哈工大机械设计大作业

合集下载

(完整word版)哈工大机械原理大作业3齿轮传动设计

(完整word版)哈工大机械原理大作业3齿轮传动设计
圆锤齿轮15和16选择为标准齿轮 22, 41,齿顶高系数 =1,径向间隙系数 =0.2,分度圆压力角 =20°(等于啮合角 )。
4、滑移齿轮变速传动中每对齿轮几何尺寸及重合度的计算
4.1滑移齿轮5和齿轮6
序号
项目
代号
计算公式及计算结果
1
齿数
齿轮5
17
齿轮6
39
2
模数
2
3
压力角
20°
4
齿顶高系数
1
5
令 =4
则可得定轴齿轮传动部分的传动比为 = =6.4667
滑移齿轮传动的传动比 = =2.308
= =2.857
定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为
3、齿轮齿数的确定
根据滑移齿轮变速传动系统中对齿轮齿数的要求,选择齿轮5、6为标准齿轮,7、8、9和10为角度变位齿轮。设 17, = 39满足传动比,由于是标准齿轮,可得中心距a=76mm ,h*a=1, =17,因此不会发生根切,开始设计下面的角度变位。
顶隙系数
0.25
6
标准中心距
= ( )/2=56
7
实际中心距
56
8
啮合角
9
变位系数
齿轮5
0
齿轮6
0
10
齿顶高
齿轮5
2mm
齿轮6
2mm
11
齿根高
齿轮5
2.5mm
齿轮6
2.5mm
12
分度圆直径
齿轮5
34mm
齿轮6
78mm
13
齿顶圆直径
齿轮5
38mm
齿轮6
82mm
14
齿根圆直径

哈工大机械设计大作业方案

哈工大机械设计大作业方案

Harbin Institute of Technology机械设计大作业说明书设计题目:轴系部件设计院系:材料科学与工程学院班级:电子封装设计者:姚明山学号:1132920112指导教师:张峰设计时间:2015.12.19目录目录 (1)任务书 (1)1选择轴的材料 (2)2初算轴径 (2)3 结构设计 (2)4轴的受力分析 (5)5校核轴的强度 (7)6校核键连接的强度 (7)7校核轴承的寿命 (8)参考文献 (9)任务书试设计齿轮减速器的输出部件。

已知输出轴功率P=2.7kW,转速n=80r/min,大齿轮齿数z2=81,齿轮模数m=3mm,齿宽B=80mm,小齿轮齿数z1=17,中心距a=150mm,半联轴器轮毂宽L=70mm,载荷平稳,工作环境多尘,三班工作制,使用3年,大批量生产。

12设计要求1. 轴系部件装配图一张(样图见图7.1和图7.2)2. 设计说明书一份,包括输出轴、输出轴上的轴承及键的校核计算1选择轴的材料因传递功率不大,并对重量及结构尺寸无特殊要求,故选用常用材料45钢,调质处理。

MPa 650=B δ,MPa 360=s δ。

2初算轴径对于转轴,按扭转强度初算轴径,查表11.4得C=106~118;考虑轴端弯矩比转矩小,故取C=106,则mm n P C d 26.34807.210633min =⨯==,考虑键槽的影响, 5.29mm 31.0334.26min =⨯=d 。

3 结构设计(1)轴承部件的结构形式为了方便轴承部件的装拆,减速器的机体采用剖分式机构。

因传递的功率小,齿轮减速器效率高、发热小,估计轴不会长,故轴承部件可采用两端固定方式。

(2)联轴器及轴段1轴段1的设计与联轴器的设计同时进行。

考虑成本因素,选用凸缘联轴器。

查表取5.1=A K ,则计算传递转矩m N T K T A ⋅=⨯⨯⨯==483.5807.21055.95.16,查《机械设计课程设计》p159,取3GY5弹性柱销联轴器,公称转矩为m 500N ⋅,许用转速为8000r/min,轴孔直径范围30mm~42mm ,考虑 5.29mm 3min =d ,取d1=38mm 。

哈尔滨工业大学机械制造装备设计大作业

哈尔滨工业大学机械制造装备设计大作业

Harbin Institute of Technology机械制造装备设计大作业题目:无丝杠车床主传动系统设计学院:机电工程学院班级:姓名:学号:©哈尔滨工业大学哈尔滨工业大学机械制造装备设计大作业题目:无丝杠车床主传动系统设计目录一、运动设计 (3)1 确定极限转速 (3)2 确定公比 (3)3 求出主轴转速级数 (3)4 确定结构式 (3)5 绘制转速图 (4)6 绘制传动系统图 (5)7 确定变速组齿轮传动副的齿数 (6)8 校核主轴转速误差 (6)二、动力设计 (7)1 传动轴的直径确定 (7)2 齿轮模数的初步计算 (7)参考文献 (9)设计任务设计题目:无丝杠车床主传动系统设计已知条件:最大加工直径ф400mm,最低转速40r/min,公比φ=1.41,级数Z=11,切削功率N=5.5KW。

设计任务:1.运动设计:确定系统的转速系列;分析比较拟定传动结构方案;确定传动副的传动比和齿轮的齿数;画出传动系统图;计算主轴的实际转速与标准转速的相对误差。

2.动力设计:确定各传动件的计算转速;初定传动轴直径、齿轮模数;选择机床主轴结构尺寸。

一、运动设计1. 确定极限转速已知最低转速为40r/min,公比φ=1.41,参考文献[1]表4-2标准转速系列的本系统转速系列如下:40 57 80 113 160 226 320 453 640 9051280 r/min,则转速的调整范围maxmin 128032 40n nRn===。

2. 确定公比根据设计数据,公比φ=1.41。

3. 求出主轴转速级数Z根据设计数据,转速级数Z=11。

4.确定结构式(1)确定传动组和传动副数由于总级数为11,先按12设计再减掉一组。

共有以下几种方案:12=4×3 12=3×4 12=3×2×2 12=2×3×2 12=2×2×3 根据传动副前多后少原则,以减少传动副结构尺寸选择第三组方案,即: 12=3×2×2(2)确定结构式按前疏后密原则设计结构式中的级比指数,得到:12=31×23×26减掉一组转速为:12=31×23×25对于该结构式中的第二扩大组x 2=5、p 2=2,而因此r 2=φ5×(2-1)=1.415=5.57<8。

哈尔滨工业大学机械设计大作业

哈尔滨工业大学机械设计大作业

哈尔滨工业大学机械设计作业设计计算说明书题目:设计螺旋起重器系别:机械设计制造及其自动化班号:姓名:日期:哈尔滨工业大学机械设计作业任务书题目:设计螺旋起重器设计原始数据:螺旋起重器是一种简单的起重装置,用手推动手柄即可提升重物。

它一般由底座、螺杆、螺母、托杯、手柄、或扳手等零件所组成。

已知数据:起重量:50kN 最大起重高度:150mm。

目录一、设计题目-----------------------------------------------------------------------------------------------------2二、螺母、螺杆选材-------------------------------------------------------------------------------------------2三、螺杆、螺母设计计算3.1 耐磨性计算-----------------------------------------------------------------------------------------------2 3.2 螺杆强度校核--------------------------------------------------------------------------------------------3 3.3 螺纹牙强度校核-----------------------------------------------------------------------------------------3 3.4 螺纹副自锁条件校核----------------------------------------------------------------------------------43.5 螺杆稳定性校核-----------------------------------------------------------------------------------------4四、螺母外径及凸缘设计------------------------------------------------------------------------------------5五、手柄设计----------------------------------------------------------------------------------------------------5六、底座设计----------------------------------------------------------------------------------------------------6七、其余各部分尺寸及参数---------------------------------------------------------------------------------7八、参考资料-----------------------------------------------------------------------------------------------------8一、 设计题目螺旋起重器(千斤顶)已知条件:起重量F Q =50KN ,最大起重高度H=150mm 。

哈工大机械设计大作业

哈工大机械设计大作业

哈尔滨工业大学机械设计作业设计计算说明书题目: 轴系部件设计系别: 英才学院班号: 1436005姓名: 刘璐日期: 2016.11.12哈尔滨工业大学机械设计作业任务书题目:轴系部件设计设计原始数据:图1表1 带式运输机中V带传动的已知数据机器工作平稳、单向回转、成批生产目录一、带轮及齿轮数据 (1)二、选择轴的材料 (1)三、初算轴径d min (1)四、结构设计 (2)1.................................................................................................. 确定轴承部件机体的结构形式及主要尺寸 . (2)2.确定轴的轴向固定方式................. 错误!未定义书签3.选择滚动轴承类型,并确定润滑、密封方式........ 错误!未定义书签4.轴的结构设计..................... 错误!未定义书签五、轴的受力分析 (4)1.画轴的受力简图 (4)2.计算支承反力 (4)3.画弯矩图 (5)4.画扭矩图 (5)六、校核轴的强度 (5)七、校核键连接的强度 (7)八、校核轴承寿命 (8)1.计算轴承的轴向力 (8)2.计算当量动载荷 (8)3.校核轴承寿命 (8)九、绘制轴系部件装配图(图纸) (9)十、参考文献 (9)一、带轮及齿轮数据已知带传动输出轴功率P = 3.84 kW,转矩T = 97333.33 N mm,转速n = 480 r/min, 轴上压力Q = 705.23 N,因为原本圆柱直齿轮的尺寸不满足强度校核,故修改齿轮尺寸为分度圆直径d i =96.000 mm,其余尺寸齿宽b i = 35 mm,螺旋角B= 0°圆周力F t = 2433.33 N,径向力F r = 885.66 N,法向力F n = 2589.50 N,载荷变动小,单向转动。

哈工大《机械机构创新设计及应用》大作业.

哈工大《机械机构创新设计及应用》大作业.

哈工大《机械机构创新设计及应用》大作业.《机械机构创新设计及应用》大作业(2014年春季学期)大作业一题目:两个齿条机构串联组合的位移机构原理及结构设计1 大作业二题目:柔性铰链及其应用姓名崔晓蒙学号1110811005班级1108110班专业机械设计制造及其自动化报告提交日期2014.6.11哈尔滨工业大学机电工程学院大作业要求1.完成课堂布置的2道大作业题,拒绝雷同和抄袭,否则均为零分;2.大作业最好包含自己的体会等;3.大作业统一用该模板撰写,字数不限,表达清晰完整即可;4.正文格式:小四号字体,行距为1.25倍行距;5.用A4纸双面打印(节约用纸);左侧装订,1枚钉;6.大作业需同时提交打印稿和电子文档予以存档,电子文档由班长收齐(缺电子文档得零分),统一发送至:********************.cn;7.此页不得删除。

评语:教师签名:年月日题目一设计题目5——两个齿条机构串联组合的位移机构原理及结构设计1 (2人)1设计要求1) 两个齿条串联的位移机构如图1所示1、2-齿条r1'、r2'—双联齿轮的节圆半径S1、S2—位移量图1 两个齿条串联的位移机构原理图说明:图1中,气缸活塞推动齿条1运动,双联齿轮位置不变2) 齿条2需产生不小于1000N的推力3) 运动的最大速度0.1m/s4) 往复运动行程±300mm2需完成工作1) 论述其原理,给出上齿条(齿条2)的位移S2与气缸位移为S1之间的关系。

2) 给出大致的结构设计(必须给出齿条的支承、导向、齿轮的支承,气缸不需要设计)1.该机构的工作原理及应用场合1.1结构分析由结构简图分析可知,这种两个齿条机构串联组合的位移机构由两个齿条及其对应的导轨,节圆半径分别为r 1'、r 2'的双联齿轮及其固定轴和一个气缸组合而成。

气缸是它的动力源,最终所需要的运动或者动力由上面的齿条2输出,所以它属于执行件,而中间固定的齿轮则属于传动件。

哈工大机械设计大作业4

哈工大机械设计大作业4
式中: , -----齿轮齿数;
由参考文献【2】图6.22查得
7、许用弯曲应力的确定
式中: ----计入了齿根应力修正系数之后,试验齿轮的齿根弯曲疲劳极限应力;该齿轮为单向受载,查参考文献【2】图6.29可得, , ;
------安全系数;与疲劳点蚀相比,断齿的后果要严重一些。所以,此处取 ;
-------齿根弯曲疲劳强度计算得寿命系数,可由下式计算:
式中: ----应力循环基数,与疲劳曲线指数 、材料有关;
-----所设计齿轮的应力循环次数,由下式确定:
式中: ------齿轮转速,r/min;
------齿轮转一周,同一侧齿面啮合的次数;
---齿轮的工作寿命,h(小时)。
计算得:
查参考文献【2】图6.32得: 。
故可计算得许用弯曲应力:
所以:
80
1.0
0.9604
卷筒轴
2.629
3.138
80
二、选择齿轮材料、热处理方式和精度等级
带式输送机为一般机械,且要求成批生产,故毛坯需选用模锻工艺,起模斜度为1:10。
由参考文献【2】表6.2查得:对于一般机械,且低速运转,大小齿轮均选用45钢,采用软齿面。小齿轮调质热处理,硬度为217~255HBW,平均硬度236HBW;大齿轮为正火热处理,硬度为162~217HBW,平均硬度190HBW,并选用8级精度。
三、初步计算传动主要尺寸
因为齿轮采用硬齿面开式传动,开式齿轮传动的主要失效形式是齿面磨损,因此初步确定按齿根弯曲疲劳强度设计齿轮传动主要参数和尺寸。齿根弯曲疲劳强度设计公式:
式中各参数为:
(1)、小齿轮传递的扭矩
由运动学计算得:
(2)、载荷系数 的确定

哈工大机械设计-大作业5

哈工大机械设计-大作业5

哈尔滨工业大学机械设计作业设计计算说明书题目_轴系部件设计_____系别___能源学院________班号____0902103________姓名____ _______指导教师___________日期_2011年12月5日__目录机械设计作业任务书 (3)1选择材料,确定许用应力 (4)2按扭转强度估算轴径 (4)3设计轴的结构 (4)4轴的受力分析 (6)4.1画轴的受力简图 (6)4.2计算支承反力 (6)4.3画弯矩图 (7)4.4画转矩图 (7)5校核轴的强度 (8)6轴的安全系数校核计算 (9)7校核键连接的强度 (10)8校核轴承的寿命 (11)8.1计算当量动载荷 (11)8.2校核寿命 (12)9轴上其他零件设计 (12)10轴承座结构设计 (12)11轴承端盖(透盖) (13)12参考文献 (13)哈尔滨工业大学机械设计作业任务书题目 ___轴系部件设计____设计原始数据:传动方案如图5.1图5.11选择材料,确定许用应力通过已知条件和查阅相关的设计手册得知,该传动机所传递的功率属于中小型功率。

因此轴所承受的扭矩不大。

故选45号钢,并进行调质处理。

2按扭转强度估算轴径对于转轴,按扭转强度初算直径:min d ≥ 其中2P ——轴传递的功率,0130.95 2.85m P P kW η=⨯=⨯= m n ——轴的转速,r/minC ——由许用扭转剪应力确定的系数。

查表10.2得C=106~118,考虑轴端弯矩比转矩小,取C=106。

min d mm ∴≥ 由于考虑到轴的最小直径处要安装大带轮,会有键槽存在,故将其扩大5%,得22.6474k d mm ≥,按标准GB2822-81的10R 圆整后取125d mm =。

3设计轴的结构由于本设计中的轴需要安装带轮、齿轮、轴承等不同的零件,并且各处受力不同,因此,设计成阶梯轴形式,共分为七段。

以下是轴段的草图:轴段⑦轴段⑥轴段⑤ 轴段④ 轴段③ 轴段②轴段①3L 2L 1L3.1 阶梯轴各部分直径的确定1) 轴段1和轴段7轴段1和轴段7分别安放大带轮和小齿轮,所以其长度由带轮和齿轮轮毂长度确定,而直径由初算的最小直径得到。

哈工大机械设计大作业5轴系部件设计

哈工大机械设计大作业5轴系部件设计

哈工大机械设计大作业5轴系部件设计哈工大机械设计大作业5轴系部件设计Harbin Institute of Technology 机械设计大作业说明书设计题目:轴系部件设计院系:班级:设计者:学号:指导教师:设计时间:目录一、设计任务书1 二、选择轴的材料2 三、初算轴径2 四、结构设计2 五、轴的受力分析4 六、校核轴的强度5 七、校核键连接的强度6 八、校核轴承的寿命7 九、轴上其他零件设计8 十、参考文献8 1、设计任务书任务书: 设计带式运输机中的齿轮传动高速轴的轴系部件带式运输机的传动方案如图1所示,机器工作平稳,单向回转,成批生产,原始数据见表1。

图 1 带式运输机传动方案表 1 带式运输机原始数据方案电动机工作功率(KW)电动机满载转速工作机的转速第一级传动比轴承座中心高H(mm)最短工作年限L 工作环境5.1.3 3 960 110 2 180 5年2班室外,有尘2、选择轴的材料因传递功率不大,且单向转动、无冲击,一般机械使用,对质量结构无特殊要求,所以选45钢,调质处理。

3、初算轴径对于转轴,按扭转强度初算轴径,查参考文献[1]表9.4得,弯矩较大故取转速功率则考虑到轴端有一个键槽,轴径加大5%,则4、结构设计 1. 轴承部件的结构型式箱体内无传动件,不需经常拆卸,箱体采用整体式。

由轴的功能决定,该轴至少应具有带轮、齿轮的安装段,两个轴承的安装段以及两个轴承对外的密封段,共7段尺寸。

由于没有轴向力的存在,且载荷、转速较低,选用深沟球轴承,传递功率小,转速不高,发热小,轴承采用两端固定式。

轴低速旋转,且两轴承间无传动件,所以采用脂润滑、毛毡圈密封。

确定轴的草图如图1所示:图2 轴的草图2. 轴的伸出端(轴段1、7)由最小直径得由带轮和齿轮设计结构确定周向连接用A型普通平键,分别为,,GB/T 1096-2003 3. 轴段2、6 由参考文献[1]图9.8得得所以取 4. 轴段3、5 由参考文献[1]图9.8得得取由参考文献[2]表12.1初选轴承6207,查得、、,所以取5. 箱体与其他尺寸由参考文献[4]经验公式得跨距取,并取由于箱体内无润滑油(无传动件),可取小值,;选用整体式箱体,轴承盖凸缘厚为10mm;用M8螺栓连接轴承盖和箱体,为使螺栓头不与齿轮和带轮相碰,且因箱内无传动件箱体几乎不拆卸,K取小值,K=5mm。

哈工大机械设计_大作业_V带传动设计 (1)

哈工大机械设计_大作业_V带传动设计 (1)

H a r b i n I n s t i t u t e o f T e c h n o l o g y机械设计大作业题目:V带设计院系:能源科学与工程学院班级:1202104姓名:刘翼学号:1120200623指导教师:张锋©哈尔滨工业大学目录一 任务书 (1)二 选择电动机 (2)三 确定设计功率d P (2)四 选择带的型号 (2)五 确定带轮的基准直12d d d d 和 (2)六 验算带的速度 (3)七 确定中心距a 和V 带基准长d L (3)八 计算小轮包1 (3)九 确定 V 带Z (3)十 确定初拉0F (4)十一 计算作用在轴上的压Q (5)十二 带轮结构计 (5)十三 参考文献 (6)一哈尔滨工业大学 机械设计作业任务书题目:带式运输机结构简图见下图:原始数据如下:机器工作平稳,单向回转,成批生产方案 d P (KW ) (/min)m n r(/min)w n r1i轴承座中心高H (mm )最短工作 年限L 工作环境 5.1.42.2940802.11605年2班室内、清洁二 选择电动机 由方案图表中的数据要求,查参考文献[2]表15.1 Y 系列三相异步电动机的型号及相关数据选择可选择Y112M-6。

可查得轴径为28mm,长为60mm. 三 确定设计功率d P设计功率是根据需要传递的名义功率、载荷性质、原动机类型和每天连续工作的时间长短等因素共同确定的,表达式如下:d A m P K P =式中 m P ——需要传递的名义功率A K ——工作情况系数,按表2工作情况系数A K 选取A K =1.2;已知设计功率为2.2KW 。

四 选择带的型号查看教材图7.11可选取A 型带。

五 确定带轮的基准直径12d d d d 和查表3. V 带带轮最小基准直径min d d 知A 型带min d d =75mm,又由教材表7.3选取小带轮基准直径:mm d d 1251=;大带轮基准直径:mm d i d d d 5.2621251.212=⨯=⋅= 查教材表7.3选取大带轮基准直径mm d d 2502=;其传动比误差%50476.0%1001.21252501.2<=⨯-=∆i 故可用。

机械装备设计大作业-哈尔滨工业大学

机械装备设计大作业-哈尔滨工业大学
Harbin Institute of Technology
课程大作业说明书
课程名称:机械制造装备设计
设计题目:无丝杠车床主传动系统设计
院系:
班级:
设计者:
学号:
指导教师:
设计时间:2014.5.10
哈尔滨工业大学
题目:无丝杠车床主传动系统运动和动力设计
设计要求:
序号
机床主参数
公比φ
最低转速
级数Z
功率(kW)
2、 齿轮模数的初步计算
(1)齿轮计算转速的确定
只需计算变速组内最小的也是强度最弱的齿轮即可。
a变速组内最小齿轮齿数是z=24,I轴只有一个转速630r/min,取为计算转速
b变速组内最小齿轮齿数是z=23,该齿轮的计算转速为315r/min。
c变速组内的最小齿轮齿数是z=20,该齿轮的计算转速为112r/min。
由参考文献【1】表5-2中所述, 。
(2)各个传动轴的计算转速
由转速图可以得到I、II、III轴的计算转速分别为630,315,112r/min。
(3)各传动轴直径
I轴:

II轴:

III轴:

(4)主轴轴颈尺寸的确定
根据题目要求,最大加工直径ф320mm,根据参考文献【1】中表6-9可得,主轴前轴轴颈范围为6595mm,取 ,后轴颈直径 ,取 。
[2]王黎钦陈铁鸣.机械设计.哈尔滨工业大学出版社,2008.8.
最后可以确定电动机轴(0轴)与I轴之间的传动比,采用带传动,传动比为 。
根据以上计算,绘制转速图如下:
图1 转速图
6、绘制传动系统图
图2 传动系统图
7、确定变速组齿轮传动副的齿数

哈工大机械设计基础大作业一

哈工大机械设计基础大作业一

大作业计算说明书题目:平面连杆机构设计学院:英才学院班号:1236405班学号:**********姓名:***日期:2014年9月27日哈尔滨工业大学大作业任务书题目:平面连杆机构设计设计原始数据及要求:l为70mm,摆角ψ为35°,摇杆行程速比系设计一曲柄摇杆机构。

已知摇杆长度3∠,值数K为1.2,摇杆CD靠近曲柄回转中心A一侧的极限位置与机架间的夹角为CDA为50°,试用图解法设计其余三杆的长度,并检验(测量或计算)机构的最小传动角γ。

目录1.设计原始数据及要求 (1)2.设计过程 (1)2.1计算极位夹角θ2.2绘制机架位置线及摇杆的两个极限位置2.3确定曲柄回转中心2.4确定各赶长度2.5验算最小传动角γ3.参考文献 (2)1. 设计原始数据及要求设计一曲柄摇杆机构。

已知摇杆长度3l 为70mm ,摆角ψ 为35°,摇杆行程速比系数K 为1.2,摇杆CD 靠近曲柄回转中心A 一侧的极限位置与机架间的夹角为CDA ∠ ,值为50°,试用图解法[1]设计其余三杆的长度,并检验(测量或计算)机构的最小传动角γ 。

2.设计过程2.1计算极位夹角θ 1 1.2118018016.361 1.21K K θ--=︒=︒⨯=︒++ 式中,θ ——极位夹角;K ——摇杆行程速比系数。

2.2绘制机架位置线及摇杆的两个极限位置平面上任取一点D ,作一水平线AD 作为机架位置线,由∠CDA=50°和50ψ=︒ 确定CD 杆的两个极限位置。

并作CD=70mm 。

如图1所示:2.3确定曲柄回转中心曲柄的回转中心必在A ,C1,C2所在的圆上,只要确定该圆即可作出A 的位置。

由16.36θ=︒ 得出12C C 所对圆心角为∠C 1OC 2=32.72°,则∠OC 1C2=∠OC 2C 1=73.64°,作出该两角,即可确定圆心O 的位置。

作出圆O ,与机架位置线的左侧交点即为A 。

哈工大机械设计大作业2——螺旋起重器

哈工大机械设计大作业2——螺旋起重器

螺旋起重器设计一、 螺旋起重器〔千斤顶〕简介螺旋起重器是一种简单的起重装置,用手鞭策手柄即可升起重物。

它一般由底座、螺杆、螺母、托杯、手柄或扳手等零件所组成。

二、 螺旋起重器〔千斤顶〕布局与功能螺旋起重器布局示意图如右图所示。

零件1为托杯,当千斤顶承受重载时,由1直接托住重物。

螺母5与螺杆7组成螺旋副,同时,螺母5又与底座8固定联接,当动弹手柄4时,托杯便会随着螺杆而上下移动,从而将重物托起。

紧定螺钉6主要是为了提高了联接可靠性。

三、 设计标题问题设计起重量F = 50 000 N,最大起重高度H=150 mm 的螺旋起重器〔千斤顶〕。

四、 标题问题解答螺杆、螺母材料螺杆采用45钢调质,抗拉强度σb =600Mpa , σs =355Mpa 。

由于速度较低,螺母材料用铝青铜ZCuAll0Fe3。

2. 耐磨性计算按耐磨性性条件设计螺纹中径d 2,对于梯形螺纹,8.02≥d ][ψp F 螺杆选用45钢,螺母用铝青铜ZCuAll0Fe3,由参考文献[3]表 5.8 查得[]p =18~25MPa ,从表5.8注释中可以查得,人力驱动可提高约20%,则[]p =21.6 ~30MPa ,取[]p =25MPa 。

由参考文献[3]查得,对于整体式螺母系数ψ=1.2~1.5,取ψ=2。

则代入数据,得8.02≥d ][ ψp F ⨯=8.0√50 0002×25 =25.3 mm 式中:F ──螺杆所受轴向载荷, N ;2d ──螺纹中径,mm ;[ p ]─—螺旋副材料的许用压力,MPa 。

查参考文献[4]表 11.5 取公称直径d =32 mm,螺距P =3 mm,中径2d mm, 小径d 3〔d 1〕=28. 5 mm,内螺纹大径D 4 mm 。

3. 螺杆强度校核螺杆危险截面的强度条件为:σe =√(4F πd12)2+3(16T1πd13)2 ≤ [σe ]式中:F ──螺杆所受轴向载荷,F =50 000 N ;d 3〔d 1〕──螺纹小径,mm d 3〔d 1〕=28. 5 mm ;T 1──螺纹副摩擦力矩,T 1=F tan (φ+ρ’ )2d 2, ψ为螺纹升角,ψ=arctan npπ2d =arctan 1×3π×30.5=42°;[σe ]——螺杆材料的许用应力, MPa查参考文献[1]表 5.10 .得钢对青铜的当量摩擦因数 f ’~,取f ’= 0.09,螺纹副当量摩擦角ρ’ = arctan f ’ = = °。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工业大学机械设计作业设计计算说明书题目: 轴系部件设计系别: 英才学院班号: 1436005: 璐日期: 2016.11.12工业大学机械设计作业任务书题目: 轴系部件设计设计原始数据:图1表 1 带式运输机中V 带传动的已知数据方案 d P (KW )(/min)m n r (/min)w n r 1i 轴承座中 心高H (mm ) 最短工作 年限L 工作环境 5.1.2 4 960 100 2 180 3年3班 室外有尘机器工作平稳、单向回转、成批生产目录一、带轮及齿轮数据 (1)二、选择轴的材料 (1)三、初算轴径d min (1)四、结构设计 (2)1. 确定轴承部件机体的结构形式及主要尺寸 (2)2. 确定轴的轴向固定方式 (2)3. 选择滚动轴承类型,并确定润滑、密封方式 (2)4. 轴的结构设计 (2)五、轴的受力分析 (4)1. 画轴的受力简图 (4)2. 计算支承反力 (4)3. 画弯矩图 (5)4. 画扭矩图 (5)六、校核轴的强度 (5)七、校核键连接的强度 (7)八、校核轴承寿命 (8)1. 计算轴承的轴向力 (8)2. 计算当量动载荷 (8)3. 校核轴承寿命 (8)九、绘制轴系部件装配图(图纸) (9)十、参考文献 (9)一、带轮及齿轮数据已知带传动输出轴功率P= 3.84 kW,转矩T= 97333.33 N·mm,转速n= 480 r/min,轴上压力Q = 705.23 N,因为原本圆柱直齿轮的尺寸不满足强度校核,故修改齿轮尺寸为分度圆直径d1 =96.000 mm,其余尺寸齿宽b1 = 35 mm,螺旋角β = 0°,圆周力F t = 2433.33 N,径向力F r = 885.66 N,法向力F n = 2589.50 N,载荷变动小,单向转动。

二、选择轴的材料因传递功率不大,且对质量及结构尺寸无特殊要求,故选用常用材料45钢,调质处理。

三、初算轴径d min对于转轴,按扭转强度初算,由参考文献[1]式10.2估算最小直径d≥√9.55×106dd0.2[d]3=d√d d3式中:P —轴传递的功率,kW;n —轴的转速,r/min;[τ] —许用扭转应力,MPa;C —由许用扭转切应力确定的系数。

查参考文献[1]表10.2,得对于45钢,C取值围126 ~ 103,取C = 118。

轴输入功率为d=d d d1d2式中:η1 — V带传动的效率,查参考文献[2]表9.1,V带传动效率η1= 0.98;η2 — 滚动轴承传动效率,查参考文献[2]表9.1,一对滚动球轴承传动效率η2= 0.98。

故:d =d d d 1d 2=4×0.98×0.98=3.8416 kW轴转速为:d =d m d 1=9602=480 r /min 并考虑轴上有一个键槽,将轴径加大5%。

于是初算轴径最小值得:d ≥1.05×d √d d 3=1.05×118×√3.84164803=24.78 mm 按照GB/T 2822—2005的R a 10系列圆整,初取d = 25mm 。

四、结构设计1. 确定轴承部件机体的结构形式及主要尺寸为方便轴承部件的装拆,轴承座的机体采用剖分式结构,取轴承座的铸造壁厚为 δ = 8mm 。

机体上轴承旁连接螺栓直径d 2 = 12mm ,装拆螺栓所需要的扳手空间C 1 = 18mm ,C 2 = 16mm ,故轴承座壁至座孔外端面距离:L = δ + C 1 + C 2 + (5~8) mm = 47~50mm取L = 50mm 。

由此,设计的轴承部件的结构如图2所示。

然后可按轴上零件的安装顺序,从d min 处开始设计。

图2 轴的结构草图(不带尺寸)2. 确定轴的轴向固定方式由于轴跨距不大,且传递功率中等,齿轮减速器效率高、发热小,轴不会太长,故轴承部件的固定方式可采用两端固定的方式。

3. 选择滚动轴承类型,并确定润滑、密封方式轴上所安装齿轮为直齿轮,不产生轴向载荷,且径向载荷较小、转速不高,故选用深沟球轴承。

轴承圈直径约为25 mm量级,根据参考文献[1],其速度因数值:dd=25×960=24000≪(1.5 ~ 2)×105mm∙r/min其速度因数较小,宜选用脂润滑。

密封段轴径约为30mm量级,其轴颈圆周速度为:d=πdd1000×60=π∙30∙9601000×60=1.51m/s<7d/d由于轴径圆周速度小,且工作环境有尘,所以采用唇形圈密封。

4. 轴的结构设计(1) 大带轮与轴段1:由于要求,大带轮必须放置在轴端,所以d min即为轴段1的最小直径,d1= 25mm。

大带轮一端通过轴肩固定,另一端通过挡圈和螺栓固定,轴段1处放置大带轮处长度l10 = 50mm,为避免发生干涉,轴段长度比大带轮宽度短1~3mm,故取:l1 = 48mm(2) 密封圈与轴段2、轴段6:本方案采用深沟球轴承,端盖宜采用凸缘式端盖,密封方式采用毛毡圈密封。

由参考文献[1]图10.9中公式,可得到轴段2与轴段1之间的轴肩高为:h1 = (0.07~0.1)d1= (0.07~0.1)×25 = 1.75~2.5 mm由参考文献[2]表14.4,选择轴径为d30mm的毛毡圈,故轴段2的直径:d2 = 30 mm同理,轴段6的直径为:d6 = 30 mm(3) 轴承与轴段3及轴段5:由参考文献[1]图10.9中公式,可得到轴段3与轴段2之间的轴肩高为:h2 = (0.07~0.1)d2= (0.07~0.1)×30 = 2.1~3 mm轴承采用深沟球轴承,考虑轴承可能承受较大径向载荷,选取窄系列、中载系列,由参考文献[2]表12.1,选用轴承型号6307,因此:d3 = d5 = 35 mml3 = l5 = 21 mm(4) 轴段4:轴段4与轴段3和轴段5形成的轴肩对两个轴承其轴向固定作用。

查参考文献[2]表12.1,得6307轴承的安装尺寸为d a = 44 mm。

故轴段4轴径为d4 = 44 mm(5) 小齿轮与轴段7:根据最小轴径,取d7= 25mm。

与大带轮处相同小齿轮一端通过轴肩固定,另一端通过挡圈和螺栓固定,轴段7处放置小齿轮宽度l70 = 35mm,为避免发生干涉,轴段长度比大带轮宽度短1~3mm,故取:l7 = 33mm(7) 机体与轴段2、4、6的长度:对于二支点在同一轴承座而支点间无传动件的情况,应首先确定两轴承跨距L,由参考文献[3],一般取L= (2 ~ 3)d,其中d为轴承所在轴段的直径,即d3和d5。

则跨距取值为L = (2 ~ 3)d3 = (2 ~ 3) × 35 = 70 ~ 105 mmⅰ对于轴段4取轴段4长度为l4= 75 mm。

跨距为轴上直返力作用点间距离,对向心轴承,支反力作用点在轴承宽度中点,则此时跨距为L2 = l4 + l3 = 75 + 21 = 96mmⅱ对于轴段2和轴段6:为避免大带轮或小齿轮断面转动时与不动的轴承端盖相碰,轴承端盖与这两零件端面间应有足够的间距,取该间距为H = 15 mm。

由参考文献[3]查得,轴承盖凸缘厚e = 10 mm。

为补偿机体的铸造误差,轴承应深入轴承座孔适当距离,以保证轴承在任何时候都能坐落在轴承座孔上,为此取轴承上靠近机体壁的端面与机体壁间的距离为∆=5mm。

由此计算l2、l6:l2 = l6 = H + e + (L + 4 –l3) = 15 + 10 + (75 + 4 – 21) = 83 mm (8) 各轴段尺寸汇总:轴总长度:l = 48+83+21+75+21+83+33 = 364 mm进而,轴承的支点及力的作用点之间的跨距也随之确定下来。

6307轴承力作用点为轴承宽度中心。

取大带轮、小齿轮的中点作为力作用点,则可得跨距:L1 = 117.5 mm,L2 = 96 mm,L3 = 110 mm(9) 键连接:大带轮和小齿轮与轴的周向连接均采用 A 型普通平键连接,由文献[2]表11.28,轴径为d25 mm 时,使用键的型号分别为:A8×7×70 GB/T 1096—2003 和 A8×7×56 GB/T 1096—2003。

最后在结构草图上添加初定尺寸,如图 3:五、轴的受力分析1. 画轴的受力简图2. 计算支承反力在水平面,对轴承2(见图4(a))列力矩平衡方程,得:d1H=d(d1+d2)−d r d3d2=705.23×(117.5+96)−885.66×11096=553.58N在水平面轴径向方向上列受力平衡方程,得:d2H=d r+d−d1H=885.66+705.23−553.58=1037.31N 在竖直面,对轴承2列力矩平衡方程,得:d1V=−d3dtd2=−110×2433.3396=−2788.19N列受力平衡方程,得:d2V=d t−d1V=2433.33+2788.19=5221.52N负号表示受力方向与图示方向相反。

轴承1所受总支承反力:d1r=√d1H2+d1V2=√553.582+(−2788.19)2=2842.61N 轴承2所受总支承反力:d2r=√d2H2+d2V2=√1037.312+5221.522=5323.56N3. 画弯矩图在水平面上,d aH1=dd1=705.23×117.5=82864.53N∙mmd aH2=d(d1+d2)−d1H d2=705.23×(117.5+96)−553.58×96=97422.93N∙mm在竖直面上,d aV2=d1V d2=−2788.19×96=−267666.24N∙mmd aV1=0N∙mm合成弯矩d a1=√d aH12+d aV12=82864.53N∙mmd a2=√d aH22+d aV22=√78531.562+(−215734.99)2=284844.60N∙mm故最大弯矩为d a=284844.60N∙mm4. 画扭矩图d=97333.33N∙mm六、校核轴的强度在轴承2的受力点处,既有较大弯矩,又有转矩,而大带轮和小齿轮的受力点处虽然轴径较小且有键槽,但是这两处均只受转矩。

综上,危险剖面应为轴承2的受力点处。

由参考文献[1]附表10.1,抗弯剖面模量:d=πd3332=π×35332=4209.24mm3抗扭剖面模量:d T=πd3316=π×35316=8418.49mm3弯曲应力:d b=d ad=284844.604209.24=57.67MPa对一般回转的轴,弯曲应力应按对称循环变化,故弯曲应力的应力幅和平均应力分别为:d a=d b=57.67MPad m=0MPa扭转切应力:d T=dd T=97333.338418.49=11.56MPa对一般转轴的扭转切应力通常按脉动循环来考虑,故扭转切应力的应力的应力幅和平均应力为d a=d m=d T2=5.78MPa由参考文献[1]表10.1得,对于调质处理的45钢,σB = 650 MPa,σ-1 = 300 MPa,τ-1 = 155 MPa 由参考文献[1]表10.1注释得,等效系数取:ψσ = 0.1,ψτ= 0.05由参考文献[1]附表10.4得不同情况下轴的有效应力集中系数:Kσ=2.52, Kτ = 1.82由参考文献[1]附图10.1得零件绝对尺寸系数:εσ= 0.74,ετ= 0.81 由参考文献[1]附图10.2 (a) (b) 、附表10.2得:β1 = 0.93,β2 = 0.5,β3 = 2.8 因此表面质量系数为:β=β1β2β3 = 1.3 则只考虑弯矩时的安全系数:d d=d−1d ddd d d a+d d d m=3002.521.3×0.74×57.67+0.1×0=1.99只考虑转矩时的安全系数:d d=d−1d ddd d d a+d d d m=1551.821.3×0.81×5.78+0.05×5.78=15.08由参考文献[1]式10.4,校核危险剖面疲劳强度安全系数的公式为:d=d∙d√d d d d≥[d]查参考文献[1]表10.5得轴的许用安全系数[S]= 1.3 ~ 1.5,取[S]= 1.5。

相关文档
最新文档