红外探测器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外探测器
一、简介
红外探测器(Infrared Detector)是能把接收到的红外辐射能转换成一种便于计量的物理量的器件,将入射的红外辐射信号转变成电信号输出的器件。
红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。要察觉这种辐射的存在并测量其强弱,必须把它转变成可以察觉和测量的其他物理量。一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。现代红外探测器所利用的主要是红外热效应和光电效应。这些效应的输出
大都是电量,或者可用适当的方法转变成电量。
二、发展历史
1800年,F.W.赫歇耳在太阳光谱中发现了红外辐射的存在。当时,他使用的是水银温度计,即最原始的热敏型红外探测器。
1830年,L.诺比利利用当时新发现的温差电效应(也称塞贝克效应),制成了一种以半金属铋和锑为温差电偶的热敏型探测器。称作温差电型红外探测器(也称真空温差电偶)。其后,又从单个温差电偶发展成多个电偶串联的温差电堆。
1880年,S.P.兰利利用金属细丝的电阻随温度变化的特性制成另一种热敏型红外探测器,称为测辐射热计。1947年,M.J.E.高莱发明一种利用气体热膨胀制成的气动型红外探测器(又称高莱管)。
在40年代,又用半导体材料制作温差电型红外探测器和测辐射热计,
使这两种探测器的性能比原来使用半金属或金属时得到很大的改进。半导体的测辐射热计又称热敏电阻型红外探测器。热敏电阻型红外探测器:用氧化物半导体制成很小的薄片,表面涂黑。当薄片吸收红外辐射而温度升高时,电阻发生变化,用电阻的改变量度量红外辐射的强弱。
60年代中期,出现了热释电型探测器。它也是一种热敏型探测器。
三、类别及基本原理
不同种类的物体发射出的红外光波段是有其特定波段的,该波段的红外光处在可见光波段之外。因此人们可以利用这种特定波段的红外光来实现对物体目标的探测与跟踪。将不可见的红外辐射光探测出并将其转换为可测量的信号的技术就是红外探测技术。
热效应探测器:热效应探测器吸收红外辐射后,温度升高,可以使探测材料产生温差电动势、电阻率变化,自发极化强度变化,或者气体体积与压强变化等,测量这些物理性能的变化就可以测定被吸收的红外辐射能量或功率。
(1)液态的水银温度计及气动的高莱池(Golay cell):利用了材料的热胀冷缩效应。气动型红外探测器原理是气体密闭在柔软的室内,室壁的涂黑部分吸收红外辐射,当辐射被薄膜吸收产生温升,气体受热膨胀,使镀银地柔镜弯曲。光源发出地光经光栅聚焦到柔镜上,经此镜反射回地光栅象再经过光栅投射到光电管上。当柔镜受压弯曲光栅象相对于光栅位移,使投射到光电管地光通量发生变化,光电管地输出信号地变化量反映出辐射量地大小。这种探测器时间响应慢,但能探测弱光。
(2)
热电偶和热电堆:利用了温度梯度可使不同材料间产生温差电动势的温差电效应。塞贝克效应如果两种不同的导体连接成回路,且两接头的温度T1和T2不同时,则回路中产生电动势,会有电流出现。此现象是T.J.塞贝克在1821年发现的。温差电动势与两接头的温度势及两种材料的性质有关,可用温差电动势率S12,即单位温差产生的电动势来描述这一效应
,
式中嘷12为温差电动势。)
a.(当两接点a、b的温度不同时,在闭合回路中会产生电动势,该
电动势称为温差电动势ε。)
b.(由N型和P型半导体电偶臂以及负载电阻RL构成,通过金属材
料(通常是铜)相连接,工作在高温热源和低温冷源之间,形成回路后就有电流流过负载电阻。)
(3)测辐射热计:辐射热计是热能辐射转移过程的量化检测仪器,是用于测量热辐射过程中热辐射迁移量的大小、评价热辐射性能的重要工具。是测量热辐射能量传递大小和方向的仪器。利用材料的电阻或介电常数的热敏效应—辐射引起温升改变材料电阻—用以探测热辐射。
因半导体电阻有高的温度系数而应用最多,测温辐射热计常称“热敏电阻”。另外,由于高温超导材料出现,利用转变温度附近电阻陡变的超导探测器引起重视。如果室温超导成为现实,将是21世纪最引人注目的一类探测器;
(4)热释电探测器:有些晶体,如硫酸三甘酞、铌酸锶钡等,当受到红外辐射照射温度升高时,引起自发极化强度变化,结果在垂直于自发极化方向的晶体两个外表面之间产生微小电压,由此能测量红外辐射的功率。
热释电材料是一种具有自发极化的电介质,它的自发极化强度随温度变化,可用热释电系数p来描述,p=dP/dT(P为极化强度,T为温度)。如果把热释电材料做成表面垂直于极化方向的平行薄片,当红外辐射入射到薄片表面时,薄片因吸收辐射而发生温度变化,引起极化强度的变化。而中和电荷由于材料的电阻率高跟不上这一变化,其结果是薄片的两表面之间出现瞬态电压。若有外电阻跨接在两表面之间,电荷就通过外电路释放出来。电流的大小除与热释电系数成正比外,还与薄片的温度变化率成正比,可用来测量入射辐射的强弱。热释电型红外传感器的热电系数非常高,内部的热电元采用高热电系数的铁钛酸铅汞陶瓷以及钽酸锂、硫酸三甘酞等配合滤光镜片窗口组成。其结构如图1所示。在结构上引入了场效应管,这种传感器是在TO-5组件内装入热释电元件和高阻抗输出电路,并在其上面开一个硅窗口,热释电元件和场效应管装在一起,能输出与红外辐射强度成正比例的电压。
●光电效应探测器:光电效应探测器吸收光子后,本身发生电子
状态的改变,从而引起内光电效应和外光电效应等光子效应,从光子效应的大小可以测定被吸收的光子数。
光电效应分为光电子发射、光电导效应和光生伏特效应。前一种现象发生在物体表面,又称外光电效应。后两种现象发生在物体内部,称为内光电效应。
●光电导效应:当,半导体吸收入射光子产生电子空穴对,。光电导
效应是内光电效应的一种。当入射光子射入到半导体表面时,入射
光子能量hv等于或大于半导体的禁带宽度Eg时,光子能够将价带中的电子激发到导带,从而产生导电的电子、空穴对,使其自生电导增大,这就是本征光电导效应。这里h是普朗克常数,v是光子频率,Eg是材料的禁带宽度(单位为电子伏)。因此,本征光电导体的响应长波限λc为
λc=hc/Eg=1.24/Eg (μm)
式中 c为光速。本征光电导材料的长波限受禁带宽度的限制.
光生伏特效应:当一定波长的光照射非均匀半导体(如PN结),在自建场的作用下,半导体内部产生光电压。
(1)光电导探测器:又称光敏电阻。半导体吸收能量足够大的光
子后,体内一些载流子从束缚态转变为自由态,从而使半导体电导率增大,这种现象称为光电导效应。利用光电导效应制成的光电导探测器分为多晶薄膜型和单晶型两种。