中考数学试题分类汇编考点正方形

合集下载

2013年中考数学试卷分类汇编-四边形(正方形)

2013年中考数学试卷分类汇编-四边形(正方形)

正方形1、(2013•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()∴PE=EM=FP=FN=NP又∵PE=EM=PM FP=FN=NP ACO 48816t(s)S (2cm (B )(C )O488 16t(s)S (2cm (D )2、(2013年临沂)如图,正方形ABCD 中,AB=8cm,对角线AC,BD 相交于点O,点E,F 分别从B,C 两点同时出发,以1cm/s 的速度沿BC,CD 运动,到点C,D 时停止运动,设运动时间为t(s),△OE 的面积为s(2cm ),则s(2cm )与t(s)的函数关系可用图像表示为答案:B解析:经过t 秒后,BE =CF =t ,CE =DF =8-t ,1422BEC S t t ∆=⨯⨯=, 211(8)422ECF S t t t t ∆=⨯-⨯=-,1(8)41622ODF S t t ∆=⨯-⨯=-,(第12题图) BO所以,2211322(4)(162)41622OEF S t t t t t t ∆=-----=-+,是以(4,8)为顶点,开口向上的抛物线,故选B 。

3、(8-3矩形、菱形、正方形²2013东营中考)如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE ⊥BF ;(3)AO =OE ;(4)AOB DEOF S S ∆=四边形中正确的有( )A. 4个B. 3个C. 2个D. 1个12.B.解析:在正方形ABCD 中,因为CE=DF ,所以AF=DE ,又因为AB=AD ,所以ABF DAE ∆≅∆,所以AE=BF ,AFB DEA ∠=∠,DAE ABF ∠=∠,因为90DAE DEA ∠+∠=︒,所以90DAE ABF ∠+∠=︒,即90AOF ∠=︒,所以AE ⊥BF ,因为AOBAOF AOFS S S ∆∆∆+=+S四边形DEOF,所以AOB S ∆= S 四边形DEOF ,故(1),(2),(4)正确.4、(2013凉山州)如图,菱形ABCD 中,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为( )A .14B .15C .16D .17考点:菱形的性质;等边三角形的判定与性质;正方形的性质.分析:根据菱形得出AB=BC ,得出等边三角形ABC ,求出AC ,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.解答:解:∵四边形ABCD 是菱形, ∴AB=BC, ∵∠B=60°,∴△ABC 是等边三角形, ∴AC=AB=4,∴正方形ACEF 的周长是AC+CE+EF+AF=4³4=16, 故选C .点评:本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC 的长. 5、(2013•资阳)如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )³AE³BE³6³86、(2013•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.,∴BC﹣BE=CD﹣DF,及CE=CF,∵AE=AF,∴AC垂直平分EF.③正确.设EC=x,由勾股定理,得EF=x,CG=x,AG=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,④错误,∵S△CEF=,S△ABE==,∴2S△ABE==S△CEF,⑤正确.综上所述,正确的有4个,故选C.7、(2013菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19考点:相似三角形的判定与性质;正方形的性质.专题:计算题.分析:由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.解答:解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3³3=9,∴S1+S2=8+9=17.故选B.点评:本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.8、(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()a=9、(2013台湾、30)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?()A.∠1<∠2 B.∠1>∠2 C.∠3<∠4 D.∠3>∠4考点:正方形的性质.分析:根据正方形的每一个角都是直角求出∠BAD=∠EAG=90°,然后根据同角的余角相等可得∠1=∠2,根据直角三角形斜边大于直角边可得AE>AB,从而得到AG>AB,再根据三角形中长边所对的角大于短边所对的角求出∠3>∠4.解答:解:∵四边形ABCD、AEFG均为正方形,∴∠BAD=∠EAG=90°,∵∠BAD=∠1+∠DAE=90°,∠EAG=∠2+∠DAE=90°,∴∠1=∠2,在Rt△ABE中,AE>AB,∵四边形AEFG是正方形,∴AE=AG,∴AG>AB,∴∠3>∠4.故选D.点评:本题考查了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,要注意在同一个三角形中,较长的边所对的角大于较短的边所对的角的应用.10、(2013台湾、23)附图为正三角形ABC与正方形DEFG的重迭情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?()A.2 B.3 C.12﹣4 D.6﹣6考点:正方形的性质;等边三角形的性质.分析:过点B作BH⊥AC于H,交GF于K,根据等边三角形的性质求出∠A=∠ABC=60°,然后判定△BDE是等边三角形,再根据等边三角形的性质求出∠BDE=60°,然后根据同位角相等,两直线平行求出AC∥DE,再根据正方形的对边平行得到DE∥GF,从而求出AC∥DE∥GF,再根据等边三角形的边的与高的关系表示出KH,然后根据平行线间的距离相等即可得解.解答:解:如图,过点B作BH⊥AC于H,交GF于K,∵△ABC是等边三角形,∴∠A=∠ABC=60°,∵BD=BE,∴△BDE是等边三角形,∴∠BDE=60°,∴∠A=∠BDE,∴AC∥DE,∵四边形DEFG是正方形,GF=6,∴DE∥GF,∴AC∥DE∥GF,∴KH=18³﹣6³﹣6=9﹣3﹣6=6﹣6,∴F点到AC的距离为6﹣6.故选D.点评:本题考查了正方形的对边平行,四条边都相等的性质,等边三角形的判定与性质,等边三角形的高线等于边长的倍,以及平行线间的距离相等的性质,综合题,但难度不大,熟记各图形的性质是解题的关键.11、(2013年南京)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:。

中考数学考点28正方形总复习(解析版)

中考数学考点28正方形总复习(解析版)

正方形【命题趋势】在中考中.正方形主要在选择题.填空题.解答题考查为主.并结合相似.锐角三角函数结合考查.;其中正方形常考4种模型是中考中的重难点。

【中考考查重点】一、正方形的性质及判定二、正方形常考模型考点:正方形性质及判定一、正方形的概念和性质1.概念:有一组邻边相等.并且有一个角是直角的平行四边形是正方形.2.性质:(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角.四条边都相等(3)正方形的两条对角线相等.并且互相垂直平分.每一条对角线平分一组对角(4)正方形是轴对称图形.有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形.两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

二、正方形的判定判定方法:(1)有一个角是直角的菱形是正方形;(2)对角线相等的菱形是正方形;(3)对角线互相垂直的矩形是正方形。

注意:判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形.再证明它是菱形(或矩形).最后证明它是矩形(或菱形)。

1.(2020秋•法库县期末)平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【答案】A【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分.故本选项正确;B、只有矩形.正方形的对角线相等.故本选项错误;C、只有菱形.正方形的对角线互相垂直.故本选项错误;D、只有菱形.正方形的对角线互相垂直平分.故本选项错误.故选:A.2.(2020秋•武功县期末)如图.在正方形ABCD中.AB=2.P是AD边上的动点.PE⊥AC于点E.PF⊥BD于点F.则PE+PF的值为()A.4B.2C.D.2【答案】C【解答】解:在正方形ABCD中.OA⊥OB.∠OAD=45°.∵PE⊥AC.PF⊥BD.∴四边形OEPF为矩形.△AEP是等腰直角三角形.∴PF=OE.PE=AE.∴PE+PF=AE+OE=OA.∵正方形ABCD的边长为2.∴OA=AC==.故选:C.3.(2010秋•金口河区期末)如图.在正方形ABCD中.E是DC上一点.F为BC延长线上一点.∠BEC=70°.且△BCE≌△DCF.连接EF.则∠EFD的度数是()A.10°B.15°C.20°D.25°【答案】D【解答】解:∵四边形ABCD是正方形.∴∠BCE=∠DCF=90°;由旋转的性质知:CE=CF.∠BEC=∠DFC=70°;则△ECF是等腰直角三角形.得∠EFC=45°.∴∠EFD=∠DFC﹣∠EFC=25°.故选:D.4.(2020春•沙坪坝区期末)如图.正方形ABCD中.AB=.点E是对角线AC上一点.EF⊥AB于点F.连接DE.当∠ADE=22.5°时.EF的长是()A.1B.2﹣2C.﹣1D.【答案】C【解答】解:∵四边形ABCD是正方形.∴AB=CD=BC=.∠B=∠ADC=90°.∠BAC=∠CAD=45°.∴AC=AB=2.∵∠ADE=22.5°.∴∠CDE=90°﹣22.5°=67.5°.∵∠CED=∠CAD+∠ADE=45°+22.5°=67.5°.∴∠CDE=∠CED.∴CD=CE=.∴AE=2﹣.∵EF⊥AB.∴∠AFE=90°.∴△AFE是等腰直角三角形.∴EF==﹣1.故选:C.5.(2021•罗湖区校级模拟)如图.在平面直角坐标系xOy中.正方形ABCD的顶点D在y轴上且A(﹣3.0).B(2.b).则正方形ABCD的面积是()A.20B.16C.34D.25【答案】C【解答】解:作BM⊥x轴于M.∵四边形ABCD是正方形.∴AD=AB.∠DAB=90°.∴∠DAO+∠BAM=90°.∠BAM+∠ABM=90°.∴∠DAO=∠ABM.∵∠AOD=∠AMB=90°.∴在△DAO和△ABM中.∴△DAO≌△ABM(AAS).∴OA=BM.AM=OD.∵A(﹣3.0).B(2.b).∴OA=3.OM=2.∴OD=AM=5.∴AD==.∴正方形ABCD的面积=34.故选:C.6.(2020春•老城区校级月考)如图.点P是正方形ABCD的对角线BD上一点.PE⊥BC于点E.PF⊥CD于点F.连接EF给出下列四个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP.其中正确结论个数是()A.1B.2C.3D.4【答案】C【解答】解:如图.连接PC.延长AP交EF于H.延长FP交AB于G.在正方形ABCD中.∠ABP=∠CBP=45°.AB=CB.∵在△ABP和△CBP中..∴△ABP≌△CBP(SAS).∴AP=PC.∠BAP=∠BCP.又∵PE⊥BC.PF⊥CD.∴四边形PECF是矩形.∴PC=EF.∠BCP=∠PFE.∴AP=EF.∠PFE=∠BAP.故①④正确;只有点P为BD的中点或PD=AD时.△APD是等腰三角形.故③错误;∵PF∥BC.∴∠AGF=∠ABC=90°.∵∠BAP=∠PFE.∠APG=∠FPH.∴∠AGP=∠AHF=90°.∴AP⊥EF.故②正确.故选:C.7.(2021秋•南海区月考)如图.点B在MN上.过AB的中点O作MN的平行线.分别交∠ABM的平分线和∠ABN的平分线于点C、D.(1)试判断四边形ACBD的形状.并证明你的结论.(2)当△CBD满足什么条件时.四边形ACBD是正方形?并给出证明.【答案】(1)四边形ACBD是矩形(2)△CBD满足CB=BD时.四边形ACBD是正方形【解答】解:(1)四边形ACBD是矩形.证明:∵CD平行MN.∴∠OCB=∠CBM.∵BC平分∠ABM.∴∠OBC=∠CBM.∴∠OCB=∠OBC.∴OC=OB.同理可证:OB=OD.∴OA=OB=OC=OD.∵CD=OC+OD.AB=OA+OB.∴AB=CD.∴四边形ACBD是矩形;(2)△CBD满足CB=BD时.四边形ACBD是正方形.证明:由(1)得四边形ACBD是矩形.∵CB=BD.∴四边形ACBD是正方形.1.(2021秋•武侯区期末)下列说法中.是正方形具有而矩形不具有的性质是()A.两组对边分别平行B.对角线互相垂直C.四个角都为直角D.对角线互相平分【答案】B【解答】解:因为正方形的对角相等.对角线相等、垂直、且互相平分.矩形的对角相等.对角线相等.互相平分.所以正方形具有而矩形不具有的性质是对角线互相垂直.故选:B.2.(2017春•柳州期末)边长为4的正方形ABCD中.P是边AD上的动点.PE⊥AC于点E.PF⊥BD于点F.则PE+PF的值为()A.2B.4C.2D.6【答案】A【解答】解:如图.∵四边形ABCD为正方形.∴∠CAD=∠BDA=45°.∵PE⊥AC于点E.PF⊥BD于点F.∴△APE和△PDF为等腰直角三角形.∴PE=AP.PF=PD.∴PE+PF=(AP+PD)=×4=2.故选:A.3.(2021秋•普宁市期末)下列说法中正确的是()A.矩形的对角线平分每组对角B.菱形的对角线相等且互相垂直C.有一组邻边相等的矩形是正方形D.对角线互相垂直的四边形是菱形【答案】C【解答】解:A、矩形的对角线平分每组对角.说法错误.故本选项不符合题意;B、菱形的对角线互相垂直.故本选项不符合题意;C、有一组邻边相等的矩形是正方形.正确.故本选项符合题意;D、对角线互相垂直的四边形不一定是菱形.故本选项不符合题意.故选:C.4.(2020•眉山)下列说法正确的是()A.一组对边平行另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直且相等的四边形是正方形【答案】B【解答】解:A、一组对边平行另一组对边相等的四边形可以是等腰梯形.可以是平行四边形.故选项A不合题意;B、对角线互相垂直平分的四边形是菱形.故选项B符合题意;C、对角线相等的平行四边形是矩形.故选项C不合题意;D、对角线互相垂直平分且相等的四边形是正方形.故选项D不合题意;故选:B.5.(2021秋•海州区期末)如图.在正方形ABCD中.点E在对角线AC上.EF⊥AB于点F.EG⊥BC于点G.连接DE.若AB=10.AE=3.则ED的长度为()A.7B.2C.D.【答案】C【解答】解:如图.连接BE.∵四边形ABCD是正方形.∴∠BAC=∠DAC=45°.AB=AD.∵AE=AE.∴△ABE≌△ADE(SAS).∴BE=DE.∵EF⊥AB于点F.AE=3.∴AF=EF=3.∵AB=10.∴BF=7.∴BE==.∴ED=.故选:C.6.(2021秋•铁锋区期末)如图.已知在正方形ABCD中.AB=BC=CD=AD=10厘米.∠A=∠B=∠C=∠D=90°.点E在边AB上.且AE=4厘米.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动.同时.点Q在线段CD上由C点向D点运动.设运动时间为t秒.当△BPE与△CQP全等时.t的值为()A.2B.2或1.5C.2.5D.2.5或2【答案】D【解答】解:当点Q的运动速度与点P的运动速度都是2厘米/秒.若△BPE≌△CQP.则BP=CQ.BE=CP.∵AB=BC=10厘米.AE=4厘米.∴BE=CP=6厘米.∴BP=10﹣6=4厘米.∴运动时间=4÷2=2(秒);当点Q的运动速度与点P的运动速度不相等.∴BP≠CQ.∵∠B=∠C=90°.∴要使△BPE与△OQP全等.只要BP=PC=5厘米.CQ=BE=6厘米.即可.∴点P.Q运动的时间t==(秒).故选:D.7.(2021春•海淀区校级期末)如图.点E是正方形ABCD对角线AC上一点.EF⊥AB.EG ⊥BC.垂足分别为F.G.若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时.四边形BFEG是正方形?【答案】(1)略(2)20cm (3)AF=5cm【解答】解:(1)证明:∵四边形ABCD为正方形.∴AB⊥BC.∠B=90°.∵EF⊥AB.EG⊥BC.∴∠BFE=90°.∠BGE=90°.又∵∠B=90°.∴四边形BFEG是矩形;(2)∵正方形ABCD的周长是40cm.∴AB=40÷4=10cm.∵四边形ABCD为正方形.∴△AEF为等腰直角三角形.∴AF=EF.∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.(3)若要四边形BFEG是正方形.只需EF=BF.∵AF=EF.AB=10cm.∴当AF=5cm时.四边形BFEG是正方形.1.(2021•玉林)一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c则正确的是()A.仅①B.仅③C.①②D.②③【答案】C【解答】解:①由a得到两组对边分别相等的四边形是平行四边形.添加c即一组邻边相等的平行四边形是菱形.再添加d即一个角是直角的菱形是正方形.故①正确;②由b得到一组对边平行且相等的四边形是平行四边形.添加d即有一个角是直角的平行四边形是矩形.再添加c即一组邻边相等的矩形是正方形.故②正确;③由a得到两组对边分别相等的四边形是平行四边形.添加b得到一组对边平行且相等的平行四边形仍是平行四边形.再添加c即一组邻边相等的平行四边形是菱形.不能得到四边形是正方形.故③不正确;故选:C.2.(2019•毕节市)如图.点E在正方形ABCD的边AB上.若EB=1.EC=2.那么正方形ABCD的面积为()A.B.3C.D.5【答案】B【解答】解:∵四边形ABCD是正方形.∴∠B=90°.∴BC2=EC2﹣EB2=22﹣12=3.∴正方形ABCD的面积=BC2=3.故选:B.3.(2021•重庆)如图.正方形ABCD的对角线AC.BD交于点O.M是边AD上一点.连接OM.过点O作ON⊥OM.交CD于点N.若四边形MOND的面积是1.则AB的长为()A.1B.C.2D.2【答案】C【解答】解:∵四边形ABCD是正方形.∴∠MDO=∠NCO=45°.OD=OC.∠DOC=90°.∴∠DON+∠CON=90°.∵ON⊥OM.∴∠MON=90°.∴∠DON+∠DOM=90°.∴∠DOM=∠CON.在△DOM和△CON中..∴△DOM≌△CON(ASA).∵四边形MOND的面积是1.四边形MOND的面积=△DOM的面积+△DON的面积.∴四边形MOND的面积=△CON的面积+△DON的面积=△DOC的面积.∴△DOC的面积是1.∴正方形ABCD的面积是4.∴AB2=4.∴AB=2.故选:C.4.(2021•湖北)如图.在正方形ABCD中.AB=4.E为对角线AC上与A.C不重合的一个动点.过点E作EF⊥AB于点F.EG⊥BC于点G.连接DE.FG.下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:①连接BE.交FG于点O.如图.∵EF⊥AB.EG⊥BC.∴∠EFB=∠EGB=90°.∵∠ABC=90°.∴四边形EFBG为矩形.∴FG=BE.OB=OF=OE=OG.∵四边形ABCD为正方形.∴AB=AD.∠BAC=∠DAC=45°.在△ABE和△ADE中..∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正确;②延长DE.交FG于M.交FB于点H.∵△ABE≌△ADE.∴∠ABE=∠ADE.由①知:OB=OF.∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°.∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°.∴DE⊥FG.∴②正确;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正确;④∵点E为AC上一动点.∴根据垂线段最短.当DE⊥AC时.DE最小.∵AD=CD=4.∠ADC=90°.∴AC=.∴DE=AC=2.由①知:FG=DE.∴FG的最小值为2.∴④错误.综上.正确的结论为:①②③.故选:C.5.(2020•陕西)如图.在矩形ABCD中.AB=4.BC=8.延长BA至E.使AE=AB.以AE为边向右侧作正方形AEFG.O为正方形AEFG的中心.若过点O的一条直线平分该组合图形的面积.并分别交EF、BC于点M、N.则线段MN的长为.【答案】4【解答】解:如图.连接AC.BD交于点H.过点O和点H的直线MN平分该组合图形的面积.交AD于S.取AE中点P.取AB中点Q.连接OP.HQ.过点O作OT⊥QH于T.∵四边形ABCD是矩形.∴AH=HC.又∵Q是AB中点.∴QH=BC=4.QH∥BC.AQ=BQ=2.同理可求PO=AG=2.PO∥AG.EP=AP=2.∴PO∥AD∥BC∥EF∥QH.EP=AP=AQ=BQ.∴MO=OS=SH=NH.∠OPQ=∠PQH=90°.∵OT⊥QH.∴四边形POTQ是矩形.∴PO=QT=2.OT=PQ=4.∴TH=2.∴OH===2.∴MN=2OH=4.故答案为:4.6.(2021•邵阳)如图.在正方形ABCD中.对角线AC.BD相交于点O.点E.F是对角线AC上的两点.且AE=CF.连接DE.DF.BE.BF.(1)证明:△ADE≌△CBF.(2)若AB=4.AE=2.求四边形BEDF的周长.【答案】(1)略(2)8【解答】(1)证明:由正方形对角线平分每一组对角可知:∠DAE=∠BCF=45°.在△ADE和△CBF中..∴△ADE≌△CBF(SAS).(2)解:∵AB=AD=.∴BD===8.由正方形对角线相等且互相垂直平分可得:AC=BD=8.DO=BO=4.OA=OC=4.又AE=CF=2.∴OA﹣AE=OC﹣CF.即OE=OF=4﹣2=2.故四边形BEDF为菱形.∵∠DOE=90°.∴DE===2.∴4DE=.故四边形BEDF的周长为8.1.(2021•云岩区模拟)数学老师用四根长度相等的木条首尾顺次相接制成一个图1所示的菱形教具.此时测得∠D=60°.对角线AC长为16cm.改变教具的形状成为图2所示的正方形.则正方形的边长为()A.8cm B.4cm C.16cm D.16cm【答案】C【解答】解:如图1.图2中.连接AC.图1中.∵四边形ABCD是菱形.∴AD=DC.∵∠D=60°.∴△ADC是等边三角形.∴AD=DC=AC=16cm.∴正方形ABCD的边长为16cm.故选:C.2.(2021•石家庄一模)将图1中两个三角形按图2所示的方式摆放.其中四边形ABCD 为矩形.连接PQ.MN.甲、乙两人有如下结论:甲:若四边形ABCD为正方形.则四边形PQMN必是正方形;乙:若四边形PQMN为正方形.则四边形ABCD必是正方形.下列判断正确的是()A.甲正确.乙不正确B.甲不正确.乙正确C.甲、乙都不正确D.甲、乙都正确【答案】B【解答】解:若ABCD是正方形.可设AB=BC=CD=AD=x.∴AQ=4﹣x.AP=3+x.∴PQ2=AQ2+AP2.即PQ===.x取值不同则PQ的长度不同.∴甲不正确.若四边形PQMN为正方形.则PQ=PN=MN=MQ=5.且∠QMD+∠MQD=∠QAP=∠AQP+∠QP A=90°.在△QMD和△PQA中..∴△QMD≌△PQA(ASA).∴QD=AP.同理QD=AP=MC=BN.又∵BP=MD=AQ.∴QD﹣AD=P A﹣AB.∴AB=AD.同理AB=CD=AD=BC.即四边形ABCD为菱形.∵∠DAB=180°﹣∠QAP=90°.则四边形ABCD为正方形.∴乙正确.故选:B.3.(2021•临沂模拟)如图.AD是△ABC的角平分线.DE.DF分别是△ABD和△ACD的高.得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时.四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是()A.②③B.②④C.①③④D.②③④【答案】D【解答】解:如果OA=OD.则四边形AEDF是矩形.没有说∠A=90°.不符合题意.故①错误;∵AD是△ABC的角平分线.∴∠EAD=∠F AD.在△AED和△AFD中..∴△AED≌△AFD(AAS).∴AE=AF.DE=DF.∴AE+DF=AF+DE.故④正确;∵在△AEO和△AFO中..∴△AEO≌△AFO(SAS).∴EO=FO.又∵AE=AF.∴AO是EF的中垂线.∴AD⊥EF.故②正确;∵当∠A=90°时.四边形AEDF的四个角都是直角.∴四边形AEDF是矩形.又∵DE=DF.∴四边形AEDF是正方形.故③正确.综上可得:正确的是:②③④.故选:D.4.(2020•宁津县一模)下列说法正确的是()A.对角线相等且相互平分的四边形是矩形B.对角线相等且相互垂直的四边形是菱形C.四条边相等的四边形是正方形D.对角线相互垂直的四边形是平行四边形【答案】A【解答】解:A、对角线相等且相互平分的四边形是矩形.故该选项正确;B、对角线相等且相互垂直的四边形不一定是菱形.故该选项错误;C、四条边相等的四边形是菱形.不是正方形.故该选项错误;D、对角线相互垂直的四边形不是平行四边形.故该选项错误.故选:A.5.(2021•南浔区模拟)如图.E.F是正方形ABCD的边BC上两个动点.BE=CF.连接AE.BD交于点G.连接CG.DF交于点M.若正方形的边长为1.则线段BM的最小值是()A.B.C.D.【答案】D【解答】解:如图.在正方形ABCD中.AB=AD=CB.∠EBA=∠FCD.∠ABG=∠CBG.在△ABE和△DCF中..∴△ABE≌△DCF(SAS).∴∠BAE=∠CDF.在△ABG和△CBG中..∴△ABG≌△CBG(SAS).∴∠BAG=∠BCG.∴∠CDF=∠BCG.∵∠DCM+∠BCG=∠FCD=90°.∴∠CDF+∠DCM=90°.∴∠DMC=180°﹣90°=90°.取CD的中点O.连接OB、OF.则OF=CO=CD=.在Rt△BOC中.OB===.根据三角形的三边关系.OM+BM>OB.∴当O、M、B三点共线时.BM的长度最小.∴BM的最小值=OB﹣OF==.故选:D.6.(2021•平凉模拟)如图.在矩形ABCD中.M、N分别是边AD、BC的中点.E、F分别是线段BM、CM的中点.(1)求证:BM=CM.(2)当AB:AD的值为多少时.四边形MENF是正方形?请说明理由.【答案】(1)略(2)当AB:AD=1:2时.四边形MENF是正方形【解答】(1)证明:∵四边形ABCD是矩形.∴AB=DC.∠A=∠D=90°.∵M为AD中点.∴AM=DM.在△ABM和△DCM中..∴△ABM≌△DCM(SAS).∴BM=CM;(2)解:当AB:AD=1:2时.四边形MENF是正方形.理由如下:∵N、E、F分别是BC、BM、CM的中点.∴NE∥CM.NE=CM.∵MF=CM.∴NE=FM.∵NE∥FM.∴四边形MENF是平行四边形.由(1)知△ABM≌△DCM.∴BM=CM.∵E、F分别是BM、CM的中点.∴ME=MF.∴平行四边形MENF是菱形;∵M为AD中点.∴AD=2AM.∵AB:AD=1:2.∴AD=2AB.∴AM=AB.∵∠A=90°.∴∠ABM=∠AMB=45°.同理∠DMC=45°.∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形.∴菱形MENF是正方形.7.(2021•沂水县二模)如图.四边形ABCD是正方形.△ABE是等边三角形.M为对角线BD(不含B点)上的点.(1)当点M是CE与BD的交点时.如图1.求∠DMC的度数;(2)若点M是BD上任意一点时.将BM绕点B逆时针旋转60°得到BN.连接EN.CM.求证:EN=CM;(3)当点M在何处时.BM+2CM的值最小.说明理由.【答案】(1)60°(2)略(3)当M点位于BD.CE交点时.BM+2CM的值最小【解答】(1)解:∵△AEB是等边三角形.∴EB=AB=AE.∠EBA=60°.∵四边形ABCD是正方形.∴AB=BC.∠ABC=90°.∴EB=CB.∠EBC=∠EBA+∠ABC=60°+90°=150°.∴∠BCE=(180°﹣∠EBC)=×(180°﹣150°)=15°.∵BD是正方形ABCD的对角线.∴∠DBC=45°.∵∠DMC是△BMC的外角.∴∠DMC=∠DBC+∠BCE=45°+15°=60°;(2)证明:由旋转可知.BM=BN.∠MBN=60°.∵∠MBA=45°.∴∠ABN=∠MBN﹣∠MBA=15°.∵∠ABE=60°.∴∠NBE=∠ABE﹣∠ABN=45°.在△BMC和△BNE中..∴△BMC≌△BNE(SAS).∴CM=EN;(3)当M点位于BD.CE交点时.BM+2CM的值最小.理由如下:在△ADM和△CDM中..∴△ADM≌△CDM(SAS).∴AM=CM.将BM绕点B旋转60°.得到BN.∵∠EBN+∠NBA=60°.∠NBA+∠ABM=60°.∴∠EBN=∠ABM.在△ENB和△AMB中..∴△ENB≌△AMB(SAS).∴AM=EN.∵BM=BN.∠NBM=60°.∴△BMN是等边三角形.∴BM=NM.∴BM+2CM=BM+AM+CM=MN+EN+CM=EN+MN+CM.即E.N.M.C四点共线时.有最小值.8.(2022•南昌模拟)已知正方形ABCD与正方形AEFG.正方形AEFG绕点A旋转一周.(1)如图1.连接BG、CF.①求的值;②求∠BHC的度数.(2)当正方形AEFG旋转至图2位置时.连接CF、BE.分别取CF、BE的中点M、N.连接MN.猜想MN与BE的数量关系与位置关系.并说明理由.【答案】(1)①=②45°(2)BE=2MN.MN⊥BE【解答】解:(1)①如图1.连接AF.AC.∵四边形ABCD和四边形AEFG都是正方形.∴AC=AB.AF=AG.∠CAB=∠GAF=45°.∠BAD=90°.∴∠CAF=∠BAG..∴△CAF∽△BAG.∴=;②∵AC是正方形BCD的对角线.∴∠ABC=90°.∠ACB=45°.在△BCH中.∠BHC=180°﹣(∠HBC+∠HCB)=180°﹣(∠HBC+∠ACB+∠ACF)=180°﹣(∠HBC+∠ACB+∠ABG)=180°﹣(∠ABC+∠ACB)=45°;(2)BE=2MN.MN⊥BE.理由如下:如图2.连接ME.过点C作CQ∥EF.交直线ME于Q.连接BH.设CF与AD 交点为P.CF与AG交点为R.∵CQ∥EF.∴∠FCQ=∠CFE.∵点M是CF的中点.∴CM=MF.又∵∠CMQ=∠FME.∴△CMQ≌△FME(ASA).∴CQ=EF.ME=QM.∴AE=CQ.∵CQ∥EF.AG∥EF.∴CQ∥AG.∴∠QCF=∠CRA.∵AD∥BC.∴∠BCF=∠APR.∴∠BCQ=∠BCF+∠QCF=∠APR+∠ARC.∵∠DAG+∠APR+∠ARC=180°.∠BAE+∠DAG=180°.∴∠BAE=∠BCQ.又∵BC=AB.CQ=AE.∴△BCQ≌△BAE(SAS).∴BQ=BE.∠CBQ=∠ABE.∴∠QBE=∠CBA=90°.∵MQ=ME.点N是BE中点.∴BQ=2MN.MN∥BQ.∴BE=2MN.MN⊥BE.。

2020年中考数学必考高分考点:正方形(学生版)

2020年中考数学必考高分考点:正方形(学生版)

专题22 正方形1.正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2.正方形的性质:(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3.正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。

即有一组邻边相等的矩形是正方形先证它是菱形,再证有一个角是直角。

即有一个角是直角的菱形是正方形。

4.正方形的面积:设正方形边长为a,对角线长为b ,S正方形=222ba【例题1】(2019湖南郴州)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是()A.√2B.2C.√3D.4专题知识回顾专题典型题考法及解析【例题2】(2019•四川省凉山州)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接E B.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.一、选择题1.(2019内蒙古包头)如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.﹣1D.2.(2019湖南张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)3.(2019•四川省广安市)把边长分别为1和2的两个正方形按图的方式放置.则图中阴影部分的面积为()专题典型训练题()A61()B31()C51()D414.(2019•贵州省铜仁市)如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是()A.2B.3C.4D.5\5.(2019黑龙江省绥化)如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<42﹣2时,P点最多有9个③当P点有8个时,x=22﹣2④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③二、填空题6.(2019湖南邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.127.(2019湖南张家界)如图:正方形ABCD的边长为1,点E,F分别为BC,CD边的中点,连接AE,BF交于点P,连接PD,则tan∠APD=.8.(2019•湖北省随州市)如图,已知正方形ABCD的边长为a,E为CD边上一点(不与端点重合),将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.给出下列判断:①∠EAG=45°;②若DE=a,则AG∥CF;③若E为CD的中点,则△GFC的面积为a2;④若CF=FG,则DE=(-1)a;⑤BG•DE+AF•GE=a2.其中正确的是______.(写出所有正确判断的序号)9.(2019福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是.(结果保留π)10.(2019•四川省凉山州)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.11. (2019•广东广州)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是.(填写所有正确结论的序号)12.(2019·广西贺州)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE 绕点A顺时针旋转90°得△ABG,则CF的长为.13.(2019•山东青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.14.(2019江苏镇江)将边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置(如图),使得点D 落在对角线CF 上,EF 与AD 相交于点H ,则HD= .(结果保留根号)15.(2019辽宁抚顺)如图,在2×6的网格中,每个小正方形的边长都是1个单位长度,网格中小正方形的顶点叫格点,点A ,B ,C 在格点上,连接AB ,BC ,则tan ∠ABC = .三、解答题16.(2019湖南湘西州)如图,在正方形ABCD 中,点E ,F 分别在边CD ,AD 上,且AF =CE .(1)求证:△ABF ≌△CBE ;(2)若AB =4,AF =1,求四边形BEDF 的面积.17. (2019海南)如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A,D 不重合),射线PE 与BC 的延长线交于点Q.第10题图HGFEDCBA(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连接AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.18.(2019湖南株洲)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=12,求正方形OEFG的边长.19.(2019•湖北省仙桃市)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG ∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.20.(2019•山东泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG ⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.21.(2019湖北襄阳)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.①求证:DQ=AE;②推断:的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC 边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k=时,若tan∠CGP=,GF=2,求CP的长.。

2012年全国中考数学试题分类解析汇编专题44:矩形、菱形、正方形

2012年全国中考数学试题分类解析汇编专题44:矩形、菱形、正方形

2012年全国中考数学试题分类解析汇编(159套63专题)专题44:矩形、菱形、正方形一、选择题1. (2012天津市3分)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD 至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为【】(A1(B)3(C(D1【答案】D。

【考点】正方形的性质,勾股定理。

【分析】利用勾股定理求出CM的长,即ME的长,有DM=DE,所以可以求出DE,从而得到DG的长:∵四边形ABCD是正方形,M为边AD的中点,∴DM=12DC=1。

∴CM=1。

∵四边形EDGF1。

故选D。

2. (2012安徽省4分)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为【】A.22a B. 32a C. 42a D.52a【答案】A 。

【考点】正多边形和圆,等腰直角三角形的性质,正方形的性质。

【分析】图案中间的阴影部分是正方形,面积是2a ,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为a 的正方形的一半,它的面积用对角线积的一半来计算:222114222a a a +⨯⨯=。

故选A 。

3. (2012山西省2分)如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE⊥BC 于点E ,则AE 的长是【 】A .B .C .48cm 5D .24cm 5 【答案】D 。

【考点】菱形的性质,勾股定理。

【分析】∵四边形ABCD 是菱形,∴CO=12AC=3,BO=12BD=,AO⊥BO,∴5=。

∴ABCD 11S BD AC 682422=⋅=⨯⨯=菱形。

又∵ABCD S BC AE =⋅菱形,∴BC·AE=24,即()24AE cm 5=。

故选D 。

4. (2012陕西省3分)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE⊥AB,垂足为E ,若∠ADC=1300,则∠AOE 的大小为【 】A .75°B .65°C .55°D .50°【答案】B 。

2014年全国中考数学试题分类汇编25 矩形菱形与正方形(含解析)

2014年全国中考数学试题分类汇编25 矩形菱形与正方形(含解析)

矩形菱形与正方形一、选择题1. (2014•安徽省,第10题4分)如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A. 1 B. 2 C. 3 D. 4考点:正方形的性质.菁优网分析:连接AC与BD相交于O,根据正方形的性质求出OD=,然后根据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满足条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线互相垂直平分,点D到O 的距离小于是本题的关键.2. (2014•福建泉州,第5题3分)正方形的对称轴的条数为()3. (2014•珠海,第2题3分)边长为3cm的菱形的周长是()4.(2014•广西玉林市、防城港市,第6题3分)下列命题是假命题的是()5.(2014•毕节地区,第8题3分)如图,菱形ABCD中,对角线AC、BC相交于点O,H 为AD边中点,菱形ABCD的周长为28,则OH的长等于()AAB6.(2014•襄阳,第12题3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()PE===7.(2014•孝感,第9题3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()8.(2014·台湾,第12题3分)如图,D 为△ABC 内部一点,E 、F 两点分别在AB 、BC 上,且四边形DEBF 为矩形,直线CD 交AB 于G 点.若CF =6,BF =9,AG =8,则△ADC 的面积为何?( )A .16B .24C .36D .54分析:由于△ADC =△AGC ﹣△ADG ,根据矩形的性质和三角形的面积公式计算即可求解. 解:△ADC =△AGC ﹣△ADG =12×AG ×BC ﹣12×AG ×BF=12×8×(6+9)﹣12×8×9=60﹣36=24. 故选:B .点评:考查了三角形的面积和矩形的性质,本题关键是活用三角形面积公式进行计算. 9.(2014·台湾,第27题3分)如图,矩形ABCD 中,AD =3AB ,O 为AD 中点,是半圆.甲、乙两人想在上取一点P ,使得△PBC 的面积等于矩形ABCD 的面积其作法如下: (甲) 延长BO 交于P 点,则P 即为所求;(乙) 以A 为圆心,AB 长为半径画弧,交于P 点,则P 即为所求. 对于甲、乙两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确分析:利用三角形的面积公式进而得出需P甲H=P乙K=2AB,即可得出答案.解:要使得△PBC的面积等于矩形ABCD的面积,需P甲H=P乙K=2A B.故两人皆错误.故选:B.点评:此题主要考查了三角形面积求法以及矩形的性质,利用四边形与三角形面积关系得出是解题关键.10.(2014•浙江宁波,第6题4分)菱形的两条对角线长分别是6和8,则此菱形的边长是()===511.(2014•浙江宁波,第11题4分)如图,正方形ABCD和正方形CEFG中,点D在CG 上,BC=1,CE=3,H是AF的中点,那么CH的长是()..=,=3,===2,=AF=×2=.11.(2014•呼和浩特,第9题3分)已知矩形ABCD的周长为20cm,两条对角线AC,BD 相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()=12. (2014•湘潭,第7题,3分)以下四个命题正确的是()13. (2014•株洲,第7题,3分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()14. (2014年江苏南京,第6题,2分)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()(第3题图)A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)考点:矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质。

中考数学_专项_矩形、菱形、正方形考点及题型

中考数学_专项_矩形、菱形、正方形考点及题型

【中考数学】矩形、菱形、正方形的5大考点及题型汇总矩形、菱形、正方形是八年级下册特殊平行四边形这一章节的重要组成部分。

他们都是基于平行四边形的性质衍生出来的其基本的性质都和平行四边形是一样的。

所以大家在进行学习和记忆的时候只需要紧抓其特殊部分,就能把他们都区分出来。

熟练掌握矩形,菱形,正方形的性质,定义和判定是这部分学习的重点,同时这部分也是中考数学几何部分的重要考点。

只有把这些性质和判定融会贯通。

那么在遇到综合题或者是类似题型的几何才能应对自如,尽快的形成自己的解题思路。

今天就给大家分享初中数学矩形、菱形、正方形的5大考点及题型,同学们赶紧来查漏补缺。

一、矩形、菱形、正方形的性质1.矩形的性质①具有平行四边形的一切性质;②矩形的四个角都是直角;③矩形的对角线相等;④矩形是轴对称图形,它有两条对称轴;⑤直角三角形斜边上的中线等于斜边的一半。

2.菱形的性质①具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,每条对角线所在的直线都是它的对称轴;⑤菱形的面积=底×高=对角线乘积的一半。

3.正方形的性质: 正方形具有平行四边形,矩形,菱形的一切性质①边:四边相等,对边平行;②角:四个角都是直角;③对角线:互相平分;相等;且垂直;每一条对角线平分一组对角,即正方形的对角线与边的夹角为45度;④正方形是轴对称图形,有四条对称轴。

例1 矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.360 B.90C.270 D.180例2 如图,矩形ABCD中,AE⊥BD于点E,对角线AC与BD相交于点O,BE:ED =1:3,AB=6cm,求AC的长。

例3 如图, O是矩形ABCD 对角线的交点, AE平分∠BAD,∠AOD=120°,求∠AEO 的度数。

例4 菱形的周长为40cm,两邻角的比为1:2,则较短对角线的长________ 。

【精品】2020版中考数学分类汇编:考点26 正方形试题(含解析)

【精品】2020版中考数学分类汇编:考点26 正方形试题(含解析)

中考数学试题分类汇编:考点26 正方形一.选择题(共4小题)1.(2018•无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化【分析】根据题意推知EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角形的对应边成比例和锐角三角函数的定义解答.【解答】解:∵EF∥AD,∴∠AFE=∠FAG,∴△AEH∽△ACD,∴==.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG===.故选:A.2.(2018•宜昌)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG ⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.C.D.【分析】根据轴对称图形的性质,解决问题即可;【解答】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=S正方形ABCD=,故选:B.3.(2018•湘西州)下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个B.2个C.3个D.4个【分析】根据对顶角的性质,菱形的判定,正方形的判定,平行线的性质,可得答案.【解答】解:①对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误;④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选:B.4.(2018•张家界)下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等【分析】根据平行线的性质、正方形的判定、矩形的判定、对顶角的性质、角平分线性质逐个判断即可.【解答】解:A、两条平行线被第三条直线所截,内错角才相等,错误,故本选项不符合题意;B、对角线相等的四边形是矩形,不一定是正方形,错误,故本选项不符合题意;C、相等的角不一定是对顶角,错误,故本选项不符合题意;D、角平分线上的点到角的两边的距离相等,正确,故本选项符合题意;故选:D.二.填空题(共7小题)5.(2018•武汉)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.6.(2018•呼和浩特)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为①②③.【分析】先判定△MEH≌△DAH(SAS),即可得到△DHM是等腰直角三角形,进而得出DM=HM;依据当∠DHC=60°时,∠ADH=60°﹣45°=15°,即可得到Rt△ADM中,DM=2AM,即可得到DM=2BE;依据点M是边BA延长线上的动点(不与点A重合),且AM<AB,可得∠AHM<∠BAC=45°,即可得出∠CHM>135°.【解答】解:由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确;故答案为:①②③.7.(2018•青岛)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.8.(2018•咸宁)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为(﹣1,5).【分析】结合全等三角形的性质可以求得点G的坐标,再由正方形的中心对称的性质求得点F的坐标.【解答】解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线EG,垂足为G,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).9.(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为2或2或﹣.【分析】根据正方形的性质得出AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=90°,根据勾股定理求出AC、BD、求出OA、OB、OC、OD,画出符合的三种情况,根据勾股定理求出即可.【解答】解:∵四边形ABCD是正方形,AB=6,∴AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=∠DAB=90°,在Rt△ABC中,由勾股定理得:AC===6,∴OA=OB=OC=OD=3,有三种情况:①点P在AD上时,∵AD=6,PD=2AP,∴AP=2;②点P在AC上时,设AP=x,则DP=2x,在Rt△DPO中,由勾股定理得:DP2=DO2+OP2,(2x)2=(3)2+(3﹣x)2,解得:x=﹣(负数舍去),即AP=﹣;③点P在AB上时,设AP=y,则DP=2y,在Rt△APD中,由勾股定理得:AP2+AD2=DP2,y2+62=(2y)2,解得:y=2(负数舍去),即AP=2;故答案为:2或2或﹣.10.(2018•潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为(﹣1,).【分析】连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM≌Rt△AB′M得∠DAM=∠B′AD=30°,由DM=ADtan∠DAM可得答案.【解答】解:如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(﹣1,),故答案为:(﹣1,).11.(2018•台州)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为+3 .【分析】根据面积之比得出△BGC的面积等于正方形面积的,进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.【解答】解:∵阴影部分的面积与正方形ABCD的面积之比为2:3,∴阴影部分的面积为×9=6,∴空白部分的面积为9﹣6=3,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF的面积相等,均为×3=,设BG=a,CG=b,则ab=,又∵a2+b2=32,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴a+b=,即BG+CG=,∴△BCG的周长=+3,故答案为: +3.三.解答题(共6小题)12.(2018•盐城)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.【分析】(1)根据正方形的性质和全等三角形的判定证明即可;(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;【解答】证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.13.(2018•吉林)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.【分析】根据正方形的性质,利用SAS即可证明;【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF.14.(2018•白银)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【解答】解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.15.(2018•潍坊)如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF ⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.【分析】(1)通过证明△ABF≌△DEA得到BF=AE;(2)设AE=x,则BF=x,DE=AF=2,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到•x•x+•x•2=24,解方程求出x得到AE=BF=6,则EF=x﹣2=4,然后利用勾股定理计算出BE,最后利用正弦的定义求解.【解答】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴BF=AE;(2)解:设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴sin∠EBF===.16.(2018•湘潭)如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.【分析】(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,即可得出结论;(2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠ADF+∠DAO=90°,最后用三角形的内角和定理即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在△DAF和△ABE中,,∴△DAF≌△ABE(SAS),(2)由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°,∴∠AOD=180°﹣(∠ADF+DAO)=90°.17.(2018•遵义)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.。

中考数学真题分类汇编及解析(二十五)勾股定理

中考数学真题分类汇编及解析(二十五)勾股定理

(2022•湖州中考)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是()A.4√2B.6C.2√10D.3√5【解析】选C.如图所示:△MNP为等腰直角三角形,∠MPN=45°,此时PM最长,根据勾股定理得:PM=√22+62=√40=2√10.(2022•宁波中考)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为()A.2√2B.3C.2√3D.4【解析】选D.因为D为斜边AC的中点,F为CE中点,DF=2,所以AE=2DF=4,因为AE=AD,所以AD=4,在Rt△ABC中,D为斜边AC的中点,所以BD=12AC=AD=4A .2B .32C .12D .√55【解析】选A .由已知可得,大正方形的面积为1×4+1=5,设直角三角形的长直角边为a ,短直角边为b ,则a 2+b 2=5,a ﹣b =1,解得a =2,b =1,所以tan α=a b =21=2(2022·遵义中考)如图1是第七届国际数学教育大会(ICME )会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若AB =BC =1,∠AOB =30°,则点B 到OC 的距离为( )A .√55B .2√55C .1D .2 【解析】选B .作BH ⊥OC 于H ,因为∠AOB =30°,∠A =90°,所以OB =2AB =2,在Rt △OBC 中,由勾股定理得,OC =√OB 2+BC 2=√22+12=√5,因为∠CBO =∠BHC =90°,所以∠CBH =∠BOC ,所以cos ∠BOC =cos ∠CBH ,所以OBOC =BHBC ,所以2√5=BH 1,所以BH =2√55.(2022•十堰中考)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD 上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(√3−1)m,若在M,N 之间修一条直路,则路线M→N的长比路线M→A→N的长少370 m(结果取整数,参考数据:√3≈1.7).【解析】解法一:如图,延长DC,AB交于点G,因为∠D=60°,∠ABC=120°,∠BCD=150°,所以∠A=360°﹣60°﹣120°﹣150°=30°,所以∠G=90°,所以AD=2DG,Rt△CGB中,∠BCG=180°﹣150°=30°,BC=50,CG=50√3,所以DG=CD+CG=100+50√3,所以BG=12所以AD=2DG=200+100√3,AG=√3DG=150+100√3,因为DM=100,所以AM=AD﹣DM=200+100√3−100=100+100√3,因为BG=50,BN=50(√3−1),所以AN=AG﹣BG﹣BN=150+100√3−50﹣50(√3−1)=150+50√3,AN=75+25√3,AH=√3NH=75√3+75,Rt△ANH中,因为∠A=30°,所以NH=12由勾股定理得:MN=√NH2+MH2=√(75+25√3)2+(25√3+25)2=50(√3+1),所以AM+AN﹣MN=100+100√3+150+50√3−50(√3+1)=200+100√3≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图,延长DC,AB交于点G,连接CN,CM,则∠G=90°,因为CD=DM,∠D=60°,所以△BCM是等边三角形,所以∠DCM=60°,由解法一可知:CG=50√3,GN=BG+BN=50+50(√3−1)=50√3,所以△CGN是等腰直角三角形,所以∠GCN=45°,所以∠BCN=45°﹣30°=15°,所以∠MCN=150°﹣60°﹣15°=75°=12∠BCD,由【阅读材料】的结论得:MN=DM+BN=100+50(√3−1)=50√3+50,因为AM+AN﹣MN=AD+AG﹣MN=100+100√3+150+50√3−50(√3+1)=200+100√3≈370(m).答:路线M→N的长比路线M→A→N的长少370m.答案:370.(2022•河南中考)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2√2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为√5或√13.【解析】如图:因为∠ACB=90°,AC=BC=2√2,所以AB=√2AC=4,因为点D为AB的中点,所以CD=AD=12AB=2,∠ADC=90°,因为∠ADQ=90°,所以点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,所以AQ=√AD2+DQ2=√22+12=√5,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ ′=3,所以AQ′=√AD2+DQ′2=√22+32=√13,综上所述:当∠ADQ=90°时,AQ的长为√5或√13.答案:√5或√13是25,小正方形的面积是1,则AE=3.【解析】因为大正方形的面积是25,小正方形的面积是1,所以AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x﹣1,在Rt△AED中,AE2+ED2=AD2,所以(x﹣1)2+x2=52,解得:x1=4,x2=﹣3(舍去),所以x﹣1=3.答案:3(2022•泰州中考)如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为√2.【解析】走两步后的落点与出发点间的最短距离为√12+12=√2.答案:√2.(2022•内江中考)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=48.【解析】设八个全等的直角三角形的长直角边为a,短直角边是b,则:S1=(a+b)2,S2=42=16,S3=(a﹣b)2,且:a2+b2=EF2=16,所以S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.。

中考数学复习《矩形、菱形与正方形》考点及重点题型

中考数学复习《矩形、菱形与正方形》考点及重点题型

中考数学复习《矩形、菱形与正方形》考点及重点题型知识点一:特殊平行四边形的性质与判定1.矩形1)性质:(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形另说法:(1)四个角都是直角(2)对角线相等且互相平分.即AO=CO=BO=DO.(3)面积=长×宽=2S△ABD =4S△AOB.2)判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形变式练习:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__22.5__度.,2.菱形1)性质:(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形另说法(1)四边相等(2)对角线互相垂直、平分,一条对角线平分一组对角(3)面积=底×高=对角线_乘积的一半2)判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形变式练习1:如图,菱形ABCD的对角线AC,BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为__24__.第1题图) ,第2题图)变式练习2:如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件_AC⊥BD或∠AOB=90°或AB=BC_使其成为菱形(只填一个即可).变式练习3:如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是______.第3题图【解析】∵四边形ABCD是菱形,∴AB=BC=6,∵∠ABC=60°,∴AC=AB=BC=6.变式练习4:如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于( ) A. 18 B. 16 C. 15 D. 14【解析】B∵四边形ABCD是菱形,∴BO=OD=12BD=3,AO=OC=12AC=4,∴AB=5,∴△ABD的周长为:5+5+6=16.3正方形1)性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

中考数学 考点系统复习 第五章 四边形 第四节 正方形

中考数学 考点系统复习 第五章 四边形 第四节 正方形

9.★ቤተ መጻሕፍቲ ባይዱ2022·无锡)如图,正方形 ABCD 的边长为 8,点 E 是 CD 的中点, HG 垂直平分 AE 且分别交 AE,BC 于点 H,G,则 BG= 1 .
10.★(2022·重庆 B 卷)如图,在正方形 ABCD 中,对角线 AC,BD 相交 于点 O.E,F 分别为 AC,BD 上一点,且 OE=OF,连接 AF,BE,EF.若∠ AFE=25°,则∠CBE 的度数为 6655°°.
14.★(2022·江西)沐沐用七巧板拼了一个对角线长为 2 的正方形,再 用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为 5 .
第四节 正方形
1.如图,四边形 OBCD 是正方形,O,D 两点的坐标分别是(0,0),(0,
6),点 C 在第一象限,则点 C 的坐标是
( D)
A.(6,3)
B.(3,6)
C.(0,6)
D.(6,6)
2.下列说法中不正确的是 A.有一个角是直角的菱形是正方形 B.四条边都相等的四边形是正方形 C.对角线互相垂直的矩形是正方形 D.两条对角线相等的菱形是正方形
11.★(2022·海南)如图,正方形 ABCD 中,点 E,F 分别在边 BC,CD 上, AE=AF,∠EAF=30°,若△AEF 的面积等于 1,则∠AEB=606°0°;AB 的 值是 3 .
12.如图,正方形 ABCD 的边长为 3,点 E 在 BC 上,CE=2BE,将正方形 折叠,使点 A 与点 E 重合,折痕为 MN,交 AE 于点 G.求△ANE 的面积.
(1)求证:△ADE≌△CDG; 证明:∵正方形 ABCD 和菱形 EFGH, ∴AD=CD, ∠A=∠C=90°, DE=DG, ∴Rt△ADE≌Rt△CDG(HL).

【2022】苏教版中考数学精编专题《平行四边形、矩形、正方形、菱形》(含答案解析)

【2022】苏教版中考数学精编专题《平行四边形、矩形、正方形、菱形》(含答案解析)

【苏教版】中考数学精编专题汇编专题1平行四边形、矩形、菱形、正方形学校:___________姓名:___________班级:___________1.【江苏省南京市中考二模】下列命题中假命题是( ) A 、两组对边分别相等的四边形是平行四边形 B 、两组对角分别相等的四边形是平行四边形C 、一组对边平行一组对角相等的四边形是平行四边形D 、一组对边平行一组对边相等的四边形是平行四边形D 、例如等腰梯形,满足一组对边平行一组对边相等,但它不是平行四边形,所以是个假命题.正确. 故选D .【考点定位】命题与定理.2.【江苏省江阴市中考】如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于( )A.2B.3C.4D.5 【答案】C.B【解析】已知菱形ABCD ,根据菱形的性质可得AB=BC=8,OB=OD ,又因E 是CD 的中点,所以OE 为△DBC 的中位线,根据三角形的中位线定理可得OE=BC=4.故选C. 【考点定位】菱形的性质;三角形的中位线定理.3. 【江苏省常州市中考】如图,▱ABCD 的对角线AC 、BD 相交于点O ,则下列说法一定正确的是( )A .AO =ODB .AO ⊥ODC .AO =OCD .AO ⊥AB 【答案】C .【考点定位】平行四边形的性质.4.【江苏省徐州市中考】如图,菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( )【考点定位】菱形的性质.215. 【江苏省徐州市中考模拟】15.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点.若四边形EFGH 为菱形,则对角线AC 、BD 应满足条件 .【答案】AC=BD .【考点定位】1.菱形的性质;2.三角形中位线定理.6.【江苏省徐州市中考模拟】将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD 沿射线BD 方向平移,在平移的过程中,当点B的移动距离为时,四边ABC 1D 1为矩形;当点B 的移动距离为 时,四边形ABC1D 1为菱形.【解析】当点B 的移动距离为时,∠C 1BB 1=60°,则∠ABC 1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC 1D 1为矩形;当点B 的移动距离为时,D 、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC 1D 1为菱形.333如图:【考点定位】1.菱形的判定;2.矩形的判定;3.平移的性质.7. 【江苏省淮安市中考】如图,A,B两地被一座小山阻隔,为测量A,B两地之间的距离,在地面上选一点C,连接CA,CB,分别取CA,CB的中点D、E,测得DE的长度为360米,则A、B两地之间的距离是米.【答案】720.【考点定位】1.三角形中位线定理;2.应用题.8.【江苏省无锡市中考】如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于 cm.【答案】16.【解析】根据三角形的中位线定理和矩形对角线相等的性质可证得四边形EFGH是菱形,且故答案为:16.【考点定位】三角形的中位线定理;矩形的性质;菱形的判定及性质.9.【江苏省中考模拟】已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【答案】证明见解析.【解析】试题分析:根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形是平行四边形,可得证明结论.试题解析:证明:如图,连接 BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【考点定位】平行四边形的判定与性质.10.【江苏省常州市中考】如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF 都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.【答案】(1)证明见试题解析;(2)60°.【考点定位】1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的性质.专题2 圆的有关计算及圆的综合学校:___________姓名:___________班级:___________1.【江苏省南通市九年级上学期期末】如图,⊙O 中,OA ⊥BC ,∠A OB=52°,则∠ADC 的度数为( )A .36°B .26°C . 38°D .46°【答案】D . 【解析】故选D.【考点定位】1.圆周角定理;2.垂径定理.2.【江苏省江阴市九年级下学期期中】一个圆锥底面直径为2,母线为4,则它的侧面积为( ) A . B.C .D .【答案】C.【解析】根据圆锥的侧面积公式S=πrl 可得这个圆锥的侧面积为π×1×4=4π.故选C. 【考点定位】圆锥的侧面积公式.3.【江苏省苏州市区中考】如图,⊙O 上A 、B 、C 三点,若∠B=50,∠A=20°,则∠AOB 等于( ) A 、30° B 、50° C 、70° D 、60°【答案】D .2π12π4π8π【解析】先根据圆周角定理得出∠ACB=∠AOB ,再由三角形内角和定理即可得出结论.∵∠AOB 与∠ACB是同弧所对的圆心角与圆周角,∠B=50,∠A=20°,∴∠ACB=∠AOB .∴180°-∠AOB-∠A=180°-∠ACB-∠B ,即180°-∠AOB-20°=180°-∠AOB-50°,解得∠AOB=60°.故选D .【考点定位】圆周角定理.4.【江苏省南通市九年级上学期期末】某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为120°的扇形,则这个圆锥的底面半径为( )cm . A 、2B 、3C 、4D 、5【答案】A .故选A.【考点定位】弧长的计算.5.【江苏省苏州市中考一模】如图,AB 是⊙O 的切线,切点为B ,AO 交⊙O 于点C ,且AC=OC ,若⊙O 的半径为5,则图中阴影部分的面积是 .. 【解析】直接利用切线的性质结合勾股定理得出AB 的长,再利用锐角三角函数关系得出∠BOC 的度数,结合阴影部分的面积为:S △OBA -S 扇形BOC 求出即可.连接OB ,∵AB 是⊙O 的切线,切点为B ,∴∠OBBA=90°,∵AC=OC ,⊙O 的半径为5,∴AC=5,AB=5,∴∠A=30°,则∠BOC=60°,∴图中阴影部分的面积为:S △OBA -S 扇形BOC =×BO ×AB-.故答案为:121212625π312605360π⨯536225π. 【考点定位】1.扇形面积的计算;2.切线的性质.6.【江苏省徐州中考】13.圆锥底面圆的半径为3m ,其侧面展开图是半圆,则圆锥母线长为 m. 【答案】6.【考点定位】圆锥的计算.7.【江苏省中考】已知扇形的圆心角为120°,弧长为6π,则扇形的面积是 . 【答案】27π.【考点定位】扇形面积的计算.8.【江苏省南京市中考二模】已知等腰△ABC 中,AB=AC=13cm ,BC=10cm ,则△ABC 的内切圆半径为 cm . 【答案】. 【解析】如图,设△ABC 的内切圆半径为r ,由勾股定理得AD=12,再由切线长定理得AE=8,根据勾股定理求得r 即可.如图,∵AB=AC=13cm ,BC=10cm ,∴BD=5cm ,∴AD=12cm ,根据切线长定理,AE=AB-BE=AB-BD=13-5=8,设△ABC 的内切圆半径为r ,∴AO=12-r ,∴(12-r )2-r 2=64,解得r=.故答案为:. 【考点定位】1.三角形的内切圆与内心;2.等腰三角形的性质.9.【江苏省苏州中考一模】如图所示,D 是以AB 为直径的半圆O 上的一点,C 是弧AD 的中点,点M 在AB 上,AD 与CM 交于点N ,CN=AN .625π103103103(1)求证:CM⊥AB;(2)若BD=2,求半圆的直径.【答案】(1)证明见解析;(2)6.【解析】试题解析:(1)证明:如图1,连接BC,则∠ACB=90°,∵CN=AN,∴∠NCA=∠NAC,∴∠MCA=∠DAC,∵C是弧AD的中点,∴∠ABC=∠DAC,∴∠MCA=∠ABC,∵∠CAB=∠BAC,∴△ABC∽△ACM,∴∠AMC=90°,∴CM⊥AB;(2)解:如图2,连接CD,作CE⊥BD,交BD的延长线于E,在△CMB与△BCE中,,【考点定位】1.相似三角形的判定与性质;2,全等三角形的判定与性质;2.圆周角定理.10.【江苏省无锡市中考】已知:如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,且BC =6cm ,AC =8cm ,∠ABD =45º.(1)求BD 的长;(2)求图中阴影部分的面积.【答案】(1)BD =52cm;(2)S 阴影=25π-504cm 2. 【解析】MBC CBE CMB CEB BC BC ∠=∠∠=∠=⎧⎪⎨⎪⎩【考点定位】圆周角定理的推论;勾股定理;扇形的面积公式.专题3 图形的变换、视图与投影学校:___________姓名:___________班级:___________1. 【江苏省苏州市中考一模】下列腾讯QQ表情中,不是轴对称图形的是()【答案】C.【解析】根据轴对称图形的概念求解.A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.【考点定位】轴对称图形.2.【江苏省徐州市中考模拟】下列图形中,既是中心对称图形又是轴对称图形的是()【答案】D.【考点定位】1.中心对称图形;2.轴对称图形.3. 【江苏省淮安市中考】如图所示物体的主视图是()A. B. C. D.【答案】C.【考点定位】简单组合体的三视图.4.【江苏省常州市中考】下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C. D.【答案】B.故选B.【考点定位】轴对称图形.5.【江苏省常州市中考】将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是【答案】8cm2 .故答案为:8cm 2.【考点定位】1.翻折变换(折叠问题);2.最值问题.6.【江苏省江阴市中考】如图,Rt ΔABC 中,AB=9,BC=6,∠B=900,将ΔABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN的长为【答案】 4. 【解析】 故答案为:4.【考点定位】翻折变换;勾股定理. 7.【江苏省苏州市区中考】在R t △ABC 中,斜边AB=4,∠B=60°,将△ABC 绕点B 旋转60°,顶点C 运动的路线长是 (结果保留π).【答案】.【解析】将△ABC 绕点B 旋转60°,顶点C 运动的路线长是就是以点B 为圆心,B C 为半径所旋转的弧,根据弧长公式即可求得.∵AB=4,∴BC=2,所以弧长=.故答案为:. 【考点定位】1.弧长的计算;2.旋转的性质.8.【江苏省扬州市2015年中考数学试题】如图,已知Rt △ABC 中,∠ABC =90°,AC =6,BC =4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF = 23π602180π⨯=23π23π【答案】5【考点定位】旋转的性质9.【江苏省徐州市中考】如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.(1)画出△AOB关于x轴对称的△A1OB1.(2)画出将△AOB绕点O顺时针旋转90°的△A2OB2,并判断△A1OB1和△A2OB2在位置上有何关系?若成中心对称,请直接写出对称中心坐标;如成轴对称,请直接写出对称轴的函数关系式.(3)若将△AOB绕点O旋转360°,试求出线段AB扫过的面积.【答案】(1)画图见解析;(2)画图见解析;△A1OB1和△A2OB2是轴对称关系,对称轴为:y=﹣x.(3)2.5π.【解析】试题解析:(1)如图所示:.(2)如图所示:△A1OB1和△A2OB2是轴对称关系,对称轴为:y=﹣x.(3)过点O作OE⊥AB,线段AB2﹣π()2=5π﹣2.5π=2.5π. 【考点定位】1.作图-旋转变换;2.扇形面积的计算;3.作图-轴对称变换.10.【江苏省南京市中考二模试题】△ABC 中,AB=AC=10,BC=12,矩形DEFG 中,EF=4,FG >12.(1)如图①,点A 是FG 的中点,FG ∥BC ,将矩形DEFG 向下平移,直到DE 与BC 重合为止.要研究矩形DEFG 与△ABC 重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).(2)如图②,点B 与F 重合,E 、B 、C 在同一直线上,将矩形DEFG 向右平移,直到点E 与C 重合为止.设矩形DEFG 与△ABC 重叠部分的面积为y ,平移的距离为x .①求y 与x 的函数关系式,并写出自变量的取值范围;②在给定的平面直角坐标系中画出y 与x 的大致图象,并在图象上标注出关键点坐标.2【考点定位】几何变换综合题.。

2024年中考数学总复习考点培优训练第五章第四节正方形

2024年中考数学总复习考点培优训练第五章第四节正方形

第四节正方形基础过关1. 正方形具有而菱形不具有的性质是()A. 对角线平分一组对角B. 对角线相等C. 对角线互相垂直平分D. 四条边相等2. (2022玉林)若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD的两条对角线AC,BD一定是()A. 互相平分B. 互相垂直C. 互相平分且相等D. 互相垂直且相等3. (2023自贡)如图,边长为3的正方形OBCD两边与坐标轴正半轴重合,点C的坐标是()A. (3,-3)B. (-3,3)C. (3,3)D. (-3,-3)第3题图4. (2023重庆A卷)如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于()A. 2αB. 90°-2αC. 45°-αD. 90°-α第4题图5. (2023龙东地区)在矩形ABCD中,对角线AC,BD相交于点O,试添加一个条件_________________________,使得矩形ABCD为正方形.6. (2023宁夏)如图,在边长为2的正方形ABCD中,点E在AD上,连接EB,EC,则图中阴影部分的面积是__________.第6题图7. (2023湘潭)七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4 dm的正方形纸板制作了一副七巧板,如图所示,由5个等腰直角三角形,1个正方形和1个平行四边形组成,则图中阴影部分的面积为__________dm2.第7题图8. (2023怀化)如图,点P是正方形ABCD的对角线AC上的一点,PE⊥AD于点E,PE=3.则点P到直线AB的距离为__________.第8题图9. (2023枣庄)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=7,点F为DE的中点,若△CEF的周长为32,则OF的长为__________.第9题图10. (2022贵阳)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.第10题图综合提升11. (2023安徽)如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =( ) A. 23 B.352C. 5 +1D. 10第11题图12. (2023黑白卷)如图,在正方形ABCD 中,点E 为BD 上一点,DE =3BE ,连接AE ,过点E 作AE 的垂线,交CD 于点F ,连接AF 交BD 于点G .下列结论:①sin ∠BAE =13 ;②∠EAF =45°;③点F 为CD 的中点;④BE +DG =GE .其中正确的有( )A. 1个B. 2个C. 3个D. 4个第12题图新考法推荐13. (数学文化)(2023杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE ,△ABF ,△BCG ,△CDH )和中间一个小正方形EFGH拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1∶n,tan α=tan2β,则n=()A. 5B. 4C. 3D. 2第13题图。

人教版中考数学考点系统复习 第五章 四边形 第四节 正方形

人教版中考数学考点系统复习 第五章 四边形 第四节 正方形

下列说法中正确的有
( C)
①图中的三角形都是等腰直角三角形; ②四边形MPEB是菱形;
1 ③四边形PFDM的面积占正方形ABCD面积的4.
A.只有①
B.①②
C.①③
D.②③
9.★(2020·孝感第15题3分)如图①,四个全等的直角三角形围成一个
大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀
算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段
得到如图②的图案,记阴影部分的面积为S1 ,空白部分的面积为S2.大
n
3-1
正方形的边长为m,小正方形的边长为n,若S1=S2,则m的值为为 2 .
10.★(2021·襄阳第16题3分)如图,正方形ABCD的对角线相交于点O, 点E在边BC上,点F在CB的延长线上,∠EAF=45°,AE交BD于点G,tan ∠BAE=12,BF=2,则FG=2 2 5 .
线AC上与点A,C不重合的一个动点.过点E作EF⊥AB于点F,EG⊥BC于点
G,连接DE,FG.下列结论:
①DE=FG;②DE⊥FG;③∠BFG=∠ ADE; ④FG的最小值为3,其中正确
结论的个数有
( C)
A. 1个
B. 2个
C.3个
D. 4个
7.★(2021·随州第7题3分)如图,从一个大正方形中截去面积为3 cm2
则线段AE的长度为
(D)
A.6
B.8
C.10
D.12
5.(2020·恩施州第11题3分)如图,正方形ABCD的边长为4.点E在AB上 且BE=1.F为对角线AC上一动点,则△BFE周长的最小值为 ( B ) A.5 B.6 C.7 D.8
6.★(2021·仙桃第10题3分)如图,在正方形ABCD中,AB=4,E为对角

四川省各地市2023-中考数学真题分类汇编-02填空题(基础题)知识点分类①

四川省各地市2023-中考数学真题分类汇编-02填空题(基础题)知识点分类①

四川省各地市2023-中考数学真题分类汇编-02填空题(基础题)知识点分类①一.实数的运算(共1小题)1.(2023•内江)在△ABC中,∠A、∠B,∠C的对边分别为a、b、c,且满足a2+|c﹣10|+=12a﹣36,则sin B的值为 .二.规律型:图形的变化类(共1小题)2.(2023•广元)在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 .三.平方差公式(共1小题)3.(2023•雅安)若a+b=2,a﹣b=1,则a2﹣b2的值为 .四.一元一次方程的应用(共1小题)4.(2023•德阳)在初中数学文化节游园活动中,被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛,活动规则是:在九宫格中,除了已经填写的三个数之外的每一个方格中,填入一个数,使每一横行、每一竖列以及两条对角线上的3个数之和分别相等,且均为m.王小明抽取到的题目如图所示,他运用初中所学的数学知识,很快就完成了这个游戏,则m= .五.根的判别式(共1小题)5.(2023•甘孜州)关于x的一元二次方程x2﹣4x+m=0有两个相等的实数根,则m的值为 .六.根与系数的关系(共3小题)6.(2023•雅安)已知关于x的方程x2+mx﹣4=0的一个根为1,则该方程的另一个根为 .7.(2023•内江)已知a、b是方程x2+3x﹣4=0的两根,则a2+4a+b﹣3= .8.(2023•宜宾)若关于x的方程x2﹣2(m+1)x+m+4=0两根的倒数和为1,则m的值为 .七.反比例函数图象上点的坐标特征(共1小题)9.(2023•攀枝花)如图,在直角△ABO中,AO=,AB=1,将△ABO绕点O顺时针旋转105°至△A′B′O的位置,点E是OB′的中点,且点E在反比例函数y=的图象上,则k的值为 .八.抛物线与x轴的交点(共1小题)10.(2023•巴中)规定:如果两个函数的图象关于y轴对称,那么称这两个函数互为“Y函数”.例如:函数y=x+3与y=﹣x+3互为“Y函数”.若函数y=x2+(k﹣1)x+k﹣3的图象与x轴只有一个交点,则它的“Y函数”图象与x轴的交点坐标为 .九.平面展开-最短路径问题(共1小题)11.(2023•德阳)如图,在底面为正三角形的直三棱柱ABC﹣A1B1C1中,AB=2,AA1=2,点M为AC的中点,一只小虫从B1沿三棱柱ABC﹣A1B1C1的表面爬行到M处,则小虫爬行的最短路程等于 .一十.菱形的性质(共1小题)12.(2023•甘孜州)如图,在平面直角坐标系xOy中,菱形AOBC的顶点B在x轴的正半轴上,点A的坐标为,则点C的坐标为 .一十一.矩形的性质(共1小题)13.(2023•内江)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一,如图,在矩形ABCD中,AB =5,AD=12,对角线AC与BD交于点O,点E为BC边上的一个动点,EF⊥AC,EG⊥BD,垂足分别为点F,G,则EF+EG= .一十二.正方形的性质(共1小题)14.(2023•内江)如图,四边形ABCD是边长为4的正方形,△BPC是等边三角形,则阴影部分的面积为 .一十三.圆与圆的位置关系(共1小题)15.(2023•德阳)已知⊙O1的半径为1,⊙O2的半径为r,圆心距O1O2=5,如果在⊙O2上存在一点P,使得PO1=2,则r的取值范围是 .一十四.圆锥的计算(共1小题)16.(2023•内江)如图,用圆心角为120°半径为6的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的高是 .一十五.作图—基本作图(共1小题)17.(2023•甘孜州)如图,在平行四边形ABCD(AB<AD)中,按如下步骤作图:①以点A 为圆心,以适当长为半径画弧,分别交AB,AD于点M,N;②分别以点M,N为圆心,以大于的长为半径画弧,两弧在∠BAD内交于点P;③作射线AP交BC于点E.若∠B=120°,则∠EAD为 °.一十六.比例的性质(共1小题)18.(2023•甘孜州)若,则= .一十七.相似三角形的判定与性质(共1小题)19.(2023•乐山)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE交于点F.若,则= .一十八.中位数(共2小题)20.(2023•德阳)在一次数学测试中,张老师发现第一小组6位学生的成绩(单位:分)分别为:85,78,90,72,●,75,其中有一位同学的成绩被墨水污染,但知道该小组的平均分为80分,则该小组成绩的中位数是 .21.(2023•巴中)这组数据1,3,5,2,8,13的中位数是 .一十九.众数(共1小题)22.(2023•乐山)小张在“阳光大课间”活动中进行了5次一分钟跳绳练习,所跳个数分别为:160,163,160,157,160.这组数据的众数为 .二十.概率公式(共1小题)23.(2023•雅安)在一个不透明的口袋中,装有1个红球和若干个黄球,它们除颜色外都相同,从中随机摸出一个球是红球的概率为,则口袋中黄球有 个.二十一.几何概率(共1小题)24.(2023•攀枝花)如图,在正方形ABCD中,分别以四个顶点为圆心,以边长的一半为半径画圆弧,若随机向正方形ABCD内投一粒米(米粒大小忽略不计),则米粒落在图中阴影部分的概率为 .四川省各地市2023-中考数学真题分类汇编-02填空题(基础题)知识点分类①参考答案与试题解析一.实数的运算(共1小题)1.(2023•内江)在△ABC中,∠A、∠B,∠C的对边分别为a、b、c,且满足a2+|c﹣10|+=12a﹣36,则sin B的值为 .【答案】.【解答】解:∵a2+|c﹣10|+=12a﹣36,∴(a﹣6)2+|c﹣10|+=0,∴a﹣6=0,c﹣10=0,b﹣8=0,∴a=6,c=10,b=8,∵62+82=102,∴△ABC是直角三角形,∠C=90°,∵△ABC中,∠A、∠B,∠C的对边分别为a、b、c,∴sin B===.故答案为:.二.规律型:图形的变化类(共1小题)2.(2023•广元)在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 21 .【答案】21.【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),因为第八行为(a+b)7,∴(a+b)7展开式的第三项的系数是1+2+3+…+6=21,∴第八行从左到右第三个数为为21.故答案为:21.三.平方差公式(共1小题)3.(2023•雅安)若a+b=2,a﹣b=1,则a2﹣b2的值为 2 .【答案】2.【解答】解:∵a+b=2,a﹣b=1,∴a2﹣b2=(a+b)(a﹣b)=2×1=2.故答案为:2.四.一元一次方程的应用(共1小题)4.(2023•德阳)在初中数学文化节游园活动中,被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛,活动规则是:在九宫格中,除了已经填写的三个数之外的每一个方格中,填入一个数,使每一横行、每一竖列以及两条对角线上的3个数之和分别相等,且均为m.王小明抽取到的题目如图所示,他运用初中所学的数学知识,很快就完成了这个游戏,则m= 39 .【答案】39.【解答】解:设九宫格中最中间的数为x,∵第1列中间数与第2行的最左侧的数重合,∴16+4=7+x,∴x=13,根据九宫格每一横行、每一竖列以及两条对角线上的3个数之和等于最中间数的三倍,∴m=3x=39,故答案为:39.五.根的判别式(共1小题)5.(2023•甘孜州)关于x的一元二次方程x2﹣4x+m=0有两个相等的实数根,则m的值为 4 .【答案】4.【解答】解:根据题意得Δ=42﹣4m=0,解得m=4.故答案为:4.六.根与系数的关系(共3小题)6.(2023•雅安)已知关于x的方程x2+mx﹣4=0的一个根为1,则该方程的另一个根为 ﹣4 .【答案】﹣4.【解答】解:设方程的另一个根为m,根据题意得:1×m=﹣4,解得:m=﹣4.故答案为:﹣4.7.(2023•内江)已知a、b是方程x2+3x﹣4=0的两根,则a2+4a+b﹣3= ﹣2 .【答案】﹣2.【解答】解:∵a是方程x2+3x﹣4=0的根,∴a2+3a﹣4=0,∴a2=﹣3a+4,∵a,b是方程x2+3x﹣4=0的两根,∴a+b=﹣3,∴a2+4a+b﹣3=﹣3a+4+4a+b﹣3=a+b+1=﹣3+1=﹣2.故答案为:﹣2.8.(2023•宜宾)若关于x的方程x2﹣2(m+1)x+m+4=0两根的倒数和为1,则m的值为 2 .【答案】2.【解答】解:设关于x的方程x2﹣2(m+1)x+m+4=0两根为α,β,∴α+β=2(m+1),αβ=m+4,∵两根的倒数和为1,∴+=1,∴=1,∴=1,解得m=2,经检验,m=2是分式方程的解,当m=2时,原方程为x2﹣6x+6=0,Δ=12>0,∴m=2符合题意,故答案为:2.七.反比例函数图象上点的坐标特征(共1小题)9.(2023•攀枝花)如图,在直角△ABO中,AO=,AB=1,将△ABO绕点O顺时针旋转105°至△A′B′O的位置,点E是OB′的中点,且点E在反比例函数y=的图象上,则k的值为 .【答案】.【解答】解:如图,作EH⊥x轴,垂足为H.由题意,在Rt△BAO中,AO=,AB=1,∴BO==2.∴AB=BO.∴∠AOB=30°.又△ABO绕点O顺时针旋转105°至△A′B′O的位置,∴∠BOB'=105°.∴∠BOX=45°.又点E是OB′的中点,∴OE=BO=1.在Rt△EOH中,∵∠BOX=45°,∴EH=OH=OE=.∴E(,).又E在y=上,∴k==.故答案为:.八.抛物线与x轴的交点(共1小题)10.(2023•巴中)规定:如果两个函数的图象关于y轴对称,那么称这两个函数互为“Y函数”.例如:函数y=x+3与y=﹣x+3互为“Y函数”.若函数y=x2+(k﹣1)x+k﹣3的图象与x轴只有一个交点,则它的“Y函数”图象与x轴的交点坐标为 (3,0)或(4,0) .【答案】(3,0)或(4,0).【解答】解:当k=0时,函数解析式为y=﹣x﹣3,它的“Y函数”解析式为y=x﹣3,它们的图象与x轴都只有一个交点,∴它的“Y函数”图象与x轴的交点坐标为(3,0);当k≠0时,此函数为二次函数,若二次函数的图象与x轴只有一个交点,则二次函数的顶点在x轴上,即,解得k=﹣1,∴二次函数的解析式为=,∴它的“Y函数”解析式为,令y=0,则,解得x=4,∴二次函数的“Y函数”图象与x轴的交点坐标为(4,0),综上,它的“Y函数”图象与x轴的交点坐标为(3,0)或(4,0).故答案为:(3,0)或(4,0).九.平面展开-最短路径问题(共1小题)11.(2023•德阳)如图,在底面为正三角形的直三棱柱ABC﹣A1B1C1中,AB=2,AA1=2,点M为AC的中点,一只小虫从B1沿三棱柱ABC﹣A1B1C1的表面爬行到M处,则小虫爬行的最短路程等于 .【答案】.【解答】解:如图1,将三棱柱ABC﹣A1B1C1的侧面BB1C1C和侧面CC1A1A沿CC1展开在同一平面内,连接MB1,∵M是AC的中点,△ABC和△A1B1C1是等边三角形,∴CM=AC==,∴BM=CM+BC=3,在Rt△MBB1中,由勾股定理得:B1M==,如图2,把底面ABC和侧面BB1A1A沿AB展开在同一平面内,连接MB1,过点M作MF ⊥A1B1于点F,交AB于点E,则四边形AEFA1是矩形,ME⊥AB,在Rt△AME中,∠MAE=60°,∴ME=AM•sin60°=×=,AE=AM•cos60°=,∴MF=ME+EF=+2=,B1F=A1B1﹣A1F=,在Rt△MFB1中,由勾股定理得:B1M==,如图3,连接B1M,交A1C1于点N,则B1M⊥AC,B1N⊥A1C1,在Rt△A1NB1中,∠NA1B1=60°,∴NB1=A1B1•sin60°=3,∴B1M=NB1+MN=5,∵<5<,∴小虫爬行的最短路程为.故答案为:.一十.菱形的性质(共1小题)12.(2023•甘孜州)如图,在平面直角坐标系xOy中,菱形AOBC的顶点B在x轴的正半轴上,点A的坐标为,则点C的坐标为 .【答案】(3,).【解答】解:∵点A的坐标是(1,),∴OA==2,∵四边形OABC为菱形,∴OA=AB=AC=2,OB∥AC,则点C的坐标为(3,).故答案为:(3,).一十一.矩形的性质(共1小题)13.(2023•内江)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一,如图,在矩形ABCD中,AB =5,AD=12,对角线AC与BD交于点O,点E为BC边上的一个动点,EF⊥AC,EG⊥BD,垂足分别为点F,G,则EF+EG= .【答案】.【解答】解:连接OE,∵四边形ABCD是矩形,∴∠ABC=90°,BC=AD=12,AO=CO=BO=DO,∵AB=5,BC=12,∴AC==13,∴OB=OC=,∴S△BOC=S△BOE+S△COE=×OB•EG+OC•EF=S△ABC==15,∴,∴EG+EF=,故答案为:.一十二.正方形的性质(共1小题)14.(2023•内江)如图,四边形ABCD是边长为4的正方形,△BPC是等边三角形,则阴影部分的面积为 .【答案】.【解答】解:过点P作PE⊥CD于点E,过点P作PF⊥BC于点F,∴∠PFC=∠PEC=90°,∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠BCD=90°,∵△BPC是等边三角形,∴PC=BC=4,∠PCB=60°,在Rt△PFC中,,即,∴,∴,∵∠BCD=90°,∠PCB=60°,∴∠PCE=30°,∴,∴,∵,∴S阴影=S正方形ABCD﹣S△BPC﹣S△PCD==,故答案为:.一十三.圆与圆的位置关系(共1小题)15.(2023•德阳)已知⊙O1的半径为1,⊙O2的半径为r,圆心距O1O2=5,如果在⊙O2上存在一点P,使得PO1=2,则r的取值范围是 3≤r≤7 .【答案】3≤r≤7.【解答】解:当⊙O1内含于⊙O2时,r值最大,此时r=5+2=7;当⊙O1与⊙O2外离时,r值最小,此时r=5﹣2=3,故答案为:3≤r≤7.一十四.圆锥的计算(共1小题)16.(2023•内江)如图,用圆心角为120°半径为6的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的高是 4 .【答案】4.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=2,所以圆锥的高==4.故答案为:4.一十五.作图—基本作图(共1小题)17.(2023•甘孜州)如图,在平行四边形ABCD(AB<AD)中,按如下步骤作图:①以点A 为圆心,以适当长为半径画弧,分别交AB,AD于点M,N;②分别以点M,N为圆心,以大于的长为半径画弧,两弧在∠BAD内交于点P;③作射线AP交BC于点E.若∠B=120°,则∠EAD为 30 °.【答案】30.【解答】解:由作法得AE平分∠BAD,∴∠EAB=∠EAD=∠BAD,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠B+∠BAD=180°,∴∠BAD=180°﹣120°=60°,∴∠EAD=∠BAD=30°.故答案为:30.一十六.比例的性质(共1小题)18.(2023•甘孜州)若,则= 1 .【答案】1.【解答】解:∵,∴=﹣1=2﹣1=1.故答案为:1.一十七.相似三角形的判定与性质(共1小题)19.(2023•乐山)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE交于点F.若,则= .【答案】.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵,∴设AE=2a,则BE=3a,∴AB=CD=5a,∵AB∥CD,∴△AEF∽△CDF,∴=,∴=,故答案为:.一十八.中位数(共2小题)20.(2023•德阳)在一次数学测试中,张老师发现第一小组6位学生的成绩(单位:分)分别为:85,78,90,72,●,75,其中有一位同学的成绩被墨水污染,但知道该小组的平均分为80分,则该小组成绩的中位数是 79 .【答案】79.【解答】解:根据题意得:●=80×6﹣(85+78+90+72+75)=80,排序为:72,75,78,80,85,90,所以中位数为=79,故答案为:79.21.(2023•巴中)这组数据1,3,5,2,8,13的中位数是 4 .【答案】4.【解答】解:将这组数据重新排列为1,2,3,5,8,13,所以这组数据的中位数为×(3+5)=4,故答案为:4.一十九.众数(共1小题)22.(2023•乐山)小张在“阳光大课间”活动中进行了5次一分钟跳绳练习,所跳个数分别为:160,163,160,157,160.这组数据的众数为 160 .【答案】160.【解答】解:由题意知,这组数据中160出现3次,次数最多,所以这组数据的众数为160,故答案为:160.二十.概率公式(共1小题)23.(2023•雅安)在一个不透明的口袋中,装有1个红球和若干个黄球,它们除颜色外都相同,从中随机摸出一个球是红球的概率为,则口袋中黄球有 3 个.【答案】3.【解答】解:设有黄球x个,根据题意得:=,解得:x=3,经检验x=3是原方程的解.故答案为:3.二十一.几何概率(共1小题)24.(2023•攀枝花)如图,在正方形ABCD中,分别以四个顶点为圆心,以边长的一半为半径画圆弧,若随机向正方形ABCD内投一粒米(米粒大小忽略不计),则米粒落在图中阴影部分的概率为 .【答案】.【解答】解:设正方形的边长为2a,则4个扇形的半径为a,,故答案为:.。

2023年中考数学复习第一部分考点梳理第五章四边形第2节第3课时正方形

2023年中考数学复习第一部分考点梳理第五章四边形第2节第3课时正方形

第3课时正方形第4课时1.下列命题是假命题的是 (C)A.对角线相等的菱形是正方形B.对角线互相垂直的矩形是正方形C.对角线互相垂直且相等的四边形是正方形D.对角线互相垂直、平分且相等的四边形是正方形2.如图,P为AB上任意一点,分别以AP,PB为边在AB同侧作正方形APCD,正方形PBEF.设∠CBE=α,则∠AFP为(B)A.2αB.90°-αC.45°+αD.90°-12α第2题图第3题图3.[RJ版教材八下P67复习题18第1(3)题改编]如图,在正方形ABCD内作等边△ABE,连接AC,CE,则∠AEC的度数是(A)A.135°B.130°C.125°D.105°4.如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF=AE.分别连接AF,CF,M为CF的中点,则AM的长为(D)A.2√2B.3√2C.114D.√262第4题图第5题图5.(2021·湖南常德)如图,F,E分别是正方形ABCD的边AB与BC的中点,AE与DF交于点P,则下列结论成立的是(C)AEA.BE=12B.PC=PDC.∠EAF+∠AFD=90°D.PE=ECAC, 6.(2022·湖南益阳)如图,将边长为3的正方形ABCD沿其对角线AC平移,使点A的对应点A'满足AA'=13则所得正方形与原正方形重叠部分的面积是4.7.如图,在正方形ABCD中,E是对角线BD上一点,AE的延长线交CD于点F,连接CE.若∠BAE=56°,则∠CEF=22°.【解析】∵在正方形ABCD中,∠BAE=56°,∴∠DAF=34°,∠DFE=56°.∵AD=CD,∠ADE=∠CDE,DE=DE,∴△ADE≌△CDE(SAS),∴∠DCE=∠DAF=34°.∵∠DFE是△CEF的外角,∴∠CEF=∠DFE-∠DCE=56°-34°=22°.8.如图,在正方形ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,且AE=CF,连接DE,DF,BE,BF.(1)求证:△ADE≌△CBF;(2)若AB=4√2,AE=2,求四边形BEDF的周长.解:(1)由题意得∠DAE=∠BCF=45°.在△ADE和△CBF中,{AD=BC,∠DAE=∠BCF, AE=CF,∴△ADE≌△CBF(SAS).(2)∵AB=AD=4√2,∴BD=√2AB=8.由正方形对角线相等且互相垂直平分可得AC=BD=8,OD=OB=OA=OC=4.又∵CF=AE=2,∴OE=OF=2,∴四边形BEDF为菱形.∵∠DOE=90°,∴DE=√OD2+EO2=√42+22=2√5,∴四边形BEDF的周长为8√5.9.(2022·合肥高新区二模)如图,E,F分别是正方形ABCD的边AB,AD上的动点,O为对角线的交点,连接OE,OF.若OE⊥OF,AB=4,则EF的最小值为(C)A.2√3B.3C.2√2D.4【解析】易证得△AOF≌△BOE(ASA),∴OE=OF,∴EF=√OE2+OF2=√2OE.∵当OE⊥AB时,OE最小,最小值为12AB=2,∴EF的最小值为√2OE=2√2.10.(2022·合肥瑶海区二模)如图,正方形ABCD的边长是6,对角线的交点为点O,点E在边CD上且CE=2,CF⊥BE,连接OF.(1)∠OFB=45°;(2)OF=6√55.【解析】在BE 上截取BG =CF ,连接OG.(1)易证得△OBG ≌△OCF (SAS),∴∠BOG =∠COF ,OG =OF ,∴∠GOC +∠COF =90°,∴∠OFB =∠OGF =45°.(2)在Rt △BCE 中,根据勾股定理,得BE =2√10,∴BG =CF =BC·CE BE =3√105,在Rt △CEF 中,根据勾股定理,得EF =√105,∴GF =BE -BG -EF =6√105,在Rt △OGF 中,根据勾股定理,得OF =6√55. 11.如图,在正方形ABCD 中,E 为BC 边上任意一点,AF 平分∠EAD ,交CD 于点F. (1)若F 恰好为CD 的中点,求证:AE =BE +2CE ; (2)在(1)的条件下,求CEBC 的值.解:(1)过点F 作FM ⊥AE 于点M ,连接EF. ∵四边形ABCD 是正方形, ∴∠D =∠C =90°,AD =BC. ∵AF 平分∠EAD ,DF ⊥AD ,FM ⊥AE , ∴DF =FM ,易得AD =AM. 又∵F 是CD 的中点, ∴FC =DF ,∴FM =FC.在Rt △EFM 和Rt △EFC 中,{FM =FC,EF =EF,∴△EFM ≌△EFC ,∴EM =EC , ∴AE =AM +ME =AD +CE =BC +CE =BE +2CE. (2)设CE =a ,BE =b ,可得AE =2a +b ,AB =a +b. 在Rt △ABE 中,AB 2+BE 2=AE 2,∴(a +b )2+b 2=(2a +b )2,解得b =3a 或b =-a (舍去), ∴CEBC =aa+b =14.。

中考数学 考点系统复习 第五章 四边形 第二节 矩形、菱形、正方形

中考数学 考点系统复习 第五章 四边形 第二节 矩形、菱形、正方形

∵OB=OD,EF∥AD,∴AE=BE=4, ∵FG⊥BE,∴EG=BG=2,
在 Rt△BGF 中,BF=4,BG=2, 根据勾股定理得,FG= 42-22=2 3,
在 Rt△AGF 中,AG=6, AF= AG2+FG2= 62+(2 3)2=4 3. ∴AF 的长为 4 3.
15.(2020·德州)如图,在▱ABCD 中,对角线 BD⊥AD,AB=10,AD=6,
的面积是 1,则 AB 的长为
( C)
A.1
B. 2
C.2
D.2 2
18.(2021·阜新)如图,折叠矩形纸片 ABCD,使点 B 的对应点 E 落在 CD
边上,GH 为折痕,已知 AB=6,BC=10.当折痕 GH 最长时,线段 BH 的长
为 6. . 8
19.(2021·呼和浩特)如图,四边形 ABCD 是平行四边形,BE∥DF,且分 别交对角线 AC 于点 E,F. (1)求证: △ABE≌△CDF; (2)当四边形 ABCD 分别是矩形和菱形 时,请分别说出四边形 BEDF 的形状.(无 需说明理由)
坐标是 O(0,0),点 B 的坐标是(0,1),且 BC= 5,则点 A 的坐标是 ((22,,0). 0)
11.(2021·中山区模拟)如图,正方形 ABCD 的边长为 4,点 E 在对角线 BD 上,且 DE=DA,EF⊥AB,垂足为 F,则 EF 的长为 44--22 2 .
12.(2020·遂宁)如图,在△ABC 中,AB=AC,点 D,E 分别是线段 BC, AD 的中点,过点 A 作 BC 的平行线交 BE 的延长线于点 F,连接 CF. (1)求证:△BDE≌△FAE; (2)求证:四边形 ADCF 为矩形.
∵AB=AC,∴AD⊥BC, ∴∠ADC=90°,∴四边形 ADCF 为矩形.

全国181套中考数学试题分类汇编44矩形、菱形、正方形

全国181套中考数学试题分类汇编44矩形、菱形、正方形

44矩形、菱形、正方形一、选择题1.(浙江舟山、嘉兴3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为(A )48cm(B )36cm (C )24cm (D )18cm 【答案】A 。

【考点】菱形的性质,平行四边形的性质。

【分析】根据①②③④四个平行四边形面积的和为14cm2,四边形ABCD 面积是11cm2,从图可求出⑤的面积: 2ABCD 1S S S 2cm ⑤四边形①+②+③+④=-=11-7=4。

从而可求出菱形的面积:2EFGH S S 14418cm ==+=①+②+③+④+⑤菱形。

又∵∠EFG=30°,∴菱形的边长为6cm 。

从而根据菱形四边都相等的性质得:①②③④四个平行四边形周长的总和=2(AE+AH+HD+DG+GC+CF+FB+BE ) =2(EF+FG+GH+HE )=48cm 。

故选A 。

2.(浙江温州4分)如图,在矩形ABCD 中,对角线AC ,BD 交与点O .已知∠AOB=60°,AC=16,则图中长度为8的线段有A 、2条B 、4条C 、5条D 、6条 【答案】D 。

【考点】矩形的性质。

等边三角形的判定和性质。

【分析】因为矩形的对角线相等且互相平分,AC=16,所以AO=BO=CO=DO=8;又由∠AOB=60°,所以三角形AOB 是等边三角形,所以AB=AO=8;又根据矩形的对边相等得,CD=AB=AO=8.从而可求出线段为8的线段有6条。

故选D 。

3.(辽宁大连3分)如图,矩形ABCD 中,AB =4,BC =5,AF 平分∠DAE,EF⊥AE,则CF 等于A .23B .1C .32D .2【答案】C 。

4.(黑龙江哈尔滨3分)如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,∠AOB=600,AB=5,则AD 的长是.(A)53 (B )52 (C )5 (D)10【答案】A 。

2021年中考数学复习题考点27:正方形

2021年中考数学复习题考点27:正方形

2021年中考数学复习题:考点27 正方形一.选择题(共4小题)1.(无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH 的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化【分析】根据题意推知EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角形的对应边成比例和锐角三角函数的定义解答.【解答】解:∵EF∥AD,∴∠AFE=∠FAG,∴△AEH∽△ACD,∴==.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG===.故选:A.2.(宜昌)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.C.D.【分析】根据轴对称图形的性质,解决问题即可;【解答】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,S正方形ABCD=,∴S阴=故选:B.3.(湘西州)下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个 B.2个 C.3个 D.4个【分析】根据对顶角的性质,菱形的判定,正方形的判定,平行线的性质,可得答案.【解答】解:①对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误;④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选:B.4.(张家界)下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等【分析】根据平行线的性质、正方形的判定、矩形的判定、对顶角的性质、角平分线性质逐个判断即可.【解答】解:A、两条平行线被第三条直线所截,内错角才相等,错误,故本选项不符合题意;B、对角线相等的四边形是矩形,不一定是正方形,错误,故本选项不符合题意;C、相等的角不一定是对顶角,错误,故本选项不符合题意;D、角平分线上的点到角的两边的距离相等,正确,故本选项符合题意;故选:D.二.填空题(共7小题)5.(武汉)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.6.(呼和浩特)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H 为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为①②③.【分析】先判定△MEH≌△DAH(SAS),即可得到△DHM是等腰直角三角形,进而得出DM=HM;依据当∠DHC=60°时,∠ADH=60°﹣45°=15°,即可得到Rt △ADM中,DM=2AM,即可得到DM=2BE;依据点M是边BA延长线上的动点(不与点A重合),且AM<AB,可得∠AHM<∠BAC=45°,即可得出∠CHM>135°.【解答】解:由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确;故答案为:①②③.7.(青岛)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.8.(咸宁)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E 的坐标为(2,3),则点F的坐标为(﹣1,5).【分析】结合全等三角形的性质可以求得点G的坐标,再由正方形的中心对称的性质求得点F的坐标.【解答】解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线EG,垂足为G,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).9.(江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为2或2或﹣.【分析】根据正方形的性质得出AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=90°,根据勾股定理求出AC、BD、求出OA、OB、OC、OD,画出符合的三种情况,根据勾股定理求出即可.【解答】解:∵四边形ABCD是正方形,AB=6,∴AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=∠DAB=90°,在Rt△ABC中,由勾股定理得:AC===6,∴OA=OB=OC=OD=3,有三种情况:①点P在AD上时,∵AD=6,PD=2AP,∴AP=2;②点P在AC上时,设AP=x,则DP=2x,在Rt△DPO中,由勾股定理得:DP2=DO2+OP2,(2x)2=(3)2+(3﹣x)2,解得:x=﹣(负数舍去),即AP=﹣;③点P在AB上时,设AP=y,则DP=2y,在Rt△APD中,由勾股定理得:AP2+AD2=DP2,y2+62=(2y)2,解得:y=2(负数舍去),即AP=2;故答案为:2或2或﹣.10.(潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为(﹣1,).【分析】连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM≌Rt△AB′M得∠DAM=∠B′AD=30°,由DM=ADtan∠DAM可得答案.【解答】解:如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(﹣1,),故答案为:(﹣1,).11.(台州)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为+3.【分析】根据面积之比得出△BGC的面积等于正方形面积的,进而依据△BCG 的面积以及勾股定理,得出BG+CG的长,进而得出其周长.【解答】解:∵阴影部分的面积与正方形ABCD的面积之比为2:3,∴阴影部分的面积为×9=6,∴空白部分的面积为9﹣6=3,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF的面积相等,均为×3=,设BG=a,CG=b,则ab=,又∵a2+b2=32,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴a+b=,即BG+CG=,∴△BCG的周长=+3,故答案为: +3.三.解答题(共6小题)12.(盐城)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.【分析】(1)根据正方形的性质和全等三角形的判定证明即可;(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;【解答】证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.13.(吉林)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.【分析】根据正方形的性质,利用SAS即可证明;【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF.14.(白银)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【解答】解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.15.(潍坊)如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM 于点E,BF⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.【分析】(1)通过证明△ABF≌△DEA得到BF=AE;(2)设AE=x,则BF=x,DE=AF=2,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到•x•x+•x•2=24,解方程求出x得到AE=BF=6,则EF=x ﹣2=4,然后利用勾股定理计算出BE,最后利用正弦的定义求解.【解答】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴BF=AE;(2)解:设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴sin∠EBF===.16.(湘潭)如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.【分析】(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,即可得出结论;(2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠ADF+∠DAO=90°,最后用三角形的内角和定理即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在△DAF和△ABE中,,∴△DAF≌△ABE(SAS),(2)由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°,∴∠AOD=180°﹣(∠ADF+DAO)=90°.17.(遵义)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.。

近五年(2017-2021)年浙江中考数学真题分类汇编之图形的性质(含解析)

近五年(2017-2021)年浙江中考数学真题分类汇编之图形的性质(含解析)

2017-2021年浙江中考数学真题分类汇编之图形的性质一.选择题(共14小题)1.(2021•杭州)如图,设点P是直线l外一点,PQ⊥l,垂足为点Q,点T是直线l上的一个动点,连结PT,则()A.PT≥2PQ B.PT≤2PQ C.PT≥PQ D.PT≤PQ 2.(2021•衢州)已知扇形的半径为6,圆心角为150°,则它的面积是()A.πB.3πC.5πD.15π3.(2020•宁波)如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连接DE,F为DE中点,连接BF.若AC=8,BC=6,则BF的长为()A.2B.2.5C.3D.4 4.(2021•衢州)如图,在△ABC中,AB=4,AC=5,BC=6,点D,E,F分别是AB,BC,CA的中点,连结DE,EF,则四边形ADEF的周长为()A.6B.9C.12D.15 5.(2021•台州)小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.三角形两边之和大于第三边D.两点确定一条直线6.(2020•温州)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA 的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.D.7.(2021•绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形纵向排列放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到16个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形8.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连接EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.9.(2020•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD 为边作▱BCDE,则∠E的度数为()A.40°B.50°C.60°D.70°10.(2020•衢州)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A.B.C.D.11.(2020•湖州)如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC 12.(2020•嘉兴)如图,在等腰△ABC中,AB=AC=2,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.2B.10C.4D.5 13.(2021•宁波)如图是一个由5张纸片拼成的平行四边形ABCD,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张矩形纸片EFGH的面积为S3,FH与GE相交于点O.当△AEO,△BFO,△CGO,△DHO的面积相等时,下列结论一定成立的是()A.S1=S2B.S1=S3C.AB=AD D.EH=GH14.(2021•金华)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC 面积为S2,则的值是()A.B.3πC.5πD.二.填空题(共6小题)15.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.16.(2020•绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为.17.(2020•绍兴)将两条邻边长分别为,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的(填序号).①,②1,③﹣1,④,⑤.18.(2020•衢州)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆P A=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为cm.(2)当点P,O,A在同一直线上时,点Q到MN的距离为cm.19.(2019•绍兴)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是.20.(2019•湖州)七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图2所示的“拼搏兔”造型(其中点Q、R分别与图2中的点E、G重合,点P 在边EH上),则“拼搏兔”所在正方形EFGH的边长是.三.解答题(共2小题)21.(2020•台州)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.22.(2020•衢州)【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连接EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.2017-2021年浙江中考数学真题分类汇编之图形的性质参考答案与试题解析一.选择题(共14小题)1.(2021•杭州)如图,设点P是直线l外一点,PQ⊥l,垂足为点Q,点T是直线l上的一个动点,连结PT,则()A.PT≥2PQ B.PT≤2PQ C.PT≥PQ D.PT≤PQ【考点】垂线段最短.【专题】线段、角、相交线与平行线;推理能力.【分析】根据垂线的性质“垂线段最短”即可得到结论.【解答】解:∵PQ⊥l,点T是直线l上的一个动点,连结PT,∴PT≥PQ,故选:C.【点评】本题考查了垂线段最短,熟练掌握垂线的性质是解题的关键.2.(2021•衢州)已知扇形的半径为6,圆心角为150°,则它的面积是()A.πB.3πC.5πD.15π【考点】扇形面积的计算.【专题】常规题型;运算能力.【分析】把已知数据代入扇形面积公式计算,即可得到答案.【解答】解:扇形面积=,故选:D.【点评】本题考查的是扇形面积计算,掌握扇形面积公式:是解决本题的关键.3.(2020•宁波)如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连接DE,F为DE中点,连接BF.若AC=8,BC=6,则BF的长为()A.2B.2.5C.3D.4【考点】三角形中位线定理;直角三角形斜边上的中线;勾股定理.【专题】转化思想;等腰三角形与直角三角形;推理能力.【分析】利用勾股定理求得AB=10;然后由直角三角形斜边上的中线等于斜边的一半求得CD的长度;结合题意知线段BF是△CDE的中位线,则BF=CD.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10.又∵CD为中线,∴CD=AB=5.∵F为DE中点,BE=BC即点B是EC的中点,∴BF是△CDE的中位线,则BF=CD=2.5.故选:B.【点评】本题主要考查了勾股定理,三角形中位线定理,直角三角形斜边上的中线,此题的突破口是推知线段CD的长度和线段BF是△CDE的中位线.4.(2021•衢州)如图,在△ABC中,AB=4,AC=5,BC=6,点D,E,F分别是AB,BC,CA的中点,连结DE,EF,则四边形ADEF的周长为()A.6B.9C.12D.15【考点】三角形中位线定理.【专题】三角形;推理能力.【分析】根据三角形中位线定理、线段中点的概念分别求出AD、DE、EF、AF,根据四边形的周长公式计算即可.【解答】解:∵点D,E,F分别是AB,BC,CA的中点,∴DE=AC=2.5,AF=AC=2.5,EF=AB=2,AD=AB=2,∴四边形ADEF的周长=AD+DE+EF+AF=9,故选:B.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.5.(2021•台州)小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.三角形两边之和大于第三边D.两点确定一条直线【考点】线段的性质:两点之间线段最短;垂线段最短;直线的性质:两点确定一条直线.【专题】线段、角、相交线与平行线;几何直观.【分析】根据线段的性质,可得答案.【解答】解:从A地去往B地,打开导航、显示两地距离为37.7km,理由是两点之间线段最短,故选:A.【点评】本题考查了线段的性质,熟记线段的性质并应用是解题的关键.6.(2020•温州)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA 的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.D.【考点】切线的性质;菱形的性质;圆周角定理.【专题】与圆有关的位置关系;推理能力.【分析】连接OB,根据菱形的性质得到OA=AB,求得∠AOB=60°,根据切线的性质得到∠DBO=90°,解直角三角形即可得到结论.【解答】解:连接OB,∵四边形OABC是菱形,∴OA=AB,∵OA=OB,∴OA=AB=OB,∴∠AOB=60°,∵BD是⊙O的切线,∴∠DBO=90°,∵OB=1,∴BD=OB=,故选:D.【点评】本题考查了切线的性质,菱形的性质,等边三角形的判定和性质,解直角三角形,熟练正确切线的性质定理是解题的关键.7.(2021•绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形纵向排列放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到16个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形【考点】菱形的判定与性质.【专题】矩形菱形正方形;几何直观.【分析】根据题意画出图形,从图形中找到出现的菱形的个数即可.【解答】解:如图所示,用2个相同的菱形放置,最多能得到3个菱形;用3个相同的菱形放置,最多能得到8个菱形,用4个相同的菱形放置,最多能得到16个菱形,用5个相同的菱形放置,最多能得到29个菱形,用6个相同的菱形放置,最多能得到47个菱形.故选:B.【点评】本题主要考查菱形在实际生活中的应用,解题的关键是根据题意画出图形并熟练掌握菱形的判定.8.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连接EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【考点】勾股定理的证明.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】证明△BPG≌△BCG(ASA),得出PG=CG.设OG=PG=CG=x,则EG=2x,FG=x,由勾股定理得出BC2=(4+2)x2,则可得出答案.【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,又∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BGC=90°,BG=BG,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+x,∴BC2=BG2+CG2==,∴=.故选:B.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练掌握勾股定理的应用是解题的关键.9.(2020•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD 为边作▱BCDE,则∠E的度数为()A.40°B.50°C.60°D.70°【考点】平行四边形的性质;等腰三角形的性质.【专题】等腰三角形与直角三角形;多边形与平行四边形;几何直观.【分析】根据等腰三角形的性质可求∠C,再根据平行四边形的性质可求∠E.【解答】解:∵在△ABC中,∠A=40°,AB=AC,∴∠C=(180°﹣40°)÷2=70°,∵四边形BCDE是平行四边形,∴∠E=70°.故选:D.【点评】考查了平行四边形的性质,等腰三角形的性质,关键是求出∠C的度数.10.(2020•衢州)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A.B.C.D.【考点】作图—复杂作图;平行线的判定.【专题】线段、角、相交线与平行线;应用意识.【分析】根据平行线的判定方法一一判断即可.【解答】解:A、本选项作了角的平分线与等腰三角形,能得到一组内错角相等,从而可证两直线平行,故本选项不符合题意.B、本选项作了一个角等于已知角,根据同位角相等两直线平行,能判断是过点P且与直线l的平行直线,本选项不符合题意.C、由作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意.D、作图只截取了两条线段相等,而无法保证两直线平行的位置关系,本选项符合题意.故选:D.【点评】本题考查作图﹣复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.11.(2020•湖州)如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC【考点】全等三角形的判定与性质;等腰直角三角形;切线的性质.【专题】圆的有关概念及性质;应用意识.【分析】如图,连接OD.想办法证明选项A,B,C正确即可解决问题.【解答】解:如图,连接OD.∵OT是半径,OT⊥AB,∴DT是⊙O的切线,∵DC是⊙O的切线,∴DC=DT,故选项A正确,∵OA=OB,∠AOB=90°,∴∠A=∠B=45°,∵DC是切线,∴CD⊥OC,∴∠ACD=90°,∴∠A=∠ADC=45°,∴AC=CD=DT,∴AC=CD=DT,故选项B正确,∵OD=OD,OC=OT,DC=DT,∴△DOC≌△DOT(SSS),∴∠DOC=∠DOT,∵OA=OB,OT⊥AB,∠AOB=90°,∴∠AOT=∠BOT=45°,∴∠DOT=∠DOC=22.5°,∴∠BOD=∠ODB=67.5°,∴BO=BD,故选项C正确,根据筛选法,故选:D.【点评】本题考查切线的判定和性质,等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.(2020•嘉兴)如图,在等腰△ABC中,AB=AC=2,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.2B.10C.4D.5【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【专题】作图题;应用意识.【分析】如图,设OA交BC于T.解直角三角形求出AT,再在Rt△OCT中,利用勾股定理构建方程即可解决问题.【解答】解:如图,设OA交BC于T.半径为r,∵AB=AC=2,AO平分∠BAC,∴AO⊥BC,BT=TC=4,∴AT===2,在Rt△OCT中,则有r2=(r﹣2)2+42,解得r=5,故选:D.【点评】本题考查作图﹣复杂作图,等腰三角形的性质,垂径定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.13.(2021•宁波)如图是一个由5张纸片拼成的平行四边形ABCD,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张矩形纸片EFGH的面积为S3,FH与GE相交于点O.当△AEO,△BFO,△CGO,△DHO的面积相等时,下列结论一定成立的是()A.S1=S2B.S1=S3C.AB=AD D.EH=GH【考点】矩形的性质;全等三角形的判定与性质;等腰直角三角形;平行四边形的性质.【专题】图形的全等;多边形与平行四边形;矩形菱形正方形;推理能力.【分析】如图,连接DG,AH,过点O作OJ⊥DE于J.证明S△DGH=S△AEH,S△DGC=S,可得结论.△ADH【解答】解:如图,连接DG,AH,过点O作OJ⊥DE于J.∵四边形EFGH是矩形,∴OH=OF,EF=GH,∠HEF=90°,∵OJ⊥DE,∴∠OJH=∠HEF=90°,∴OJ∥EF,∵HO=OF,∴HJ=JE,∴EF=GH=2OJ,∵S△DHO=•DH•OJ,S△DHG=•DH•GH,∴S△DGH=2S△DHO,同法可证S△AEH=2S△AEO,∵S△DHO=S△AEO,∴S△DGH=S△AEH,∵S△DGC=•CG•DH,S△ADH=•DH•AE,CG=AE,∴S△DGC=S△ADH,∴S△DHC=S△ADE,∴S1=S2,故A选项符合题意;S3=HE•EF≠S1,故B选项不符合题意;AB=AD,EH=GH均不成立,故C选项,D选项不符合题意,故选:A.【点评】本题考查矩形的性质,全等三角形的判定和性质,等腰直角三角形的性质,平行四边形的性质,矩形的性质等知识,解题的关键是证明S△DGH=S△AEH,S△DGC=S△ADH.14.(2021•金华)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC 面积为S2,则的值是()A.B.3πC.5πD.【考点】勾股定理;垂径定理.【专题】与圆有关的计算;推理能力.【分析】先设Rt△ABC的三边长为a,b,c,其中c为斜边,设⊙O的半径为r,根据图形找出a,b,c,r的关系,用含c的式子表示S1和S2,即可求出比值.【解答】解:如图,取AB的中点为O,AC的中点为D,连接OE,OG,OD,OC,设AB=c,AC=b,BC=a,则a2+b2=c2,①取AB的中点为O,∵△ABC是直角三角形,∴OA=OB=OC,∵圆心在MN和HG的垂直平分线上,∴O为圆心,连接OC,OG,OE,作OD⊥AC,则OG,OE为半径,由勾股定理得:,②由①②得a=b,∴,∴,,∴,故选:C.【点评】本题主要考查勾股定理的应用,关键在找到圆心,依据的知识点是直角三角形斜边上的中点等于斜边的一半,即斜边的中点为圆心,用字母表示多条边,然后找它们的关系是中考经常考的类型,平时要多加练习此类题型.二.填空题(共6小题)15.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是6.【考点】等边三角形的判定与性质;平行线的性质.【专题】等腰三角形与直角三角形;几何直观.【分析】根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵△ABC是等边三角形,∴∠B=∠C=60°,又∵DE∥AB,DF∥AC,∴∠DEF=∠B=60°,∠DFE=∠C=60°,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.【点评】考查了等边三角形的性质,平行线的性质,关键是证明△DEF是等边三角形.16.(2020•绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为4.【考点】正方形的性质.【专题】矩形菱形正方形;运算能力;推理能力.【分析】根据题意和图形,可以得到直角三角形的一条直角边的长和斜边的长,从而可以得到直角三角形的另一条直角边长,再根据图形,可知阴影部分的面积是四个直角三角形的面积,然后代入数据计算即可.【解答】解:由题意可得,直角三角形的斜边长为3,一条直角边长为2,故直角三角形的另一条直角边长为:=,故阴影部分的面积是:=4,故答案为:4.【点评】本题考查正方形的性质、勾股定理、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.17.(2020•绍兴)将两条邻边长分别为,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的①②③④(填序号).①,②1,③﹣1,④,⑤.【考点】矩形的性质;三角形三边关系;等腰三角形的性质.【专题】矩形菱形正方形;几何直观.【分析】首先作出图形,再根据矩形的性质和等腰三角形的判定即可求解.【解答】解:如图所示:则其中一个等腰三角形的腰长可以是①,②1,③﹣1,④,不可以是.故答案为:①②③④.【点评】考查了矩形的性质,等腰三角形的判定与性质,根据题意作出图形是解题的关键.18.(2020•衢州)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆P A=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为160cm.(2)当点P,O,A在同一直线上时,点Q到MN的距离为cm.【考点】勾股定理的应用;菱形的性质;轨迹;等腰三角形的性质.【专题】矩形菱形正方形;解直角三角形及其应用;应用意识.【分析】(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.解直角三角形求出PT即可.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.解直角三角形求出HT即可.【解答】解:(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.由题意:OP=OQ=50cm,PQ=P A﹣AQ=140﹣60=80(cm),PM=P A+BC=140+60=200(cm),PT⊥MN,∵OH⊥PQ,∴PH=HQ=40(cm),∵cos∠P==,∴=,∴PT=160(cm),∴点P到MN的距离为160cm,故答案为160.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.由题意AT=PT﹣P A=160﹣140=20(cm),OA=P A﹣OP=140﹣50=90(cm),OQ=50cm,AQ=60cm,∵QH⊥OA,∴QH2=AQ2﹣AH2=OQ2﹣OH2,∴602﹣x2=502﹣(90﹣x)2,解得x=,∴HT=AH+AT=(cm),∴点Q到MN的距离为cm.故答案为.【点评】本题考查解直角三角形的应用,等腰三角形的性质,菱形的性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.19.(2019•绍兴)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是6+2或10或8+2.【考点】平面镶嵌(密铺);整式的加减.【专题】整式.【分析】先根据题意画出图形,再根据周长的定义即可求解.【解答】解:如图所示:图1的周长为1+2+3+2=6+2;图2的周长为1+4+1+4=10;图3的周长为3+5++=8+2.故四边形MNPQ的周长是6+2或10或8+2.故答案为:6+2或10或8+2.【点评】考查了平面镶嵌(密铺),关键是得到与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙)的各种情况.20.(2019•湖州)七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图2所示的“拼搏兔”造型(其中点Q、R分别与图2中的点E、G重合,点P 在边EH上),则“拼搏兔”所在正方形EFGH的边长是4.【考点】七巧板.【专题】图表型;矩形菱形正方形.【分析】如图2中,连接EG,GM⊥EN交EN的延长线于M,利用勾股定理解决问题即可.【解答】解:如图2中,连接EG,作GM⊥EN交EN的延长线于M.在Rt△EMG中,∵GM=4,EM=2+2+4+4=12,∴EG===4,∴EH==4,解法二:如图,连接EG交MN于点O.由题意,EN=MN=4,GM=8,∵∠EON=∠GOM,∠N=∠M=90°,∴△EON∽△GOM,∴==,∴ON=MN=,∴OE==,OG=2OE=,∴GF=EG=(OE+OG)=4.故答案为4.【点评】本题考查正方形的性质,七巧板,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.三.解答题(共2小题)21.(2020•台州)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.【考点】圆的综合题.【专题】几何综合题;应用意识.【分析】(1)想办法证明∠BEF=90°即可解决问题(也可以利用圆内接四边形的性质直接证明).(2)根据两角对应相等两三角形相似证明.(3)证明四边形AFBE是平行四边形,推出FJ=BD=,EF=m,由△ABC∽△CBM,可得BM=,由△BEJ∽△BME,可得BE=,由△BEF∽△BCA,推出=,由此构建方程求解即可.【解答】(1)证明:∵∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,∴∠ADB=∠ACB=90°,∵∠EFB=∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2)证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD=∠CAB,∴∠BFE=∠CAB,∵∠ACB=∠FEB=90°,∴△BEF∽△BCA.(3)解:设EF交AB于J.连接AE.∵EF与AB互相平分,∴四边形AFBE是平行四边形,∴∠EF A=∠FEB=90°,即EF⊥AD,∵BD⊥AD,∴EF∥BD,∵AJ=JB,∴AF=DF,∴FJ=BD=,∴EF=m,∵△ABC∽△CBM,∴BC:MB=AB:BC,∴BM=,∵△BEJ∽△BME,∴BE:BM=BJ:BE,∴BE=,∵△BEF∽△BCA,∴=,即=,解得m=2(负根已经舍弃).【点评】本题属于圆综合题,考查了圆周角定理,相似三角形的判定和性质平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.22.(2020•衢州)【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连接EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.【考点】四边形综合题.【专题】几何综合题;应用意识.【分析】(1)如图1中,△AFG是等腰三角形.利用全等三角形的性质证明即可.(2)如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.首先证明OG=OL,再证明BF=2OL即可解决问题.(3)如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,利用相似三角形的性质解决问题即可.(4)设OG=a,AG=k.分两种情形:①如图4中,连接EF,当点F在线段AB上时,点G在OA上.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.分别求解即可解决问题.【解答】(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)证明:如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴=,∵四边形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴=,∵S1=•OG•DK,S2=•BF•AD,又∵BF=2OG,=,∴==,设CD=2x,AC=3x,则AD=x,∴==.(4)解:设OG=a,AG=k.①如图4中,连接EF,当点F在线段AB上时,点G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=2a,∴BE==a,AB=4a,∴tan∠BAE==.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k﹣2a,AC=2(k﹣a),∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k﹣2a),∴AD2=10ka,即10ka=3k2﹣4ka,∴k=a,∴AD=a,∴BE==a,AB=a,∴tan∠BAE==,综上所述,tan∠BAE的值为或.【点评】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学试题分类汇编:考点27 正方形一.选择题(共4小题)1.(2018•无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化【分析】根据题意推知EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角形的对应边成比例和锐角三角函数的定义解答.【解答】解:∵EF∥AD,∴∠AFE=∠FAG,∴△AEH∽△ACD,∴==.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG===.故选:A.2.(2018•宜昌)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.C.D.【分析】根据轴对称图形的性质,解决问题即可;【解答】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,S正方形ABCD=,∴S阴=故选:B.3.(2018•湘西州)下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个 B.2个 C.3个 D.4个【分析】根据对顶角的性质,菱形的判定,正方形的判定,平行线的性质,可得答案.【解答】解:①对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误;④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选:B.4.(2018•张家界)下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等【分析】根据平行线的性质、正方形的判定、矩形的判定、对顶角的性质、角平分线性质逐个判断即可.【解答】解:A、两条平行线被第三条直线所截,内错角才相等,错误,故本选项不符合题意;B、对角线相等的四边形是矩形,不一定是正方形,错误,故本选项不符合题意;C、相等的角不一定是对顶角,错误,故本选项不符合题意;D、角平分线上的点到角的两边的距离相等,正确,故本选项符合题意;故选:D.二.填空题(共7小题)5.(2018•武汉)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.6.(2018•呼和浩特)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为①②③.【分析】先判定△MEH≌△DAH(SAS),即可得到△DHM是等腰直角三角形,进而得出DM=HM;依据当∠DHC=60°时,∠ADH=60°﹣45°=15°,即可得到Rt △ADM中,DM=2AM,即可得到DM=2BE;依据点M是边BA延长线上的动点(不与点A重合),且AM<AB,可得∠AHM<∠BAC=45°,即可得出∠CHM>135°.【解答】解:由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确;故答案为:①②③.7.(2018•青岛)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC 上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.8.(2018•咸宁)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为(﹣1,5).【分析】结合全等三角形的性质可以求得点G的坐标,再由正方形的中心对称的性质求得点F的坐标.【解答】解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线EG,垂足为G,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).9.(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为2或2或﹣.【分析】根据正方形的性质得出AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=90°,根据勾股定理求出AC、BD、求出OA、OB、OC、OD,画出符合的三种情况,根据勾股定理求出即可.【解答】解:∵四边形ABCD是正方形,AB=6,∴AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=∠DAB=90°,在Rt△ABC中,由勾股定理得:AC===6,∴OA=OB=OC=OD=3,有三种情况:①点P在AD上时,∵AD=6,PD=2AP,∴AP=2;②点P在AC上时,设AP=x,则DP=2x,在Rt△DPO中,由勾股定理得:DP2=DO2+OP2,(2x)2=(3)2+(3﹣x)2,解得:x=﹣(负数舍去),即AP=﹣;③点P在AB上时,设AP=y,则DP=2y,在Rt△APD中,由勾股定理得:AP2+AD2=DP2,y2+62=(2y)2,解得:y=2(负数舍去),即AP=2;故答案为:2或2或﹣.10.(2018•潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y 轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为(﹣1,).【分析】连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM≌Rt△AB′M得∠DAM=∠B′AD=30°,由DM=ADtan∠DAM可得答案.【解答】解:如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(﹣1,),故答案为:(﹣1,).11.(2018•台州)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为+3.【分析】根据面积之比得出△BGC的面积等于正方形面积的,进而依据△BCG 的面积以及勾股定理,得出BG+CG的长,进而得出其周长.【解答】解:∵阴影部分的面积与正方形ABCD的面积之比为2:3,∴阴影部分的面积为×9=6,∴空白部分的面积为9﹣6=3,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF的面积相等,均为×3=,设BG=a,CG=b,则ab=,又∵a2+b2=32,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴a+b=,即BG+CG=,∴△BCG的周长=+3,故答案为: +3.三.解答题(共6小题)12.(2018•盐城)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.【分析】(1)根据正方形的性质和全等三角形的判定证明即可;(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;【解答】证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.13.(2018•吉林)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.【分析】根据正方形的性质,利用SAS即可证明;【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF.14.(2018•白银)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【解答】解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.15.(2018•潍坊)如图,点M是正方形ABCD边CD上一点,连接AM,作DE ⊥AM于点E,BF⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.【分析】(1)通过证明△ABF≌△DEA得到BF=AE;(2)设AE=x,则BF=x,DE=AF=2,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到•x•x+•x•2=24,解方程求出x得到AE=BF=6,则EF=x ﹣2=4,然后利用勾股定理计算出BE,最后利用正弦的定义求解.【解答】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴BF=AE;(2)解:设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴sin∠EBF===.16.(2018•湘潭)如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.【分析】(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,即可得出结论;(2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠ADF+∠DAO=90°,最后用三角形的内角和定理即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在△DAF和△ABE中,,∴△DAF≌△ABE(SAS),(2)由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°,∴∠AOD=180°﹣(∠ADF+DAO)=90°.17.(2018•遵义)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.。

相关文档
最新文档