个连续偶数的和是多少?12.(10分)在等式“爱国×创新×包容+厚德=北京精神”中,每个汉字代表 0~9 的一个数字,爱、国、创、新、包、容、厚、德分别代表不同的数字.当四位数北京精神最大时,厚德为多少?2012年第十七届“华罗庚金杯”少年数学邀请赛网试决赛试卷(小中组)参考答案与试题解析一、填空题(每题10分,共80分)1.(10分)计算:28×7×25+12×7×25+7×11×3+44=7275 .【分析】根据乘法的结合律与分配律简算即可,注意计算中的11×25的乘法时根据“两边拉,中间加”巧算.【解答】解:28×7×25+12×7×25+7×11×3+44=7×25×(28+12)+11×21+11×4=7×(25×40)+11×(21+4)=7×1000+11×25=7000+275=7275故答案为:7275.2.(10分)字母 A,B,C 分别代表 1~9 中不同的数字.在使得如图的加法算式成立的所有情形中,三个字母 A,B,C 都不可能取到的数字的乘积是8 .【分析】首先分析出A是加上进位等于B,那么A比B小1,并且A与B 的和是有..进位的,枚举出所有情况排除即可.【解答】解:依题意可知:A加上进位等于B,那么这两个数字相差1,可以是A=5,B=6,C=1.A=6,B=7,C=3.A=7,B=8,C=5.A=8,B=9,C=7.那么A,B,C不可能取道的数字有2,4即2×4=8故答案为:83.(10分)鸡兔同笼,共有头51个,兔的总脚数比鸡的总脚数的3倍多4只,那么笼中共有兔子31 只.【分析】根据题意可知如果少一只兔子,则兔的总脚数是鸡的总脚数的3倍,因一只兔脚的只数是一只鸡脚只数的4÷2=2倍,所以当兔的只数是鸡的只数的3÷2=1.5倍时兔的总脚数是鸡的总脚数的3倍,据此可只鸡的头数是(51﹣1)÷(1.5+1)=20只,进而可求出兔子的只数.【解答】解:4÷2=2(51﹣1)÷(3÷2+1)=50÷2.5=20(只)51﹣20=31(只)答:笼子中共有兔子31只.故答案为:31.4.(10分)抽屉里有若干个玻璃球,小军每次操作都取出抽屉中球数的一半再放回一个球.如此操作了2012次后,抽屉里还剩有2个球.那么原来抽屉里有 2 个球.【分析】还原问题每次拿走一半再放回一个,倒推就是每次拿走一个再加一倍.2个拿走1个,剩下1个加一倍是2个.重复周期问题.【解答】解:还原问题的倒推图操作第一次:(2﹣1)×2=2(个)操作第二次:(2﹣1)×2=2(个)操作第三次:(2﹣1)×2=2(个)每一次结果都是2个,属于周期问题.无论操作多少次结果都是2个.故答案为:25.(10分)如图是由1平方分米的正方形瓷砖铺砌的墙面的残片.问:图中由格点 A,B,C,D 为顶点的四边形ABCD的面积等于多少平方分米?【分析】这属于正方形格点问题,根据正方形格点毕克定理S=N﹣1+L÷2可以直接求出面积,其中N表示内部的格点数,L表示边界上的格点数.【解答】解:内部的格点数是12,边界点的数是6,根据公式列出算式是12﹣1+6÷2=14答:四边形ABCD的面积等于14平方分米.6.(10分)一只小虫沿如图中的线路从A爬到B.规定:图中标示箭头的边只能沿箭头方向行进,而且每条边在同一路线中至多通过一次.问:小虫从A到B的不同路线有多少条?【分析】小虫从A到B,第一个六边形的分叉口上下均有2条,B所在的六边形也上下有2条,于是有2×2+2×2=8条,中间往回走的箭头有2条路线,一共有10条.【解答】解:小虫从A到B,第一个六边形的分叉口上下均有2条,B所在的六边形也上下有2条,于是有2×2+2×2=8条,中间往回走的箭头有2条路线,一共有10条.答:小虫从A到B的不同路线有10条.7.(10分)有一些自然数,它们中的每一个与7相乘,其积的末尾四位数都为2012,那么在这些自然数中,最小的数是1716 .【分析】首先分析本题可以反过来求解,想找到最小的乘数可以转换找到最小的乘积,2012不是7的倍数,那么需要在前面加上一位数字是最小的即可.【解答】解:首先发现2012不是7的倍数,那么要找到最小就需要看看在2012前加一个最小的数字组成7的倍数.在首位加上数字1,12012÷7=1716.那么最小就是1716.故答案为:1716.8.(10分)将棱长为1米的正方体木块分割成棱长为1厘米的小正方体积木,设想孙悟空施展神力将所有的小积木一个接一个地叠放起来,成为一根长方体“神棒”,直指蓝天.已知珠穆朗玛峰的海拔高度为8844米,则“神棒”的高度超过珠穆朗玛峰的海拔高度1156 米.【分析】1米=100厘米,则1立方米=1000000立方厘米,即1 米的正方体木块分割成棱长为 1 厘米的小正方体积1000000个,即可求解.【解答】解:1立方米=1000000立方厘米,即1米的正方体木块分割成棱长为1厘米的小正方体积1000000个;它们相互叠加组成“神棒”的高度=1000000×0.01=10000(米);即比珠穆朗玛峰的海拔高度高10000﹣8848=1156(米),故填1156.故答案为:1156.二、回答下列各题(每题10分,共40分,写出答案即可)9.(10分)已知被除数比除数大78,并且商是 6,余数是 3,求被除数与除数之积.【分析】被除数=除数×商+余数,所以被除数是除数的6倍多3,78就是除数的5倍多3.【解答】解:除数=(78﹣3)÷(6﹣1)=25,被除数=除数×商+余数=6×25+3=153,那么被除数与除数之积是153×25=3825.故答案为:3825.10.(10分)今年甲、乙俩人年龄的和是70岁.若干年前,当甲的年龄只有乙现在这么大时,乙的年龄恰好是甲年龄的一半.问:甲今年多少岁?【分析】根据题意,可得:若干年前乙的年龄等于今年乙的年龄的一半,所以今年甲的年龄等于若干年前甲的年龄的1.5(1+0.5=1.5)倍,所以今年甲的年龄等于今年乙的年龄的1.5倍,再根据今年甲、乙两人年龄的和是70岁.求出甲今年多少岁即可.【解答】解:因为当甲的年龄只有乙现在这么大时,乙的年龄恰好是甲年龄的一半,所以今年甲的年龄等于若干年前甲的年龄的:1+0.5=1.5倍,所以今年甲的年龄等于今年乙的年龄的1.5倍,70÷(1+1.5)×1.5=70÷2.5×1.5=28×1.5=42(岁)答:甲今年42岁.11.(10分)有三个连续偶数,它们的乘积是一个五位数,该五位数个位是0,万位是2,十位、百位和千位是三个不同的数字,那么这三个连续偶数的和是多少?【分析】26×26×26=17576,31×31×31=29791,所以三个连续偶数在24,26,28,30,32之间,考虑个位为0,应有因数2,5.【解答】解:26×26×26=17576,31×31×31=29791,所以三个连续偶数在24,26,28,30,32之间,考虑个位为0,应有因数2,5,26×28×30=21840,符合要求.28×30×32=26880,不合要求,30×32×34=32640,不符合要求.所以这三个连续偶数的和为26+28+30=84.故答案为:84.12.(10分)在等式“爱国×创新×包容+厚德=北京精神”中,每个汉字代表 0~9 的一个数字,爱、国、创、新、包、容、厚、德分别代表不同的数字.当四位数北京精神最大时,厚德为多少?【分析】由题意,14×20×35+98=9898,即可得出结论.【解答】解:由题意,14×20×35+98=9898,∴当四位数北京精神最大时,厚德为98.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:49:20;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
第十七届华杯赛决赛小高笔试A答案
第十七届华罗庚金杯少年数学邀请赛决赛笔试试题A参考答案(小学高年级组)共40分,要求写出简要过程)亠、解谷卜列各题(每题10分,亠、填空(每题10分,共80 分)9.答案:是.解答.连接AC.则S.CEB S.BCA=S.ACE = S.EADSECKB = S.CEB S.BCK所以SECKB -S.OBE =S. EAD S OBE .题号 1 2 3 4 5 6 7 8答案186 2 40 153 7 18 7 4396 因此S HCKO四边形ABOD勺面积二四边形ECKO勺面积.10.答案:解答.首先构造5黑4的长方形如下:11.答案:2025, 3025, 9801.解答.设一个四位卡布列克怪数为100x+y,其中10ExW99,0W yW 99则由题意知100x + y = (x + y)2,两边模99得, 、2 ,x y = (x y) (mod99) ,因此99|(x + y)(x + y-1),故x + y与x+y-1中有一个能被9整除,也有一个能被11整除(可能是同一个数),且有102 E(x + y)2 =100x + y <1002 ,即10<x+y <100. (*)若x+y能被99整除,由(*)知x + y只能是99,满足条件白八四位数是9801;若x+y - 1能被99整除,由(*),显然没有满足条件的四位数;止匕外,可设x + y = 9m, x + y —1 = 11n,则有9m-11 n=1,由(*) , m 禾口n均为小于12的正整数,故得到m= 5,n=4, x + y只能是45,满足条件白四位数是2025;反之,可设x + y —1 = 9m, x + y =11n,满足条件的四位数是3025.故四位数中有三个卡布列克怪数,它们分别为2025, 3025和9801.12 .答案:1或2解答.对于质数3, 32被3整除.其余的质数,要么是3k+1型的数,要么是3k+2型的数•由于(3k 1) 2 =9k 6k 1 =3(3k2 2k) 1,被3除余1,且(3k 2) 2=9k2 12k 4 =3(3k 2 4k 1)1 ,被3除也余1.因此有(1) 若这98个质数包含3时,N被3除的余数等于97被3除的余数,等于1.(2) 若这98个质数不包含3时,N被3除的余数等于98被3除的余数,等于2.三、解答下列各题(每题15分,共30分,要求写出详细过程)13 .答案39,11,18解答.设起跑时间为0秒时刻,则小李和小张在划定区间跑的时间段分别为[0,9] , [72k-9,72k 9] , k =1,2,3,,和[0,10] , [80m -10,80m 10] , m =1,2,3,.其中[a, b]表示第a秒时刻至第b秒时刻.显然[0,9]即前9秒里两类时间段的公共部分.止匕外,考虑[72k-9,72k+9]和[80m- 10,80m+10]的公共区间,k,m为正整数,分两种情况:1) 72k =80m,即小李和小张分别跑了k圈和m圈同时回到起点,他们二人同时在划定区域跑了18秒.2) 72k 8 80m,例如72 上-9 72A+980 加-10 80 掰+1072k -9 MB0m —10 W2k + 9 MB0m+10仁1 <80m-72k <19 ①.两人同时在划定区域内跑了72k 十9—(80m^ 10) = 19 —(80m —72k).由①知80m-72k=8, 16.于是两人同时在划定区域内跑持续时间为11秒或3秒.其它情况类似可得同样结果.综上,答案为3,9,11,1814.答案:150解答.设立方体的长,宽,高分别为乙y, x,其中x<y<z,且为整数.注意,两面有红色的小立方块只能在长方体的棱上出现.如果x=1, y=1,则没有两面为红色的立方块,不符合题意.如果x=1,y>1,则没有只有一面为红色的立方块,不符合题意.因此x A2.此时两面出现红色的方块只能与长方体的棱共棱.一面出现红色的方块只与立方体的面共面.有下面的式子成立4x[(x-2)+(y-2)+(z-2)]=40 , (1)2 M(x —2)(y —2)十(x-2)(z-2)+(y-2)(z -2)] =66 . (2)由⑴得到x + y+ z=16 , ⑶由⑵得到xy + xz + yz = 85 . (4)由(3)和(4)可彳3,x2 + y2 + z2 = 86 ,这样1 M x, y, z M 9 .由(4)得至U,止匕时y2(x 十 y )( x + z ) = 85 + x .( 5)若 x = 2,则由(5)得至 ij (2 + y ) (2 + z ) =85+4 = 89=1 父 89, y,z 的取值不能满足(3).若 x=3,则由(5)得至 I (3+y )( 3 + z ) =85 +9=94 = 2><47 , y,z 的取值不能满足(3)若 x = 4,贝 U 由(5)得至 1(4 + y )(4 + z ) = 85 + 16=101 =1 父 101, y,z的取值不能满足(3).当 x=5 时,由(5) 得至 1 (5+ y)(5 + z) =85 + 25 =110 = 2x5x11=5, z = 6 满足条件.如果x ± 6,则x + y+z 土 18,与(3)矛盾.综上,x=5,y=5,z=6是问题的解,这是长方体的体积为 150.。
(完整版)年第17届“华罗庚金杯”少年数学邀请赛决赛试卷c(小学高年级组).doc解答_共8页
÷()﹣的值为 .3.(10分)设某圆锥的侧面积是10π,表面积是19π,则它的侧面展开图的圆心角是 .4.(10分)设a△b和a▽b分别表示取a和b两个数的最小值和最大值,如,3△4=3,3▽4=4,那么对于不同的数x,5▽[4▽(x△4)]的取值共有 个.5.(10分)某水池有A,B两个水龙头.如果A,B同时打开需要30分钟可将水池注满.现在A和B同时打开10分钟,6.(10分)如图是一个五棱柱的平面展开图.图中的正方形边长都为2.按图所示数据,这个五棱柱的体积等7.(10分)一条路上有A、O、B三个地点,O在A与B之间,A与O相距1620,米,甲、乙两人同时分别从A和O8.(10分)从1到1000中最多可以选出 个数,使得这些数中任意两个数的差都不整除它们的和.二.解答下列各题(每题10分,要求写出简要过程)。
N=++…+,问12.(10分)小明拿着100元人民币去商店买文具,回来后数了数找回来的人民币有4张不同币值的纸币,4枚不同的硬币.纸币面值大于一元,硬币的面值小于1元.并且所有纸币的面值和以“元”为单位可以被3整除,所有硬币的面值13.(10分)能否用540个图所示的1×2的小长方形拼成一个6×180的大长方形,使得6×180的长方形的每一行、每一列都有奇数个星?请说明理由.14.(10分)已知100个互不相同的质数p1,p2,…,p100,记N=p12+p12+…+p1002,问:N被3除的余数是多少?15.(15分)王大妈拿了一袋硬币去银行兑换纸币,袋中有一分、二分、五分和一角四种硬币,二分的枚数是一分的,五分硬币的枚数是二分的,一角硬币的枚数是五分的少7枚.王大妈兑换到的纸币恰好是大于50小于100的整元数.问这四种硬币各有多少枚?16.(15分)右图四一个三角形网格,由16个小的等边三角形构成.网格中由3个相邻的小三角形构成的图形称为“3﹣梯形”.如果在每个小三角形内填上数字1﹣9中的一个,那么能否给出一种填法,使得任意两个“3﹣梯形”中的3个数之和均不相同?如果能,请举出一例;如果不能,请说明理由.三.解答下列各题(每小题15分,共60分,要求写出详细过程)17.(15分)图中,ABCD是平行四边形,E在AB边上,F在DC边上,G为AF与DE的交点,H为CE与BF的交点.已知,平行四边形ABCD的面积是1,=,三角形BHC的面积是,求三角形ADG的面积.18.(15分)记一千个自然数x、x+1、x+2、…,x+999的和的和为a,如果a的数字和等于50,则x最小为多少?19.(15分)请写出所有满足下面三个条件的正整数a和b;(1)a≤b;(2)a+b 是个三位数,且三个数字从小到大排列等差;(3)a×b 是一个五位数,且五个数字相同.20.(15分)记一百个自然数x,x+1,x+2,…,x+99的和为a,如果a的数字和等于50,则x最小为多少?.。
第十七届华罗庚金杯少年数学邀请赛网上初赛(小学高年级组)试题
(D)111
第6题(选择题):
(A)1
(B)2
(C)3
(D)4
第7题(填空题):ຫໍສະໝຸດ 请输入答案:第8题(填空题):
请输入答案:
第9题(填空题):
请输入答案:
第10题(填空题):
请输入答案:
重要提示:
答案交卷之前都可以修改,答题完毕必须点击交卷按钮。考生必须在规定的时间内完成考试。开考时间没到,选手无法进入考试程序;交卷时间一到,选手不可以再继续答题。答题完成之后必须点击交卷按钮提交答案。
第十七届华罗庚金杯少年数学邀请赛网上初赛
(
第1题(选择题):
(A)2
(B)4
(C)7
(D)9
第2题(选择题):
(A)7.5%
(B)5.5%
(C)6%
(D)6.5%
第3题(选择题):
(A)1
(B)2
(C)3
(D)4
第4题(选择题):
(A)44
(B)45
(C)47
(D)52
第5题(选择题):
(A)43
(B)74
2012第十七届华杯赛决赛笔试(小学高年级组 三份试卷ABC全部)试题及答案
三、解答下列各题(每小题 15 分,共 30 分,要求写出详细过程)
13. 请写出所有满足下面三个条件的正整数 a 和 b: 1) a ≤ b ; 2) a + b 是个三位 数 , 且三个数字从小到大排列等差 ; 3) a × b 是一个五位数 , 且五个数字相 同. 14. 记一百个自然数 x, x + 1, x + 2, , x + 99 的和为 a, 如果 a 的数字和等于 50, 则 x 最小为多少?
N 被 3 除的余数是多少? 11. 王大妈拿了一袋硬币去银行兑换纸币 , 袋中有一分、二分、五分和一角四种 硬币 , 二分硬币的枚数是一分的 的枚数是五分的
3 3 , 五分硬币的枚数是二分的 , 一角硬币 5 5
3 少 7 枚. 王大妈兑换到的纸币恰好是大于 50 小于 100 的 5 整元数. 问这四种硬币各有多少枚?
4. 甲、乙两个粮库原来各存有整袋的粮食, 如果从甲粮库调 90 袋到乙粮库, 则乙粮库存粮的 袋数是甲粮库的 2 倍.如果从乙粮库调若干袋到甲粮库 , 则甲粮库存粮的袋数是乙粮库的 6 倍.那么甲粮库原来最少存有 袋的粮食 .
5. 现有 211 名同学和四种不同的巧克力, 每种巧克力的数量都超过 633 颗. 规定每名同学最 多拿三颗巧克力 , 也可以不拿. 若按照所拿巧克力的种类和数量都是否相同分组 , 则人数 最多的一组至少有 名同学 .
边长都为
7. 一条路上有 A, O, B 三个地点, O 在 A 与 B 之间, A 与 O 相距 1620 米. 甲、乙两人同时分别 从 A 和 O 点出发向 B 点行进. 出发后第 12 分钟, 甲、乙两人离 O 点的距离相等;第 36 分 钟甲与乙两人在 B 点相遇 . 那么 O 与 B 两点的距离是 8. 从 1 到 1000 中最多可以选出 和. 米.
第十七届华罗庚金杯少年数学邀请赛初赛试卷小学中年级组
第十七届华罗庚金杯少年数学邀请赛初赛试卷(小学中年级组笔试版)〔吋间:2012年3月17日10:00-11:00 〕一、选择题(每小题10分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1.在右面的加法算式中,每个汉字代表一个非零数字,不同的汉字代表不同的数字.当算式成立吋,贺+新+春=().(A)24 〔B〕22 (C) 20 (D) 182.北京吋间16吋,小龙从镜子里看到挂在身后墙上的4个钟表(如下图),其中最接近16吋的是〔〕.3.平面上有四个点,任意三个点都不在-条直线上.以这四个点为端点连接六条线段,在所组成的图形中,最少可以形成()个三角形.(A)3 (B)4 (C) 6 (D) 84.在10口10口10口10口10的四个口中填入“+”“-”“×”“÷”运算符号各一个,所成的算式的最大值是〔〕.(A)104 〔B〕109 (C) 114 (D) 1195.牧羊人用15段每段长2米的篱笆,一面靠墙围成一个正方形或长方形羊圈,则羊圈的最大面积是〔〕平方米.(A)100 〔B〕108 (C) 112 (D) 1226.小虎在19x19的围棋盘的格点上摆棋子,先摆成了一个长方形的实心点阵.然后再加上45枚棋子,就正好摆成-边不变的较大的长方形的实心点阵.那么小虎最多用了〔〕枚棋子.(A)285 〔B〕171 (C) 95 (D)57二、填空题(每小题10分,满分40分)7.三堆小球共有2012颗,如杲从每堆取走相同数目的小球贩笫二堆还剩下17颗小球,并且笫一堆剩下的小球数是笫三堆剩下的2倍,那么笫三堆原有______颗小球.8.右图的计数器三个档上各有10个算珠,将每档算珠分成上下两部分,技数位得到两个三位数,要求上面的三位数的数字不同,且是下面三位数的倍数,那么满足题意的上面的三位数是________.9.把一块长90厘米,宽42厘米的长方形纸板恰无剩余地剪成边长都是整数厘米、面积都相等的小正方形纸片,最少能剪出_____块,这种剪法剪成的所有正方形纸片的周长之和是_______厘米.10.体育馆正在进行乒乓球单打、双打比赛,双打比赛的运动员比单打的运动员多4名,比赛的乒乓球台共有13张,那么双打比赛的运动员有________名.第十七届全国华罗庚金杯少年数学邀请赛初赛试题(小学中年级组笔试版)答案―、选择题(每小题10分,满分60分)二、填空理(每小题10分,满分40分)。
华杯赛初赛小中年级备赛真题集锦
华杯赛初赛小中年级备赛真题集锦一、计算【例题】1975、1985、1995、2005、2015这5个数的总和是多少?【例题】假如“华罗庚金杯”少年数学邀请赛每隔一年举行一次。
1999年是第二届。
问2015年是第几届?【例题】光的速度是每秒30万千米,太阳离地球1亿5千万千米。
问:光从太阳到地球要用几分钟(得数保留一位小数)?【例题】有3个箱子,如果两箱两箱地称它们的重量,分别是83公斤、85公斤和86公斤。
问:其中最轻的箱子重多少公斤?【例题】小华参加了四次语文测验,平均成绩是68分。
他想在下一次语文测验后,将五次的平均成绩提高到最少70分。
那么,在下次测验中,他至少要得多少分?【例题】某年的10月里有5个星期六,4个星期日。
问:这年的10月1日是星期几?【例题】1+2+3+…+298+299+300=【练习】2+12+22+32+…+152+162+172=【例题】伸出你的左手,从大拇指开始如图所示的那样数数字,1,2,3,……,问:数到2015时,你数在那个手指上?【例题】2×3×5×7×11×13×17这个算式中有七个数连乘。
请问:最后得到的乘积中,所有数位上的数字和是多少?【例题】2015年的儿童节是星期几?【例题】甲、乙两个天平上放着一定重量的物体,问:哪一个是平衡的?【例题】澳门人口43万,其中40万人居住在半岛上,半岛面积7平方千米,求半岛上平均每平方千米有多少万人?(取两位小数) 【例题】火树银花楼七层,层层红灯倍加增,共有红灯三八一,试问四层几红灯?【例题】任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?【例题】2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家哥伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?【例题】在大于2015的自然数中,被57除后,商与余数相等的数共有( )个。
2012年第十七届“华罗庚金杯”奥数初赛试卷(小学中低年级组)
2012年第十七届“华罗庚金杯”少年数学邀请赛网上初赛试卷(小学中低年级组)一、选择题(共6小题,每小题3分,满分18分)1.(3分)如图,时钟上的针从(1)转到(2)最少经过了( )A.2小时30分B.2小时45分C.3小时50分D.3小时45分2.(3分)在2012年,1月1日是星期日,并且( )A.1月份有5个星期三,2月份只有4个星期三B.1月份有5个星期三,2月份也有5个星期三C.1月份有4个星期三,2月份也有4个星期三D.1月份有4个星期三,2月份有5个星期三3.(3分)有大小不同的4个数,从中任取3个数相加,所得到的和分别是180、197、208和222.那么,第二小的数所在的和一定不是( )A.180B.197C.208D.2224.(3分)四百米比赛进入冲刺阶段,甲在乙前面30米,丙在丁后面60米,乙在丙前面20米.这时,跑在前面的两位同学相差( )米.A.10B.20C.50D.605.(3分)在如图所示的两位数的加法运算式中,已知A+B+C+D=22,则X+Y=( )A.2B.4C.7D.136.(3分)小明在正方形的边上标出若干个点,每条边上恰有3个,那么所标出的点最少有( )个.A.12B.10C.8D.6二、填空题(共4小题,每小题3分,满分12分)7.(3分)如图,用一条线段把一个周长是30cm的长方形分割成一个正方形和一个小的长方形.如果小长方形的周长是16cm,则原来长方形的面积是 cm2.8.(3分)将10、15、20、30、40和60填入图中的圆圈中,使A,B,C三个小三角形顶点上的3个数的积都相等.那么相等的积最大为 .9.(3分)用3,5,6,18,23这五个数组成一个四则运算式,得到的结果是最小的非零自然数, .(要求列出该算式)10.(3分)里山镇到省城的高速路全长189千米,途径县城.县城离里山镇54千米.早上8:30一辆客车从里山镇开往县城,9:15到达.停留15分钟后开往省城,午前11:00能够到达.另有一辆客车于当日早上9:00从省城径直开往里山镇.每小时行驶60千米.两车相遇时,省城开往里山镇的客车行驶了 分钟.2012年第十七届“华罗庚金杯”少年数学邀请赛网上初赛试卷(小学中低年级组)参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)如图,时钟上的针从(1)转到(2)最少经过了( )A.2小时30分B.2小时45分C.3小时50分D.3小时45分【分析】先分别得到时钟上的表针的两个时刻,再用结束的时刻﹣开始的时刻即为中间的时间.【解答】解:表针(1)的时刻是0时45分,表针(2)的时刻是3时30分,最少经过的时间为:3时30分﹣0时45分=2小时45分.答:时钟上的秒针从(1)转到(2)最少经过了2小时45分.故选:B.2.(3分)在2012年,1月1日是星期日,并且( )A.1月份有5个星期三,2月份只有4个星期三B.1月份有5个星期三,2月份也有5个星期三C.1月份有4个星期三,2月份也有4个星期三D.1月份有4个星期三,2月份有5个星期三【分析】先分别推算出2012年1月,2012年2月的天数,然后用经过的天数除以7,求出一共是几周,还余几天,然后根据余数判断.【解答】解:因为2012年1月有31天,2月有29天,31÷7=4(星期)…3(天),29÷7=4(星期)…1(天),所以1月份有4个星期三,2月份有5个星期三.故选:D.3.(3分)有大小不同的4个数,从中任取3个数相加,所得到的和分别是180、197、208和222.那么,第二小的数所在的和一定不是( )A.180B.197C.208D.222【分析】设这四个不同的数分别为a,b,c,d.由题意可知,(a+b+c)+(a+c+d)+(b+c+d)+(a+b+d)=3(a+b+c+d)=180+197+208+222=807,则a+b+c+d=269.由此能求出第二小的数不在的和是哪个.【解答】解:设这四个不同的数分别为a,b,c,d.则(a+b+c)+(a+c+d)+(b+c+d)+(a+b+d)=3(a+b+c+d),=180+197+208+222,=807;所以,a+b+c+d=807÷3=269.因此最小数应为:269﹣222=47,第二小的数为:269﹣208=61.即第二小的数所在的和一定不是208.故选:C.4.(3分)四百米比赛进入冲刺阶段,甲在乙前面30米,丙在丁后面60米,乙在丙前面20米.这时,跑在前面的两位同学相差( )米.A.10B.20C.50D.60【分析】根据题意画出线段图如下:跑在前面的两位同学是丁和甲,相差60﹣20﹣30=10米.【解答】解:由分析得出:跑在前面的两位同学是丁和甲,相差60﹣20﹣30=10(米).答:跑在前面的两位同学相差10米;故选:A.5.(3分)在如图所示的两位数的加法运算式中,已知A+B+C+D=22,则X+Y=( )A.2B.4C.7D.13【分析】根据和的个位数字是9可得:B+D=9,则A+C=22﹣9=13,所以可得x=1,y=3,据此即可求出x+y的值.【解答】解:根据题干分析可得:B+D=9,则A+C=22﹣9=13,所以可得x=1,y=3,则x+y=1+3=4.故选:B.6.(3分)小明在正方形的边上标出若干个点,每条边上恰有3个,那么所标出的点最少有( )个.A.12B.10C.8D.6【分析】要使每条边上所标出的点最少,则正方形的四个顶点处都要标点,由此利用正方形的四周点数=每边点数×4﹣4即可求出最少标出的点数.【解答】解:3×4﹣4,=12﹣4,=8(个),答:标出的点最少有8个.故选:C.二、填空题(共4小题,每小题3分,满分12分)7.(3分)如图,用一条线段把一个周长是30cm的长方形分割成一个正方形和一个小的长方形.如果小长方形的周长是16cm,则原来长方形的面积是 56 cm2.【分析】由大长方形到小长方形周长减少了:30﹣16=14(厘米),相当于减少了两条正方形的边长,所以正方形的边长是:14÷2=7(厘米),也就是原来长方形的宽是7厘米;那么原来长方形的长为:16÷2﹣7+7=8(厘米),面积是:8×7=56cm2.【解答】解:根据分析可得,30﹣16=14(厘米),正方形的边长:14÷2=7(厘米),原来长方形长:16÷2﹣7+7=8(厘米),面积:8×7=56(平方厘米);答:原来长方形的面积是56cm2.故答案为:56.8.(3分)将10、15、20、30、40和60填入图中的圆圈中,使A,B,C三个小三角形顶点上的3个数的积都相等.那么相等的积最大为 18000 .【分析】设A,B,C三个小三角形顶点上的3个数的积是S,那么中间3个数被计算了两次,设这三个数的积是d,则(10×15×20×30×40×60)×d=S3,把每个因数分解质因数即29×56×33×d=S3,由于29、56、33都是立方数,所以d也应是立方数,由于要使积d最大,必须有60这个因数,60=22×3×5,要使d是立方数,还需要1个2、2个3、2个5,即2×32×52=15×30,由此,可知d=60×15×30,经过调整可得A,B,C三个小三角形顶点上的3个数的积是:60×20×15=60×30×10=15×30×40=18000;据此解答.【解答】解:根据分析可得,设A,B,C三个小三角形顶点上的3个数的积是S,那么中间3个数被计算了两次,设这三个数的积是d,则(10×15×20×30×40×60)×d=S3,29×56×33×d=S3,由于29、56、33都是立方数,所以d也应是立方数,由于要使积d最大,必须有60这个因数,60=22×3×5,要使d是立方数,还需要1个2、2个3、2个5,即2×32×52=15×30,由此,可知d=60×15×30,经过调整可得A,B,C三个小三角形顶点上的3个数的积是:60×20×15=60×30×10=15×30×40=18000;.9.(3分)用3,5,6,18,23这五个数组成一个四则运算式,得到的结果是最小的非零自然数, 23﹣18+5﹣6﹣3或(23﹣3)÷5﹣18÷6 .(要求列出该算式)【分析】最小的非零自然数是1,看能否算出1,转化为跟算24类似的问题;化繁为简,先用最大的二个数相减:23﹣18=5;进一步转化为3,5,6,5四个数要算出来是1即可.【解答】解:由分析可得:23﹣18+5﹣6﹣3=1;或:(23﹣3)÷5﹣18÷6=1.故答案为:23﹣18+5﹣6﹣3或(23﹣3)÷5﹣18÷6.10.(3分)里山镇到省城的高速路全长189千米,途径县城.县城离里山镇54千米.早上8:30一辆客车从里山镇开往县城,9:15到达.停留15分钟后开往省城,午前11:00能够到达.另有一辆客车于当日早上9:00从省城径直开往里山镇.每小时行驶60千米.两车相遇时,省城开往里山镇的客车行驶了 72 分钟.【分析】先求出从8:30到9:15,客车行驶的时间,依据速度=路程÷时间,求出客车从里山镇到县城时的速度,再求出客车从县城出发时,以及到达省城时的时间,依据速度=路程÷时间,求出此时客车的速度;客车9:15到达.停留15分钟后开往省城,相当于客车是从9:30分开车,根据路程=速度×时间,求出另一辆客车30分钟行驶的路程,再求出两车共同行驶的路程,最后根据时间=路程÷速度,求出两车的相遇时间,再加30分钟即可解答.【解答】解:9:15+15分钟=9:30,11:00﹣9:30=1.5小时,30分钟=0.5小时,(189﹣54)÷1.5,=135÷1.5,=90(千米),189﹣54﹣60×0.5,=189﹣54﹣30,=135﹣30,=105(千米),105÷(60+90),=105÷150,=0.7(小时)=42(分钟),42+30=72分钟,答:省城开往里山镇的客车行驶了72分钟,故应填:72.11。
第十七届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组笔试)
2012年第十七届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组笔试)一、选择题(每小题3分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1.(3分)计算:[(0.8)×24+6.6]﹣7.6=()A.30 B.40 C.50 D.602.(3分)以平面上4个点为端点连接线段,形成的图形中最多可以有〔〕个三角形.A.3 B.4 C.6 D.83.(3分)一个奇怪的动物庄园里住着猫和狗,狗比猫多180只.有20%的狗错认为自己是猫;有20%的猫错认为自己是狗.在所有的猫和狗中,有32%认为自己是猫,那么狗有()只.A.240 B.248 C.420 D.8424.(3分)图中的方格纸中有五个编号为1,2,3,4,5的小正方形,将其中的两个涂上阴影,与图中阴影部分正好组成正方体的展开图,这两个正方形的编号可以是()A.1,2 B.2,3 C.3,4 D.4,55.(3分)在图所示的算式中,每个字母代表一个非零数字,不同的字母代表不同的数字,则和的最小值是()A.369 B.396 C.459 D.5496.(3分)如图由相同的正方形和相同的等腰直角三角形构成,则正方形的个数为()A.83 B.79 C.72 D.65二、填空题(每小题3分,满分12分)7.(3分)如图的计数器三个档上各有10个算珠,将每档算珠分成上下两部分,得到两个三位数.要求上面部分是各位数字互不相同的三位数,且是下面三位数的倍数,则上面部分的三位数是.8.(3分)四支排球队进行单循环比赛,即每两队都要赛一场,且只赛一场.如果一场比赛的比分是3:0或3:1.则胜队得3分,负队得0分;如果比分是3:2,则胜队得2分,负队得1分.比赛的结果各队得分恰好是四个连续的自然数,则笫一名的得分是分.9.(3分)甲、乙两车分别从A、B两地同吋出发,且在A、B两地往返来回匀速行驶.若两车笫一次相遇后,甲车继续行驶4小吋到达B,而乙车只行驶了1小吋就到达A,则两车笫15次(在A,B两地相遇次数不计)相遇吋,它们行驶了小吋.10.(3分)正方形ABCD的面积为9平方厘米,正方形EFGH的面积为64平方厘米.如图所示,边BC落在EH上.已知三角形ACG的面积为6.75平方厘米,则三角形ABE的面积为平方厘米.2012年第十七届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组笔试)参考答案与试题解析一、选择题(每小题3分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1.(3分)计算:[(0.8)×24+6.6]﹣7.6=()A.30 B.40 C.50 D.60【分析】先算小括号内的,再算中括号内的乘法,然后算中括号内的加法,最后算括号外的除法和减法.【解答】解:[(0.8)×24+6.6]﹣7.6=[(0.8+0.2)×24+6.6]﹣7.6=[1×24+6.6]﹣7.6=30.6﹣7.6=30.6×﹣7.6=47.6﹣7.6=40.故选:B.2.(3分)以平面上4个点为端点连接线段,形成的图形中最多可以有〔〕个三角形.A.3 B.4 C.6 D.8【分析】如下图:4个小的三角形,再就是由两个三角形组成的大三角形,有4个,所以一共有8个,据此解答.【解答】解:4+4=8(个)故选:D.3.(3分)一个奇怪的动物庄园里住着猫和狗,狗比猫多180只.有20%的狗错认为自己是猫;有20%的猫错认为自己是狗.在所有的猫和狗中,有32%认为自己是猫,那么狗有()只.A.240 B.248 C.420 D.842【分析】仔细分析题目,发现本题其实是一个简单的浓度问题:有20%的狗认为自己是猫,由“有20%的猫认为它们是狗”,那么有80%的猫认为自己是猫,而将猫和狗混合在一起,所有的猫和狗中,有32%的认为自己是猫.那么根据浓度问题,狗和猫的数量之比是:(80%﹣32%):(32%﹣20%)=4:1,而狗比猫多180只,所以狗的数量为:180÷(4﹣1)×4,解决问题.【解答】解:狗和猫的数量之比是:(1﹣20%﹣32%):(32%﹣20%),=48%:12%,=4:1;狗的数目为:180÷(4﹣1)×4,=180÷3×4,=60×4,=240(只);答:狗的数目是240只.故选:A.4.(3分)图中的方格纸中有五个编号为1,2,3,4,5的小正方形,将其中的两个涂上阴影,与图中阴影部分正好组成正方体的展开图,这两个正方形的编号可以是()A.1,2 B.2,3 C.3,4 D.4,5【分析】根据正方体展开图的11种特征,只有把4、5或3、5阴影,才能与已涂阴影的4个正方形组成正方体展开图的“1﹣3﹣2”结构.【解答】解:如图,故选:D.5.(3分)在图所示的算式中,每个字母代表一个非零数字,不同的字母代表不同的数字,则和的最小值是()A.369 B.396 C.459 D.549【分析】根据题干,和的最高位最小是3,若H=3,则A和D分别是1和2,则剩下的数字是4、5、6、7、8、9,个位与十位的数字怎么排,都会发生进位,则H不能是3,那么H只能最小是4,A和D还是1和2,则剩下的数字是3、5、6、7、8、9,明显可知相加时十位要向前一位进1,又因为每个数字表示的数字不同,所以经过计算实验可得:73+86=59,即本题和最小是173+286=459,据此即可选择.【解答】解:根据题干分析可得:答:和的最小值是459.故选:C.6.(3分)如图由相同的正方形和相同的等腰直角三角形构成,则正方形的个数为()A.83 B.79 C.72 D.65【分析】因为所有的正方形都是斜着的,所以先数边长为1的正方形有2+4+6+8+8+6+4+2=40;边长为2的正方形有1+3+5+7+5+3+1=25个,边长为3的正方形有2+4+4=2=12个,边长为4的正方形有1+3+1=5个,还有一个大正方形,据此解答.【解答】解:边长为1的正方形有2+4+6+8+8+6+4+2=40;边长为2的正方形有1+3+5+7+5+3+1=25个,边长为3的正方形有2+4+4+2=12个,边长为4的正方形有1+3+1=5个,还有一个大正方形;共有:40+25+12+5+1=83个.故选:A.二、填空题(每小题3分,满分12分)7.(3分)如图的计数器三个档上各有10个算珠,将每档算珠分成上下两部分,得到两个三位数.要求上面部分是各位数字互不相同的三位数,且是下面三位数的倍数,则上面部分的三位数是925 .【分析】因为上面三位数是下面三位数的倍数,假设下面三位数为abc,则上面三位数表示为k•abc.计数器三个档上各有10个算珠,所以上下两数之和为(k|1)abc=|00×10|10×10|1×10=1110,把1110分解质因数:1110=2×3×5×37,因为上面的各位数字互不相同,所以下面的数可以是5×37﹣185,上面的数是185×(2×3﹣1)=925.【解答】解:设下面三位数为abc,则上面三位数表示为k•abc.上下两数之和为(k|1)abc=|00×10|10×10|1×10=1110,1110=2×3×5×37,因为上面的各位数字互不相同,所以下面的数可以是5×37﹣185,上面的数是185×(2×3﹣1)=925.故答案为:925.8.(3分)四支排球队进行单循环比赛,即每两队都要赛一场,且只赛一场.如果一场比赛的比分是3:0或3:1.则胜队得3分,负队得0分;如果比分是3:2,则胜队得2分,负队得1分.比赛的结果各队得分恰好是四个连续的自然数,则笫一名的得分是 6 分.【分析】根据握手问题可知:四支队单循环赛,共有6场比赛,无论每场的结果如何,每场的得分之和是3分;那么总得分是:3×6=18(分),把18分解成3个连线的自然数的和即可求解.【解答】解:一个赛:4×(4﹣1)÷2=6(场);总分:6×3=18(分)3+4+5+6=18,所以最高的6分.答:笫一名的得分是6分.故答案为:6.9.(3分)甲、乙两车分别从A、B两地同吋出发,且在A、B两地往返来回匀速行驶.若两车笫一次相遇后,甲车继续行驶4小吋到达B,而乙车只行驶了1小吋就到达A,则两车笫15次(在A,B两地相遇次数不计)相遇吋,它们行驶了86 小吋.【分析】设两车出发t小时相遇,甲的速度是v1,乙的速度是v2,由题意得:4v1=tv2,(t+4)v1=(t+1)v2,解得t=2.所以跑完全程甲要6小时,乙要3小时,巧的是甲跑完一趟,乙就跑完整个来回,所以A、B两地相遇次数不计时,6小时就相遇一次,相向出发2小时候相遇,同向出发4小时相遇,第15趟是相向出发,6×14+2=86(小时).【解答】解:设两车出发t小时相遇,甲的速度为v1,乙的速度为v2,则:4v1=tv2,(t+4)v1=(t+1)v2,解得t=2.所以跑完全程甲要6小时,乙要3小时,A、B两地相遇次数不计时,6小时就相遇一次,相向出发2小时候相遇,同向出发4小时相遇,第15趟是相向出发,则两车笫15次相遇吋,它们行驶了:6×(15﹣1)+2=6×14+2=84+2=86(小时)答:两车笫15次相遇吋,它们行驶了86小吋.故答案为:86.10.(3分)正方形ABCD的面积为9平方厘米,正方形EFGH的面积为64平方厘米.如图所示,边BC落在EH上.已知三角形ACG的面积为6.75平方厘米,则三角形ABE的面积为 2.25 平方厘米.【分析】延长AB与FG交于M,如图所示,设正方形ABCD的面积求出边长a,EB=b,CH=c,用CH+BC表示出BH,即为MG,由三角形ABC的面积+直角梯形BCGM的面积﹣三角形AMG的面积=三角形ACG的面积,分别利用梯形的面积公式,三角形的面积公式及已知三角形ACG的面积列出关系式,由正方形ABCD的面积为9,求出a2的值为9,整理后将a2的值代入,得到ab的值,即为三角形ABE的面积.【解答】解:延长AB与FG交于点M,如图所示:设正方形ABCD的边长为a厘米,EB=b厘米,CH=c厘米,则AB=BC=a厘米,BM=EH=EB+BC+CH=(a+b+c)厘米,MG=BH=(a+c)厘米,因为S△ACG=S△ABC+S梯形BCGM﹣S△AMG=6.75,所以a2+(a+b+c)(2a+c)﹣(2a+b+c)(a+c)=6.75,整理得:a2+ab=6.75,又正方形ABCD的面积为9平方厘米,即a2=9,所以S△ABE=AB•EB=ab=6.75﹣×9=6.75﹣4.5=2.25(平方厘米).答:三角形ABE的面积为 2.25平方厘米.故答案为:2.25.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:52:34;用户:小学奥数;邮箱:****************;学号:20913800。
第17届“华杯赛”笔试决赛小学高年级组试题B及参考答案
- 1 -
的值为 .
6. 某个水池存有其容量的十八分之一的水. 两条注水管同时向水池注水, 当水池的水量达到 九分之二时, 第一条注水管开始单独向水池注水, 用时 81 分钟 , 所注入的水量等于第二条 注水管已注入水池内的水量. 然后第二条注水管单独向水池注水 49 分钟, 此时, 两条注水 管注入水池的总水量相同 . 之后 , 两条注水管都继续向水池注水 . 那么两条注水管还需要 一起注水 分钟, 方能将水池注满.
-1-
第十七届华罗庚金杯少年数学邀请赛决赛笔试试题 B(小学高年级组)
7. 有 16 位选手参加象棋晋级赛 , 每两人都只赛一盘. 每盘胜者积 1 分, 败者积 0 分. 如果和棋, 每人各积 0.5 分 . 比赛全部结束后 , 积分不少于 10 分者晋 级. 那么本次比赛后最多有 位选手晋级.
8. 平面内有 5 个点 , 其中任意 3 个点均不在同一条直线上, 以这些点为端点连 接线段, 则除这 5 个点外 , 这些线段至少还有 个交点.
三、解答下列各题(每小题 15 分,共 30 分,要求写出详细过程)
13. 请写出所有满足下面三个条件的正整数 a 和 b: 1) a b ; 2) a b 是个三位 数 , 且三个数字从小到大排列等差 ; 3) a b 是一个五位数 , 且五个数字相 同. 14. 记一百个自然数 x, x 1, x 2, , x 99 的和为 a, 如果 a 的数字和等于 50, 则 x 最小为多少?
4. 有高度相同的一段方木和一段圆木, 体积之比是 1:1. 如果将 工成尽可能大的圆柱, 将圆木加工成尽可能大的长方体, 则得 柱体积和长方体的体积的比值为 .
5. 用 [ x] 表示不超过 x 的最大整数, 记 {x} x [ x] , 则算式