数值分析第四版习题及答案
应用数值分析(第四版)张明主编文世鹏主审课后答案
5
1 1
1
1 1 1
4 1
解:由 x=sy 得
y-4=s-1x=
1 11
1 1 1
1 1 1
1 11
2 1 1
4 1
4 1
4
8、在 P2 (t ) 中向量 P2 (t ) 1 t 2t 2 ,取基 S t 1, t 2, t 2 ,求 P2(t)在基下的坐标 。
10、试导出计算积分
In
1 0
xn dx
1 4x
(n
1, 2, 3, 4) 的递推计算公式
In
1 4
1 ( n
In1 )
,用此递
推公式计算积分的近似值并分析计算误差,计算取三位有效数字。
解: In
1 0
xn dx
1 4x
1 4
1 0
4xn
xn1 1 4x
x n1 dx
11 (
40
x n1dx
设 A 是单位上(下)三角阵。证 A-1 也是单位上(下)三角阵。 证明:A 是单位上三角阵,故|A|=1,∴A 可逆,即 A-1 存在,记为(bij)n×n
n
由 A A-1 =E,则 aijb jk ik (其中 aij 0 j>i 时, aii 1) j 1
故 bnn=1, bni=0 (n≠j) 类似可得,bii=1 (j=1…n) bjk=0 (k>j) 即 A-1 是单位上三角阵 综上所述可得。Rn×n 中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三 角阵”对矩阵求逆是封闭的。 2、试求齐次线行方程组 Ax=0 的基础解系。
2x2
1 2x 1 x (1 2x)(1 x)
(3) (1 cos x) sin2 x
数值分析_第四版_课后习题答案_李庆扬
6
, (3 2 2 ) 3 ,
1 (3 2 2 ) 3
, 99 70 2 。
[解]因为 * ( f )
1 1 , 10 1 ,所以对于 f1 2 ( 2 1) 6
6 1 1 有一位有效数字; 10 1 6.54 10 4 10 2 , 7 2 2 (1.4 1)
而 e* (Y100 ) e* (Y0 ) (27.982 783) 783 27.982 ,
而 783 27.982
1 1 10 3 ,所以 * (Y100 ) 10 3 。 2 2
7、 求方程 x 2 56 x 1 0 的两个根, 使它至少具有四位有效数字 ( 783 27.982 ) [解]由 x 28 783 与 783 27.982 (五位有效数字)可知, 。 x1 28 783 28 27.982 55.982 (五位有效数字) 而 x2 28 783 28 27.982 0.018 ,只有两位有效数字,不符合题意。 但是 x2 28 783
tan( )
因此
N 1
tan tan ( N 1) N 1 , 2 1 tan tan 1 N ( N 1) N N 1
N
1 1 。 dx arctan 2 2 1 x N N 1
9、正方形的边长大约为 100cm,应怎样测量才能使其面积误差不超过 1 cm 2 ? [ 解 ] 由 * ((l * ) 2 ) [(l * ) 2 ] * (l * ) 2l * * (l * ) 可 知 , 若 要 求 * ((l * ) 2 ) 1 , 则
应用数值分析(第四版)课后习题答案第9章
应⽤数值分析(第四版)课后习题答案第9章第九章习题解答1.已知矩阵=???=4114114114,30103212321A A 试⽤格希哥林圆盘确定A 的特征值的界。
解:,24)2(,33)1(≤-≤-λλ2.设T x x x x ),...,,(321=是矩阵A 属于特征值λ的特征向量,若i x x =∞,试证明特征值的估计式∑≠=≤-n i j j ij ii aa 1λ.解:,x Ax λ=∞∞∞∞≤==x A x x Ax i λλ由 i x x =∞ 得 i n in i ii i x x a x a x a λ=++++ 11j n j i i ij i ii x ax a ∑≠==-1)(λj n j i i ij j n j i i ij i ii x a x ax a ∑∑≠=≠=≤=-11λ∑∑≠=≠=≤≤-nj i i ij i j n j i i ijii a x x a a 11λ3.⽤幂法求矩阵=1634310232A 的强特征值和特征向量,迭代初值取T y )1,1,1()0(=。
解:y=[1,1,1]';z=y;d=0;A=[2,3,2;10,3,4;3,6,1];for k=1:100y=A*z;[c,i]=max(abs(y));if y(i)<0,c=-c;endz=y/cif abs(c-d)<0.0001,break; endd=cend11.0000=c ,0.7500) 1.0000 0.5000(z 10.9999 =c ,0.7500) 1.0000 0.5000(z 11.0003 =c ,0.7500) 1.0000 0.5000(z 10.9989=c ,0.7500) 1.0000 0.5000(z 11.0040 =c ,0.7498) 1.0000 0.5000(z 10.9859=c ,0.7506) 1.0000 0.5001(z 11.04981 =c ,0.7478) 1.0000 0.4995(z 10.8316 =c ,0.7574) 1.0000 0.5020(z 11.5839 =c ,) 0.7260 1.0000 0.4928 (z 9.4706 =c ,0.8261) 1.0000 0.5280(z 17 = c ,0.5882) 1.0000 0.4118(z 11T (11)10T (10)9T (9)8T (8)7T (7)6T (6)5T (5)4T (4)3T (3)2T (2)1T (1)===========强特征值为11,特征向量为T 0.7500)1.0000 0.5000(。
华中科技大学出版社—数值分析第四版—课后习题及答案
14. 由于 x1 , x 2 , , x n 是 f ( x ) 的 n 个互异的零点,所以 f ( x) a 0 ( x x1 )( x x 2 ) ( x x n )
a 0 ( x xi ) a 0 ( x x j ) ( x xi ),
i 1 i 1 i j n n
4 7 h 3 时,取得最大值 max | l 2 ( x ) |
10 7 7 x 0 x x3 27 . k x , x , , x n 处进行 n 次拉格朗日插值,则有 6. i) 对 f ( x) x , (k 0,1, , n) 在 0 1 x k Pn ( x ) Rn ( x ) l j ( x) x k j
。
14.
1000000000 999999998 x1 1.000000, x2 1.000000 999999999 999999999 方程组的真解为 ,
x 1.00, x2 1.00 , 而无论用方程一还是方程二代入消元均解得 1 结果十分可 靠。 s b sin ca a sin cb ab cos cc a b c tan c c s ab sin c a b c 15.
可 得
计
算
( f1 ) ln(1
( f 2 ) ln(1
x x 1
2
) )
1 ( x x 2 1) 60 104 3 103 2 x x 1 ,
2
x x 1
2
x x 1
2
1 1 104 8.33 107 60 2
。
(Y100 ) 100
数学分析上册第四版教材精选题汇总(含答案解析)
p2.例1 设x ,y 为实数,x y <.证明:存在有理数r 满足 x r y <<.证 由于x y <,故存在非负整数n ,使得n n x y <.令 ()12n n r x y =+ , 则r 为有理数,且有n n x x r y y ≤<<≤ ,即得x r y <<. p3.1.实数具有阿基米德性,即对任何,a b R ∈, 若0b a >>,则存在正整数n ,使得na b >. 证明:+,a b R ∀∈,n N +∃∈, 使得nb a >, 设012.n a a a a a = ,0a k N =∈ ,则1+110k a k +≤<,设012n b b b b b =,p b 为第一个不为0的正整数,令+110p k n +=,则+110k nb a >>,即nb a >.2.实数集R 具有稠密性,即任何两个不相等的实数之间必有另一个实数,且既有有理数,也有无理数。
证 若a b <,则存在n N +∈,使)(112b a n <- ,)(2b a n<- , 设k 是满足k a n ≤ 的最大正整数,即+1k a n >,0ka n -≤ , 于是122k k k k ab a b n n n n n ++<<=+<+-≤ ,则1k n + ,2k n+ 是a 与b 之间的有理数,14k n nπ++ 是a 与b 之间的无理数。
.4P1.设a 为有理数,x 为无理数,证明:(1)a x +是无理数;(2)当a 0≠时,ax 是无理数.分析:根据有理数集对加、减、乘、除(除数不为0)四则运算的封闭性,用反证法证. 证明:(1)假设a x +是有理数,则()a x a x +-=是有理数,这与题设x 是无理数相矛盾,故a x +是无理数.(2)假设ax 是有理数,则当0a ≠时,axx a=是有理数,这与题设x 为无理数相矛盾,故ax 是无理数.8.设p 为正整数.证明:若p .分析:本题采用反证法,联想到互质、最大公约数以及辗转相除法的有关知识点,可得结论.证明:用反证法.为有理数,则存在正整数m 、n mn=,且m 与n 互质.于是2m 22,(),pn m n pn ==⋅可见n 能整除2m ,由于m 与n 互质,从而它们的最大公约数为1,由辗转相除法知:存在整数u 、v 使1mu mv +=,则2m u mnv m +=.因n 既能整除2m u 又能整除mnv ,故能整除其和,于是n 能整除m ,这样1n =,所以2p m =.这与p 不是完全平方数相矛盾.小结:本题证明过程比较独特,先假设有理数为互质的两个数的商,利用这两个数与p 之间的关系,运用辗转相除法得出结论,注意知识点之间的内在联系.P7定理1.1(确界原理) 设s 为非空数集.若s 有上界,则s 必有上确界;若s 有下界,则s 必有下确界.证 我们只证明关于上确界的结论,后一结论可类似地证明.为叙述的方便起见,不妨设s 含有非负数.由于s 有上界,故可找到非负整数n ,使得 1) 对于任何x S ∈有1x n <+; 2) 存在0a S ∈,使0a n ≥.再对半开区间[),1n n +作10等分,分点为.1,.2,.9n n n ,则存在0,1,2,…,9中的一个数1n ,使得1) 对于任何x S ∈有1110.n x n <+; 2) 存在1a S ∈,使11.a n n ≥. 再对半开区间111.10,.n n n n ⎡⎫⎪⎢⎣⎭+作10 等分,则存在0,1,2,…,9中的一个数2n ,使得 1) 对于任何x S ∈有1221.10n n n x +<; 2) 存在2a S ∈,使212.a n n n ≥.继续不断地10等分在前一步骤所得到的半开区间,可知对任何1,2,k =,存在0,1,2,…,9中的一个数k n ,使得1) 对于任何x S ∈有121.10k kx n n n n <+; (1) 2) 存在k a S ∈,使12.k k a n n n n ≥.将上述步骤无限地进行下去,得到实数12.kn n n n η=.以下证明sup S η=.为此只需证明:(i )对一切x S ∈有x η≤;(ii )对任何αη<,存在a S '∈使a α<'.倘若结论(i )不成立,即存在x S ∈使x η>,则可找到x 的k 位不足近似k x ,使121.10k k k kx n n n n η>=+,从而得121.10k kx n n n n >+, 但这与不等式(1)相矛盾.于是(i )得证.现设αη<,则存在k 使η的k 位不足近似k k ηα>,即12.k k n n n n α>.根据数η的构造,存在a S '∈使k a η'≥,从而有k k >a ηαα≥≥'即得到<a α'. 这说明(ii )成立 P.130例3 用数列的柯西收敛准则证明确界原理.证 设S 为非空有上界数集,由实数的阿基米德性,对任何正数α,存在整数k α,使得k ααλα=为S 的上界,而(1)k ααλαα-=-不是S 的上界,即存在'αS ∈,使得'(1).k ααα>-分别取1,1,2,,n nα==则对每一个正整数n ,存在相应的,n λ使得n λ为S 的上界,而1n nλ-不是S 的上界,故存在',S α∈使得 1'n nαλ>- (6)又对正整数,m m λ是S 的上界,故有'm λα≥.结合(6)式得1n m nλλ-<;同理有1m n mλλ-<.从而得 11||max{,}.m n m nλλ-<于是,对任给的0,ε>存在0N >,使得当,m n N >时有||m n λλε-<由柯西收敛准则,数列{}n λ收敛.记lim n n λλ→∞=. (7)现在证明λ就是S 的上确界,首先,对任何S α∈和正整数n 有n αλ≤,由(7)式得,αλ≤即λ是S 的一个上界.其次,对任何0,δ>由1n→∞()n →∞及(7)式,对充分大的n 的同时有 1,.22n n δδλλ<>- 又因1n n λ-不是S 的上界。
数值分析第四版课后答案答案第八章
第八章 常微分方程初值问题数值解法1、解:欧拉法公式为221(,)(100),0,1,2+=+=++=n n n n n n n y y hf x y y h x y n代00y =入上式,计算结果为 123(0.1)0.0,(0.2)0.0010,(0.3)0.00501≈=≈=≈=y y y y y y2、解:改进的欧拉法为1112[(,)(,(,))]n n n n n n n n y y h f x y f x y hf x y ++=+++将2(,)=+-f x y x x y 代入上式,得2111111221n n n n n n h hh x x x x y h y +++)+[(-)(+)+(+)]=(-+ 同理,梯形法公式为211122[(1)(1)]-+++++=++++h h n nn n n n h h y y x x x x 将00,0.1y h ==代入上二式,,计算结果见表9—5表 9—5可见梯形方法比改进的欧拉法精确。
3、证明:梯形公式为111[(,)(,)]2n n n n n n hy y f x y f x y +++=++代(,)f x y y =-入上式,得11[]2++=+--n n n n hy y y y解得21110222()()()222n n n n h h h y y y y h h h++----===⋯=+++ 因为01y =,故2()2nn h y h-=+ 对0x∀>,以h 为步长经n 步运算可求得()y x 的近似值n y ,故,,xx nh n h==代入上式有2()2x hn hy h-=+22220000222lim lim()lim(1)lim[(1)]222x x h h xx h h h h hn h h h h h h h y e h h h+-+→→→→-==-=-=+++4、解:令2()xt y x e dt =⎰,则有初值问题2',(0)0x y e y ==对上述问题应用欧拉法,取h=0.5,计算公式为210.5,0,1,2,3n x n n y y e n +=+=由0(0)0,y y ==得1234(0.5)0.5,(1.0) 1.142012708(1.5) 2.501153623,(2.0)7.245021541≈=≈=≈=≈=y y y y y y y y5、解: 四阶经典龙格-库塔方法计算公式见式(9.7)。
数学分析第四版答案 (3)
数学分析第四版答案简介《数学分析第四版》是一本经典的数学教材,主要介绍了数学分析的基本概念、理论和方法。
本文档旨在提供《数学分析第四版》习题的答案,帮助读者更好地理解和掌握数学分析的知识。
第一章简介1.1 数学分析的基本概念习题答案:1.由已知条件可知,当a=a时,a(a)=a(a)成立。
所以函数a(a)是一个常函数。
2.对于任意实数a和a,有a(a+a)=a(a)+a(a),即函数a(a)满足加法性。
根据题意,我们需要证明a(aa)=a(a)a(a)。
证明:设实数a和a,并令a=a和 $b=\\frac{y}{x}$,根据加法性,我们有:$$ f(a+b) = f(a) + f(b) \\quad \\text{(1)} $$将a=a和 $b=\\frac{y}{x}$ 代入上式,得到:$$ f\\left(x + \\frac{y}{x}\\right) = f(x) +f\\left(\\frac{y}{x}\\right) \\quad \\text{(2)} $$又根据题目条件,我们知道a(aa)=a(a)a(a),将$b=\\frac{y}{x}$ 代入该式,得到:$$ f(xy) = f\\left(x\\cdot\\frac{y}{x}\\right) =f(x)f\\left(\\frac{y}{x}\\right) \\quad \\text{(3)} $$将式 (3) 代入式 (2),得到:$$ f\\left(x + \\frac{y}{x}\\right) = f(xy) \\quad \\text{(4)} $$根据题目条件中的函数性质,我们得到:$$ x+\\frac{y}{x} = xy $$上式可以转化为二次方程的形式,解得:$$ x^2 - xy + \\frac{y}{x} = 0 $$由上式可知,a是方程a2−aa+a=0的一个根。
根据韦达定理,该方程的两个根分别为:$$ x_1 = \\frac{y+\\sqrt{y^2+4}}{2} \\quad \\text{和}\\quad x_2 = \\frac{y-\\sqrt{y^2+4}}{2} $$由于题目中没有限制a的取值范围,所以a可以取任意实数。
数值分析第四版课后习题答案
第一章习题解答1、 在下列各对数中,x 是精确值 a 的近似值。
3.14,7/100)4(143.0,7/1)2(0031.0,1000/)3(1.3,)1(========x a x a x a x a ππ试估计x 的绝对误差和相对误差。
解:(1)0132.00416.01.3≈=≈−=−=aee x a e r π (2)0011.00143.0143.07/1≈=≈−=−=a ee x a e r (3)0127.000004.00031.01000/≈=≈−=−=aee x a e r π (4)001.00143.03.147/100≈=≈−=−=aee x a e r2、已知四个数:001.0,25.134,0250.0,3.264321====x x x x 。
试估计各近似数的有效位数和误差限,并估计运算3211x x x =μ和1431/x x x =μ的相对误差限。
解:21111121101901.0,1021,3,10263.06.23−−⨯≈=⨯==⨯==x x x x n x r δδδ22214212102.0,1021,3,10250.00250.0−−−⨯≈=⨯==⨯==x x x x n x r δδδ 43332333103724.0,1021,5,1013425.025.134−−⨯≈=⨯==⨯==x x x x n x r δδδ 5.0,1021,1,101.0001.04443424==⨯==⨯==−−x x x x n x r δδδ 由相对误差限公式:i r ini n in ni i ir x x fx x f x x x f x x f u δδδ∂∂=∂∂=∑∑==1111),,(),,()(所以有:232123113211103938.0)(1)(−⨯≈++=x x x x x x x x x r δδδμμδ4971.0)(1)(4133141214311≈++−=x x x x x x x x x x r δδδμμδ 3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。
(完整版)数值分析第四版习题和答案解析
第四版数值分析习题第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xxx ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x xk n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ. 10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i) 若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()nx ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差. 23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii) (0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式. 8. 如何选取r,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式. 13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005. 16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数. 17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义()(,)()();()(,)()()()();bbaaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x=在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()nn x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.2y a bx =+.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()h h f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰; (4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1xedx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长. 10. 证明等式3524sin3!5!n n nnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
数值分析第4版答案
第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x x e x x δ-===而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()n f x x =,则函数的条件数为'()||()p xf x C f x =又1'()n f x nx-= , 1||n p nx nx C n x-⋅∴==又((*))(*)r p r x n C x εε≈⋅ 且(*)r e x 为2((*))0.02nr x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字;*20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯***123*********123231132143(2)()()()()1111.10210.031100.031385.6101.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈ **24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x εεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C VRππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -=-(n=1,2,…)计算到100Y 。
应用数值分析(第四版)课后习题答案第5章
第五章习题解答1、给出数据点:013419156i i x y =⎧⎨=⎩(1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算15.x =的近似值215(.)L 。
(2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算15.x =的近似值215(.)N 。
(3)用事后误差估计方法估计215(.)L 、215(.)N 的误差。
解:(1)利用012013,,x x x ===,0121915,,y y y ===作Lagrange 插值函数2202130301191501031013303152933()()()()()()()()()()()()()()i i i x x x x x x L x l x y x x =------==⨯+⨯+⨯-------++=∑代入可得2151175(.).L =。
(2)利用123134,,x x x ===,1239156,,y y y ===构造如下差商表:于是可得插值多项式:229314134196()()()()()N x x x x x x =+-+---=-+-代入可得215135(.).N =。
(3)用事后误差估计的方法可得误差为1501511751350656304.(.)(..).R -=-=-◆ 2、设Lagrange 插值基函数是0012()(,,,,)nj i j i jj ix x l x i n x x =≠-==-∏试证明:①对x ∀,有1()ni i l x ==∑②00110001211()()(,,,)()()nk i i i n n k l x k n x x x k n =⎧=⎪==⎨⎪-=+⎩∑ 其中01,,,n x x x 为互异的插值节点。
证明:①由Lagrange 插值多项式的误差表达式101()()()()()!n ni i f R x x x n ξ+==-+∏知,对于函数1()f x =进行插值,其误差为0,亦即0()()ni ii f x l x f==∑精确成立,亦即1()ni i l x ==∑。
数值分析第四版习题及答案
第四版数值分析习题第一章绪论设x>O,x 的相对误差为S ,求In x 的误差. 设x 的相对误差为2%,求x n 的相对误差. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位 ,试指出它们是几位有效数字: x = 1.1021, x^ = 0.031, x^ = 385.6, x^ = 56.430, x^ = 7 1.0.利用公式(3.3)求下列各近似值的误差限:(i)x *+x ;+x 4,(ii)x *x ;x ;,(iii )x ;/x ;,其中 x ;,x ;,x 3,x ;均为第 3题所给的数.计算球体积要使相对误差限为 1%,问度量半径R 时允许的相对误差限是多少 ?设\)=28,按递推公式AY n =Y n d- _ .783100( n=1,2,…)计算到Y 00.若取7783衣27.982(五位有效数字),试问计算^00将有多大误差? 求方程X 2 -56X • 1 =0的两个根,使它至少具有四位有效数字 (■ 783沁27.982).\ ------ d x 当N 充分大时,怎样求N 1 x? 正方形的边长大约为 100 cm ,应怎样测量才能使其面积误差不超过 s *2设 2 假定g 是准确的,而对t 的测量有土 0.1秒的误差,证明当t 增加时s 的绝对 误差增加,而相对误差却减小. 序列{yn}满足递推关系y n _ 10y n _ 1(n=1,2,…),若y0 _ X 2 1.41 (三位有效数字),计算到y 10时误差有多大?这个计算过程稳定吗?计算f = c- 2 一1)6,取' 2 : 1.4,利用下列等式计算,哪一个得到的结果最好?f (x) =1 n (x X -1),求 f(30)的值.若开平方用六位函数表,问求对数时误差有多大改用另一等价公式ln(x_ Jx 2 T) = -ln(x +Jx 2 +1)计算,求对数时误差有多大?1. 2. 3. 4.5. 6.7.8.9.10.11.12.13.21 cm1 (、2 1)61 (32 . 2)3,99 -70、2.?若根据(2.2)定义的范德蒙行列式,令证明V n (x)是n 次多项式,它的根是X 0^L ,X nJ ,且当x= 1 , -1 , 2时,f(x)= 0 , -3,4 ,求f(x)的二次插值多项式.给出cos x,0 ° < x 90。
微分方程数值解法 第四版课后答案
§2 一维差分格式 P671. 用有限体积法导出逼近微分方程(2.2.1)的差分方程。
2. 构造逼近(")"(')',()'()0,()'()0pu qu ru fu a u a u a u a++=====的中心差分格式。
§3 矩形网的差分格式P751. 用有限体积法构造逼近方程()[((,(2.3.21)u u k u k k f x x y y∂∂∂∂-∇∇=-+=∂∂∂∂ 的第一边值问题的五点差分格式,这里min (,)0.k k x y k =≥>2. 用有限体积法构造逼近方程(2.3.21)的第二边值问题的五点差分格式。
§4 三角形网的差分格式 P802. 构造逼近方程()[()()],(2.3.21)u u k u k k f x x y y∂∂∂∂-∇∇=-+=∂∂∂∂的三角网差分格式。
第三章 抛物型方程的有限差分法§1 最简差分格式P112 2题§2 稳定性与收敛性P121 1题P121 2题§3 Fourier方法 P127 1题§4 判别差分格式稳定性的代数准则P132 3题第四章 双曲型方程的有限差分法§1 波动方程的差分逼近 P158 1题P158 2题§3 初值问题的差分逼近P174 3 (4.3.32)第五章 边值问题的变分形式与Ritz-Galerkin法§1 二次函数的极值 P185 1题§3 两点边值问题 P198 1题P198 3题§4 二阶椭圆边值问题 P205 3题P205 4题。
应用数值分析(第四版)课后习题答案第10章
第十章习题解答1、 用Euler 方法及改进的Euler 方法求解初值问题'[0,1](0)2y x y x y ⎧=-∈⎨=⎩ 取0.1h =,并将计算结果与精确值相比较。
解:(,)f x y x y =-,由Euler 公式及改进的Euler 方法,代入0.1h =,有11Euler 0.90.1Euler 0.9050.0950.005n n nn n n y y x y y x ++=+=++方法改进的方法,依次计算结果如下01234567891000.10.20.30.40.50.60.70.80.9 1.02 1.8000 1.6300 1.4870 1.3683 1.2715 1.1944 1.1350 1.0915 1.0623 1.04612 1.8150 1.6571 1.5237 1.4124 1.3212 1.2482 1.1916 1.1499 1.12n n n n x y y ====17 1.1056 2 1.8145 1.6562 1.5225 1.4110 1.3196 1.2464 1.1898 1.1480 1.1197 1.1036y n y 为Euler 方法的结果,n y 为改进的Euler 方法的结果,y 为精确解。
2、 用梯形公式求解初值问题'0(0)1y y x y ⎧=-≥⎨=⎩证明其近似解为()nn a h y a h-=+。
证明:采用梯形公式得近似解为112(1)(1),222n n n n h h hy y y y h++-+=-=+,因此可得21202222()()()2222n nn n n h h h h y y y y h hh h------=====++++。
证毕。
3、试用Euler 公式计算积分2xt edt ⎰在点x=0.5, 1, 1.5, 2的近似值。
解:2(,)2xf x y xe =由Euler 公式得212*0.5nx n n n y y x e +=+,计算可得0123400.51 1.5200.6420 2.0011 6.745034.0441n n n x y === 4、 定初值问题'000sin ()y y x x y x y ⎧=≥⎪⎨=⎪⎩试用Taylor 展开法导出一个三阶的显式公式。
数学分析答案第四版
数学分析答案第四版【篇一:数学分析(4)复习提纲(全部版)】>第一部分实数理论1 实数的完备性公理一、实数的定义在集合r内定义加法运算和乘法运算,并定义顺序关系,满足下面三条公理,则称r为实数域或实数空间。
(1)域公理:(2)全序公理:则或a中有最大元而a?中无最小元,或a中无最大元而a?中有最小元。
评注域公理和全序公理都是我们熟悉的,连续性公理也称完备性公理有许多等价形式(比如确界原理),它是区别于有理数域的根本标志,它对实数的描述没有借助其它概念而非常易于接受,故大多数教科把它作为实数理论起步的公理。
二、实数的连续性(完备性)公理实数的连续性(完备性公理)有许多等价形式,它们在使用起来方便程度不同,这些公理是本章学习的重点。
主要有如下几个公理:确界原理:单调有界定理:区间套定理:有限覆盖定理:(heine-borel)聚点定理:(weierstrass)致密性定理:(bolzano-weierstrass)柯西收敛准则:(cauchy)习题1 证明dedekind分割原理与确界原理的等价性。
习题2 用区间套定理证明有限覆盖定理。
习题3 用有限覆盖定理证明聚点定理。
评注以上定理哪些能够推广到欧氏空间r?如何叙述? n2 闭区间上连续函数的性质有界性定理:上册p168;下册p102,th16.8;下册p312,th23.4最值定理:上册p169;下册下册p102,th16.8介值定理与零点存在定理:上册p169;下册p103,th16.10一致连续性定理(cantor定理):上册p171;下册p103,th16.9;下册p312,th23.7 习题4 用有限覆盖定理证明有界性定理习题5 用致密性定理证明一致连续性定理3 数列的上(下)极限三种等价定义:(1)确界定义;(2)聚点定义;(3)??n定义评注确界定义易于理解;聚点定义易于计算;??n定义易于理论证明习题6 用区间套定理证明有界数列最大(小)聚点的存在性。
数学分析第四版下册课后练习题含答案
数学分析第四版下册课后练习题含答案前言《数学分析(第四版)》是由中国地质大学出版社出版的一套教材,该教材适用于大学数学分析课程的教学。
作为研究数学的基础学科,数学分析的学习是深入理解数学各领域的前置条件。
为了帮助各位学生更好地完成课程学习,本文将给出《数学分析(第四版)下册》的课后练习题答案。
第一章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.$\\frac{a}{2}$, $\\frac{b}{2}$,$\\sqrt{\\frac{a^2}{4}+\\frac{b^2}{4}}$.2.$\\frac{1}{2}(x^2+y^2+z^2-xy-yz-xz)$.论述题1.略第二章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.$\\ln a - \\ln b$.2.$\\frac{a}{\\sqrt{2}}$, $-\\frac{a}{\\sqrt{2}}$. 论述题1.略第三章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.a n=n3−n2.2.不成立.论述题1.略第四章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.$\\frac{1}{2}x^2+\\frac{1}{2}(y-2x)^2+1$, $\\sqrt{2}$.2.$\\frac{1}{2}\\sqrt{2}$.论述题1.略结语本文提供了《数学分析(第四版)下册》课后习题的解答,希望对各位学生完成课程学习有所帮助。
如有不懂之处,请咨询相应的教师或学长学姐。
数学分析第四版上册答案
数学分析第四版上册答案第一章环境建立1.1 算术基础在数学分析中,我们需要对数学中的基本运算进行复习和巩固。
这包括四则运算、乘方和开方等。
在本节中,我们将回顾这些基本算术技巧,并解答一些相关问题。
1.1.1 四则运算四则运算是我们进行数学计算的基本方法。
它包括加法、减法、乘法和除法。
在本节中,我们将通过一些例题来练习四则运算,并解答相应的问题。
例题1.1.1计算下列算式的结果:a) 2 + 3 * 4b) (5 - 2) * 7c) 10 / 5 + 3d) 8 - 6 / 2解答:a) 2 + 3 * 4 = 2 + 12 = 14b) (5 - 2) * 7 = 3 * 7 = 21c) 10 / 5 + 3 = 2 + 3 = 5d) 8 - 6 / 2 = 8 - 3 = 5计算下列算式的结果:a) 5 + 6 * 2 - 3b) 8 / 2 * (4 + 3)c) 7 - 4 / 2 + 5 * 3解答:a) 5 + 6 * 2 - 3 = 5 + 12 - 3 = 14 - 3 = 11b) 8 / 2 * (4 + 3) = 4 * 7 = 28c) 7 - 4 / 2 + 5 * 3 = 7 - 2 + 15 = 201.1.2 乘方与开方乘方和开方是我们在数学中经常用到的运算符。
乘方表示多次相乘,开方则相反,表示求一个数的平方根。
在本节中,我们将练习一些乘方和开方的计算,并解答相关问题。
例题1.1.3计算下列算式的结果: a) 2^3b) 4^0.5c) (23)2d) (32)3解答:a) 2^3 = 2 * 2 * 2 = 8 b) 4^0.5 = √4 = 2 c) (23)2 = 8^2 = 64 d) (32)3 = 9^3 = 729计算下列算式的结果:a) √9b) √(4^2)c) √(3^2 + 4^2)d) (√2 + 1)^2解答:a) √9 = 3 b) √(4^2) = √16 = 4 c) √(3^2 + 4^2) = √(9 + 16) = √25 = 5 d) (√2 + 1)^2 = (1.414 + 1)^2 = 2.414^2 = 5.8291.2 方程与不等式在数学分析中,方程和不等式是我们经常遇到和解决的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析第四版习题及答案第四版数值分析习题第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式11783100n n Y Y -=( n=1,2,…)计算到100Y .若取78327.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字78327.982).8. 当N 充分大时,怎样求211Ndx x+∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}ny 满足递推关系1101nn y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算621)f =,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好?36322)70 2.(21)(322)--++13. 2()ln(1)f x x x =-,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式22ln(1)ln(1)x x x x -=-+计算,求对数时误差有多大?14.试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2.3. 610-,问使用函数表的步长h 应取多少? 4. 若2nn y =,求4n y ∆及4ny δ.5. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)kf x k m ∆≤≤是m k -次多项式,并且()0(m lf x l +∆=为正整数). 6. 证明1()k k k k k kf g f g g f +∆=∆+∆.7. 证明110010.n n k kn n k k k k f gf g f g g f --+==∆=--∆∑∑8. 证明1200.n j n j y y y -=∆=∆-∆∑9. 若1011()n nn n f x aa x a x a x --=++++有n 个不同实根12,,,nx x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑10. 证明n 阶均差有下列性质:i) 若()()F x cf x =,则[][]011,,,,,,nnF x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]0111,,,,,,,,,nnnF x x x f x x x g x x x =+.11. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦. 12. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.13. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.14. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.15. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()nx ϕ并证明当n →∞时,()nx ϕ在[],a b 上一致收敛到()f x .16. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()hI x ,计算各节点间中点处的()hI x 与()f x 的值,并估计误差.17. 求2()f x x =在[],a b 上的分段线性插值函数()hI x ,并估计误差.18. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.jx 0.25 0.30 0.39 0.45 0.53jy0.5000 0.5477 0.6245 0.6708 0.7280 试求三次样条插值()S x 并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii) (0.25)(0.53)0.S S "="=20. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明i) [][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰; ii) 若()()(0,1,,)i i f x S x i n ==,式中ix 为插值节点,且01n a x x x b=<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.21. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)nm B f x M ≤≤. (b)当()f x x =时,(,)nB f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax ≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式. 10. 令[]()(21),0,1n nT x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权2x x ρ=-的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()nL x ,若nf L ∞-有界,证明对任何1n ≥,存在常数nα、nβ,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x xϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()nnF x H ∈也是奇(偶)函数.17.求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较. 18. ()f x 、[]1(),g x C a b ∈,定义()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dxx +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23. 2sin (1)arccos ()1n n x u x x +=-是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数. 26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差. ix 19 25 31 38 44iy19.0 32.3 49.0 73.3 97.8时间t(秒)0 0.9 1.9 3.0 3.9 5.0距离s(米) 010305080110 求运动方程.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:时间 0 5 10 15 20 25 30 35 40 45 50 55浓度0 1.27 2.16 2.86 3.44 3.87 4.15 4.37 4.51 4.58 4.62 4.64用最小二乘拟合求()y f t =.29. 编出用正交多项式做最小二乘拟合的程序框图.30. 编出改进FFT 算法的程序框图.31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}kx 的离散频谱{}kC (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()h h f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰;(2)1210(1),10x e dx n x --=⎰;(3)1,4xdx n =⎰;(4)260sin ,6dx n π-ϕ=.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分1x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()b af x dx ⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8. 用龙贝格方法计算积分1xedxπ-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是22201()sin cS a d aπ=-θθ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dy y⎰并比较结果. (1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出: x1.0 1.1 1.2 1.3 1.4()f x 0.2500 0.2268 0.2066 0.1890 0.1736第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。