无功补偿并联电容器的选择及其装设
并联电容器和电抗器选取注意事项
并联电容器和电抗器选取注意事项01并联电容器的选取并联电容器是无功功率补偿装置的主体, 其质量的好坏, 运行的可靠性, 将直接影响整套装置的使用效果和寿命。
要选择一种优质的电容器应从以下几个方面考虑:(1)电容器额定电压的确定由于并联电容器需要长期、全额在电网中工作, 而电容器的实际工作电压与其使用寿命又有直接的关系, 根据可靠性试验理论可知:当电容器的工作电压每提高10%, 其寿命将减少一半。
所以, 确定电容器的额定电压是非常重要的。
电容器额定电压的选取由下列因素决定:a. 供电网的电压水平;b. 谐波背景, 当电容器在含有谐波的环境下工作时, 谐波电压将叠加到电容器的基波电压上, 会使电容器的实际工作电压升高(Uc=U+SUi);c. 是否加装串联电抗器。
为限制投切电容器时的合闸涌流, 为抑制谐波避免谐振或为消除(吸收)谐波, 都需要在电容器支路中串联电抗器。
由电工学原理可知, 当电容器与电抗器组成串联回路再接入电网时, 电容器两端的电压将高于电网电压, 其升高幅度由所串联电抗器的电抗率(P)来决定:Uc=U/(1-P) 。
综合以上因素, 笔者认为在低压0.4kV电网中(变压器实际输出电压会高于0.4kV)设置的无功功率补偿装置中安装的电容器, 在一般情况下应选择额定电压为0.45kV系列的产品, 而用于谐波抑制或滤波装置中的电容器, 根据串联电抗器的电抗率不同, 其额定电压应选择0.48kV或0.525kV系列的产品。
(2)电容器额定温度等级的确定电容器工作时其周围的温度(略高于环境温度), 对电容器使用寿命的影响是很大的, 因为, 根据绝缘材料的寿命理论:当电容器的工作温度每升高7-10℃时, 其寿命将缩短一半。
但由于温度对电容器寿命的影响是缓慢的, 所以经常被忽视。
在电容器产品国家及行业标准中仅列出A、B、C、D四个温度等级, 而实际应用中, 有许多场合(如箱变、高温地区等)的环境温度已高于D级(+55℃)。
变电站无功补偿及高压并联电容补偿装置设计
变电站无功补偿及高压并联电容补偿装置设计2020-05-20 新用户796...修改一、电力系统的无功功率平衡1.1、无功功率电网中的电力负荷如电动机、变压器等都是靠电磁能量的变换而工作的,大部分属于感性负荷,建立磁场时要吸收无功,磁场消失时要交出无功。
在运行过程中需向这些设备提供相应的无功功率。
电力设备电磁能量的交换伴随着吸收和放出无功。
每交换一次,无功都要在整个电力系统中传输,这不仅要造成很多电能损失,而且往往在无功来回转换中会引起电压变化,因此设计时,应注意保持无功功率平衡。
变电站装设并联电容器是改善电压质量和降低电能损耗的有效措施。
在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗。
1.2、功率因数电网中的电气设备如电动机、变压器属于既有电阻又有电感的电感性负载,电感性负载的电压与电流的相量间存在相位差,相位角的余弦值即为功率因数cosφ,它是有功功率与视在功率的比值,即cosφ=P/S。
1.3、无功功率补偿的目的电网中的无功功率负荷主要有异步电动机、变压器,还有一部分输电线路。
而无功电源主要有发电机、静电电容器、同步调相机、静止补偿器。
无功功率的产生基本不消耗能源,但是无功功率沿电力网传输却要引起有功功率损耗和电压损耗。
合理配置无功功率补偿容量,以改变电力网无功潮流分布,可以减少网络中的有功功率损耗和电压损耗,从而改善用户端的电压质量。
在做电网网架规划时,根据各水平年各负荷点的有功负荷量及可靠性要求确定了变电容量的分配、线路回路数及导线截面和接线方式等等。
但是,这样还不能保证各用户端的电压达到国家和地区规定的要求。
因为做电网网架规划时是以最大负荷为依据,而实际运行时,负荷是变化的,功率因数也是变化的,通过线路的有功、无功功率都与规划计算时大不相同,因此,导致某些负荷点的电压“越限”(过高或过低)。
并联电容器设计要求规范
并联电容器装置设计规范(GB50227-95)第一章总则第1.0.1条为使电力工程的并联电容器装置设计贯彻国家技术经济政策, 做到安全可靠、技术先进、经济合理和运行检修方便,制订本规范.第1.0.2条本规范适用于220KV及以下变电所、配电所中无功补偿用三相交流高压、低压并联电容器装置的新建、扩建工程设计.第1.0.3条并联电容器装置的设计, 应根据安装地点的电网条件、补偿要求、环境状况、运行检修要求和实践经验,确定补偿容量、选择接线、保护与控制、布置及安装方式.第1.0.4条并联电容器装置的设备选型, 应符合国家现行的产品标准的规定.第1.0.5条并联电容器装置的设计,除应执行本规范的规定外,尚应符合国家现行的有关标准和规范的规定.第二章-1 术语1.高压并联电容器装置(installtion of high voltage shunt capacitors):由高压并联电容器和相应的一次及二次配套设备组成, 可独立运行或并联运行的装置.2.低压并联电容器装置(installtion of low voltage shunt capacitors):由低压并联电容器和相应的一次及二次配套元件组成, 可独立运行或并联运行的装置.3.并联电容器的成套装置(complete set of installation for shunt capacitors):由制造厂设计组装设备向用户供货的整套并联电容器装置.4.单台电容器(capacitor unit):由一个或多个电容器元件组装于单个外壳中并引出端子的组装体.5.电容器组(capacitor bank):电气上连接在一起的一群单台电容器.6.电抗率(reactance ratio):串联电抗器的感抗与并联电容器组的容抗之比,以百分数表示.7.放电器、放电元件(discharge device、discharge component):装在电容器内部或外部的, 当电容器从电源脱开后能将电容器端子间的电压在规定时间内降低到规定值的设备或元件.8.串联段(series section):在多台电容器连接组合中,相互并联的单台电容器群.9.剩余电压(residual voltage):单台电容器或电容器组脱开电源后, 电容器端子间或电容器组端子间残存的电压.10.涌流(inrush transient current):电容器组投入电网时的过渡过电流.11.外熔丝(external fuses):装于单台电容器外部并与其串联连接, 当电容器发生故障时用以切除电容器的熔丝.12.内熔丝(internal fuses):装于单台电容器内部与元件或元件组串联连接, 当元件发生故障时用以切除该元件或元件组的熔丝.13.放电容量(discharging capacity):放电器允许连接的电容器组的容量.14.不平衡保护(unbalance protection):利用电容器组内两个相关部分之间的电容量之差形成的电流差或电压差构成的保护.第二章-2 符号1.Qcx:发生n次谐波谐振的电容器容量.2.Sd: 并联电容器装置安装处的母线短路容量.3.n: 谐波次数.4.K: 电抗率.5.I*ym:涌流峰值的标么值.6.β: 涌流计算中计及的电源影响系数.7.Q: 电容器组容量.8.Uc: 电容器端子运行电压.: 并联电容器装置的母线电压.10.S: 电容器组每相的串联段数.第二章-3 代号1.C: 电容器组.2.IC、2C、3C: 并联电容器装置分组回路编号.3.C1、C2、Cn: 单台电容器编号.4.L: 串联电抗器或限流线圈.5.QS: 隔离开关或刀开关.6.QF: 断路器.7.QG: 接地开关.8.TA: 电流互感器.: 放电器、放电元件.10.FV: 避雷器.11.FU: 熔断器.12.KM: 交流接触器.13.KA: 热继电器.14.HL: 指示灯.15.Uo: 开口三角电压.16.△U:相不平衡电压.17.△I:桥差电流.18.Io: 中性点不平衡电流.第三章接入电网基本要求第3.0.1条高压并联电容器装置接入电网的设计,应按全面规划、合理布局、分级补偿、就地平衡的原则确定最优补偿容量和分布方式.第3.0.2条变电所里的电容器安装容量,应根据本地区电网无功规划以及国家现行标准《电力系统电压和无功电压技术导则》和《全国供用电规划》的规定计算后确定.当不具备设计计算条件时,电容器安装容量可按变压器容量的10%-30%确定.第3.0.3条电容器分组容量,应根据加大单组容量、减少组数的原则确定.当分组电容器按各种容量组合运行时,不得发生谐振,且变压器各侧母线的任何一次谐波电压含量不应超过现行国家标准《电能质量- 公用电网谐波》的有关规定.谐振电容器容量,可按下式计算:Qcx=Sd[(1/n^2)-K] (3.0.3)式中:Qcx为发生n次谐波谐振电容器容量(Mvar);Sd为并联电容器装置安装处的母线短路容量(MVA);n为谐波次数,即谐波频率与电网基波频率之比;K为电抗率.第3.0.4条高压并联电容装置应装设在变压器的主要负荷侧.当不具备条件时,可装设在三绕组变压器的低压侧.第3.0.5条当配电所中无高压负荷时,不得在高压侧装设并联电容器装置.第3.0.6条低压并联电容器装置的安全地点和装设容量,应根据分散补偿和降低线损的原则设置. 补偿后功率因数应符合现行国家标准《全国供用电规则》的规定.第四章电气接线第一节接线方式第4.1.1条高压并联电容器装置, 在同级电压母线上无供电线路和有供电线路时, 可采用各分组回路直接接入母线,并经总回路接入变压器的接线方式.当同级电压母线上有供电线路,经技术经济比较合理时,可设置电容器专用母线的接线方式.第4.1.2条高压电容器组的接线方式,应符合下列规定:一、电容器组宜采用单星形接线或双星形接线.在中性点非直接接地的电网中,星形接线电容器组的中性点不应接地.二、电容器组的每相或每个桥臂,由多台电容器串联组合时, 应采用先并联后串联的接线方式.第4.1.3条低压电容器或电容器组, 可采用三角形接线或中性点不接地的星形接线方式.第二节配套设备及其连接第4.2.1条高压并联电容器装置的分组回路, 可采用高压电容器组与配套设备连接的方式,并装设下列配套设备:1.隔离开关、断路器或跌落式熔断器等设备.2.串联电抗器.3.操作过电压保护用避雷器.4.单台电容器保护用熔断器.5.放电器和接地开关.6.继电保护、控制、信号和电测量用一次设备及二次设备.第4.2.2条低压联联电容器装置接线宜装设下列配套元件;当采用的交流接触器具的限制涌流功能和电容器柜有谐波超值保护时,可不装设相应的限流线圈和热继电器.1.总回路刀开关和分回路交流接触器或功能相同的其他元件.2.操作过电压保护用避雷器.3.短路保护用熔断器.4.过载保护用热继电器.5.限制涌流的限流线圈.6.放电器件.7.谐波含量超限保护、自动投切控制器、保护元件、信号和测量表计等配套器件.第4.2.3条串联电抗器宜装设于电容器组的中性点侧. 当装设于电容器组的电源侧时,应校验动稳定电流和热稳定电流.第4.2.4条当电容器配置熔断器时, 应每台电容器配一只喷式熔断器; 严禁多台电容器共用一只喷逐式熔断器.第4.2.5条当电容器的外壳直接接地时, 熔断器应接在电容器的两侧.当电容器装设于绝缘框(台)架上且串联段数为二段及以上时,至少应有一个串联段的熔断器接在电容器的电源侧.第4.2.6条电容器组应装设放电器或放电元件.第4.2.7条放电器宜采用与电容器组直接并联的接线方式. 当放电器采用星形接线时,中性点不应接地.第4.2.8条低压电容器组装设的外部放电器件, 可采用三角形接线或不接地的星形接线,并直接与电容器连接.第4.2.9条高压电容器组的电源侧和中性点侧.宜设置检修接地开关.第4.2.10条高压并联电容器装置的操作过电压保护和避雷器接线方式, 应符合下列规定:一、高压并联电容器装置的分组回路,宜设置操作过电压保护.二、当断路器公发生单相重击穿时,可采用中性点避雷器接线方式,或采用相对地避雷器接线方式.三、断路器出现两相重击穿的概率极低时,可不设置两重击穿故障保护. 当需要限制电容器极间和电源侧对地地电压时, 其保护方式应符合下列规定:1.电抗率为12%及以上时,可采用避雷器与电容器组并联连接和中性点避雷器接线的方式.2.电抗率不大于1%时, 可采用避雷器与电容器组并联连接和中性点避雷器接线的方式.3.电抗率为4.5%-6%时,避雷器接线方式宜经模拟计算研究确定.第五章电器和导体的选择第一节一般规定第5.1.1条并联电容器装置的设备选型,应根据下列条件选择:1.电网电压、电容器运行工况.2.电网谐波水平.3.母线短路电流.4.电容器对短路电流的助增效应.5.补偿容量及扩建规划、接地、保护和电容器组投切方式.6.海拔高度、气温、湿度、污秽和地震烈度等环境条件.7.布置与安装方式.8.产品技术条件和产品标准.第5.1.2条并联电容器装置的电器和导体的选择, 应满足在当地环境条件下正常运行、过电压状态和短路故障的要求.第5.1.3条并联电容器装置的总回路和分组回路的电路和导体的稳态过电流,应为电容器额定电流的1.35倍.第5.1.4条高压并联电容器装置的外绝缘配合, 应与变电所、配电所中同级电压的其他电气设备一致.第5.1.5条并联电容器成套装置的组合结构,应便于运输和现场安装.第二节电容器第5.2.1条电容器的选型应符合下列规定:一、可选用单台电容器、集合式电容器和单台容量在500Kvar及以上的电容器且成电容器组.二、设置在严寒、高海拔、湿热带等地区和污秽、易燃易爆等环境中的电容器,均应满足特殊要求.三、装设于屋内的电容器,宜选用难燃介质的电容器.四、装设在同一绝缘框(台)架上串联段数为二段的电容器组,宜选用单套电容器.第5.2.2条电容器额定电压的选择,应符合下列要求:一、应计入电容器接入电网处的运行电压.二、电容器运行中承受的长期工频过电压,应不大于电容器额定电压的1.1倍.三、应计入接入串联电抗器引起的电容器运行电压升高,其电压升高值按下式计算:Uc = {Us/[(√3)S]}.1/(1-K) (5.2.2)式中:1.Uc为电容器端子运行电压(KV);为并联电容器装置的母线电压(KV);3.S为电容器组每相的串联段数.第5.2.3条电容器的绝缘水平,应按电容器接入电网处的要求选取.第5.2.4条电容器的过电压值和过电流值, 应符合国家现行产品标准的规定.第5.2.5条单台电容器额定容量的选择, 应根据电容器组设计容量和每相电容器串联、并联的台数确定,并宜在电容器产品额定容量系列的优先值中选取.第5.2.6条低压电容器宜采用自愈式电容器.第三节断路器第5.3.1条高压并联电容器装置断路器的选择, 除应符合断路器有关标准外,尚应符合下列规定:一、并合时,触头弹跳时间不应大于2ms,并不应有过长的预击穿; 10KV 少油断路器的关合预击穿时间不得超过3.5ms.二、开断时不应重击穿.三、应能承受关合涌流,以及工频短路电流和电容器高频涌流的联合作用.四、每天投切超过三次的断路器,应具备频繁操作的性能.第5.3.2条高压并联电容器装置总回路中的断路器, 应具有切除所连接的全部电容器组和开断总回路短路电流的能力. 条件允许时,分组回路的断路器可采用不承担开断短路电流的开关设备.第5.3.3条投切低压电容器的开关,其接通、分断能力和短路强度,应符合装设点的使用条件.当切除电容器时,不应发生重击穿,并应具备频繁操作的性能.第四节熔断器第5.4.1条电容器保护使用的熔断器,宜采用喷逐式熔断器.第5.4.2条熔断器的时间-电流特性曲线,应选择在被保护的电容器外壳的10%爆裂概率曲经的左侧. 时间-电流特性曲线的偏差,应符合现行国家标准《高压并联电容器单台保护用熔断器订货技术条件》的有关规定.第5.4.3条熔断器的熔丝额定电流选择, 不应小于电容器额定电流的1.43倍 ,并不宜大于额定电流的1.55倍.第5.4.4条设计选用的熔断器的额定电压、耐受电压、开断性能、熔断特性、抗涌流能力、机械性能和电气寿命,均应符合国家现行标准《高压并联电容器单台保护用熔断器订货技术条件》的规定.第五节串联电抗器第5.5.1条串联电抗器的选型, 宜采用干式空心电抗器或油浸式铁心电抗器,并应根据技术经济比较确定.第5.5.2条串联电抗器的电抗率选择应符合下列规定:一、仅用于限制涌流时,电抗率宜取0.1%-1%.二、用于抑制谐波, 当并联电容器装置接入电网处的背景谐波为5次及以上时,宜取4.5%-6%; 当并联电容器装置接入电网处的背景谐波为3次及以上时,宜取12%;亦可采用4.5%-6%与12%两种电抗率.第5.5.3条并联电容器装置的合闸涌流限值, 宜取电容器组额定电流的20倍;当超过时,应采用装设串联电抗器予以限制.电容器组投入电网时的涌流计算,应符合本规范附录B的规定.第5.5.4条串联电抗器的额定电压和绝缘水平, 应符合接入处电网电压和安装方式要求.第5.5.5条串联电抗器的额定电流不应小于所连接的电容器组的额定电流,其允许过电流值不应小于电容器组的最大过电流值.第5.5.6条变压器回路装设限流电抗器时, 应计入其对电容器分组回路的影响和抬高母线电压的作用.第六节放电器第5.6.1条当采用电压互感器作放电器时,宜采用全绝缘产品,其技术特性应符合放电器的规定.第5.6.2条放电器的绝缘水平应与接入处电网绝缘水平一致. 放电器的额定端电压应与所并联电容器的额定电压相配合.第5.6.3条放电器的放电性能应满足电容器组脱开电源后, 在5S内将电容器组上的剩余电奢降至50V及以下.第5.6.4条当放电器带有二次线圈并用于保护和测量时, 应满足二次负荷和电压变比误差的要求.第七节避雷器第5.7.1条避雷器用于限制并联电容器装置操作过电压保护时, 应选用无间隙金属氧化物避雷器.第5.7.2条与电容器组并联连接的避雷器、与串联电抗器并联连接的避雷器和中性点避雷器参数选择,应根据工程设计的具体条件进行模拟计算确定.第八节导体及其他第5.8.1条单台电容器至母线或熔断器的连接线应采用软导线, 其长期允许电流不应小于单台电容器额定电流的1.5倍.第5.8.2条电容器组的汇流母线和均压线的导线截面应与分组回路的导体截面一致.第5.8.3条双星形电容器组的中性点连接线和桥形接线电容器组的桥连接线,其长期允许电流不应小于电容器组的额定电流.第5.8.4条并联电容器装置的所有连接导体, 应满足动稳定和热稳定的要求.第5.8.5条用于高压并联电容器装置的支柱绝缘子, 应按电压等级、泄漏距离、机械荷载等技术条件选择和校验.第5.8.6条用于高压并联电容器组不平衡保护的电流互感器, 应符合下列要求:一、额定电压应按接入处电网电压选择.二、额定电流不应小于最大稳态不平衡电流.三、应能耐受故障状态一的短路电流和高频涌放电流. 并应采取装设间隙或装设避雷器等保护措施.四、准确等级可按继电保护要求确定.第5.8.7条用于高压电容器组不平衡保护的电压互感器,应符合下列要求:一、绝缘水平应按接入处电网电压选择.二、一次额[下电压不得低于最大不平衡电压.三、一次线圈作电容器的放电回路时,应满足放电容量要求.四、准确等级可按电压测量要求确定.第六章保护装置和投切装置第一节保护装置第6.1.1条电容器故障保护方式应根据各地的实践经验配置.第6.1.2条电容组应装设不平衡保护,并应符合下列规定:一、单星形接线的电容器线岢采用开口三角电压保护.二、串联段数为二段及以上的单星形电容器组岢打用电压差动保护.三、每相能接成四个桥臂的单星形电容器组,可采用桥式差电流保护.四、以星形接线电容器组,可采用中性点不平等电流保护.采用外熔丝保护和电容器组,其不平衡保护应按单台电容器过电压允许值整定. 采用内熔丝保护和无熔丝保护的电容器且,其不平衡保护应按电容器内部元件过电压允许值整定.第6.1.3条高压并联电容器装置可装设带有短延时的速断保护和过流保护,保护动作于跳闸.速断保护的动作电流值,在最小运行方式下, 电容顺组端部引线发生两相短路时,保护的灵敏系数应符合要求; 动作时限应大于电容器组合闸涌流时间.第6.1.4条高压并联电容器装置宜装设过负荷保护, 带时限动作于信号或跳闸.第6.1.5条高压并联电容器装置应装设母线过电压保护, 带时限动作于信号或跳闸.第6.1.6条高压并联电容器装置应装设母线失压保护, 带时限动作于跳闸.第6.1.7条容量为0.18MVA 及以上的油浸式铁心串联电抗器装设瓦斯保护.轻瓦斯动作于信号,重瓦斯动作于跳闸.第6.1.8条低压并联电容器装置, 应有短路保护、过电压保护、失压保护,并宜有过负荷保护或谐波超值保护.第二节投切装置第6.2.1条高夺并联电容器装置可根据其在电网中的作用、设备情况和运行经验选择自动投切或手动投投切方式,并应符合下列规定:一、兼负电网调压的并联电容器装置.可采用按电压、无功功率及时间等组合条件的自动投切.二、变电所的主变压器具有载调压装置时,可采用对电容器组与变压器分接头进行综合调节的自动投切.三、除上述之外变电所的并联电容器装置,可分别采用按电压、无功功率(电流)、功率因数或时间为控制量的自动投切.四、高压并联电容器装置,当日投切不超过三次时,宜采用手动投切.第6.2.2条低压并联电容器装置应采用自动投切. 自动投切的控制量可选用无功功率、电压、时间、功率因数.第6.2.3条自动投切装置应具有防止保护跳闸时误合电容器组的闭锁功能,并根据运行需要应具有的控制、调节、闭锁、联络和保护功能; 应设改变投切方式的选择开关.第6.2.4条并联电容器装置,严禁设置自动重合闸.第七章控制回路、信号回路和测量仪表第一节控制回路和信号回路第7.1.1条 220KV变电所的并联电容器装置, 宜在主控制室内控制, 其他变电所和配电所的并联电容器装置,可就地控制.第7.1.2条高压并联电容器装置的断路器, 宜采用一对一的控制方式,其控制回路,应具的防止投切设备跳跃的闭锁功能.第7.1.3条高压并联电容器装置的断路器与相应的隔离开关和接地开关之间,应设置闭锁装置.第7.1.4条高压并联电容器装置, 应设置断路器的位置信号、运行异常的预告信号和事故跳闸的信号.第7.1.5条低压并联电容器装置,应具有电容器投入和切除的信号.第二节测量仪表第7.2.1条高压并联电容器装置所连接的母线, 应有一只切换测量线电压的电压表.第7.2.2条高压并联电容器装置的总回路, 应装设无功功率表、无功电度表及每相一只电流表.第7.2.3条当总回路下面连接有燕联电容器和并联电抗器时, 总回路应装设双方向的无功率表,并应装设分别计量容性和感性的无功电度表.第7.2.4条高压并联电容器装置的分组回路中, 可仅设一只电流表. 当并联电容器装置和供电线路同接一条母线时,宜在高压并联电容器装置的分组回路中装设无功电度表.第7.2.5条低压并联电容器装置, 应具有电流表、电压表及功率因数表.第八章布置和安装设计第一节一般规定第8.1.1条高压并联电容器装置的布置和安装设计, 应利于分期扩建、通风散热、运行巡视、便于维护检修和更换设备.第8.1.2条高压联电容器装置的布置型式, 应根据安装地点的环境条件、设备性能和当地实距经验, 选择屋外布置和屋内布置.一般地区宜采用屋外布置;严寒、湿热、风沙等特殊地区和污秽、易燃易爆等特殊环境宜采用屋内布置.屋内布置的并联电容器装置,应防设置防止凝露引起的污闪事故的措施.第8.1.3条低压并联电容器装置的布置型式, 应根据设备适用于的环境条件确定采用屋内布置或屋布置.第8.1.4条屋内高压并联电容器装置和供电线路的开关柜, 不宜同室布置.第8.1.5条低压电容器柜和低压配电屏可同室布置, 但宜将电容器柜布置在同列屏柜的端部.第8.1.6条高压并联电容器装置中的铜、铝导体连接, 应采取装设铜铝过渡接头等措施.第8.1.7条电容器组的框(台)架、柜体结构件、串联电抗器的支(台)架等钢结构构件,应采用镀锌或其他的有效的防腐措施.第8.1.8条高压电容器组下部地面和周围地面的处理, 宜符合下列规定:一、在屋外电容器组外廓1m范围内的地面上,宜铺设卵石层或碎石层,其厚度应为100mm,并海里高于周围地坪.二、屋内电容器组下部地面,应有防止液体溢流措施. 屋内其他部分可采用混凝土地面;面层宜采用水泥沙浆抹面并压光.第8.1.9条低压电容器室地面,宜采用混凝土地面;面层宜采用水泥少浆抹面并压光.第8.1.10条电容器的屋面防水标准,不得低于屋内配电装置室.第二节高压电容器组的布置和安装设计第8.2.1条电容器组的布置,宜分相设置独立的框(台)架.当电容器台数较少或受到地限制时,可设置三相共用的框架.第8.2.2条分层布置的电容器组框(台)架,不宜超过三层,每层不应超过两排,四周和层间不得设置隔板.第8.2.3条电容器组的安装设计最小尺寸,应符合表8.2.3的规定:电容器组安装设计最小尺寸(mm) 表8.2.3━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━名称最小尺寸──────────────────────────────电容器(屋内、屋外):间距 100排间距离 200电容底部距地面:屋外 300屋内 200框(台)架顶部至顶棚净距: 1000━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━第8.2.4条屋内外布置的电容器组, 在其四周或一侧应设置维护通道,其宽度洞庭湖小于1.2m. 当电容器双排布置时,框(台)架和墙之间或框(台)架相互间可设置检修走道,其宽度不宜小于1m.注:1.维护通道系指正常运行时巡视、停电后进行维护检修和更换设备的通道.2.检修走道系指停电后维护检修工作使用的走道.第8.2.5条电容器组的绝缘水平,应与电网绝缘水平相配合.当电容器与电网绝缘水平一致时,应将电容器外壳和框(台)架可靠接地; 当电容器的绝缘水平低于电网时,应将电容器安装在与电网绝缘水平相一致。
并联电容器装置设计方案要求及注意事项
案例四:某电力系统的并联电容器装置设计
要点一
总结词
要点二
详细描述
提高系统稳定性、降低线损
为某电力系统的核心部分设计并联电容器装置,以提高系 统的稳定性,降低线损,优化系统的经济运行。
THANKS
感谢观看
03
并联电容器装置的注意事项
选用合适的电容器型号
总结词
选择合适的电容器型号是确保并联电容器装置正常工作的关 键。
详细描述
在选择电容器型号时,应考虑其额定电压、容量、频率、损 耗等参数,以确保其能够满足装置的运行需求。同时,应考 虑电容器型号的技术成熟度、可靠性及性价比等因素。
确保安装质量
总结词
通过平衡三相电压,减小三相不平衡度,降低变压器和线路的
损耗。
并联电容器装置的重要性
提高电力系统效率
通过改善功率因数和平衡三相电压,提高电力系统的效率,减少 能源浪费。
保障电力设备安全运行
并联电容器装置的稳定运行能够保障电力设备的安全,避免过载和 短路等故障。
提高供电质量
降低电压波动和闪变,提高供电质量,满足用户对高质量电能的需 求。
详细描述
针对某住宅小区的配电系统,设计并 联电容器装置以改善电压质量,提高 供电的可靠性和稳定性,确保居民用 电的舒适性和安全性。
案例三:某风力发电站的并联电容器装置设计
总பைடு நூலகம்词
抑制谐波、保护设备正常运行
详细描述
在某风力发电站的配电系统中,设计并联电容器装置用以抑制谐波,保护设备正常运行, 延长设备使用寿命,同时提高系统的稳定性和可靠性。
具有高可靠性、低维护成本、寿 命长、响应速度快等优点,广泛 应用于电力、冶金、化工等领域 。
无功功率补偿和并联电容器
毕业论文题目:无功功率补偿和并联电容器专业:年级:姓名:学号:指导教师:电力工程系年月日目录摘要第一章绪论 (1)1.1无功功率的产生和影响 (1)第二章无功功率补偿 (2)2.1无功补偿的原理 (2)2.2无功补偿的意义 (3)2.3无功功率补偿装置 (4)2.4无功补偿容量的确定 (5)第三章功率因数 (6)3.1功率因数的提高 (6)3.3功率因数调整电费 (8)3.4功率因数的标准值及其适用范围 (10)第四章电力电容器 (10)4.1电容器组投入和退出运行 (10)4.2并联电容器的补偿方式 (11)4.3并联电容器的接线方式 (11)4.4电容器组的运行注意事项 (12)4.5电容器组的运行维护 (13)第五章风力发电 (13)5.1风力发电系统无功补偿的重要性分析 (13)5.2风力发电的无功补偿 (14)第六章结论与研究展望 (15)参考文献 (15)摘要:近年来,随着电网容量增加,对电网无功要求也与日增加。
无功电源与有功电源一样,是保证电力系统电能质量、降低网络损耗以及安全运行所不可缺少的部分。
电力系统中,应保持无功功率的平衡,否则,将导致系统电压不正常,严重时,将导致设备损坏,系统瓦解。
此外,网络功率因素和电压的降低,还将导致网络输送能力下降、输电损耗增大、电气设备不能充分利用等。
因此,解决好网络补充问题,有着极其重要的意义。
关键词:无功补偿;功率因数;并联电容器;风力发电;第一章绪论1.1无功功率的产生和影响在交流电力系统中,发电机在发有功功率的同时也发无功功率,它是主要的无功功率电源;运行中的输电线路,由于线间和线对地间的电容效应也产生部分无功功率,称为线路的充电功率,它和电压的高低、线路的长短以及线路的结构等因素有关。
电能的用户(负荷)在需要有功功率 (P)的同时还需要无功功率(Q),其大小和负荷的功率因数有关;有功功率和无功功率在电力系统的输电线路和变压器中流动会产生有功功率损耗(ΔP)和无功功率损耗(ΔQ),也会产生电压降落(ΔU)。
《并联补偿电容器》课件
THANKS
[ 感谢观看 ]
求。
响应速度
并联补偿电容器的响应速度较 慢,无法快速跟系统无功的 变化。维护成本
并联补偿电容器需要定期维护 和更换,增加了维护成本。
谐波影响
对于存在大量谐波的电力系统 ,并联补偿电容器可能会放大 谐波电流,导致系统谐波问题
加剧。
并联补偿电容器的未来发展
新材料应用
随着新材料技术的不断发展,未来将 会有更高效、更可靠的电容器材料应 用于并联补偿电容器中。
总结词
详细描述了并联补偿电容器的定义,包括其工作原理和结构 特点。
详细描述
并联补偿电容器是一种用于改善电力系统的功率因数、降低 线路损耗、提高电压质量的无功补偿装置。它通过并联接入 电力系统,对系统的无功功率进行补偿,从而改善系统的功 率因数,提高系统的电压质量。
并联补偿电容器的功能
总结词
列举了并联补偿电容器的主要功能,包括无功补偿、提高功率因数、降低线损等。
高压并联补偿电容器
适用于10kV以上的高压系统,用于改 善电能质量、平衡系统无功功率。
按照容量分类
小容量并联补偿电容器
容量范围一般在1-100kVar之间,适用于小功率设备或小型电力系统的无功补 偿。
大容量并联补偿电容器
容量范围在100kVar以上,适用于大功率设备或大型电力系统的无功补偿。
按照使用环境分类
户内型并联补偿电容器
适用于室内环境,具有较好的防潮、防尘性能。
户外型并联补偿电容器
适用于室外环境,具有较好的防雨、防晒性能。
CHAPTER 04
并联补偿电容器的安装与维护
并联补偿电容器的安装注意事项
01
02
110kV变电站并联无功补偿电容器组配置探究
110kV变电站并联无功补偿电容器组配置探究摘要:本文就目前电网大量而普遍使用的无功补偿装置——并联电容器补偿装置的配置接线、容量配置与电容器选型,结合已投运的一些无功补偿成套装置情况,通过对电网无功补偿的浅析,对110kV变电站10kV并联电容器的组成形式、接线构成、保护配置进行了简单的介绍,并且以110kV某变电站为例,从设计的角度对110kV变电站并联无功补偿配置进行选择与分析。
关键词:110kV;变电站;并联无功补偿;电容器组;配置无功平衡是保证电力系统电压质量稳定的前提基础,在电力系统中国,科学化的电压控制与无功补偿,既能能保证电压质量,还能在此基础上保障电力系统的安稳运行。
并联电容器是电网无功补偿的重要设备,根据不同负荷水平来确定电容器的投切,不但是保证电网稳定运行的重要技术手段,还可以达到减少网络损耗、消除过载和改善电压分布的效果。
变电站并联无功补偿装置,应按地区补偿无功负荷,就地补偿变压器无功损耗的原则进行配置,无功补偿设备应随负荷变化及时投切,此外电抗率、无功补偿容量和分组容量应合理确定,满足国家有关标准要求,广州电网中,并联电容器占整个无功补偿设备的90%以上,在网内占有十分重要的地位。
为此本文根据新的规范对110kV某变电站无功补偿装置的配置进行选择和分析。
一、并联电容补偿装置的接线并联电容补偿装置主接线方案的设计对其工程投资、调压效益、运行的灵活可靠、以及安装、维修等都有很大的影响。
在设计和选择方案时,务必综合考虑。
电容器组的主接线方式基本上有二种:星形和三角形,各又分为单星、双星和单三角、双三角。
国内在50年代和60年代大多采用三角形接线,70年代以后,由于电力系统的发展,电网容量的增大,星形接线开始采用。
我省电网在90年代中期以前,10kV、35kV系统多采用双星形接线,90年代后期至今多采用单星形接线。
110kV某变电站采用型号为TBB10-6000/500-AK的并联电容器组,图1为10kV电容器组接线图。
变电站并联补偿电容器组的配置
变电站并联补偿电容器组的配置1前言为了减少电网中输送的无功功率,降低有功电量的损失,改善电压质量,供电企业普遍在变电站内安装并联补偿电容器组(以后简称电容器组)。
电容器组由电容器、串联电抗器、避雷器、断路器、放电线圈及相应的控制、保护、仪表装置组成。
目前,国内绝大部分电容器制造厂只生产电容器,其他设备均需外购,在成套设计成套供货方面尚有不足之处。
使用单位必须对电容器及配套设备进行选型。
由于各地的具体情况不同,在电容器组的设备选型、安装布置上差别很大,本文就此提出一些分析意见。
2电容器容量的选择电容器组容量的配置应使电网的无功功率实现分层分区平衡,各电压等级之间要尽量减少无功功率的交换。
由于电容器组在运行中的容量不是连续可调的,从减少电容器组的投切次数、提高功率因数的角度出发,希望电容器组在大部分时间内能正常投入运行而不发生过补偿。
通过对变电站负荷变化情况的分析,徐州地区变电站负荷率一般在70%~80%之间,一天当中约有2/3的时间负荷水平在平均负荷以上。
我们以变电站变压器低压侧全年无功电度量除以年运行时间求出年平均无功负荷,电容器组容量按照年平均无功负荷的90%选取。
实际运行时,由于电容器组额定电压一般为电网额定电压的1.1倍,而变电站低压母线电压一般控制在电网额定电压的1~1.07倍,电容器组实际容量要降低5.4%~17.4%,从而保证了电容器组在绝大部分时间内都能投入运行。
对于负荷季节性变化比较大的农村变电站和预计近期内负荷将有较大增长的变电站,电容器组容量可以适当增加,但要求电容器组必须能减容运行。
这一点对集合式与箱式电容器而言,要求具有中间容量抽头,组架式和半封闭式电容器组只要将熔断器去掉几只即可。
同时要求配有抑制谐波放大作用的串联电抗器有中间容量抽头,以保证电抗率不变。
增加电容器分组数有利于提高补偿效果,但是相应地要增加设备投资,所有35~110kV变电站内电容器组一般按照一台变压器配置一组。
并联电容器设计规范标准[详]
并联电容器装置设计规范(GB50227-95)第一章总则第1.0.1条为使电力工程的并联电容器装置设计贯彻国家技术经济政策, 做到安全可靠、技术先进、经济合理和运行检修方便,制订本规范.第1.0.2条本规范适用于220KV及以下变电所、配电所中无功补偿用三相交流高压、低压并联电容器装置的新建、扩建工程设计.第1.0.3条并联电容器装置的设计, 应根据安装地点的电网条件、补偿要求、环境状况、运行检修要求和实践经验,确定补偿容量、选择接线、保护与控制、布置及安装方式.第1.0.4条并联电容器装置的设备选型, 应符合国家现行的产品标准的规定.第1.0.5条并联电容器装置的设计,除应执行本规范的规定外,尚应符合国家现行的有关标准和规范的规定.第二章-1 术语1.高压并联电容器装置(installtion of high voltage shunt capacitors):由高压并联电容器和相应的一次及二次配套设备组成, 可独立运行或并联运行的装置.2.低压并联电容器装置(installtion of low voltage shunt capacitors):由低压并联电容器和相应的一次及二次配套元件组成, 可独立运行或并联运行的装置.3.并联电容器的成套装置(complete set of installation for shunt capacitors):由制造厂设计组装设备向用户供货的整套并联电容器装置.4.单台电容器(capacitor unit):由一个或多个电容器元件组装于单个外壳中并引出端子的组装体.5.电容器组(capacitor bank):电气上连接在一起的一群单台电容器.6.电抗率(reactance ratio):串联电抗器的感抗与并联电容器组的容抗之比,以百分数表示.7.放电器、放电元件(discharge device、discharge component):装在电容器内部或外部的, 当电容器从电源脱开后能将电容器端子间的电压在规定时间内降低到规定值的设备或元件.8.串联段(series section):在多台电容器连接组合中,相互并联的单台电容器群.9.剩余电压(residual voltage):单台电容器或电容器组脱开电源后, 电容器端子间或电容器组端子间残存的电压.10.涌流(inrush transient current):电容器组投入电网时的过渡过电流.11.外熔丝(external fuses):装于单台电容器外部并与其串联连接, 当电容器发生故障时用以切除电容器的熔丝.12.内熔丝(internal fuses):装于单台电容器内部与元件或元件组串联连接, 当元件发生故障时用以切除该元件或元件组的熔丝.13.放电容量(discharging capacity):放电器允许连接的电容器组的容量.14.不平衡保护(unbalance protection):利用电容器组内两个相关部分之间的电容量之差形成的电流差或电压差构成的保护.第二章-2 符号1.Qcx:发生n次谐波谐振的电容器容量.2.Sd: 并联电容器装置安装处的母线短路容量.3.n: 谐波次数.4.K: 电抗率.5.I*ym:涌流峰值的标么值.6.β: 涌流计算中计及的电源影响系数.7.Q: 电容器组容量.8.Uc: 电容器端子运行电压.: 并联电容器装置的母线电压.10.S: 电容器组每相的串联段数.第二章-3 代号1.C: 电容器组.2.IC、2C、3C: 并联电容器装置分组回路编号.3.C1、C2、Cn: 单台电容器编号.4.L: 串联电抗器或限流线圈.5.QS: 隔离开关或刀开关.6.QF: 断路器.7.QG: 接地开关.8.TA: 电流互感器.: 放电器、放电元件.10.FV: 避雷器.11.FU: 熔断器.12.KM: 交流接触器.13.KA: 热继电器.14.HL: 指示灯.15.Uo: 开口三角电压.16.△U:相不平衡电压.17.△I:桥差电流.18.Io: 中性点不平衡电流. 第三章接入电网基本要求第3.0.1条高压并联电容器装置接入电网的设计,应按全面规划、合理布局、分级补偿、就地平衡的原则确定最优补偿容量和分布方式.第3.0.2条变电所里的电容器安装容量,应根据本地区电网无功规划以及国家现行标准《电力系统电压和无功电压技术导则》和《全国供用电规划》的规定计算后确定.当不具备设计计算条件时,电容器安装容量可按变压器容量的10%-30%确定.第3.0.3条电容器分组容量,应根据加大单组容量、减少组数的原则确定.当分组电容器按各种容量组合运行时,不得发生谐振,且变压器各侧母线的任何一次谐波电压含量不应超过现行国家标准《电能质量- 公用电网谐波》的有关规定.谐振电容器容量,可按下式计算:Qcx=Sd[(1/n^2)-K] (3.0.3)式中:Qcx为发生n次谐波谐振电容器容量(Mvar);Sd为并联电容器装置安装处的母线短路容量(MVA);n为谐波次数,即谐波频率与电网基波频率之比;K为电抗率.第3.0.4条高压并联电容装置应装设在变压器的主要负荷侧.当不具备条件时,可装设在三绕组变压器的低压侧.第3.0.5条当配电所中无高压负荷时,不得在高压侧装设并联电容器装置.第3.0.6条低压并联电容器装置的安全地点和装设容量,应根据分散补偿和降低线损的原则设置. 补偿后功率因数应符合现行国家标准《全国供用电规则》的规定.第四章电气接线第一节接线方式第4.1.1条高压并联电容器装置, 在同级电压母线上无供电线路和有供电线路时, 可采用各分组回路直接接入母线,并经总回路接入变压器的接线方式.当同级电压母线上有供电线路,经技术经济比较合理时,可设置电容器专用母线的接线方式.第4.1.2条高压电容器组的接线方式,应符合下列规定:一、电容器组宜采用单星形接线或双星形接线.在中性点非直接接地的电网中,星形接线电容器组的中性点不应接地.二、电容器组的每相或每个桥臂,由多台电容器串联组合时, 应采用先并联后串联的接线方式.第4.1.3条低压电容器或电容器组, 可采用三角形接线或中性点不接地的星形接线方式.第二节配套设备及其连接第4.2.1条高压并联电容器装置的分组回路, 可采用高压电容器组与配套设备连接的方式,并装设下列配套设备:1.隔离开关、断路器或跌落式熔断器等设备.2.串联电抗器.3.操作过电压保护用避雷器.4.单台电容器保护用熔断器.5.放电器和接地开关.6.继电保护、控制、信号和电测量用一次设备及二次设备.第4.2.2条低压联联电容器装置接线宜装设下列配套元件;当采用的交流接触器具的限制涌流功能和电容器柜有谐波超值保护时,可不装设相应的限流线圈和热继电器.1.总回路刀开关和分回路交流接触器或功能相同的其他元件.2.操作过电压保护用避雷器.3.短路保护用熔断器.4.过载保护用热继电器.5.限制涌流的限流线圈.6.放电器件.7.谐波含量超限保护、自动投切控制器、保护元件、信号和测量表计等配套器件.第4.2.3条串联电抗器宜装设于电容器组的中性点侧. 当装设于电容器组的电源侧时,应校验动稳定电流和热稳定电流.第4.2.4条当电容器配置熔断器时, 应每台电容器配一只喷式熔断器; 严禁多台电容器共用一只喷逐式熔断器.第4.2.5条当电容器的外壳直接接地时, 熔断器应接在电容器的两侧.当电容器装设于绝缘框(台)架上且串联段数为二段及以上时,至少应有一个串联段的熔断器接在电容器的电源侧.第4.2.6条电容器组应装设放电器或放电元件.第4.2.7条放电器宜采用与电容器组直接并联的接线方式. 当放电器采用星形接线时,中性点不应接地.第4.2.8条低压电容器组装设的外部放电器件, 可采用三角形接线或不接地的星形接线,并直接与电容器连接.第4.2.9条高压电容器组的电源侧和中性点侧.宜设置检修接地开关.第4.2.10条高压并联电容器装置的操作过电压保护和避雷器接线方式, 应符合下列规定:一、高压并联电容器装置的分组回路,宜设置操作过电压保护.二、当断路器公发生单相重击穿时,可采用中性点避雷器接线方式,或采用相对地避雷器接线方式.三、断路器出现两相重击穿的概率极低时,可不设置两重击穿故障保护. 当需要限制电容器极间和电源侧对地地电压时, 其保护方式应符合下列规定:1.电抗率为12%及以上时,可采用避雷器与电容器组并联连接和中性点避雷器接线的方式.2.电抗率不大于1%时, 可采用避雷器与电容器组并联连接和中性点避雷器接线的方式.3.电抗率为4.5%-6%时,避雷器接线方式宜经模拟计算研究确定. 第五章电器和导体的选择第一节一般规定第5.1.1条并联电容器装置的设备选型,应根据下列条件选择: 1.电网电压、电容器运行工况.2.电网谐波水平.3.母线短路电流.4.电容器对短路电流的助增效应.5.补偿容量及扩建规划、接地、保护和电容器组投切方式.6.海拔高度、气温、湿度、污秽和地震烈度等环境条件.7.布置与安装方式.8.产品技术条件和产品标准.第5.1.2条并联电容器装置的电器和导体的选择, 应满足在当地环境条件下正常运行、过电压状态和短路故障的要求.第5.1.3条并联电容器装置的总回路和分组回路的电路和导体的稳态过电流,应为电容器额定电流的1.35倍.第5.1.4条高压并联电容器装置的外绝缘配合, 应与变电所、配电所中同级电压的其他电气设备一致.第5.1.5条并联电容器成套装置的组合结构,应便于运输和现场安装. 第二节电容器第5.2.1条电容器的选型应符合下列规定:一、可选用单台电容器、集合式电容器和单台容量在500Kvar及以上的电容器且成电容器组.二、设置在严寒、高海拔、湿热带等地区和污秽、易燃易爆等环境中的电容器,均应满足特殊要求.三、装设于屋内的电容器,宜选用难燃介质的电容器.四、装设在同一绝缘框(台)架上串联段数为二段的电容器组,宜选用单套电容器.第5.2.2条电容器额定电压的选择,应符合下列要求:一、应计入电容器接入电网处的运行电压.二、电容器运行中承受的长期工频过电压,应不大于电容器额定电压的1.1倍.三、应计入接入串联电抗器引起的电容器运行电压升高,其电压升高值按下式计算:Uc = {Us/[(√3)S]}.1/(1-K) (5.2.2)式中:1.Uc为电容器端子运行电压(KV);为并联电容器装置的母线电压(KV);3.S为电容器组每相的串联段数.第5.2.3条电容器的绝缘水平,应按电容器接入电网处的要求选取.第5.2.4条电容器的过电压值和过电流值, 应符合国家现行产品标准的规定.第5.2.5条单台电容器额定容量的选择, 应根据电容器组设计容量和每相电容器串联、并联的台数确定,并宜在电容器产品额定容量系列的优先值中选取.第5.2.6条低压电容器宜采用自愈式电容器.第三节断路器第5.3.1条高压并联电容器装置断路器的选择, 除应符合断路器有关标准外,尚应符合下列规定:一、并合时,触头弹跳时间不应大于2ms,并不应有过长的预击穿; 10KV 少油断路器的关合预击穿时间不得超过3.5ms.二、开断时不应重击穿.三、应能承受关合涌流,以及工频短路电流和电容器高频涌流的联合作用.四、每天投切超过三次的断路器,应具备频繁操作的性能.第5.3.2条高压并联电容器装置总回路中的断路器, 应具有切除所连接的全部电容器组和开断总回路短路电流的能力. 条件允许时,分组回路的断路器可采用不承担开断短路电流的开关设备.第5.3.3条投切低压电容器的开关,其接通、分断能力和短路强度,应符合装设点的使用条件.当切除电容器时,不应发生重击穿,并应具备频繁操作的性能.第四节熔断器第5.4.1条电容器保护使用的熔断器,宜采用喷逐式熔断器.第5.4.2条熔断器的时间-电流特性曲线,应选择在被保护的电容器外壳的10%爆裂概率曲经的左侧. 时间-电流特性曲线的偏差,应符合现行国家标准《高压并联电容器单台保护用熔断器订货技术条件》的有关规定.第5.4.3条熔断器的熔丝额定电流选择, 不应小于电容器额定电流的1.43倍,并不宜大于额定电流的1.55倍.第5.4.4条设计选用的熔断器的额定电压、耐受电压、开断性能、熔断特性、抗涌流能力、机械性能和电气寿命,均应符合国家现行标准《高压并联电容器单台保护用熔断器订货技术条件》的规定.第五节串联电抗器第5.5.1条串联电抗器的选型, 宜采用干式空心电抗器或油浸式铁心电抗器,并应根据技术经济比较确定.第5.5.2条串联电抗器的电抗率选择应符合下列规定:一、仅用于限制涌流时,电抗率宜取0.1%-1%.二、用于抑制谐波, 当并联电容器装置接入电网处的背景谐波为5次及以上时,宜取4.5%-6%; 当并联电容器装置接入电网处的背景谐波为3次及以上时,宜取12%;亦可采用4.5%-6%与12%两种电抗率.第5.5.3条并联电容器装置的合闸涌流限值, 宜取电容器组额定电流的20倍;当超过时,应采用装设串联电抗器予以限制.电容器组投入电网时的涌流计算,应符合本规范附录B的规定.第5.5.4条串联电抗器的额定电压和绝缘水平, 应符合接入处电网电压和安装方式要求.第5.5.5条串联电抗器的额定电流不应小于所连接的电容器组的额定电流,其允许过电流值不应小于电容器组的最大过电流值.第5.5.6条变压器回路装设限流电抗器时, 应计入其对电容器分组回路的影响和抬高母线电压的作用.第六节放电器第5.6.1条当采用电压互感器作放电器时,宜采用全绝缘产品,其技术特性应符合放电器的规定.第5.6.2条放电器的绝缘水平应与接入处电网绝缘水平一致. 放电器的额定端电压应与所并联电容器的额定电压相配合.第5.6.3条放电器的放电性能应满足电容器组脱开电源后, 在5S内将电容器组上的剩余电奢降至50V及以下.第5.6.4条当放电器带有二次线圈并用于保护和测量时, 应满足二次负荷和电压变比误差的要求.第七节避雷器第5.7.1条避雷器用于限制并联电容器装置操作过电压保护时, 应选用无间隙金属氧化物避雷器.第5.7.2条与电容器组并联连接的避雷器、与串联电抗器并联连接的避雷器和中性点避雷器参数选择,应根据工程设计的具体条件进行模拟计算确定.第八节导体及其他第5.8.1条单台电容器至母线或熔断器的连接线应采用软导线, 其长期允许电流不应小于单台电容器额定电流的1.5倍.第5.8.2条电容器组的汇流母线和均压线的导线截面应与分组回路的导体截面一致.第5.8.3条双星形电容器组的中性点连接线和桥形接线电容器组的桥连接线,其长期允许电流不应小于电容器组的额定电流.第5.8.4条并联电容器装置的所有连接导体, 应满足动稳定和热稳定的要求.第5.8.5条用于高压并联电容器装置的支柱绝缘子, 应按电压等级、泄漏距离、机械荷载等技术条件选择和校验.第5.8.6条用于高压并联电容器组不平衡保护的电流互感器, 应符合下列要求:一、额定电压应按接入处电网电压选择.二、额定电流不应小于最大稳态不平衡电流.三、应能耐受故障状态一的短路电流和高频涌放电流. 并应采取装设间隙或装设避雷器等保护措施.四、准确等级可按继电保护要求确定.第5.8.7条用于高压电容器组不平衡保护的电压互感器,应符合下列要求:一、绝缘水平应按接入处电网电压选择.二、一次额[下电压不得低于最大不平衡电压.三、一次线圈作电容器的放电回路时,应满足放电容量要求.四、准确等级可按电压测量要求确定.第六章保护装置和投切装置第一节保护装置第6.1.1条电容器故障保护方式应根据各地的实践经验配置.第6.1.2条电容组应装设不平衡保护,并应符合下列规定:一、单星形接线的电容器线岢采用开口三角电压保护.二、串联段数为二段及以上的单星形电容器组岢打用电压差动保护.三、每相能接成四个桥臂的单星形电容器组,可采用桥式差电流保护.四、以星形接线电容器组,可采用中性点不平等电流保护.采用外熔丝保护和电容器组,其不平衡保护应按单台电容器过电压允许值整定. 采用内熔丝保护和无熔丝保护的电容器且,其不平衡保护应按电容器内部元件过电压允许值整定.第6.1.3条高压并联电容器装置可装设带有短延时的速断保护和过流保护,保护动作于跳闸.速断保护的动作电流值,在最小运行方式下, 电容顺组端部引线发生两相短路时,保护的灵敏系数应符合要求; 动作时限应大于电容器组合闸涌流时间.第6.1.4条高压并联电容器装置宜装设过负荷保护, 带时限动作于信号或跳闸.第6.1.5条高压并联电容器装置应装设母线过电压保护, 带时限动作于信号或跳闸.第6.1.6条高压并联电容器装置应装设母线失压保护, 带时限动作于跳闸.第6.1.7条容量为0.18MVA 及以上的油浸式铁心串联电抗器装设瓦斯保护.轻瓦斯动作于信号,重瓦斯动作于跳闸.第6.1.8条低压并联电容器装置, 应有短路保护、过电压保护、失压保护,并宜有过负荷保护或谐波超值保护.第二节投切装置第6.2.1条高夺并联电容器装置可根据其在电网中的作用、设备情况和运行经验选择自动投切或手动投投切方式,并应符合下列规定:一、兼负电网调压的并联电容器装置.可采用按电压、无功功率及时间等组合条件的自动投切.二、变电所的主变压器具有载调压装置时,可采用对电容器组与变压器分接头进行综合调节的自动投切.三、除上述之外变电所的并联电容器装置,可分别采用按电压、无功功率(电流)、功率因数或时间为控制量的自动投切.四、高压并联电容器装置,当日投切不超过三次时,宜采用手动投切.第6.2.2条低压并联电容器装置应采用自动投切. 自动投切的控制量可选用无功功率、电压、时间、功率因数.第6.2.3条自动投切装置应具有防止保护跳闸时误合电容器组的闭锁功能,并根据运行需要应具有的控制、调节、闭锁、联络和保护功能; 应设改变投切方式的选择开关.第6.2.4条并联电容器装置,严禁设置自动重合闸.第七章控制回路、信号回路和测量仪表第一节控制回路和信号回路第7.1.1条220KV变电所的并联电容器装置, 宜在主控制室内控制, 其他变电所和配电所的并联电容器装置,可就地控制.第7.1.2条高压并联电容器装置的断路器, 宜采用一对一的控制方式,其控制回路,应具的防止投切设备跳跃的闭锁功能.第7.1.3条高压并联电容器装置的断路器与相应的隔离开关和接地开关之间,应设置闭锁装置.第7.1.4条高压并联电容器装置, 应设置断路器的位置信号、运行异常的预告信号和事故跳闸的信号.第7.1.5条低压并联电容器装置,应具有电容器投入和切除的信号. 第二节测量仪表第7.2.1条高压并联电容器装置所连接的母线, 应有一只切换测量线电压的电压表.第7.2.2条高压并联电容器装置的总回路, 应装设无功功率表、无功电度表及每相一只电流表.第7.2.3条当总回路下面连接有燕联电容器和并联电抗器时, 总回路应装设双方向的无功率表,并应装设分别计量容性和感性的无功电度表.第7.2.4条高压并联电容器装置的分组回路中, 可仅设一只电流表. 当并联电容器装置和供电线路同接一条母线时,宜在高压并联电容器装置的分组回路中装设无功电度表.第7.2.5条低压并联电容器装置, 应具有电流表、电压表及功率因数表.第八章布置和安装设计第一节一般规定第8.1.1条高压并联电容器装置的布置和安装设计, 应利于分期扩建、通风散热、运行巡视、便于维护检修和更换设备.第8.1.2条高压联电容器装置的布置型式, 应根据安装地点的环境条件、设备性能和当地实距经验, 选择屋外布置和屋内布置.一般地区宜采用屋外布置;严寒、湿热、风沙等特殊地区和污秽、易燃易爆等特殊环境宜采用屋内布置.屋内布置的并联电容器装置,应防设置防止凝露引起的污闪事故的措施.第8.1.3条低压并联电容器装置的布置型式, 应根据设备适用于的环境条件确定采用屋内布置或屋布置.第8.1.4条屋内高压并联电容器装置和供电线路的开关柜, 不宜同室布置.第8.1.5条低压电容器柜和低压配电屏可同室布置, 但宜将电容器柜布置在同列屏柜的端部.第8.1.6条高压并联电容器装置中的铜、铝导体连接, 应采取装设铜铝过渡接头等措施.第8.1.7条电容器组的框(台)架、柜体结构件、串联电抗器的支(台)架等钢结构构件,应采用镀锌或其他的有效的防腐措施.第8.1.8条高压电容器组下部地面和周围地面的处理, 宜符合下列规定:一、在屋外电容器组外廓1m范围内的地面上,宜铺设卵石层或碎石层,其厚度应为100mm,并海里高于周围地坪.二、屋内电容器组下部地面,应有防止液体溢流措施. 屋内其他部分可采用混凝土地面;面层宜采用水泥沙浆抹面并压光.第8.1.9条低压电容器室地面,宜采用混凝土地面;面层宜采用水泥少浆抹面并压光.第8.1.10条电容器的屋面防水标准,不得低于屋内配电装置室. 第二节高压电容器组的布置和安装设计第8.2.1条电容器组的布置,宜分相设置独立的框(台)架.当电容器台数较少或受到地限制时,可设置三相共用的框架.第8.2.2条分层布置的电容器组框(台)架,不宜超过三层,每层不应超过两排,四周和层间不得设置隔板.第8.2.3条电容器组的安装设计最小尺寸,应符合表8.2.3的规定:电容器组安装设计最小尺寸(mm) 表8.2.3━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━名称最小尺寸──────────────────────────────电容器(屋内、屋外):间距100排间距离200电容底部距地面:屋外300屋内200框(台)架顶部至顶棚净距: 1000━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━第8.2.4条屋内外布置的电容器组, 在其四周或一侧应设置维护通道,其宽度洞庭湖小于1.2m. 当电容器双排布置时,框(台)架和墙之间或框(台)架相互间可设置检修走道,其宽度不宜小于1m.注:1.维护通道系指正常运行时巡视、停电后进行维护检修和更换设备的通道.2.检修走道系指停电后维护检修工作使用的走道.第8.2.5条电容器组的绝缘水平,应与电网绝缘水平相配合.当电容器与电网绝缘水平一致时,应将电容器外壳和框(台)架可靠接地; 当电容器的绝缘水平低于电网时,应将电容器安装在与电网绝缘水平相一致。
《并联电容器装置设计规范》(50227-2017)【可编辑】
目次1 总则............................................ ( 1)2 术语、符号和代号 (2)2.1 术语 (2)2.2 符号 (4)2.3 代号 (4)3接入电网基本要求 (6)4 电气接线 (8)4.1 接线方式 (8)4.2 配套设备及其连接 (9)5电器和导体选择.................................... ( 13)5.1 一般规定 (13)5.2 电容器 (13)5.3 投切开关 (15)5.4 熔断器 (16)5.5 串联电抗器........................................ ( 16)5.6 放电线圈 (17)5.7 避雷器 (18)5.8 导体及其他 (18)6保护装置和投切装置 ................................ ( 19)6.1 保护装置 (19)6.2 投切装置 (21)7 控制回路、信号回路和测量仪表 (23)7.1 控制回路和信号回路 (23)7.2 测量仪表 (23)8 布置和安装设计 (25)8.1 一般规定 (25)8.2 并联电容器组的布置和安装设计 (26)8.3 串联电抗器的布置和安装设计 (27)9 防火和通风 (29)9.1 防火 (29)9.2 通风 (30)附录A 电容器组投入电网时的涌流计算 (31)本规范用词说明 (32)引用标准名录 (33)Contents1 General provisions ..................................................................... ( 1)2 Terms , symbols and codes (2)2.1 Terms (2)2.2 Symbols (4)2.3 Codes (4)3 Basic requirements for connection into network (6)4 Electrical wiring (8)4.1 Modes of wiring (8)4.2 Associated equipment and its connection (9)5 Selection of electrical apparatus and conductors (13)5.1 General requirements (13)5.2 Capacitor ..................................................................................... ( 13)5.3 Switch (15)5.4 Fuse (16)5.5 Series reactor .............................................................................. ( 16)5.6 Discharge coil (17)5.7 Lightning arrester ..................................................................... ( 18)5.8 Conductor and others ................................................................. ( 18)6 Protection devices and switching devices (19)6.1 Protection devices ...................................................................... ( 19)6.2 Switching devices (21)7 Control circuits , signal circuits and measuringinstruments (23)7.1 Control circuits and signal circuits (23)7.2 Measuring instruments (23)8 Arrangement and installation design (25)8.1 General requirements (25)8.2 Arrangement and installation design for shuntcapacitor banks (26)8.3 Arrangement and installation design for seriescapacitor banks (27)9 Fire prevention and ventilation (29)9.1 Fire Prevention (29)9.2 Ventilation (30)Appendix A Calculation of inrush current whenconnecting capacitor banks to the grid (31)Explanation of wording in this code (32)List of quoted standards (33)1 总则1.0.1为使电力工程的并联电容器装置设计中,贯彻国家的技术经济政策,做到安全可靠、技术先进、经济合理和运行检修方便,制定本规范。
无功补偿和并联电容器
无功补偿和并联电容器无功补偿和并联电容器摘要:通过对电路加设并联电容来进行无功功率补偿的原理,以实现节省电能、降低压损、提高供电质量。
关键词:功率因数电容器无功补偿由于矿山企业使用大功率的电机、变压器等电感性设备,它不仅消耗有功功率,还消耗无功功率,因此必须提高用户功率因数,以减少对电源系统的无功功率的消耗。
1、并联电容器在电力系统中的无功补偿方式电容器的补偿具有投资小、有功功率损失小、运行维护方便、故障范围小的特点。
电容器的补偿方式,应以无功就地平衡为原则。
电网的无功负荷主要由用电设备和输变电设备引起的。
除了在比较密集的供电负荷中心集中装设大、中型电容器组,便于中心电网的电压控制和稳定电网的电压质量之外,还应在距用电无功负荷较近的地点装设中、小型电容器组进行就地补偿。
安装电容器进行无功补偿可采取三种形式:集中、分组或个别就地补偿。
(1)集中补偿:在低压配电线路中安装并联电容器组,将其集中安装在变电所的一次或二次侧的母线上。
(2)分组补偿:分组补偿是将电容器组分组安装在车间配电室或变电所各分路的出线上,它可与工厂部分负荷的变动同时投入或切除。
(3)个别就地补偿:在单台用电设备处安装并联电容器,直接对其所需无功功率进行补偿。
电容器补偿其优点:(1)因电容器与电动机直接并联,同时投入或停用,可使无功不倒流,保证用户功率因数始终处于滞后状态,既有利于用户,也有利于电网。
(2)有利于降低电动机起动电流,减少接触器的火花,提高控制电器工作的可靠性。
(3)加装无功补偿设备,不但使功率消耗小,功率因数提高,还可以充分挖掘设备输送功率的潜力。
在确定无功补偿容量值时,应注意两点:(1)在轻负荷时要避免过补偿,倒送无功造成功率损耗增加,也是不经济的。
(2)功率因数越高,每千伏补偿容量减少损耗的作用将变小,通常情况下,将功率因数提高到0.95就是合理补偿。
2、电容器组的保护(1)电容器单台熔丝保护:在每台电容器上都装有单独的熔断器,可避免电容器内部故障击穿短路时油箱爆炸,并波及和影响邻近电容器。
并联电容器无功补偿方案
课程设计并联电容器无功补偿方案设计指导老师:江宁强1010190456尹兆京目录1绪论 (3)1.1引言 (3)1.2无功补偿的提出 (3)1.3本文所做的工作 (4)2无功补偿的认识 (4)2.1无功补偿装置 (4)2.2无功补偿方式 (4)2.3无功补偿装置的选择 (5)2.4投切开关的选取 (5)2.5无功补偿的意义 (7)3电容器无功补偿方式 (7)3.1串联无功补偿 (7)3.2并联无功补偿 (7)3.3确定电容器补偿容量 (8)4案例分析 (8)4.1利用并联电容器进行无功功率补偿,对变电站调压 (8)4.2利用串联电容器,改变线路参数进行调压 (18)4.3利用并联电容器进行无功功率补偿,提高功率因素 (20)5总结 (27)1绪论1.1引言随着现代科学技术的发展和国民经济的增长,电力系统发展迅猛,负荷日益增多,供电容量扩大,出现了大规模的联合电力系统。
用电负荷的增加,必然要求电网系统利用率的提高。
但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,影响发电机的输出功率; 降低有功功率的输出; 影响变电、输电的供电能力; 降低有功功率的容量; 增加电力系统的电能损耗; 增加输电线路的电压降等。
因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。
1.2无功补偿的提出电网输出的功率包括两部分:一是有功功率;二是无功功率。
无功,简单的说就是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。
电机和变压器中的磁场靠无功电流维持,输电线中的电感也消耗无功,电抗器、荧光灯等所有感性电路全部需要一定的无功功率。
为减少电力输送中的损耗,提高电力输送的容量和质量,必须进行无功功率的补偿。
1.3本文所做的工作主要对变电站并联电容器无功补偿作了简单的分析计算,提出了目前在变电站无功补偿实际应用中计算总容量与分组的方法,本文主要作了以下几个方面的工作: 对无功补偿作了简单的介绍,尤其是电容器无功补偿,选取了相关的案例进行了简单的计算和分析。
并联电容器补偿无功功率的作用及方法
并联电容器补偿无功功率的作用及方法
电力电容器作为补偿装置有两种方法:串联补偿和并联补偿。
串联补偿是把电容器直接串联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送力量,降低线路损耗。
这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少采纳。
并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。
这种补偿方法所用的电容器称作并联电容器,用电企业都是采纳这种补偿方法。
按电容器安装的位置不同,通常有三种方式。
1.集中补偿电容器组集中装设在企业或地方总降压变电所的6~10kV母线上,用来提高整个变电所的功率因数,使该变电所的供电范围内无功功率基本平衡。
可削减高压线路的无功损耗,而且能够提高本变电所的供电电压质量。
2.分组补偿将电容器组分别装设在功率因数较低的车间或村镇终端变配电所高压或低压母线上,也称为分散补偿。
这种方式具有与集中补偿相同的优点,仅无功补偿容量和范围相对小些。
但是分组补偿的效果比较明显,采纳得也较普遍。
3.就地补偿将电容器或电容器组装设在异步电动机或电感性用电设备四周,就地进行无功补偿,也称为单独补偿或个别补偿方式。
这种方式既能提高为用电设备供电回路的功率因数,又能改善用电设备的电压质量,对中、小型设备非常适用。
并联电容器无功补偿的配置方法(一)
并联电容器无功补偿的配置方法(一)宁夏电力局马永宁前言采用力电容器并联补偿电网的无功负荷,由于具有单位投资少、电能损耗小、维护简单、搬迁方便等优点,在电力系统中得到广泛的应用。
但是,目前采用的配置原则,大多用限定功率因数法或由经验决定。
这种方法虽然简单易行,但经济效果却不是最合理的。
本文将从并联电容器无功补偿装置(以后简称补偿装置)的改善电压和降低线损这两个主要作用出发,通过理论分析来决定补偿容量的配置和补偿地点的选择,以求得最大经济效益。
这样做,虽然增加了计算工作量,但其经济效益是相当可观的。
本文着重解决三个问题:一是区域性补偿容量如何确定;二是补偿容量如何在配电母线和配电线路上分配;三是在配电线路上如何选择补偿地点。
第一章区域性补偿容量的确定1.1 概述决定一个供电区域的补偿容量,是进行无功补偿规划和安排年度计划的重要依据。
这里所说的“供电区域”是指一个35KV及以上的变电站供电的配电网。
本章将介绍两种计算方法:一种是我国目前常用的经济功率因数法;另一种是陈德裕同志于1977年提出的经济传输无功负荷法。
前者计算简单、结果明确,但是因为忽略因素较多,经济效益差,适合于作为规划设计的粗略估算;后者虽然计算繁琐,但配置合理,经济效益高,应作为安排年度无功补偿计划的依据。
上列两种计算方法,都是从经济效益出发来计算无功补偿容量的,没有考虑电压水平的要求。
因为,解决电压水平问题,除无功补偿外,主要应从改善电网结构来解决,此外还可以选择变压器分接电压、带负荷调压变压器、串联补偿等手段解决电压水平习题。
5 1·2 用经济功率因数法计算区域补偿容量本方法是根据供电区域至电源的电气距离和发电成本不同,采用不同的功率因数要求。
电气距离分为三类七级,第一类负荷为发电厂直配负荷,按距离又分为五级;第二类负荷为经过一次升压和一次降压的负荷;第三类负荷为经过一次升压和两次降压的负荷。
如图1·1所示为各类负荷示意图。
浅谈35kV并联电容器组接线与保护方式的选择
浅谈35kV并联电容器组接线与保护方式的选择摘要:通过对并联电容器组接线方式和几种保护原理的分析,提出了35kV 并联电容器组在风力发电中合理的接线及保护配置方案。
关键词:并联电容器组;不平衡保护;电压差动保护;桥式差电流保护近年来,随着我国风力发电业的不断发展,大范围高压输电网络逐渐形成,系统对无功功率的要求也日益严格。
目前,我国风力发电升压变电站中普遍采用在35kV母线上安装动态无功补偿装置,而并联电容器组作为该装置的一个组成部分,对调整电压和降低线损起着非常重要的作用。
本文拟结合35kV并联电容器组在风电场中的应用,对电容器组的接线、保护方式进行了探讨,以提出合理的保护配置方案。
电容器组的接线方式电容器组的接线通常分为三角形和星形两种方式。
此外,还有双三角形和双星形之分。
三角形接线的电容器直接承受线间电压,任何一台电容器因故障被击穿时,就形成两相短路,故障电流冲击很大,如果不能迅速切除故障,故障电流促使绝缘介质发生分解产生气体,使电容器油箱发生爆炸,并波及相邻的电容器。
现阶段,这种接线方式已很少应用,仅在380V系统中有少量使用。
双星形接线是将两个电容相等的星形接线方式的电容器组并联成一个大的电容器组,两组星形接线的电容器中性点之间连接一台小变比的电流互感器。
这种接线就是利用故障时,在中性点处产生的不平衡电流来保护动作的。
电容器组接线类型如图1所示:图1 电容器组接线类型因此,在高压电力网中,电容器组一般采用星形接线或双星形接线。
在风力发电升压变电站中,35kV并联电容器组采用星形和双星形两种接线方式均能满足要求,当单台电容器容量较小,每相并联台数较多者,可以选择双星形接线;当每相串联段数较多,为简化结构布局,宜采用单星形接线。
电容器组不平衡保护在风电发电中,无功补偿装置优先采用损耗小、投资省、可分组投切、使用灵活、操作维护方便,且响应时间快的并联电容器组。
电容器组不平衡保护指当电容器发生事故后,会引起电容器组内部三相电容不平衡,因电容值不平衡形成的电流差或电压差就构成了电容器组不平衡保护。
无功补偿电容器组安装规范
合同附件无功补偿电容器组安装规范用户在使用、安装、调试爱普科斯无功补偿元器件之前,请务必参照并严格遵守以下规范。
请注意:由于不规范的安装方式,导致元器件在应用过程中损坏,EPCOS 不承担任何质量担保!柜整体结构1.器件放置方式 (如下图,以单柜补偿容量375Kvar (75Kvar×5)为例)柜中,从上至下,安装熔断器、接触器、电抗器、电容器。
功率因数控制器嵌于柜门上方;100022001000侧视图正视图电容器安装于柜体底部,因底部相对温度较低。
电抗器是显著发热源,必须与其他器件保持足够的距离。
2.整柜安装容量限制标准柜体(尺寸:800宽×1000深×2200mm高或1000宽×1000深×2200mm高)中,最大安装容量为400V 接触器投切调谐滤波电容器组:≤ 400Kvar/每面柜;400V 晶闸管投切动态调谐滤波电容器组:≤ 300Kvar/每面柜;注意:①.当总补偿容量高于上述限定时,可以考虑采用主辅柜模式安装或与EPCOS联系。
②.单柜补偿容量过大,可能会由于散热问题,导致元器件使用寿命降低;3.柜内必须安装冷却风扇进行排气散热,通风量约为L(m3/h)=(1.5~2)×补偿量(kvar)。
◆标准柜(1000*1000*2200)单柜安装容量在300Kvar以上的,建议通风量600立方米/小时。
◆标准柜(1000*1000*2200)单柜安装容量在300Kvar以下的,建议通风量400立方米/小时。
柜体后门略高于电抗器的位置安装排风风扇,柜前门下面安装进风风扇(或通风栅)4.柜内器件安装时,水平方向应使用安装梁或支架,以利空气上下流通散热,不要使用整块金属板;电抗器相关注意事项5.电抗器是显著发热源,工作时的温升可达60℃以上(环境温度30℃时,电抗器温度可达90℃),而电容器等器件的使用寿命受环境温度影响较大,其正常工作温度为35℃左右。