大学物理第二章习题解答与分析

合集下载

大学物理习题答案解析第二章

大学物理习题答案解析第二章

第二章牛顿定律2 -1如图(a)所示,质量为m的物体用平行于斜面的细线联络置于圆滑的斜面上,若斜面向左方作加速运动 ,当物体刚离开斜面时,它的加快度的大小为()(A) gsin θ(B) gcos θ(C) gtan θ(D) gcot θ剖析与解当物体走开斜面瞬时 ,斜面对物体的支持力消逝为零,物体在绳索拉力 F T (其方向仍可认为平行于斜面 )和重力作用下产平生行水平面向左的加快度a,如图 (b) 所示 ,由其可解得合外力为 mgcot θ,应选 (D).求解的重点是正确剖析物体刚走开斜面瞬时的物体受力状况和状态特点.2 -2 用水平力 F N把一个物体压着靠在粗拙的竖直墙面上保持静止.当 F N渐渐增大时 ,物体所受的静摩擦力 F f的大小 ()(A)不为零 ,但保持不变(B)随 F N成正比地增大(C)开始随 F N增大 ,达到某一最大值后 ,就保持不变(D)没法确立剖析与解与滑动摩擦力不一样的是 ,静摩擦力可在零与最大值μF N范围内取值.当F N增加时,静摩擦力可取的最大值成正比增加 ,但详细大小则取决于被作用物体的运动状态.由题意知 ,物体向来保持静止状态 ,故静摩擦力与重力大小相等 ,方向相反 ,并保持不变 ,应选 (A) .2 -3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()(A)不得小于(C)不得大于μgR (B) 一定等于μgRμgR (D) 还应由汽车的质量m 决定剖析与解由题意知 ,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只好由路面与轮胎间的静摩擦力供给,能够供给的最大向心力应为μF N.由此可算得汽车转弯的最大速率应为 v=μRg.所以只需汽车转弯时的实质速率不大于此值,均能保证不侧向打滑.应选 (C) .2 -4 一物体沿固定圆弧形圆滑轨道由静止下滑,在下滑过程中 ,则 ( )(A)它的加快度方向永久指向圆心,其速率保持不变(B)它遇到的轨道的作使劲的大小不停增加(C)它遇到的合外力大小变化 ,方向永久指向圆心(D)它遇到的合外力大小不变 ,其速率不停增加剖析与解 由图可知 ,物体在下滑过程中遇到大小和方向不变的重力以实时辰指向圆轨道中心的轨 道支持力 F N 作用 ,其合外力方向并不是指向圆心 ,其大小和方向均与物体所在地点有关.重力的切向分 量 (m g cos θ) 使物体的速率将会不停增加 ( 由机械能守恒亦可判断 ),则物体作圆周运动的向心力 (又称法向力 )将不停增大 ,由轨道法向方向上的动力学方程F Nmgsin θ mv 2可判断 ,随 θ 角的不停增R大过程 ,轨道支持力 F N 也将不停增大 ,因而可知应选 (B) .2 -5 图 (a)示系统置于以 a = 1/4 g 的加快度上涨的起落机内 ,A 、B 两物体质量相同均为 m,A 所在的桌面是水平的 ,绳索和定滑轮质量均不计 ,若忽视滑轮轴上和桌面上的摩擦,其实不计空气阻力 ,则绳中张力为 ( )(A) 58 mg (B) 12 mg (C) mg (D) 2 mg剖析与解此题可考虑对 A 、B 两物体加上惯性力后 ,以电梯这个非惯性参照系进行求解. 此时 A 、B两物体受力状况如图 (b)所示 ,图中 a ′为 A 、B 两物体相对电梯的加快度 ,ma ′为惯性力. 对 A 、B 两物体 应用牛顿第二定律 ,可解得 F = 5/8 mg .应选 (A) .T议论 关于习题 2 -5 这种种类的物理问题 ,常常从非惯性参照系 (此题为电梯 )察看到的运动图像较为 明确 ,但因为牛顿定律只合用于惯性参照系,故从非惯性参照系求解力学识题时,一定对物体加上一个虚构的惯性力.如以地面为惯性参照系求解,则两物体的加快度 a A 和a B 均应付地而言 ,此题中 a A 和 a 的大小与方向均不相同.此中 aA 应斜向上.对 a A 、a 、a 和a ′之间还要用到相对运动规律 ,求解BB过程较繁.有兴趣的读者不如自己试试试看.2 -6 图示一斜面 ,倾角为 α,底边 AB 长为 l = 2.1 m,质量为 m 的物体从题 2 -6 图斜面顶端由静止开始向下滑动 ,斜面的摩擦因数为 μ= 0.14 .试问 ,当 α为何值时 ,物体在斜面上下滑的时间最短? 其数值为多少?剖析动力学识题一般分为两类:(1) 已知物体受力争其运动状况;(2) 已知物体的运动状况来剖析其所受的力.自然,在一个详细题目中,这两类问题并没有截然的界线,且都是以加快度作为中介,把动力学方程和运动学规律联系起来.此题重点在列出动力学和运动学方程后,解出倾角与时间的函数关系α= f(t),而后运用对 t 求极值的方法即可得出数值来.解取沿斜面为坐标轴Ox,原点 O 位于斜面极点,则由牛顿第二定律有mgsin α mgμcosαma(1) 又物体在斜面上作匀变速直线运动,故有l 1 at2 1g sin α μcosαt 2cosα 2 2则t2l(2) gcosαsin α μcosα为使下滑的时间最短,可令dt0 ,由式(2)有dα则可得此时sin αsin α μcosαcosαcosα μsin α0 tan 2α 1 , 49oμt 2l 0.99 sgcosαsin α μcosα2 -7 工地上有一吊车 ,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为 m 2 k g,乙块= 2.00 10×1质量为 m2= 1.00 ×102 kg.设吊车、框架和钢丝绳的质量不计.试求下述两种状况下,钢丝绳所受的张力以及乙块对甲块的作使劲:(1) 两物块以 10.0 m ·s-2的加快度上涨; (2) 两物块以 1.0 m s·-2的加快度上涨.从此题的结果,你能领会到起吊重物时一定迟缓加快的道理吗?剖析预制板、吊车框架、钢丝等可视为一组物体.办理动力学识题往常采纳“隔绝体”的方法物体所受的各样作使劲 ,在所选定的惯性系中列出它们各自的动力学方程.依据连结体中物体的多少可列出相应数量的方程式.联合各物体之间的互相作用和联系 ,可解决物体的运动或互相作使劲.,剖析解按题意 ,可分别取吊车(含甲、乙 )和乙作为隔绝体,画示力争 ,并取竖直向上为Oy 轴正方向 (如图所示 ).当框架以加快度 a 上涨时 ,有FT-(m1 + m )g =(m + m )a (1)2 1 2FN2- m g = m a (2)2 2解上述方程 ,得F = 1 2 (3)TFN2 =m (g + a) (4) 2(1)当整个装置以加快度 a = 10 m ·s-2上涨时 ,由式 (3) 可得绳所受张力的值为FT=10×3 N乙对甲的作使劲为N2 N2 2(g + a) =3F′=-F = -m 10× N(2)当整个装置以加快度 a = 1 m·s-2上涨时 ,得绳张力的值为FT=10×3 N此时 ,乙对甲的作使劲则为F′ N2=103× N由上述计算可见,在起吊相同重量的物体时,因为起吊加快度不一样 ,绳中所受张力也不一样,加快度大 ,绳中张力也大.所以,起吊重物时一定迟缓加快,以保证起吊过程的安全.2 -8 如图 (a)所示 ,已知两物体 A、 B 的质量均为 m = 3.0kg 物体 A 以加快度 a = 1.0 m ·s-2 运动 ,求物体 B 与桌面间的摩擦力. (滑轮与连结绳的质量不计)剖析该题为连结体问题 ,相同可用隔绝体法求解.剖析时应注意到绳中张力大小到处相等是有条件的 ,即一定在绳的质量和伸长可忽视、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不一样的.解分别对物体和滑轮作受力剖析[图(b)].由牛顿定律分别对物体 A 、B 及滑轮列动力学方程,有m A g -F T=m A a (1)F′1 -Ff= m B a′(2)TF′ -2FT1= 0 (3)T考虑到 mTTT1 T,a ′= 2a,可联立解得物体与桌面的摩擦力A =mB =m, F =F′ ,F = F′1F f mg m 4m a7.2 N2议论动力学识题的一般解题步骤可分为:(1) 剖析题意 ,确立研究对象,剖析受力 ,选定坐标; (2) 根据物理的定理和定律列出原始方程组; (3) 解方程组 ,得出文字结果; (4) 查对量纲 ,再代入数据 ,计算出结果来.2 -9 质量为m′的长平板 A 以速度v′在圆滑平面上作直线运动,现将质量为m 的木块 B 轻轻安稳地放在长平板上 ,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板获得共同速度?剖析当木块 B 安稳地轻轻放至运动着的平板 A 上时 ,木块的初速度可视为零,因为它与平板之间速度的差别而存在滑动摩擦力,该力将改变它们的运动状态.依据牛顿定律可获得它们各自相对地面的加快度.换以平板为参照系来剖析,此时 ,木块以初速度-v ′(与平板运动速率大小相等、方向相反)作匀减速运动 ,其加快度为相对加快度,按运动学公式即可解得.该题也可应用第三章所叙述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变成木块和平板一同运动的动能,而它们的共同速度可依据动量定理求得.又因为系统内只有摩擦力作功,依据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板挪动的距离即可求出.解 1 以地面为参照系 ,在摩擦力 Ff=μmg的作用下 ,依据牛顿定律分别对木块、平板列出动力学方程F f=μ mg=ma1F ′f=-F f= m′a2a1和 a2分别是木块和木板相对地面参照系的加快度.若以木板为参照系,木块相对平板的加快度 a = a1+ a2 ,木块相对平板以初速度- v ′作匀减速运动直至最后停止.由运动学规律有2- v′= 2as由上述各式可得木块有关于平板所挪动的距离为sm v 22 μg m m解 2 以木块和平板为系统 ,它们之间一对摩擦力作的总功为W =F f(s +l ) -F fl=μ mgs式中 l 为平板相对地面挪动的距离.因为系统在水平方向上不受外力,当木块放至平板上时,依据动量守恒定律,有m′v′= (m′+ m) v″由系统的动能定理 ,有μmgs 1 m v 2 1 m m v 22 2由上述各式可得sm v 22 μg m m2 -10 如图 (a)所示 ,在一只半径为 R 的半球形碗内 ,有一粒质量为 m 的小钢球 ,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时 ,它距碗底有多高?剖析保持钢球在水平面内作匀角速度转动时,一定使钢球遇到一与向心加快度相对应的力(向心力 ), 而该力是由碗内壁对球的支持力 F N的分力来供给的 ,因为支持力 F N一直垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示 Oxy 坐标 ,列出动力学方程 ,即可求解钢球距碗底的高度.解取钢球为隔绝体 ,其受力剖析如图 (b) 所示.在图示坐标中列动力学方程F N sin θ ma n mRω2sin θ(1)F N cosθ mg (2)且有由上述各式可解得钢球距碗底的高度为R h cos θ(3)Rgh Rω2可见 ,h 随 ω的变化而变化.2 -11 火车转弯时需要较大的向心力,假如两条铁轨都在同一水平面内 (内轨、外轨等高 ),这个向心力只好由外轨供给 ,也就是说外轨会遇到车轮对它很大的向外侧压力 ,这是很危险的.所以 ,对应于火车的速率及转弯处的曲率半径,一定使外轨适合地超出内轨,称为外轨超高.现有一质量为m 的火车 ,以速率 v 沿半径为 R 的圆弧轨道转弯 ,已知路面倾角为 θ,试求: (1) 在此条件下 ,火车速率 v 0 为多大时 ,才能使车轮对铁轨内外轨的侧压力均为零?(2) 假如火车的速率 v ≠v 0 ,则车轮对铁轨的侧压力为多少?剖析如题所述 ,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平重量F N sin θ 提供 (式中 θ角为路面倾角 ).从而不会对内外轨产生挤压. 与其对应的是火车转弯时一定以规定的速率v 0行驶.当火车行驶速率 v ≠v 0 时,则会产生两种状况: 如下图 ,如 v > v 0 时 ,外轨将会对车轮产生斜向 内的侧压力 F 1 ,以赔偿原向心力的不足,如 v < v 0时 ,则内轨对车轮产生斜向外的侧压力F 2 ,以抵消剩余的向心力 ,不论哪一种状况火车都将对外轨或内轨产生挤压. 由此可知 ,铁路部门为何会在每个铁轨的转弯处规准时速 ,从而保证行车安全.解 (1) 以火车为研究对象 ,成立如下图坐标系.据剖析 ,由牛顿定律有F N sin θ mv 2(1)RF N cos θ mg 0(2)解 (1)(2) 两式可得火车转弯时规定速率为v 0gRtan θ(2) 当 v > v 0 时 ,依据剖析有F N sin θ F 1cos θ m v2(3)RF N cos θ F 1sin θ mg 0(4)解 (3)(4) 两式 ,可得外轨侧压力为F 1 m v 2cos θ gsin θR当 v < v 0 时,依据剖析有2F N sin θ F 2cos θ mv(5)RF N cos θ F 2sin θ mg(6)解 (5)(6) 两式 ,可得内轨侧压力为F 2 m gsin θ v 2cos θR2 -12 一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为 m,圆筒半径为 R,演员骑摩托车在直壁上以速率 v 作匀速圆周螺旋运动 ,每绕一周上涨距离为 h,如下图.求壁对演员和摩托车的作使劲.剖析 杂技演员 (连同摩托车 )的运动能够当作一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹睁开后,相当于如图 (b)所示的斜面. 把演员的运动速度分解为图示的 v 1 和 v 2 两个重量 ,明显 v 1是竖直向上作匀速直线运动的分速度 ,而 v 2则是绕圆筒壁作水平圆周运动的分速度,此中向心力由筒壁对演员的支持力F N 的水平重量 F N2 供给 ,而竖直重量 F N1则与重力相均衡.如图 (c) 所示 ,此中 φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力 的大小和方向解 设杂技演员连同摩托车整体为研究对象 ,据 (b)(c)两图应有FN1mg 0(1) F N 2m v 2(2)Rv 2vcos θ v2πR(3)R 2 h 22πF NF N 21 F N 2 2(4)以式 (3) 代入式 (2),得22 22 2m4π R v4π RmF N 222222v2(5)RhR 4πRh 4π将式 (1) 和式 (5)代入式 (4),可求出圆筒壁对杂技演员的作使劲( 即支承力 )大小为2222224πRF NFN1F N 2 m g2 2 v2h4πR与壁的夹角 φ为FN 222arctan4πRv2arctan2 2FN 14πRh g议论 表演飞车走壁时 , 演员一定控制好运动速度,行车路线以及摩托车的方向 ,以保证三者之间知足解题用到的各个力学规律.2 -13 一质点沿 x 轴运动 ,其受力如下图 ,设 t = 0 时 ,v 0= 5m ·s-1,x 0= 2 m, 质点质量 m = 1kg, 试求该 质点 7s末的速度和地点坐标.剖析 第一应由题图求得两个时间段的 F(t)函数 ,从而求得相应的加快度函数,运用积分方法求解题目所问 ,积分时应注意积分上下限的取值应与两时间段相应的时辰相对应. 解 由题图得F t2t, 0 t 5s 35 5t,5s t 7s由牛顿定律可得两时间段质点的加快度分别为a 2t , 0 t 5sa 35 5t , 5s t 7s对 0 < t < 5s 时间段 ,由 adv 得dtvd tv 0 adtv积分后得 v 5 t 2再由 vdx 得dtxt dxvdtx 0积分后得 x 2 5t1 t 33将 t = 5s 代入 ,得 v 5= 30 m ·s-1 和 x 5 = 68.7 m 对 5s< t <7s 时间段 ,用相同方法有vtdva 2dtv 0 5 s得v 35t2xt再由dx vdtx5 5 s得x =23 -82.5t +将 t =7s代入分别得 v 7= 40 m ·s -1 和 x 7 = 142 m2 -14 一质量为 10 kg 的质点在力 F 的作用下沿 x 轴作直线运动 ,已知 F =120t + 40,式中 F 的单位为 N, t 的单位的s.在 t = 0 时 ,质点位于 x =5.0 m 处 ,其速度 v 0 =6.0 m ·s-1 .求质点在随意时辰的速度和地点.剖析 这是在变力作用下的动力学识题. 因为力是时间的函数 ,而加快度 a = dv/dt,这时 ,动力学方程就成为速度对时间的一阶微分方程 ,解此微分方程可得质点的速度v (t);由速度的定义 v =dx /d t,用积分的方法可求出质点的地点.解 因加快度 a = dv/dt,在直线运动中 ,依据牛顿运动定律有120t40m dvdt依照质点运动的初始条件 ,即t 0 = 0 时 v 0 = 6.0 m s·-1 ,运用分别变量法对上式积分,得vt4.0 dtdv 0 vv =2又因 v = dx /dt,并由质点运动的初始条件: t 0 = 0 时 x 0 = 5.0 m,对上式分别变量后积分 ,有xt6.0t 2dtdxx 0x =2 +2.0 t 32 -15 轻型飞机连同驾驶员总质量为10×3 kg .飞机以 55.0 m s·-1 的速率在水平跑道上着陆后,驾驶员开始制动 ,若阻力与时间成正比 ,比率系数 α= 5.0 ×102 N ·s -1,空气对飞机升力不计 ,求: (1) 10 s后飞机的速率; (2) 飞机着陆后 10s内滑行的距离.剖析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动. 其水平方向所受制动力 F 为变力 ,且是时间的函数.在求速率和距离时,可依据动力学方程和运动学规律,采纳分别变量法求解.解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有 Fma mdvαtαt dtdtvdt vmv 0得v v 0α t 22m所以 ,飞机着陆 10s后的速率为v = 30 m s· -1xt α t 2 dt又dxv 0x02m故飞机着陆后 10s内所滑行的距离s x x 0 v 0tα t 3 467 m6m2 -16 质量为 m 的跳水运动员 ,从 10.0 m 高台上由静止跳下落入水中.高台距水面距离为 h .把跳水运动员视为质点 ,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为 bv 2 ,此中 b 为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求: (1)运动员在水中的速率v 与 y的函数关系;(2) 如 b/m=-1 , 跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0的1 /10?(假设跳水运动员在水中的浮力与所受的重力大小恰巧相等)剖析该题能够分为两个过程,入水前是自由落体运动,入水后 ,物体受重力 P、浮力 F 和水的阻力 F f的作用 ,其协力是一变力 ,所以 ,物体作变加快运动.固然物体的受力剖析比较简单 ,可是 ,因为变力是速度的函数(在有些问题中变力是时间、地点的函数 ),对这种问题列出动力学方程其实不复杂 ,但要从它计算出物体运动的地点和速度就比较困难了.往常需要采纳积分的方法去解所列出的微分方程.这也成认识题过程中的难点.在解方程的过程中 ,特别需要注意到积分变量的一致和初始条件确实定.解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P -F f-F =ma由题意 P = F、 F f= bv2 ,而a = dv /dt = v (d v /dy),代入上式后得-bv2= mv (d v /dy)考虑到初始条件 y0=0 时 , v0 2gh ,对上式积分,有mv dvtdy0b v0 vv v0e by / m 2ghe by / m(2) 将已知条件 b/m = 0.4 m -1 ,v =0 代入上式 ,则得y m ln v 5.76 mb v0*2 -17 直升飞机的螺旋桨由两个对称的叶片构成.每一叶片的质量m= 136 kg,长 l = 3.66 m.求当它的转速 n= 320 r/min 时 ,两个叶片根部的张力.(设叶片是宽度必定、厚度平均的薄片)剖析 螺旋桨旋转时 ,叶片上各点的加快度不一样,在其各部分双侧的张力也不一样;因为叶片的质量是连续散布的 ,在求叶片根部的张力时 ,可选用叶片上一小段 ,剖析其受力 ,列出动力学方程 ,而后采纳积分的方法求解.解 设叶片根部为原点 O,沿叶片背叛原点 O 的方向为正向 ,距原点 O 为 r 处的长为 dr 一小段叶片 ,其 双侧对它的拉力分别为 F T(r) 与 F T (r + dr ).叶片转动时 ,该小段叶片作圆周运动 ,由牛顿定律有dF T F T rF T r drmω2 rdrl因为 r =l 时外侧 F T = 0,所以有t dF Tlm ω2F T rl r drrF T m ω2 2r 22πmn 22r 2rll2ll上式中取 r =0,即得叶片根部的张力F T 0 =10×5 N负号表示张力方向与坐标方向相反.2 -18 一质量为 m 的小球最先位于如图 (a)所示的 A 点 ,而后沿半径为 r 的圆滑圆轨道 ADCB 下滑.试求小球抵达点 C 时的角速度和对圆轨道的作使劲.剖析 该题可由牛顿第二定律求解. 在取自然坐标的状况下 ,沿圆弧方向的加快度就是切向加快度a ,t与其相对应的外力 F 是重力的切向重量 mgsin α,而与法向加快度 a n 相对应的外力是支持力 F N 和重力t的法向重量 mgcos α.由此 ,可分别列出切向和法向的动力学方程F = mdv/dt 和F n =ma n .因为小球在t滑动过程中加快度不是恒定的 ,所以 ,需应用积分求解 ,为使运算简易 ,可变换积分变量. 倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度 ,方法比较简易.但它不可以直接给出小球与圆弧表面之间的作使劲.解 小球在运动过程中遇到重力 P 和圆轨道对它的支持力 F N .取图 (b) 所示的自然坐标系,由牛顿定律得F tmgsin α mdv(1)dtF n F Nmgcos α mmv 2(2)R由 vdsr α r α运动到点 C 的始末条件 ,进行积分 ,有d ,得 dtd ,代入式 (1),并依据小球从点 Adtdtvvαv 0d90org sin αd αv v得v2rgcos α则小球在点 C 的角速度为ωv2 cos α/rr g由式 (2)得F Nm mv 2 mgcos α 3mgcos αr由此可得小球对圆轨道的作使劲为F NF N 3mgcos α负号表示 F ′N 与 e n 反向.2 -19 圆滑的水平桌面上搁置一半径为 R 的固定圆环 ,物体紧贴环的内侧作圆周运动 ,其摩擦因数为μ,开始时物体的速率为 v 0 ,求: (1) t 时辰物体的速率; (2) 当物体速率从 v 0减少到 12 v 0时 ,物体所经历的时间及经过的行程.剖析运动学与动力学之间的联系是以加快度为桥梁的,因此 ,可先剖析动力学识题.物体在作圆周运动的过程中,促进其运动状态发生变化的是圆环内侧对物体的支持力 F N和环与物体之间的摩擦力 F f,而摩擦力大小与正压力 F N′成正比 ,且F N与F N′又是作使劲与反作使劲 ,这样 ,便可经过它们把切向和法向两个加快度联系起来了 ,从而可用运动学的积分关系式求解速率和行程.解 (1) 设物体质量为 m,取图中所示的自然坐标 ,按牛顿定律 ,有mv2F N ma nRdvF f ma tdt由剖析中可知,摩擦力的大小 Ff=μF ,由上述各式可得N2μv dvR dt取初始条件 t =0 时 v =v 0 ,并对上式进行积分,有t R v dvdt20 μ v0 vv Rv0R v0μt(2)当物体的速率从 v 0减少到 1/2v 0时 ,由上式可得所需的时间为tRμv0物体在这段时间内所经过的行程t stRv0dt vdtv0μt0 RsRln 2μ2 -20 质量为 45.0 kg 的物体 ,由地面以初速 60.0 m·s-1 竖直向上发射 ,物体遇到空气的阻力为 F r=kv, 且 k = 0.03 N/( m-1最大高度为多少?s· ). (1) 求物体发射到最大高度所需的时间.(2)剖析物体在发射过程中 ,同时遇到重力和空气阻力的作用,其协力是速率v 的一次函数 ,动力学方程是速率的一阶微分方程,求解时 ,只需采纳分别变量的数学方法即可.可是,在求解高度时 ,则一定将时间变量经过速度定义式变换为地点变量后求解 ,并注意到物体上涨至最大高度时 ,速率应为零.解 (1) 物体在空中受重力 mg 和空气阻力 F r = kv 作用而减速.由牛顿定律得mg k mdv(1)vdt依据始末条件对上式积分,有t vddtmvvv 0mg kvtmln 1 kv 06.11 skmgdv dv(2) 利用v 的关系代入式 (1),可得dtdydvmg kv mv分别变量后积分y 0dyv 0mvdvmgkv故m mg ln 1kv 0 v 0183 mykmgkv 0 和 y 2议论 如不考虑空气阻力 ,则物体向上作匀减速运动.由公式tv 0 分别算得 t ≈s和g2gy ≈184 m,均比实质值略大一些.2 -21 一物体自地球表面以速率 v 0 竖直上抛.假设空气对物体阻力的值为F r = kmv 2 ,此中 m 为物体的质量 ,k 为常量.试求: (1) 该物体能上涨的高度; (2)物体返回地面时速度的值. (设重力加快度为常量. )剖析因为空气对物体的阻力一直与物体运动的方向相反 ,所以 ,物体在上抛过程中所受重力 P 和阻力 F r 的方向相同;而下落过程中 ,所受重力 P 和阻力 Fr 的方向则相反.又因阻力是变力 ,在解动力学方程时 ,需用积分的方法.解 分别对物体上抛、 下落时作受力剖析 ,以地面为原点 ,竖直向上为 y 轴 (如下图 ) .(1) 物体在上抛过程中 ,依据牛顿定律有mg km 2 m dv m vdvv dt dy 依照初始条件对上式积分,有y 0 v ddy v2v0 g kvy 1ln g kv 2 2k g kv02物体抵达最高处时, v = 0,故有hymax 1 ln g kv 022k g (2)物体下落过程中 ,有2vdvmg kmv m对上式积分 ,有ydy 0vdv0 v0 g k2vkv 2 1/ 2v则v0 1g2 -22 质量为 m 的摩托车 ,在恒定的牵引力 F 的作用下工作 ,它所受的阻力与其速率的平方成正比,它能达到的最大速率是 v m.试计算从静止加快到mv /2所需的时间以及所走过的行程.剖析该题依旧是运用动力学方程求解变力作用下的速度和地点的问题,求解方法与前两题相像,只是在解题过程中一定想法求出阻力系数k.因为阻力 Fr = kv2 ,且 F r又与恒力 F 的方向相反;故当阻力随速度增加至与恒力大小相等时,加快度为零 ,此时速度达到最大.所以,依据速度最大值可求出阻力系数来.但在求摩托车所走行程时,需对变量作变换.解设摩托车沿 x 轴正方向运动 ,在牵引力 F 和阻力 F r同时作用下 ,由牛顿定律有F k 2 m dv(1)v dt当加快度 a = dv/dt = 0 时,摩托车的速率最大,所以可得k=F/v m2 (2) 由式 (1) 和式 (2)可得依据始末条件对式(3)积分 ,有t mdtFF 1 v 2 m dv (3)v m2 dt1v m v2 12 dv1 2v m则tmv m ln3 dvmvdv 2F(3)积分 ,有又因式 (3) 中 m,再利用始末条件对式dtdxxmdxF 1v m v212 dv0 12v m则xmv m2ln40.144 mv m 22F3F*2 -23 飞机下降时 ,以 v 0 的水平速度下落伍自由滑行,滑行时期飞机遇到的空气阻力 F 1= -k 1 v 2, 升力F 2= k 2 v 2, 此中 v 为飞机的滑行速度 ,两个系数之比 k 1/ k 2 称为飞机的升阻比.实验表示,物体在流体中运动时 ,所受阻力与速度的关系与多种要素有关 ,如速度大小、流体性质、物体形状等.在速度较小或流体密度较小时有 F ∝ v,而在速度较大或流体密度较大的有 F ∝ v 2 ,需要精准计算时则应由实验测定.此题中因为飞机速率较大,故取 F ∝v 2 作为计算依照.设飞机与跑道间的滑动摩擦因数为μ,试求飞机从触地到静止所滑行的距离.以上计算实质上已成为飞机跑道长度设计的依照之一.剖析 如下图 ,飞机触地后滑行时期遇到 5 个力作用 ,此中 F 1 为空气阻力 , F 2 为空气升力 , F 3 为跑道作用于飞机的摩擦力 , 很明显飞机是在合外力为变力的状况下作减速运动 ,列出牛顿第二定律方程 后 ,用运动学第二类问题的有关规律解题.因为作用于飞机的合外力为速度 v 的函数 ,所求的又是飞机 滑行距离 x,所以比较简易方法是直接对牛顿第二定律方程中的积分变量dt 进行代换 ,将 dt 用dx取代 ,获得一个有关 v 和 x 的微分方程 ,分别变量后再作积分.v解 取飞机滑行方向为 x 的正方向 ,着陆点为坐标原点,如下图 ,依据牛顿第二定律有F N k 1v 2m dv(1)k 2v 2dtF Nmg 0(2)将式 (2)代入式 (1),并整理得μmg k μkv 2m dvm dv12dt v dx分别变量并积分 ,有vm dvv2dxμmgk 1 μk 2v 0v得飞机滑行距离xm ln μmg k 1 μk 2 v 2(3)2 k 1 μk 2 μmg考虑飞机着陆瞬时有 F N = 0 和v = v 0 ,应有 k 2v 02= mg,将其代入 (3)式 ,可得飞机滑行距离 x 的另一表达。

大学物理第二章习题答案

大学物理第二章习题答案
普通物理
1
第二章 机械能及其守恒定律
——思考题与习题 (2课时)
思考题

2
在驱动轮不发生滑动的条件下,一辆汽车从静止加速到速率V。 汽车的动能是否由路面施于汽车的静摩擦力所作之功而获得的?

路面对汽车的静摩擦力并没有作功,汽车作用。
1 R 3
1 1 2 1 2 mgx k ( x x ) kx mv 2 2 2 2 (1)
O
A
x
F
x
B
mg
x
18
小球在 A 点时处于平衡状态,故
mg kx (2)
A
由以上二式可解出由静止释放小球后小 球第一次经过点 A 时的速率为
v k x m
O
x
F
x
B
mg
x
注意,在此问题中,弹性势能 0 点不能选在 A 点,而必须选 择弹簧自然伸长时的位置 O 点,因为弹性势能的定义 1 2 E p kx 2 只有选择弹簧自然伸长时的位置为势能 0 点时才成立。
3

一人逆水划船,使船相对于河岸静止。试问: 1)人是否要作功? 2)停止划船,让船顺流而下,则流水对船是否作功? 1)要作功,使被划的水获得动能增量。 2)略去空气阻力,略去船的海拔下降,人刚停下时流水做功, 使船与水达到同速,此后流水对船不作功。

4

质点系的内力之和是否一定为零?内力作功之和是否一定为零? 内力矩之和是否一定为零?为什么? 质点系的内力之和一定为零,因为内力是成对出现的,每一 对内力大小相等,方向相反。 内力作功之和不一定等于零,因为一对内力的功与内力大小 及发生作用的两部分之间的相对位移有关,例如爆炸的情况, 内力做功大于零。 内力矩之和一定为零,因为内力矩也是成对出现的,大小相 等,方向相反。

大学物理答案第二章牛顿定律-习题解答

大学物理答案第二章牛顿定律-习题解答
牛顿运动定律与实际问题的综合应用
将牛顿运动定律应用于各种实际问题中,如天体运动、弹性碰撞、摩擦力问题等,通过建立物理模型和 运用数学工具解决实际问题。
解决复杂问题的思路与方法
01
02
03
04
建立物理模型
根据问题的实际情况,抽象出 具体的物理模型,如质点、刚 体、弹性碰撞等,为解决问题 提供清晰的思路。
定律的应用场景与实例
总结词
牛顿第一定律在日常生活和科学研究中有着广泛的应用。例如,汽车安全带的设计、投掷物体的轨迹、行星的运 动等都遵循这一规律。
详细描述
汽车安全带的设计依据了惯性定律,通过限制乘客在急刹车或碰撞时的运动,减少伤害风险。投掷物体时,出手 的角度和力量会影响物体的运动轨迹,这也符合惯性定律。行星的运动规律是牛顿第一定律的重要应用之一,行 星绕太阳的椭圆轨道运动可以由惯性定律推导出来。
05
习题解答
常见错误解析与纠正
01 02 03
错误1
混淆了牛顿第二定律中的力和加速度概念,将力误认为是 加速度的原因,而实际上力是产生加速度的原因。纠正: 正确理解力和加速度的关系,力是产生加速度的原因,加 速度的大小和方向由力的三要素决定。
错误2
在分析多力作用下物体的运动时,未能正确分析合力和加 速度的关系。纠正:在分析多力作用下物体的运动时,应 先求出合力,再根据牛顿第二定律求出加速度,最后根据 运动学公式求解速度和位移。
导出牛顿第三定律。
定律的应用场景与实例
要点一
总结词
牛顿第三定律在现实生活中有着广泛的应用,例如火箭发 射、车辆行驶、体育运动等。
要点二
详细描述
在火箭发射中,火箭向下喷射高温高压气体,产生一个向 上的反作用力,使火箭升空。在车辆行驶中,车辆发动机 产生的力推动车辆前进,同时车辆也会给地面一个向后的 反作用力,使地面产生磨损。在体育运动中,例如篮球投 篮时,投篮的力量和手受到的反作用力大小相等、方向相 反。

《大学物理》第二章答案解析

《大学物理》第二章答案解析

* *(1)题2-2图由①、②式消去t ,得1 2 g sin2v 2当t = 2 s 时质点的 ⑴位矢;(2)速度.7aym 16m习题二1 一个质量为P 的质点,在光滑的固定斜面(倾角为 )上以初速度V o 运动, 斜面底边的水平线 AB 平行,如图所示,求这质点的运动轨道. 解:物体置于斜面上受到重力 mg ,斜面支持力N .建立坐标:取V 0方向为X v 0的方向与,平行斜面与X 轴垂直方向为Y 轴•如图2-2. X 方向: F x x V o t Y 方向:F ymg sinma yv yy ^gsint 2x 22 质量为16 kg 的质点在 xOy 平面内运动,受一恒力作用,力的分量为6 N , f y =-7 N ,当 t = 0 时,x y0 , v x = -2 m s -1V y = 0 .解:a xm6 16* *1⑶质点停止运动时速度为零,即 t *,23v xv x0 0 a x dt2 8 227 7v yv y00 a y dt2 —168于是质点在2s 时的速度5 7 .v i j m s 4 8(v °t 1 a x t 2)i1 a.2 .y t J 221 31 7 (2 2 — —4)i -()4J2 82 1613.7 .i j m48v v 0ex vdt: v 0e^dt3 质点在流体中作直线运动,受与速度成正比的阻力 kv (k 为常数)作用,t =0时质点的速度为v o ,证明(1) t 时刻的速度为v = v 0e m ; (2) 由0到t 的时间内经过的距离为d )tx =(一二)[1- e m ]; (3)停止运动前经过的距离为 k mv o 代);⑷证明当t mk 时速答:⑴••• kv amdvdt分离变量,得 dv kdt v vdv v 0vm t kdtln — v °In kte扁故有xkt mv0v0e m dt0k⑷当t= m时,其速度为kV k mv°e m^ v°e 1v e1即速度减至V。

大学物理第二章习题答案

大学物理第二章习题答案

大学物理第二章习题答案大学物理第二章习题答案大学物理是大多数理工科学生必修的一门课程,其中第二章是关于向量和运动学的内容。

本文将为大家提供一些大学物理第二章习题的答案,希望能够帮助大家更好地理解和掌握这一章节的知识。

1. 问题:一个物体以5 m/s的速度从斜坡上滑下来,斜坡的倾角为30°。

求物体滑下斜坡所需的时间。

解答:首先,我们需要将斜坡的倾角转换为弧度。

倾角为30°,转换为弧度的公式为弧度 = 角度× π / 180。

所以,30°转换为弧度为30 × π / 180 = π / 6。

然后,我们可以利用运动学中的公式来求解。

物体在斜坡上滑动,可以将其分解为水平和竖直方向上的运动。

在水平方向上,物体的速度不变,为5 m/s。

在竖直方向上,物体受到重力的作用,加速度为g = 9.8 m/s²。

根据运动学的公式,竖直方向上的位移可以表示为h = (1/2) × g × t²,其中 h 为位移,g 为加速度,t 为时间。

由于物体滑下斜坡的竖直位移为 0,所以我们可以得到以下方程:0 = (1/2) × g × t²解方程得到 t = 0 或t = 2 × 0 / g = 0。

因此,物体滑下斜坡所需的时间为0秒。

2. 问题:一个物体从斜坡上滑下来,滑下斜坡后继续在水平地面上滑行。

已知物体从斜坡上滑下所需的时间为2秒,滑下斜坡后在水平地面上滑行的距离为6米。

求物体在斜坡上的滑动距离。

解答:首先,我们可以利用已知条件求解物体在水平地面上的速度。

根据物体在斜坡上滑行的时间和水平距离,我们可以得到以下方程:6 = 2 × v解方程得到 v = 6 / 2 = 3 m/s。

然后,我们可以利用运动学中的公式来求解物体在斜坡上的滑动距离。

物体在斜坡上滑行的时间为2秒,速度为3 m/s。

大学物理答案第二章

大学物理答案第二章

2-1 分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2-2 分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2-3 分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2-4 分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rmθmg F N 2sin v=-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).2-5 分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a ′为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中aA 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2-6 分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f (t ),然后运用对t 求极值的方法即可得出数值来.解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin (1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -== 则 ()αμααg lt cos sin cos 2-= (2)为使下滑的时间最短,可令0d d =αt,由式(2)有 ()()0sin cos cos cos sin sin =-+--αμαααμαα 则可得 μα12tan -=,o 49=α此时 ()s 99.0cos sin cos 2=-=αμααg lt2-7 分析 预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.解 按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如图所示).当框架以加速度a 上升时,有F T -(m1 +m 2 )g =(m 1 +m 2 )a (1) ,F N2 - m 2 g =m 2 a (2)解上述方程,得F T =(m 1 +m 2 )(g +a) (3) F N2 =m 2 (g +a) (4)(1) 当整个装置以加速度a =10 m ·s-2上升时,由式(3)可得绳所受张力的值为F T =5.94 ×103 N乙对甲的作用力为 F ′N2 =-F N2 =-m 2 (g +a) =-1.98 ×103N (2) 当整个装置以加速度a =1 m ·s-2上升时,得绳张力的值为 F T =3.24 ×103N 此时,乙对甲的作用力则为 F ′N2 =-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2-8 分析 该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A 、B 及滑轮列动力学方程,有 m A g -F T =m A a (1)F ′T1 -F f =m B a ′ (2) F ′T -2F T1 =0 (3)考虑到m A =m B =m , F T =F ′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力()N am m mg F 2724f .=+-=讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来.2-9 分析当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1 以地面为参考系,在摩擦力Ff=μmg的作用下,根据牛顿定律分别对木块、平板列出动力学方程Ff=μmg=ma1F′f=-Ff=m′a2a 1 和a 2 分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a =a 1 +a 2 ,木块相对平板以初速度- v ′作匀减速运动直至最终停止.由运动学规律有 - v ′2=2as由上述各式可得木块相对于平板所移动的距离为()m m g μm s +'''=22v解2 以木块和平板为系统,它们之间一对摩擦力作的总功为W =F f (s +l ) -F fl =μmgs式中l 为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m ′v ′=(m ′+m ) v ″由系统的动能定理,有()222121v v ''+'-''=m m m mgs μ由上述各式可得 ()m m g μm s +'''=22v2-10 分析 维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力F N 的分力来提供的,由于支持力F N 始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示Oxy 坐标,列出动力学方程,即可求解钢球距碗底的高度.解 取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程θωmR ma θF n N sin sin 2== (1)mg θF N =cos (2)且有 ()Rh R θ-=cos (3)由上述各式可解得钢球距碗底的高度为2ωgR h -= 可见,h 随ω的变化而变化.2-11 分析 如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量F N sin θ 提供(式中θ 角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v 0行驶.当火车行驶速率v ≠v 0 时,则会产生两种情况:如图所示,如v >v 0 时,外轨将会对车轮产生斜向内的侧压力F 1 ,以补偿原向心力的不足,如v <v 0时,则内轨对车轮产生斜向外的侧压力F 2 ,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.解 (1) 以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有Rm θF N 2sin v = (1) 0cos =-mg θF N (2)解(1)(2)两式可得火车转弯时规定速率为θgR tan 0=v(2) 当v >v 0 时,根据分析有 RmθF θF N 21cos sin v=+ (3) 0sin cos 1=--mg θF θF N (4) 解(3)(4)两式,可得外轨侧压力为⎪⎪⎭⎫⎝⎛-=θg θR F sin cos m 21v当v <v 0 时,根据分析有RθF θF N 22m cos sin v =- (5) 0sin cos 2=-+mg θF θF N (6)解(5)(6)两式,可得内轨侧压力为⎪⎪⎭⎫ ⎝⎛-=θR θg m F cos sin 22v 2-12 分析 杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v 1 和v 2 两个分量,显然v 1是竖直向上作匀速直线运动的分速度,而v 2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力F N 的水平分量F N2 提供,而竖直分量F N1 则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向力.解 设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有01=-mg F N (1) Rm F N 22v = (2)()222π2π2cos h R Rθ+==vv v (3) 2221N N N F F F +=(4)以式(3)代入式(2),得222222222222π4π4π4π4h R Rm h R R R m F N +=+=v v (5) 将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为22222222221π4π4⎪⎪⎭⎫ ⎝⎛++=+=h R R g m F F F N N N v与壁的夹角φ为()gh R R F F N N 2222212π4π4arctan arctan +==v 讨论 表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.2-13 分析 首先应由题图求得两个时间段的F (t )函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.解 由题图得()⎩⎨⎧<<-<<=7s t 5s,5355s t 0,2t t t F 由牛顿定律可得两时间段质点的加速度分别为5s t 0 ,2<<=t a 7s t 5s ,535<<-=t a对0 <t <5s 时间段,由ta d d v =得 ⎰⎰=tt a 0d d 0vv v 积分后得 25t +=v再由txd d =v 得 ⎰⎰=t t x 0d d 0v x x积分后得33152t t x ++=将t =5s 代入,得v 5=30 m ·s-1和x 5 =68.7 m 对5s<t <7s 时间段,用同样方法有⎰⎰=tt a s52d d 0vv v 得 t t t 5.825.2352--=v再由⎰⎰=txx t x s55d d v 得 x t 2t 3 t将t =7s代入分别得v 7=40 m ·s-1和 x 7 =142 m2-14 分析 这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a =d v /d t ,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v (t );由速度的定义v =d x /d t ,用积分的方法可求出质点的位置.解 因加速度a =d v /d t ,在直线运动中,根据牛顿运动定律有tmt d d 40120v=+ 依据质点运动的初始条件,即t 0 =0 时v 0 =6.0 m ·s-1,运用分离变量法对上式积分,得()⎰⎰+=tt t 0d 0.40.12d 0vv v vt+t 2又因v =d x /d t ,并由质点运动的初始条件:t 0 =0 时x 0 =5.0 m,对上式分离变量后积分,有()⎰⎰++=txx t t t x 02d 0.60.40.6dx +t+t 2t 32-15 分析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F 为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,t αtmma F -===d d v ⎰⎰-=t t m t α0d d 0v v v 得 202t m α-=v v因此,飞机着陆10s后的速率为v =30 m ·s-1又⎰⎰⎪⎭⎫ ⎝⎛-=t xx t t m αx 0200d 2d v故飞机着陆后10s内所滑行的距离 m 4676300=-=-=t mαt x x s v 2-16 分析 该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P 、浮力F 和水的阻力F f的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为gh 20=v运动员入水后,由牛顿定律得 P -F f -F =ma 由题意P =F 、F f=bv 2,而a =d v /d t =v (d v /d y ),代 入上式后得 -bv 2= mv (d v /d y ) 考虑到初始条件y 0 =0 时, gh 20=v ,对上式积分,有⎰⎰=⎪⎭⎫ ⎝⎛-v v vv 0d d 0ty b m mby m by e gh e //02--==v v (2) 将已知条件b/m =0.4 m -1,v v 0 代入上式,则得m 76.5ln 0=-=v vb m y 2-17 分析 螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.解 设叶片根部为原点O ,沿叶片背离原点O 的方向为正向,距原点O 为r 处的长为d r 一小段叶片,其两侧对它的拉力分别为F T(r)与F T(r +d r ).叶片转动时,该小段叶片作圆周运动,由牛顿定律有()()r r ωlm r r F r F F T T T d d d 2=+-= 由于r =l 时外侧F T =0,所以有()r r lωm F lrtr F T T d d 2⎰⎰= ()()()22222222r l l mn πr l l ωm r F T --=--= 上式中取r =0,即得叶片根部的张力F T0 =-2.79 ×105N 负号表示张力方向与坐标方向相反.2-18 分析 该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度a t,与其相对应的外力F t是重力的切向分量mg sin α,而与法向加速度a n 相对应的外力是支持力F N 和重力的法向分量mg cos α.由此,可分别列出切向和法向的动力学方程F t=m d v/d t 和F n =ma n .由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量. 倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解 小球在运动过程中受到重力P 和圆轨道对它的支持力F N .取图(b)所示的自然坐标系,由牛顿定律得tm αmg F t d d sin v=-= (1) R m m αmg F F N n 2cos v =-= (2) 由tαr t s d d d d ==v ,得v αr t d d =,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积分,有()⎰⎰-=αααrg o90d sin d vv v v 得 αrg cos 2=v则小球在点C 的角速度为r αg r ω/cos 2==v由式(2)得 αmg αmg r m m F N cos 3cos 2=+=v 由此可得小球对圆轨道的作用力为 αmg F F N N cos 3-=-='负号表示F ′N 与e n 反向.2-19 分析 运动学与动力学之间的联系是以加速度为桥梁的,因而,可先分析动力学问题.物体在作圆周运动的过程中,促使其运动状态发生变化的是圆环内侧对物体的支持力F N 和环与物体之间的摩擦力F f ,而摩擦力大小与正压力F N ′成正比,且F N 与F N ′又是作用力与反作用力,这样,就可通过它们把切向和法向两个加速度联系起来了,从而可用运动学的积分关系式求解速率和路程.解 (1) 设物体质量为m ,取图中所示的自然坐标,按牛顿定律,有R m ma F n N 2v == tma F t d d f v-=-=由分析中可知,摩擦力的大小F f=μF N ,由上述各式可得tR μd d 2vv -= 取初始条件t =0 时v =v 0 ,并对上式进行积分,有⎰⎰-=v v v v02d d μR t tt μR R 00v v v +=(2) 当物体的速率从v 0 减少到1/2v 0时,由上式可得所需的时间为v μR t =' 物体在这段时间内所经过的路程⎰⎰''+==t t t t μR R t s 0000d d v v v 2ln μRs =2-20 分析 物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v 的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.解 (1) 物体在空中受重力mg 和空气阻力F r =kv 作用而减速.由牛顿定律得tmk mg d d vv =-- (1) 根据始末条件对上式积分,有⎰⎰+-=vv v v vd d 0k mg m t ts 11.61ln 0≈⎪⎪⎭⎫⎝⎛+=mg k k m t v (2) 利用yvt d d d d v v =的关系代入式(1),可得 ym k mg d d vvv =-- 分离变量后积分⎰⎰+-=0d d v v vv k mg m y y故 m 1831ln 00≈⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛+-=v v mg k k mg k m y 讨论 如不考虑空气阻力,则物体向上作匀减速运动.由公式g t 0v =和gy 220v=分别算得t ≈y ≈184 m,均比实际值略大一些.2-21 分析 由于空气对物体的阻力始终与物体运动的方向相反,因此,物体在上抛过程中所受重力P 和阻力F r 的方向相同;而下落过程中,所受重力P 和阻力F r 的方向则相反.又因阻力是变力,在解动力学方程时,需用积分的方法.解 分别对物体上抛、下落时作受力分析,以地面为原点,竖直向上为y 轴(如图所示).(1) 物体在上抛过程中,根据牛顿定律有ym t mkm mg d d d d 2vv v v ==-- 依据初始条件对上式积分,有⎰⎰+-=020d d v v vv k g y y⎪⎪⎭⎫ ⎝⎛++-=202ln 21v v k g k g k y 物体到达最高处时, v =0,故有⎪⎪⎭⎫ ⎝⎛+==g k g k y h 20max ln 21v (2) 物体下落过程中,有yvmkm mg d d 2v v =+- 对上式积分,有 ⎰⎰--=020d d v v vv k g y y则 2/1201-⎪⎪⎭⎫ ⎝⎛+=g k v v v2-22 分析 该题依然是运用动力学方程求解变力作用下的速度和位置的问题,求解方法与前两题相似,只是在解题过程中必须设法求出阻力系数k .由于阻力F r =kv 2,且F r 又与恒力F 的方向相反;故当阻力随速度增加至与恒力大小相等时,加速度为零,此时速度达到最大.因此,根据速度最大值可求出阻力系数来.但在求摩托车所走路程时,需对变量作变换.解 设摩托车沿x 轴正方向运动,在牵引力F 和阻力F r 同时作用下,由牛顿定律有tmk F d d 2vv =- (1) 当加速度a =d v /d t =0 时,摩托车的速率最大,因此可得k =F/v m 2 (2)由式(1)和式(2)可得t m F m d d 122vv v =⎪⎪⎭⎫ ⎝⎛- (3) 根据始末条件对式(3)积分,有⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m tF m t v v v v 2101220d 1d 则 3ln 2F m t m v = 又因式(3)中xm t md d d d vv v =,再利用始末条件对式(3)积分,有 ⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m xF m x v v v v 2101220d 1d 则 F m F m x mm 22144.034ln 2v v ≈=2-23 分析 如图所示,飞机触地后滑行期间受到5 个力作用,其中F 1为空气阻力, F 2 为空气升力, F 3 为跑道作用于飞机的摩擦力,很显然飞机是在合外力为变力的情况下作减速运动,列出牛顿第二定律方程后,用运动学第二类问题的相关规律解题.由于作用于飞机的合外力为速度v 的函数,所求的又是飞机滑行距离x ,因此比较简便方法是直接对牛顿第二定律方程中的积分变量d t 进行代换,将d t 用vxd 代替,得到一个有关v 和x 的微分方程,分离变量后再作积分.解 取飞机滑行方向为x 的正方向,着陆点为坐标原点,如图所示,根据牛顿第二定律有 tmk F N d d 21vv =- (1) 022=-+mg k F N v (2)将式(2)代入式(1),并整理得()xm t mk μk mg μd d d d 221v v v v ==--- 分离变量并积分,有()⎰⎰⨯-=-+0221d d 0x k μk mg μvm vv v v得飞机滑行距离()()⎥⎦⎤⎢⎣⎡-+-=mg μk μk mg μk μk mx 22121ln 2v (3) 考虑飞机着陆瞬间有F N =0 和v =v 0 ,应有k 2v 02=mg,将其代入(3)式,可得飞机滑行距离x 的另一表达式()⎪⎪⎭⎫ ⎝⎛-=212122k ln 2k μk μk g k x v 讨论 如飞机着陆速度v 0=144 km ·h -1,μ=0.1,升阻比521=k k ,可算得飞机的滑行距离x =560 m,设计飞机跑道长度时应参照上述计算结果.2-24 分析 如同习题2 -5 分析中指出的那样,可对木箱加上惯性力F 0 后,以车厢为参考系进行求解,如图所示,此时木箱在水平方向受到惯性力和摩擦力作用,图中a ′为木箱相对车厢的加速度.解 由牛顿第二定律和相关运动学规律有F 0 -F f=ma -μmg =ma ′ (1) v ′ 2 =2a ′L (2)联立解(1)(2)两式并代入题给数据,得木箱撞上车厢挡板时的速度为()2s m 9.22-⋅=-='L g μa v2-25 分析 如以加速运动的电梯为参考系,则为非惯性系.在非惯性系中应用牛顿定律时必须引入惯性力.在通常受力分析的基础上,加以惯性力后,即可列出牛顿运动方程来.解 取如图(b)所示的坐标,以电梯为参考系,分别对物体A 、B 作受力分析,其中F 1 =m 1a ,F 2 =m 2a 分别为作用在物体A 、B 上的惯性力.设a r 为物体相对电梯的加速度,根据牛顿定律有r a m F a m g m 1T111=-+ (1) r a m F a m g m 2T222-=-+ (2) T2T2F F = (3)由上述各式可得()a g m m m m a r ++-=2121 ()a g m m m m F F ++==2121T2T22由相对加速度的矢量关系,可得物体A 、B 对地面的加速度值为()2122112m m a m g m m a a a r +--=-= ()()2121122m m gm m a m a a ar +-+-=+-=a 2 的方向向上, a 1 的方向由a r 和a 的大小决定.当a r <a ,即m 1g -m 2g -2m 2 a >0 时,a 1 的方向向下;反之, a 1 的方向向上.2-26 分析 这类问题可应用牛顿定律并采用隔离体法求解.在解题的过程中必须注意: (1) 参考系的选择.由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系).因地面和斜面都是光滑的,当滑块在斜面上下滑时,三棱柱受到滑块对它的作用,也将沿地面作加速度为a A 的运动,这时,滑块沿斜面的加速度a BA ,不再是它相对于地面的加速度a B 了.必须注意到它们之间应满足相对加速度的矢量关系,即a B =a A +a BA .若以斜面为参考系(非惯性系),用它求解这类含有相对运动的力学问题是较为方便的.但在非惯性系中,若仍要应用牛顿定律,则必须增添一惯性力F ,且有F =ma A .(2) 坐标系的选择.常取平面直角坐标,并使其中一坐标轴方向与运动方向一致,这样,可使解题简化.(3) 在分析滑块与三棱柱之间的正压力时,要考虑运动状态的影响,切勿简单地把它视为滑块重力在垂直于斜面方向的分力mg cos α,事实上只有当a A =0 时,正压力才等于mg cosα.解1 取地面为参考系,以滑块B 和三棱柱A 为研究对象,分别作示力图,如图(b)所示.B 受重力P 1 、A 施加的支持力F N1 ;A 受重力P 2 、B 施加的压力F N1′、地面支持力F N2 .A 的运动方向为Ox 轴的正向,Oy 轴的正向垂直地面向上.设a A 为A 对地的加速度,a B 为B 对的地加速度.由牛顿定律得A a m α'='sin N1F (1)Bx ma α=-sin N1F (2) By ma mg α=-cos N1F (3)'=N1N1F F (4)设B 相对A 的加速度为a BA ,则由题意a B 、a BA 、a A 三者的矢量关系如图(c)所示.据此可得αa a a BA A Bx cos -= (5) αa a BA By sin -= (6)解上述方程组可得三棱柱对地面的加速度为αm m ααmg a A 2sin cos sin +'=滑块相对地面的加速度a B 在x 、y 轴上的分量分别为αm m ααg m a Bx 2sin cos sin +''= ()αm m αg m m a By 22sin sin +'+'-=则滑块相对地面的加速度a B 的大小为()αm m αm m m m αg a a a ByBx B 222222sin sin 2sin +'+'+'=+=其方向与y 轴负向的夹角为m m αm a a θBy Bx +'+'==cot arctan arctanA 与B 之间的正压力 αm m αmg m F 2N1sin cos +''= 解2 若以A 为参考系,Ox 轴沿斜面方向[图(d)].在非惯性系中运用牛顿定律,则滑块B 的动力学方程分别为BA A ma αma αmg =+cos sin (1) 0sin cos N1=--αma F αmg A (2)又因 0sin N1='-'A a m αF (3)'=N1N1F F (4)由以上各式可解得αm m ααmg a A 2sin cos sin +'=()αm m αg m m a BA2sin sin +'+'-= 由a B 、a BA 、a A 三者的矢量关系可得()αm m αm m m m αg a B 2222sin sin 2sin +'+'+'= 以a A 代入式(3)可得 αm m αmg m F 2N1sin cos +''=4-1 分析与解 力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B).4-2 分析与解 刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B).4-3 分析与解 如图所示,在棒下落过程中,重力对轴之矩是变化的,其大小与棒和水平面的夹角有关.当棒处于水平位置,重力矩最大,当棒处于竖直位置时,重力矩为零.因此在棒在下落过程中重力矩由大到小,由转动定律知,棒的角加速亦由大到小,而棒的角速度却由小到大(由机械能守恒亦可判断角速度变化情况),应选(C).4-4 分析与解 对于圆盘一子弹系统来说,并无外力矩作用,故系统对轴O 的角动量守恒,故L 不变,此时应有下式成立,即ωJ ωJ d m d m =+-00v v式中mv D 为子弹对点O 的角动量ω0 为圆盘初始角速度,J 为子弹留在盘中后系统对轴O 的转动惯量,J 0为子弹射入前盘对轴O 的转动惯量.由于J >J 0 ,则ω<ω0 .故选(C).4-5 分析与解 由于卫星一直受到万有引力作用,故其动量不可能守恒,但由于万有引力一直指向地球中心,则万有引力对地球中心的力矩为零,故卫星对地球中心的角动星守恒,即r ×m v =恒量,式中r 为地球中心指向卫星的位矢.当卫星处于椭圆轨道上不同位置时,由于|r |不同,由角动量守恒知卫星速率不同,其中当卫星处于近地点时速率最大,处于远地点时速率最小,故卫星动能并不守恒,但由万有引力为保守力,则卫星的机械能守恒,即卫星动能与万有引力势能之和维持不变,由此可见,应选(B).4-6 分析 这是刚体的运动学问题.刚体定轴转动的运动学规律与质点的运动学规律有类似的关系,本题为匀变速转动.解 (1) 由于角速度ω=2π n (n 为单位时间内的转数),根据角加速度的定义tωαd d =,在匀变速转动中角加速度为 ()200s rad 1.13π2-⋅=-=-=tn n t ωωα (2) 发动机曲轴转过的角度为()0020π221n n t ωωt αt ωθ-=-=+=在12 s 内曲轴转过的圈数为3902π20=+==t n n θN 4-7 分析 与质点运动学相似,刚体定轴转动的运动学问题也可分为两类:(1) 由转动的运动方程,通过求导得到角速度、角加速度;(2) 在确定的初始条件下,由角速度、角加速度通过积分得到转动的运动方程.本题由ω=ω(t )出发,分别通过求导和积分得到电动机的角加速度和6.0 s 内转过的圈数.解 (1) 根据题意中转速随时间的变化关系,将t =6.0 s 代入,即得()10/0s 6.895.01--==-=ωe ωωτt(2) 角速度随时间变化的规律为()22//0s rad e 5.4e d d ---⋅===t τt τωt ωα (3) t =6.0 s 时转过的角度为()rad 9.36d 1d /6060=-==-⎰⎰t e ωt ωθτt则t =6.0 s 时电动机转过的圈数 87.5π2/==θN 圈4-8 分析 如将原子视为质点,则水分子中的氧原子对AA ′轴和BB ′ 轴的转动惯量均为零,因此计算水分子对两个轴的转动惯量时,只需考虑氢原子即可.。

大学物理习题答案解答第二章牛顿运动定律

大学物理习题答案解答第二章牛顿运动定律

第二章 牛顿运动定律一、填空题1、考察直线运动,设加速度为()a t ,初速度为00v =,则由dv a dv adt dt =⇒= 两边定积分,即 00v t v dv adt =⎰⎰ 得质点在任意时刻t 的速度为 110()()t v t a t dt =⎰ (2-1)再由ds v ds vdt dt =⇒= 两边定积分,即 00s t s ds vdt =⎰⎰ 得质点在任意时刻t 的路程为 0220()t s s s v t dt ∆=-=⎰ 把(2-1)式代入上式,得211200()tt s a t dt dt ∆=⎰⎰依题设可知两物体必做直线运动,设某时刻两物体间作用力为F ,则两物体的加速度分别为11F a m = 和 22F a m = 所以两物体在相同时间内发生的路程分别为:2221111121211200000011()1()()tt tt t t F t s a t dt dt dt dt F t dt dt m m ∆===⎰⎰⎰⎰⎰⎰ 2221221121211200000022()1()()t t t t t t F t s a t dt dt dt dt F t dt dt m m ∆===⎰⎰⎰⎰⎰⎰所以 11222111s m m s m m ∆==∆ 此即为所求。

2、箱子在最大静摩擦力的作用下,相对地面具有的最大加速度为2max 0max 00.49.8 3.92()F mg a g m s m mμμ-====⨯=⋅ (1)若设箱子相对卡车静止,即物体相对地面的加速度2max 2a m s a -=⋅<表明箱子与卡车底板间是静摩擦,摩擦力的大小为40280()F ma N ==⨯=(2)依然设箱子相对卡车静止,即物体相对地面的加速度2max 4.5a m s a -=⋅>表明箱子与卡车底板间是滑动摩擦,摩擦力的大小为0.25409.898()F mg N μ==⨯⨯=3、如图2-1(a)所示建立直角坐标系,再分析滑块的受力情况,如图2-1(b)所示,滑块受到三个力的作用,分别是地球施加的重力mg ,斜面对它的支持力1N 和滑动摩擦力1f ,并设其加速度为a 。

大学物理课后习题答案第二章

大学物理课后习题答案第二章
(1)小球速率随时间的变化关系v(t);
(2)小球上升到最大高度所花的时间T.
[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程

分离变量得 ,
积分得 .
当t= 0时,v=v0,所以 ,
因此 ,
小球速率随时间的变化关系为

(2)当小球运动到最高点时v= 0,所需要的时间为
第二章运动定律与力学中的守恒定律
(一) 牛顿运动定律
2.1一个重量为P的质点,在光滑的固定斜面(倾角为α)上以初速度 运动, 的方向与斜面底边的水平约AB平行,如图所示,求这质点的运动轨道.
[解答]质点在斜上运动的加速度为a = gsinα,方向与初速度方向垂直.其运动方程为
x = v0t, .
将t = x/v0,代入后一方程得质点的轨道方程为
(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角;
(4)用与斜面平行的加速度 把小车沿斜面往上推(设b1=b);
(5)以同样大小的加速度 (b2=b),将小车从斜面上推下来.
[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力 的作用,摆线偏角为零,线中张力为T = mg.
(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于
这也是桌子受板的压力的大小,但方向相反.
板在桌子上滑动,所受摩擦力的大小为:fM= μkNM= 7.35(N).
这也是桌子受到的摩擦力的大小,方向也相反.
(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为
f =μsmg=ma`,
可得a` =μsg.
板的运动方程为
F – f – μk(m + M)g=Ma`,

大学物理教程第2章习题答案

大学物理教程第2章习题答案

思 考 题2.1 从运动学的角度看,什么是简谐振动?从动力学的角度看,什么是简谐振动? 答:从运动学的角度看,弹簧振子相对平衡位置的位移随时间按余弦函数的规律变化,所作的运动就是简谐振动。

从动力学的角度看,如果物体受到的力的大小总是与物体对其平衡位置的位移成正比,而方向相反,那么该物体的运动就是简谐振动。

2.2 弹簧振子的振幅增大到2倍时,其振动周期、振动能量、 最大速度和最大加速度等物理量将如何变化?答:弹簧振子的运动方程为0cos()x A t ωϕ=+,速度为0sin()v A t ωωϕ=-+,加速度的为)cos(02ϕωω+-=t A a ,振动周期2kT mπ=,总能量为221kA E =。

所以,弹簧振子的振幅A 增大到2倍时,其振动周期不变,振动能量为原来的4倍,最大速度为原来的2倍,最大加速度为原来的2倍。

2.3 下列运动是否为简谐振动?(1)小球在地面上作完全弹性的上下跳动;(2)小球在半径很大的光滑凹球面底部作小幅度的摆动; (3)曲柄连杆机构使活塞作往复运动; (4)小磁针在地磁的南北方向附近摆动。

答:(2)、(4)为简谐振动,(1)、(3)、不是简谐振动。

2.4 三只相同的弹簧(质量忽略不计)都一端固定,另一端连接质量为m 的物体,它们放置情况不同,其中一个平放,一个斜放,另一个竖直放。

如果它们振动起来,则三者是否均为简谐振动,它们振动的周期是否相同?答:三者均为简谐振动,它们振动的周期也相同。

2.5 当谐振子作简谐振动的振幅增大为原来的2倍时,谐振子的什么量也增大为原来的2倍?答:最大速度和最大加速度。

2.6 一弹簧振子作简谐振动,其振动的总能量为E 1。

如果我们将弹簧振子的振动振幅增加为原来的2倍,而将重物的质量增加为原来的4倍,则新的振子系统的总能量是否发生变化?答:弹簧振子212E kA = ,所以新的振子系统的总能量增加为原来的4倍。

2.7 一质点作简谐振动,振动频率为n,则该质点动能的变化频率是多少?答:该质点动能的变化频率是2n。

大学物理第二章习题答案

大学物理第二章习题答案

大学物理第二章习题答案# 大学物理第二章习题答案开始部分在解答大学物理的习题之前,我们需要对第二章的物理概念和公式有一个清晰的理解。

本章通常涵盖了经典力学的基础知识,包括牛顿运动定律、功和能量等概念。

习题1:牛顿运动定律的应用问题描述:一个物体在水平面上受到一个恒定的力F=10N,求物体的加速度a。

解答:根据牛顿第二定律,\[ F = ma \],其中m是物体的质量。

设物体的质量为m,我们可以解出加速度a:\[ a = \frac{F}{m} = \frac{10}{m} \, \text{m/s}^2 \]注意,这里我们假设物体的质量m是已知的。

习题2:斜面上的物体问题描述:一个质量为m=5kg的物体放在一个倾斜角度为30°的斜面上,求物体受到的重力分量。

解答:物体受到的重力分量可以分解为两个方向的力:平行于斜面的分量和垂直于斜面的分量。

垂直分量为:\[ F_{垂直} = mg \sin(30°) = 5 \times 9.8 \times 0.5 = 24.5 \, \text{N} \]平行分量为:\[ F_{平行} = mg \cos(30°) = 5 \times 9.8 \times\frac{\sqrt{3}}{2} \approx 49.04 \, \text{N} \]习题3:功和能量问题描述:一个物体从高度h=10m的平台上自由落体,求物体落地时的动能。

解答:首先,我们需要计算物体在自由落体过程中重力做的功W,它等于物体的重力势能变化:\[ W = mgh = 5 \times 9.8 \times 10 \]根据能量守恒定律,这个功将转化为物体的动能:\[ KE = W = 5 \times 9.8 \times 10 = 490 \, \text{J} \]结束部分在解答物理习题时,重要的是理解每个物理量的含义以及它们之间的关系。

通过逐步分析问题,应用适当的物理定律和公式,我们可以找到正确的答案。

大学物理第二章 质点动力学习题解答

大学物理第二章 质点动力学习题解答

第二章 习题解答2-17 质量为2kg 的质点的运动学方程为 j t t i t r ˆ)133(ˆ)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。

解:∵j i dt r d a ˆ6ˆ12/22+== , j i a m F ˆ12ˆ24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。

F=(242+122)1/2=125N ,力与x 轴之间夹角为:'34265.0/︒===arctg F arctgF x y α2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b i t a r ˆsin ˆcos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。

证明:∵r j t b i t a dt r d a 2222)ˆsin ˆcos (/ωωωω-=+-== r m a m F2ω-==, ∴作用于质点的合力总指向原点。

2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。

解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律:②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ①+②可求得:g m m gm F a μμ-+-=2112将a 代入①中,可求得:2111)2(m m g m F m T +-=μ2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。

大学物理学(第三版)第二章课后答案解析

大学物理学(第三版)第二章课后答案解析

习题22.1 选择题(1) 一质点作匀速率圆周运动时,(A)它的动量不变,对圆心的角动量也不变。

(B)它的动量不变,对圆心的角动量不断改变。

(C)它的动量不断改变,对圆心的角动量不变。

(D)它的动量不断改变,对圆心的角动量也不断改变。

[答案:C](2) 质点系的内力可以改变(A)系统的总质量。

(B)系统的总动量。

(C)系统的总动能。

(D)系统的总角动量。

[答案:C](3) 对功的概念有以下几种说法:①保守力作正功时,系统内相应的势能增加。

②质点运动经一闭合路径,保守力对质点作的功为零。

③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。

在上述说法中:(A)①、②是正确的。

(B)②、③是正确的。

(C)只有②是正确的。

(D)只有③是正确的。

[答案:C]2.2填空题(1) 某质点在力i x F )54(+=(SI )的作用下沿x 轴作直线运动。

在从x=0移动到x=10m的过程中,力F所做功为 。

[答案:290J ](2) 质量为m 的物体在水平面上作直线运动,当速度为v 时仅在摩擦力作用下开始作匀减速运动,经过距离s 后速度减为零。

则物体加速度的大小为 ,物体与水平面间的摩擦系数为 。

[答案:22;22v v sgs](3) 在光滑的水平面内有两个物体A 和B ,已知m A =2m B 。

(a )物体A 以一定的动能E k 与静止的物体B 发生完全弹性碰撞,则碰撞后两物体的总动能为 ;(b )物体A 以一定的动能E k 与静止的物体B 发生完全非弹性碰撞,则碰撞后两物体的总动能为 。

[答案:2;3k k E E ]2.3 在下列情况下,说明质点所受合力的特点:(1)质点作匀速直线运动;(2)质点作匀减速直线运动;(3)质点作匀速圆周运动;(4)质点作匀加速圆周运动。

解:(1)所受合力为零;(2)所受合力为大小、方向均保持不变的力,其方向与运动方向相反;(3)所受合力为大小保持不变、方向不断改变总是指向圆心的力;(4)所受合力为大小和方向均不断变化的力,其切向力的方向与运动方向相同,大小恒定;法向力方向指向圆心。

大学物理习题册及解答(第二版)第二章 质点的运动定律

大学物理习题册及解答(第二版)第二章 质点的运动定律

µgR
(D) 还应由汽车的质量M决定
解:汽车不发生侧向打滑的条件是,它所受的摩擦力 不得小于向心力,即有:
υ f = µN = µmg ≥ m R υ ≤ µgR
2
5.质量为m的质点,以不变速率v沿图中正三角形ABC 的水平光滑轨道运动.质点越过A角时,轨道作用于质 点的冲量的大小为 A
(A) mυ (C) 3mυ
M g =G R
E 2
F −m g a= m +m
2 1 2
v F
v T
m1 m2
m T= (F + m g) m +m
2 1 1 2
6.质量为m的小球自高为y0处沿水平方向以速率v0抛出, 与地面碰撞后跳起的最大高度为y0/2,水平速率为v0/2. 则碰撞过程中 (1)地面对小球的竖直冲量的大小为___________; (2) 地面对小球的水平冲量的大小为_________. 解:碰前小球沿x和y方向的速度分别为:
第二章 质点的运动定律(二) 质点的运动定律( 一 选择题
1. 一小珠可在半径为R竖直的圆环上无摩擦地滑动,且圆环能以 其竖直直径为轴转动.当圆环以一适当的恒定角速度ω转动,小珠 偏离圆环转轴而且相对圆环静止时,小珠所在处圆环半径偏离竖 直方向的角度为 g
Rω (C) θ = arctg( ) g
dυ k dυ = d υ ⋅ dx F =υ ∴a = = − 2 = dx dt mx dt m dx
k vdv = − dx 2 mx
k dx ∫ vdv = ∫ − 2 mx 0 x
v x
0
v2 k 1 1 = − 2 m x x0
v=
k 1 − 1 2 m x x 0

大学物理(机械工业出版社)第二章课后答案

大学物理(机械工业出版社)第二章课后答案

第二章 质点动力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。

解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式(2)代入式(1)得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。

解:小球在运动的过程中受到重力G 和轨道对它的支持力T.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,习题2-2图902n (sin )m cos 3cos '3cos ,e v vdv rg d v v rv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。

解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。

大学物理第2章课后答案

大学物理第2章课后答案

第二章 质点动力学四、习题选解2-1 光滑的水平桌面上放有三个相互接触的物体,它们的质量分别为.4,2,1321kg m kg m kg m ===(1)如图a 所示,如果用一个大小等于N 98的水平力作用于1m 的左方,求此时2m 和3m 的左边所受的力各等于多少?(2)如图b 所示,如果用同样大小的力作用于3m 的右方。

求此时2m 和3m 的左边所受的力各等于多少?(3)如图c 所示,施力情况如(1), 但3m 的右方紧靠墙壁(不能动)。

求此时2m 和3m 左边所受的力各等 于多少?解:(1)三个物体受到一个水平力的作用,产生的加速度为a()a m m m F 321++=232114-⋅=++=sm m m m F a用隔离法分别画出32,m m 在水平方向的受力图(a ),题2-1(a )图由a m F =a m f f23212=- a m f323= 2332f f =N f 5623=N f 8412=(2)由()a m m m F321++=232114-⋅=++=sm m m m F a用隔离法画出321m m m 、、在水平方向的受力图(b )由a m F= 得⎪⎪⎪⎩⎪⎪⎪⎨⎧====-=-3223122112121232323f f ff a m f a m f f a m f F解得: N f 1412= N f 4223=题2-1(b )图(3)由于321m m m 、、都不运动,加速度0=a ,三个物体彼此的作用力都相等,都等于FN f f 982312== 2-2 如图所示,一轻质弹簧连接着1m 和2m 两个物体,1m 由细线拉着在外力作用下以加速a 竖直上升。

问作用在细线上的张力是多大?在加速上升的过程中,若将线剪断,该瞬时1m 、2m 的加速度各是多大?解:(1)分别画出1m 、2m 受力的隔离体如图(a ),题2-2(a )图取向上为正方向,由牛顿第二定律⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f T 2211故 ()()a g m m g m g m a m a m T ++=+++=212121 (2)将线剪断,画出21m m 、的隔离体图,如图(b )题2-2(b )图 取竖直向上为正方向,由牛顿第二定律得⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f 222111 得⎪⎩⎪⎨⎧+--==-=)(/)'(121222a g m m g a a m g m f a 1a 的方向向下,2a的方向向上。

大学物理课后习题答案 第二章

大学物理课后习题答案 第二章

大学物理教程课后习题答案 第二章 2.1 两根轻弹簧与物体连接方式如题图 2.1,物体质量为m ,弹簧劲度系数为1k 和2k ,水平面光滑.证明系统可作简谐振动,并求振动的固有频率. 题图2.1 解 以物体m 的平衡位置为原点,建立坐标轴Ox 水平向右.设m 位于x 时,两弹簧分别伸长1x 和2x ,则12x x x =+.因两弹簧弹性力相等,所以物体m 所受合力1122F k x k x ==.设由两弹簧组合而成的“组合弹簧”的劲度系数为k ,于是12121212()()k k F F F kx k x x k kF k k k k +==+=+= 由此求得“组合弹簧”的劲度系数1212k k k k k =+为常量,可见物体m 所受合力为线性回复力,所以系统作简谐振动,振动的固有频率12121122()k k k m m k k νππ==+ 2.2 两根轻弹簧与物体连接方式如题图2.2,物体质量为m ,弹簧劲度系数为1k 和2k ,水平面光滑,物体静止时两弹簧均处于自由伸张状态.证明系统可作简谐振动,并求振动的圆频率和周期. 题图2.2 解 以物体m 的平衡位置为原点,建立坐标轴Ox 水平向右.m 位于x 时,弹簧1被拉长,弹簧2被压缩,m 所受合力1212()F kx k x k x k k x ==+=+由此求得“组合弹簧”的劲度系数12k k k =+为常量,可见物体m 所受合力为线性回复力,所以系统作简谐振动,振动的圆频率和周期分别为120k k m ω+= , 122m T k k π=+ 2.3 弹簧振子的质点质量为42.510kg -⨯,运动学方程为0.06cos(5)(m)x t π=+.求:(1)振幅和周期;(2)质点的初始位置;(3)质点位于初始位置时所受合力;(4)质点在s t π=时的位置、速度和加速度.解 (1)由运动学方程可见,振幅006m A .=,05ω=,周期0204(s)126(s)T ..ππω===(2)由运动学方程可见,0t =时,质点的初始位置0006cos 006(m)x ..π==-.(3)对运动学方程求时间导数可得d 0.3sin(5)d x x v t tπ==-+ d 1.5cos(5)d x x v a t t π==-+ 0t =时0 1.5cos 1.5x a π=-=,根据牛顿第二定律可知质点位于初始位置时所受合力440025101537510(N)x F ma ...--==⨯⨯=⨯(4)把t π=代入运动学方程和(3)中求得的x v 、x a 表达式,即可求得质点在t π=时的位置、速度和加速度分别为006cos(5+)006(m)x ..ππ==03sin(5)0(m )x v .ππ=-+=215cos(5) 1.5(m )x a .ππ=-+=-2.4 一质点作简谐振动,振幅为0.02m ,速度幅为0.03m s ,取速度为最大值时为0t =.求:(1)周期;(2)加速度幅;(3)运动学方程. 解 设运动学方程为00cos()002cos()x A t .t ωϕωϕ=+=+,则00002sin()x v .t ωωϕ=-+200002cos()x a .t ωωϕ=-+(1)由m 0002003v ..ω==,可知000315002...ω==,所以周期为 022419(s)15T ..ππω=== (2) 222m 0002002150045(m s )a ....ω==⨯=(3)由已知条件0t =时00x =、0m x v v =,可知0002cos .ϕ=、m m sin v v ϕ=-,即cos =0ϕ ,sin =1ϕ- 由以上二式求出2πϕ=-,所以运动学方程为002cos(15)2x ..t π=-2.5 一水平放置的弹簧振子,质点质量为0.1kg ,振幅为0.01m ,质点运动的最大加速度为20.04m s .求:(1)系统的机械能;(2)质点通过平衡位置时的动能;(3)以0.01m x =时为0t =,动能与势能相等的时刻.解 根据001m A .=和22m 0004m s a A .ω==,可以求出00040012..ω==. 由0k m ω=,可知2001404k m ..ω==⨯=.(1)系统的机械能2251104001210(J)22E kA ..-==⨯⨯=⨯ (2)通过平衡位置时0x =,势能p 0E =,所以动能5k 210(J)E E -==⨯.(3)由已知条件0t =时0001m x .=、00x v =,可知cos 1ϕ= , sin 0ϕ=由以上二式求出0ϕ=.于是2252k 01sin ()210sin 22E kA t t ωϕ-=+=⨯ 2252p 01cos ()210cos 22E kA t t ωϕ-=+=⨯ 动能与势能相等的时刻,k p E E =,即22sin 2cos 2t t =可求出2(21)244t kk πππ=+=+ , 0123k ,,,...= 所以(21)8t k π=+,0123k ,,,...=2.6 题图2.6所示为振幅与频率相同的两个简谐振动的x t -图.求:(1)两个简谐振动的运动学方程;(2)哪个简谐振动的相位超前?超前多少? 题图2.6解 由x t -图可见01m A .=、4s T =,可知0205.Tπωπ==. 对振动(1),1101cos (05)x ..t πϕ=+,当0t =时101005201cos x ..ϕ== , 101005sin 0x v .πϕ=-<可知14πϕ=.运动学方程为 101cos(05)4x ..t ππ=+ 振动(2),2201cos (05)x ..t πϕ=+,当0t =时 202005201cos x ..ϕ== , 202005sin 0x v .πϕ=->可知24πϕ=-.运动学方程为101cos(05)4x ..t ππ=- 两个简谐振动的的相位差 122πϕϕϕ∆=-=说明振动(1)比振动(2)超前2π. 2.7 有两个同方向同频率的简谐振动,它们的运动学方程分别为130.05cos(10)4x t π=+和210.05cos(10)4x t π=+(国际制单位).求:(1)合振动的振幅和初相位;(2)若另有一振动30.08cos(10)x t ϕ=+,ϕ为何值13x x +的振幅最大?ϕ为何值13x x +的振幅最小?(利用旋转矢量图解题)解 (1)分别作与0t =时刻的1x 和2x 对应的旋转矢量1A 和2A ,如题解图2.7.由旋转矢量图可见合矢量12A A +的长度为0.052,与Ox 轴夹角为90ο.于是可知合振动的振幅0.052m A =,初相位12ϕπ=合. 题解图2.7(2)1x 和3x 同相,即34ϕπ=时,13x x +的振幅最大;1x 和3x 反相,即14ϕπ=-时,13x x +的振幅最小.2.8 有两个同方向同频率的简谐振动,其合振动的振幅为0.02m ,合振动与第一个分振动的相位差为30ο,第一个分振动的振幅为0.013m .求:(1)第二个分振动的振幅;(2)两个分振动的相位差.(利用旋转矢量图解题)解 根据已知条件作旋转矢量图,如题解图2.8.(1)由图可见,第二个分振动的振幅20.01m A =.(2)由图可见,两个分振动的相位差2190ϕϕο-=. 题解图2.82.9 现在力学的学习暂时告一段落,请读者总结一下有何收获和体会?(牛顿质点力学的理论结构、数学和物理的关系、学习了哪些方法……)*2.10 某阻尼振动(弱阻尼状态)的振幅经一“周期”后变为原来的13,求振动的“周期”为振动系统固有周期的几倍.解 弱阻尼振动()e cos t x A 't βωϕ-=+,由题意()e 1e 3e et T 't T'T'A A ββββ--+-=== lne ln3T'T 'ββ==所以22ln 3'T 'ππβω==根据'ω=0ω== 于是0022T ''T 'ωπωπωω===1015.= *2.11 质量为3310kg m -=⨯的质点,挂在劲度系数21.210N m k -=⨯的弹簧下端,沿Ox 轴运动.质点除线性回复力外,还受策动力0cos 2t(N)x F F =和阻力rx x F v γ=-作用.求当阻力系数γ增为原来的3倍时,质点稳态振幅减为原来的几分之几?解 根据已知条件,22312104310k .m ω--⨯===⨯,2ω=.故弱阻尼受迫振动的稳态振幅004f A β== 由于00F f m =和2mγβ=,所以 002F A γ=当3'γγ=,00001263F F A A γγ'===',因此当阻力系数γ增为原来的3倍时,质点稳态振幅减为原来的三分之一.*2.12 为什么说牛顿力学是“确定性”的?混沌的基本特征是什么?。

大学物理第2章习题解答(全)教案资料

大学物理第2章习题解答(全)教案资料

化,方向永远指向圆心
不变,其速率不断增加
2-6 图示一斜面,倾角为 ,底边AB长
为 l 2.1m ,质量为m的物体从斜面顶
端由静止开始向下滑动,斜面的摩擦因数
为 0.14。试问当 为何值时,物体在
斜面上下滑的时间最短?其数值为多少?
m
A
l
B
2-6 已知 l 2.1m, v0 0, 0.14
求 t ? t tmin ? ?
解:
x : mg sin Ff ma x
FN o Ff
p
y : FN mg cos 0
Ff FN
mg sin mg cos ma
运动方程 l 1 at2 1 g(sin cos )t 2 cos 2 2
l 1 at2 1 g(sin cos )t 2
(1) a 10.0m / s2时,绳: FT , 乙对甲: FN
FT 5.94 103(N )
乙对甲: FN 1.98 103 (N ) (2) a 1.0m / s2时,绳: FT , 乙对甲: FN
乙 m2 甲 m1
FT 3.24 103(N )
乙对甲Байду номын сангаас: FN 1.08 103(N ) a
dv 1 (120t 40)dt (12.0t 4.0)dt m
dv (12.0t 4.0)dt
已知:t0 0时, v0 6.0m s1
设: t t 时, v v
v
t
则: dv (12.0t 4.0)dt
v0
0
v 6.0 4.0t 6.0t2
v 6.0 4.0t 6.0t2 v dx / dt
FT'
B
FN
a

大学物理学(课后答案解析)第2章

大学物理学(课后答案解析)第2章

第2章牛顿运动定律习题一选择题2-1 关于惯性有下面四种表述,正确的为[ ](A)物体静止或作匀速运动时才具有惯性(B)物体受力作变速运动才具有惯性(C)物体受力作变速运动时才没有惯性(D)物体在任何情况下均有惯性解析:惯性是物体具有的固有特性,因此物体在任何情况下均有惯性,答案选D。

2-2 下列表述中正确的是[ ](A)质点运动的方向和它所受的合外力方向相同(B)质点的速度为零,它所受的合外力一定为零(C)质点作匀速率圆周运动,它所受的合外力必定与运动方向垂直(D)摩擦力总是阻碍物体间的相对运动,它的方向总是与物体的运动方向相向解析:根据牛顿第二定律,质点所受的合外力等于动量随时间的变化率,因此A、B错误。

质点作匀速率圆周运动,合外力指向圆心,运动方向沿切线方向,二者垂直,因此选项C正确。

摩擦力总是阻碍物体间的相对运动或相对运动趋势,它的方向沿着物体运动或运动趋势的切线方向,但并不是总与物体的运动方向相向,因此选项D错误。

2-3 一质点在力5(52)()F m t SI =-的作用下,0t =时从静止开始作直线运动,式中,m 为质点质量,t 为时间。

则当5t s =,质点的速率为[ ](A )25m s (B )50m s - (C )0 (D )50m s 解析:根据牛顿第二定律dv F ma mdt ==可得,5(52)dv Ft dt m==-,所以5(52)dv t dt =-,两边积分可得2255v t t =-,即得50v =。

答案选C 。

2-4 如图2-4(A )所示,A B m m μ>时,算出B m 向右的加速度为a ,今去掉Am 而代之以拉力A T m g =,如图2-4(B)所示,算出B m 的加速度a ',则[ ](A )a a '> (B )a a '< (C )a a '= (D )无法判断解析:去掉A m 前,{A A B Bm g T m a T m g m a μ-=-=,联立求得ABA B m m a g m m μ-=+; 去掉A m 后,B A B B T m g m g m g m a μμ'-=-=,求得A BBm m a g a m μ-'=>。

大学物理第二章习题解答和分析

大学物理第二章习题解答和分析

习题二2-1.两质量分别为m 和M (M m)≠的物体并排放在光滑的水平桌面上,现有一水平力F 作用在物体m 上,使两物体一起向右运动,如题图2-1所示,求两物体间的相互作用力? 若水平力F 作用在M 上,使两物体一起向左运动,则两物体间相互作用力的大小是否发生变化? 分析:用隔离体法,进行受力分析,运用牛顿第二定律列方程。

解:以m 、M 整体为研究对象,有:()F m M a =+r r…①以m 为研究对象,如图2-1(a ),有Mm F F ma +=r r r…②由①、②,有相互作用力大小Mm MFF m M=+若F 作用在M 上,以m 为研究对象, 如图2-1(b )有Mm F ma =rr…………③ 由①、③,有相互作用力大小Mm mFF m M=+,发生变化。

2-2. 在一条跨过轻滑轮的细绳的两端各系一物体,两物体的质量分别为M 1和M 2 ,在M 2上再放一质量为m 的小物体,如图所示,若M 1=M 2=4m ,求m 和M 2之间的相互作用力,若M 1=5m ,M 2=3m ,则m 与M 2之间的作用力是否发生变化?分析:由于轻滑轮质量不计,因此滑轮两边绳中的张力相等,用隔离体法进行受力分析,运用牛顿第二定律列方程。

解:取向上为正,如图2-2,分别以M 1、M 2和m 为研究对象, 有: 111T M g M a -=222() ()M m g T M m a -++=-+2 M mmg ma F-=-又:T 1=T 2,则: 2M mF =1122M mgM M m++当M 1=M 2= 4m , 289M mmg F = 当M 1=5m, M 2=3m, 2109M mmg F =,发生变化。

m(a )MmF r F rm(b )MmF r2-3.质量为M 的气球以加速度a 匀加速上升,突然一只质量为m 的小鸟飞到气球上,并停留在气球上。

若气球仍能匀加速向上,求气球的加速度减少了多少? 分析:用隔离体法受力分析,运用牛顿第二定律列方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-1.两质量分别为m 与M 得物体并排放在光滑得水平桌面上,现有一水平力F 作用在物体m 上,使两物体一起向右运动,如题图2-1所示,求两物体间得相互作用力? 若水平力F 作用在M 上,使两物体一起向左运动,则两物体间相互作用力得大小就是否发生变化? 分析:用隔离体法,进行受力分析,运用牛顿第二定律列方程。

解:以m 、M 整体为研究对象,有:…① 以m 为研究对象,如图2-1(a),有…② 由①、②,有相互作用力大小 若F 作用在M 上,以m 为研究对象, 如图2-1(b)有…………③由①、③,有相互作用力大小,发生变化。

2-2、 在一条跨过轻滑轮得细绳得两端各系一物体,两物体得质量分别为M 1与M 2 ,在M 2上再放一质量为m 得小物体,如图所示,若M 1=M 2=4m,求m 与M 2之间得相互作用力,若M 1=5m,M 2=3m,则m 与M 2之间得作用力就是否发生变化? 分析:由于轻滑轮质量不计,因此滑轮两边绳中得张力相等,用隔离体法进行受力分析,运用牛顿第二定律列方程。

解:取向上为正,如图2-2,分别以M 1、M 2与m 为研究对象, 有:又:T 1=T 2,则: =当M 1=M 2= 4m, 当M 1=5m, M 2=3m, ,发生变化。

2-3、质量为M 得气球以加速度a 匀加速上升,突然一只质量为m 得小鸟飞到气球上,并停留在气球上。

若气球仍能匀加速向上,求气球得加速度减少了多少? 分析:用隔离体法受力分析,运用牛顿第二定律列方程。

解:为空气对气球得浮力,取向上为正。

分别由图2—3(a)、(b)可得: 则2-4.如图2-4所示,人得质量为60kg,底板得质量为40kg 。

人若想站在底板上静止不动,则必须以多大得力拉住绳子?分析:用隔离体法受力分析,人站在底板上静止不动,底板、人受得合力分别为零、 解:设底板、人得质量分别为M,m, 以向上为正方向,如图2-4(a)、(b), 分别以底板、人为研究对象, 则有:m(a) mm (b)mF 为人对底板得压力,为底板对人得弹力。

F= 又: 则由牛顿第三定律,人对绳得拉力与就是一对 作用力与反作用力,即大小相等,均为245(N)。

2-5.一质量为m 得物体静置于倾角为得固定斜面上。

已知物体与斜面间得摩擦系数为。

试问:至少要用多大得力作用在物体上,才能使它运动?并指出该力得方向。

分析:加斜向下方向得力,受力分析,合力为零。

解:如图2—5,建坐标系,以沿斜面向上为正方向。

在与所在得平面上做力,且 (若,此时F 偏大) 则: 则有:2(cos sin )1,arctan sin cos 1sin()mg F μθθϕμααμμαϕ-===+++即:2-6、 一木块恰好能在倾角得斜面上以匀速下滑,现在使它以初速率沿这一斜面上滑,问它在斜面上停止前,可向上滑动多少距离?当它停止滑动时,就是否能再从斜面上向下滑动? 分析:利用牛顿定律、运动方程求向上滑动距离。

停止滑动时合力为零。

解:由题意知: ① 向上滑动时, ② ③联立求解得当它停止滑动时,会静止,不再下滑. 2-7、 5kg 得物体放在地面上,若物体与地面之间得摩擦系数为0、30,至少要多大得力才能拉动该物体?分析:要满足条件,则F 得大小至少要使水平方向上受力平衡。

解:如图2—7, 当2—8、 两个圆锥摆,悬挂点在同一高度,具有不同得悬线长度,若使它们运动时两个摆球离开地板得高度相同,试证这两个摆得周期相等.分析:垂直方向得力为零,水平方向得力提供向心力。

先求速度,再求周期讨论。

证:设两个摆得摆线长度分别为与,摆线与竖直轴之间得夹角分别为与,摆线中得张力分别为与,则① ② 解得:第一只摆得周期为同理可得第二只摆得周期 由已知条件知 ∴2—9、 质量分别为M 与M+m 得两个人,分别拉住定滑轮两边得绳子往上爬,开始时,两人与滑轮得距离都就是h 。

设滑轮与绳子得质量以及定滑轮轴承处得摩擦力均可忽略不计,绳长不变。

试证明,如果质量轻得人在内爬到滑轮,这时质量重得人与滑轮得距离为 。

分析:受力分析,由牛顿第二定律列动力学方程。

证明:如图2—9(b)、(c),分别以M 、M+m 为研究对象,设M 、M+m 对地得加速度大小分别为(方向向上)、(方向向下),则有:对M,有:质量重得人与滑轮得距离: 。

此题得证。

2-10、质量为m 1=10kg 与m 2=20kg 得两物体,用轻弹簧连接在一起放在光滑水平桌面上,以F=200N 得力沿弹簧方向作用于m 2 ,使m 1得到加速度a 1=120cm ·s -2,求m 2获得得加速度大小。

分析:受力分析,由牛顿定律列方程。

解:物体得运动如图2—10(a ), 以m 1为研究对象,如图(b),有:以m 2为研究对象,如图(c),有: 又有: 则:2—11、 顶角为得圆锥形漏斗垂直于水平面放置,如图2-11所示、 漏斗内有一个质量为m 得小物体,m 距漏斗底得高度为h 。

问(1)如果m 与锥面间无摩擦,要使m 停留在h 高度随锥面一起绕其几何轴以匀角速度转动,m 得速率应就是多少?(2)如果m 与锥面间得摩擦系数为,要使m 稳定在h 高度随锥面一起以匀角速度转动,但可以有向上或向下运动得趋势,则速率范围就是什么?分析:(1)小物体此时受到两个力作用:重力、垂直漏斗壁得支承力,合力为向心力;(2)小物体此时受到三个力得作用:重力、垂直漏斗壁得支承力与壁所施得摩擦力。

当支承力在竖直方向分量大于重力,小球有沿壁向上得运动趋势,则摩擦力沿壁向下;当重力大于支承力得竖直方向分量,小球有沿壁向下得运动趋势,则摩擦力沿壁向上。

这三个力相互平衡时,小物体与(b) (c) 图2-9题2-8漏斗相对静止。

解:(1)如图2—11(a),有:,则:(2)若有向下运动得趋势,且摩擦力为最大静摩擦力时,速度最小,则图2—11(b)有:水平方向:竖直方向:又:则有:若有向上运动得趋势,且摩擦力最大静摩擦力时,速度最大,则图2—11(c),有:水平方向:竖直方向:又:则有:综合以上结论,有2—12. 如图2-12所示,已知两物体A、B得质量均为物体A以加速度运动,求物体B与桌面间得摩擦力。

(滑轮与绳子得质量不计)分析:因为滑轮与连接绳得质量不计,所以动滑轮两边绳中得张力相等,定滑轮两边绳中得张力也相等,但就是要注意两物体得加速度不相等。

解:图2—12(a)以A为研究对象,其中、分别为滑轮左右两边绳子得拉力。

有:且:图2—12(b)以B为研究对象,在水平方向上,有:又:,联立以上各式,可解得:2—13.一质量为m得小球最初位于如图2-13A点然后沿半径为下滑,试求小球到达C点时得角速度与对圆轨道得作用力、分析:如图2—13,对小球做受力分析,合力提供向心力,由牛顿第二定律,机械能守恒定律求解。

解:…………①又:………②由①、②可得:……③由①、③可得,图2-12a 图2-12b AB题图2-12题图2-13图2-132—14.质量为m 得摩托车,在恒定得牵引力F 得作用下工作,它所受得阻力与其速率得平方成正比,它能达到最大速率就是 试计算从静止加速到所需得时间以及所走过得路程。

分析:加速度等于零时,速度最大,阻力为变力,积分求时间、路程。

解:设阻力,则加速度,当a=0时,速度达到最大值, 则有:又,即:…………①22/22002/200(1)(1)1ln 21m m mtv mv t mm m F dv dt v mv Fdv dt v m v v v v F t v m v =-=-⎡⎤-⎢⎥⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦+⎢⎥⎣⎦⎰⎰,即所求得时间对①式两边同乘以dx ,可得:2222/2220/22220022ln()24ln 0.14423m m m m xv m m v xmm m m v v Fdx dv m v vv v Fdx dv m v v v F x v v m mv mv x F F=-=-⎡⎤⎡⎤=--⎢⎥⎢⎥⎣⎦⎣⎦=≈⎰⎰2-15.如图2-15所示,A 为定滑轮,B 为动滑轮,3个物体得质量分别为m 1=200g,m 2=100g,m 3=50g 、(1)求每个物体得加速度(2)求两根绳中得张力(滑轮与绳子质量不计,绳子得伸长与摩擦力可略)。

分析:相对运动。

相对地运动,、相对B 运动,。

根据牛顿牛顿定律与相对运动加速度得关系求解。

解:如下图2-15,分别就是m 1、m 2、m 3得受力图。

设a 1、a 2、a 3、a Β分别就是m 1、m 2、m 3、B 对地得加速度;a 2B 、a 3B 分别就是m 2、m 3对B 得加速度,以向上为正方向,可分别得出下列各式 ……………①题图2-15…………② ……………③ 又: 且: 则:则: …………④ 又: …………⑤…………⑥则由①②③④⑤⑥,可得: (2)将a 3得值代入③式,可得:。

2-16.桌面上有一质量M=1、50kg 得板,板上放一质量为m=2、45kg 得另一物体,设物体与板、板与桌面之间得摩擦系数均为0、25、 要将板从物体下面抽出,至少需要多大得水平力?分析::要想满足题目要求,需要M 、m 运动得加速度满足:,如图2-16(b),以M 为研究对象,N 1,N 2,f 1,f 2分别为m 给M 得压力,地面给M 得支持力,m 给M 得摩擦力,地面给M 得摩擦力。

解:如图2-16(c),以m 为研究对象,分别为M 给m 得支持力、摩擦力。

则有:又()g M m N f mg N N f f +======μμμμμ22'1'11,则可化为: 则:2-17.已知一个倾斜度可以变化但底边长L 不变得斜面、(1)求石块从斜面顶端无初速地滑到底所需时间与斜面倾角α之间得关系,设石块与斜面间得滑动摩擦系数为;(2)若斜面倾角为时石块下滑得时间相同,问滑动摩擦系数为多大?分析:如图2-17,对石块受力分析。

在斜面方向由牛顿定律列方程,求出时间与摩擦系数得关系式,比较与时t 相同求解。

解:(1)其沿斜面向下得加速度为: 又,则:(2)又时,, 时, 又,则:2—18,如图2-18所示,用一穿过光滑桌面小孔得轻绳,将放在桌面上得质点m 与悬挂着得质点M 连接起来,m 在桌面上作匀速率圆周运动,问m 在桌面上圆周运动得速率v 与圆周半径r 满足什么关系时,才能使M 静止不动?分析:绳子得张力为质点m 提供向心力时,M 静止不动。

图2-15题图2-16题图2-17解:如图2—18,以M为研究对象,有:……①以m为研究对象,水平方向上,有:……②又有:…③由①、②、③可得:2-19.一质量为0、15kg得棒球以得水平速度飞来,被棒打击后,速度与原来方向成1350角,题图2-18大小为。

相关文档
最新文档