计量经济学回归模型实验报告

合集下载

计量经济学实验一 一元回归模型

计量经济学实验一 一元回归模型

实验二一元回归模型【实验目的】掌握一元线性、非线性回归模型的建模方法【实验内容】建立我国税收预测模型【实验步骤】【例1】建立我国税收预测模型。

表1列出了我国1985-1998年间税收收入Y和国内生产总值(GDP)x的时间序列数据,请利用统计软件Eviews建立一元线性回归模型。

一、建立工作文件⒈菜单方式在录入和分析数据之前,应先创建一个工作文件(Workfile)。

启动Eviews软件之后,在主菜单上依次点击File\New\Workfile(菜单选择方式如图1所示),将弹出一个对话框(如图2所示)。

用户可以选择数据的时间频率(Frequency)、起始期和终止期。

图1 Eviews菜单方式创建工作文件示意图图2 工作文件定义对话框本例中选择时间频率为Annual(年度数据),在起始栏和终止栏分别输入相应的日期85和98。

然后点击OK,在Eviews软件的主显示窗口将显示相应的工作文件窗口(如图3所示)。

图3 Eviews工作文件窗口一个新建的工作文件窗口内只有2个对象(Object),分别为c(系数向量)和resid(残差)。

它们当前的取值分别是0和NA(空值)。

可以通过鼠标左键双击对象名打开该对象查看其数据,也可以用相同的方法查看工作文件窗口中其它对象的数值。

⒉命令方式还可以用输入命令的方式建立工作文件。

在Eviews软件的命令窗口中直接键入CREATE命令,其格式为:CREATE 时间频率类型起始期终止期本例应为:CREATE A 85 98二、输入数据在Eviews软件的命令窗口中键入数据输入/编辑命令:DA TA Y X此时将显示一个数组窗口(如图4所示),即可以输入每个变量的数值图4 Eviews数组窗口三、图形分析借助图形分析可以直观地观察经济变量的变动规律和相关关系,以便合理地确定模型的数学形式。

⒈趋势图分析命令格式:PLOT 变量1 变量2 ……变量K作用:⑴分析经济变量的发展变化趋势⑵观察是否存在异常值本例为:PLOT Y X⒉相关图分析命令格式:SCAT 变量1 变量2作用:⑴观察变量之间的相关程度⑵观察变量之间的相关类型,即为线性相关还是曲线相关,曲线相关时大致是哪种类型的曲线说明:⑴SCAT命令中,第一个变量为横轴变量,一般取为解释变量;第二个变量为纵轴变量,一般取为被解释变量⑵SCAT命令每次只能显示两个变量之间的相关图,若模型中含有多个解释变量,可以逐个进行分析⑶通过改变图形的类型,可以将趋势图转变为相关图本例为:SCA T Y X图5 税收与GDP趋势图图5、图6分别是我国税收与GDP时间序列趋势图和相关图分析结果。

计量经济学实验报告之多元回归

计量经济学实验报告之多元回归

X X X学院实验报告第 1 页(1)用eviews得到数据如下:建立回归模型:AHE=-6.631562+0.186713*CLFPRM+0.004974*UNRMR2=0.622402,F=11.53822,P=0.001094,T=(-2.093464)(4.419819)(0.238515)可知城市男性劳动参与率和城市男性失业率与真实的平均小时工资存在正相关关系。

经济意义:说明在其他条件保持不变的情况下,城市男性劳动参与率每增加一个百分点,真实的平均小时工资增加0.186713美元,城市男性失业率每增加百分之一,真实的平均小时工资增加0.004974美元。

(2)用eviews得到数据如下:建立回归模型:AHE=10.60094-0.05345*CLFPRFR2=0.65384,F=28.33262,P=0.000085,T=(18.85195)(-5.32284)可知城市女性劳动参与率与真实的平均小时工资存在负相关关系。

经济意义:说明在其他条件保持不变的情况下,城市女性劳动参与率每增加一个百分点,真实的平均小时工资减少0.05345美元。

(3)用eviews得到数据如下:第 3 页建立回归模型:AHE=157.048-1.919573*CLFPRM-0.232917*UNRMR2=0.91981,F=80.29262,P=0.000,T=(11.69701)(-10.72079)(-2.635153)可知城市男性劳动参与率和城市男性失业率与当前平均小时工资存在显著的负相关关系。

经济意义:说明在其他条件保持不变的情况下,城市男性劳动参与率每增加百分之一,当前平均小时工资减少1.919573美元,城市男性失业率每增加百分之一,当前平均小时工资减少0.232917美元。

(4)用eviews得到数据如下:建立回归模型:AHE=-23.92719+0.595155*CLFPRFR2=0.958337,F=345.0332,P=0.000,T=(-13.33538)(18.57507)可知城市女性劳动参与率与当前平均小时工资存在显著的正相关关系。

《计量经济学》eviews实验报告一元线性回归模型详解

《计量经济学》eviews实验报告一元线性回归模型详解

计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。

2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。

三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。

计量经济学实验报告

计量经济学实验报告

一、实验目的及要求:1、目的利用EVIEWS 实验软件,使学生在实验过程中全面了解和熟悉计量经济学的基本概念,熟悉一元线性回归模型估计的基本程序和基本方法。

2、内容及要求(1) 熟悉EVIEWS实验软件的基本操作程序和方法; (2) 掌握一元线性回归模型基本概念,了解其估计和检验原理 (3) 提交实验报告二、仪器用具:三、实验结果与数据处理:1下面是利用1970-1980年美国数据得到的回归结果。

其中Y 表示美国咖啡消费(杯/日.人),X 表示平均零售价格(美元/磅)。

注:262.2)9(2/=αt ,228.2)10(2/=αt6628.006.42)()1216.0(4795.06911.2ˆ2===-=R t se X Y tt)(值1. 写空白处的数值。

12. 对模型中的参数进行显著性检验。

3. 解释斜率系数1β的含义,并给出其95%的置信区间。

解:(1)1308.221216.06911.2)(00===ββse t0114.006.424795.0)(11-=-==tse ββ(2)用t 检验法分别对模型中的参数0β1β进行显著性水平检验: 在5%的显著性水平下,模型的自由度为11-2=9,且262.2)9(025.0=t 由于262.21308.220>=βt ,故该模型的截距项在统计上是显著的; 同理 262.206.421>=βt ,即斜率系数在统计上也是显著的。

(3)斜率系数4795.01-=β,小于0,在其他条件不变的情况下,咖啡的平均零售价格每增加一个单位,美国咖啡的日消费将平均减少0.4795个单位,说明咖啡的消费量与其平均零售价格呈负相关关系。

1β的95%的置信区间为:]4537.0,5053.0[)]ˆ(ˆ),ˆ(ˆ[12/112/1--+-即ββββααse t se t2美国各航空公司业绩的统计数据公布在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上。

计量经济实验报告多元(3篇)

计量经济实验报告多元(3篇)

第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。

二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。

在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。

本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。

三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。

四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。

2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。

3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。

4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。

5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。

五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。

计量经济学实验报告

计量经济学实验报告

计量经济学实验报告:马艺菡学号:4班级:9141070302任课教师:静文实验题目简单线性回归模型分析一实验目的与要求目的:影响财政收入的因素可能有很多,比如国生产总值,经济增长,零售物价指数,居民收入,消费等。

为研究国生产总值对财政收入是否有影响,二者有何关系。

要求:为研究国生产总值变动与财政收入关系,需要做具体分析。

二实验容根据1978-1997年中国国生产总值X和财政收入Y数据,运用EV软件,做简单线性回归分析,包括模型设定,模型检验,模型检验,得出回归结果。

三实验过程:(实践过程,实践所有参数与指标,理论依据说明等)简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用。

(一)模型设定为研究中国国生产总值对财政收入是否有影响,根据1978-1997年中国国生产总值X和财政收入Y,如图11978-1997年中国国生产总值和财政收入(单位:亿元)1996 66850.5 7407.991997 73452.5 8651.14根据以上数据作财政收入Y 和国生产总值X的散点图,如图2从散点图可以看出,财政收入Y和国生产总值X大体呈现为线性关系,所以建立的计量经济模型为以下线性模型:(二)估计参数1、双击“Eviews”,进入主页。

输入数据:点击主菜单中的File/Open/EV Workfile—Excel—GDP.xls;2、在EV主页界面点击“Quick”菜单,点击“Estimate Equation”,出现“Equation Specification”对话框,选择OLS估计,输入““y c x”,点击“OK”。

即出现回归结果图3;参数估计结果为:Y=857.8375+0.100036iX(67.12578)(0.002172)t=(12.77955)(46.04910)2r=0.991583F=2120.520S.E.=208.5553DW=0.864 0323、在“Equation”框中,点击“Resids”,出现回归结果的图形(图4):剩余值(Residual)、实际值(actual),拟合值(fitted)4、.(三)模型检验1.经济意义检验回归模型为:Y=857.8375+0.100036*X(其中Y为财政收入,iX为国生产总值;)所估计的参数=0.100036,说明国生产总值每增加1亿元,财政收入平均增加0.100036亿元。

计量经济学实验二-一元线性回归模型的估计、检验和预测

计量经济学实验二-一元线性回归模型的估计、检验和预测

目录一、加载工作文件 (7)二、选择方程 (7)1.作散点图 (7)2.进行因果关系检验 (9)三、一元线性回归 (10)四、经济检验 (12)五、统计检验 (13)六、回归结果的报告 (15)七、得到解释变量的值 (15)八、预测应变量的值 (17)实验二一元线形回归模型的估计、检验和预测实验目的:掌握一元线性回归模型的估计、检验和预测方法。

实验要求:选择方程进行一元线性回归,进行经济、拟合优度、参数显著性和方程显著性等检验,预测解释变量和应变量。

实验原理:普通最小二乘法,拟合优度的判定系数R2检验和参数显著性t检验等,计量经济学预测原理。

实验步骤:已知广东省宏观经济部分数据如表2-1所示,要根据这些数据研究和分析广东省宏观经济,建立宏观计量经济模型,从而进行经济预测、经济分析和政策评价。

实验二~实验十二主要都是用这些数据来完成一系列工作。

表2-1 广东省宏观经济数据续上表续上表一、加载工作文件广东省宏观经济数据已经制成工作文件存在盘中,命名为GD01.WF1,进入EViews后选择File/Open打开GD01.WF1。

二、选择方程根据广东数据(GD01.WF1)选择收入法国国内生产总值(GDPS)、财政收入(CS)、财政支出(CZ)和社会消费品零售额(SLC),分别把①CS作为应变量,GDPS作为解释变量;②CZ作为应变量,CS作为解释变量;③SLC作为应变量,GDPS作为解释变量进行一元线性回归分析。

1.作散点图从三个散点图(图2-1~图2~3)可以看出,三对变量都呈现线性关系。

图2-1 图2-2图2-3 2.进行因果关系检验从三个因果关系检验可以看出,GDPS是CS的因;CS不是CZ 的因;GDPS不是SLC的因。

但根据理论CS是CZ的因,GDPS是SLC的因,可能是由于指标设置问题。

所以还是把CS作为应变量,GDPS作为解释变量;CZ作为应变量,CS作为解释变量;SLC作为应变量,GDPD作为解释变量进行一元线性回归分析。

计量经济学实验报告完整版范文

计量经济学实验报告完整版范文
教师
评语
教师
评语
成绩
辽宁工程技术大学上机实验报告
实验名称
计量经济学多元线性回归模型
院系
工商管理
专业
金融
班级
09-2
姓名
于佳琦
学号
日期
6.15
实验
目的
简述本次实验目的:熟悉多元线性回归模型中的解释变量的引入
掌握对计算机过的统计分析和经济分析
实验
பைடு நூலகம்准备
你为本次实验做了哪些准备:了解多元线性回归模型参数的OLS估计,统计检验,点预测以及区间估计,非线性回归的参数估计,受约束回归检验
实验
进度
本次共有3个练习,完成3个。
实验
总结

本次实验的收获、体会、经验、问题和教训:在简单线性回归的基础上引入了多元线性回归模型,操作也较之前更加复杂,最大的障碍在于多重共线性模型数据更多,输入时容易出错,而且软件非汉化版本,很多时候不了解数据的含义,操作也不是很熟练,一般思路是,先用OLS方法进行估计,建立模型,然后进行对模型的检验,理论相对简单,可是检验过程十分复杂,如果不用例题做实验,单纯找数据进行分析,总会有遗忘的影响因素,而导致结果的偏差,所以在选择分析对象的影响因素时考虑周全尤为重要。
实验
进度
本次共有1个练习,完成1个。
实验
总结

本次实验的收获、体会、经验、问题和教训:初步投身于计量经济学,通过利用Eviews软件将所学到的计量知识进行实践,让我加深了对理论的理解和掌握,直观而充分地体会到老师课堂讲授内容的精华之所在。在实验过程中我们提高了手动操作软件、数量化分析与解决问题的能力,还可以培养我在处理实验经济问题的严谨的科学的态度,并且避免了课堂知识与实际应用的脱节。虽然在实验过程中出现了很多错误,但这些经验却锤炼了我们发现问题的眼光,丰富了我们分析问题的思路。通过这次实验让我受益匪浅。

实验3计量经济学实验一元线性回归模型

实验3计量经济学实验一元线性回归模型
ˆ0~N(0,,n(2Xi XX i2 )2)
ˆ1 ~N(1,,
2
) (Xi X)2
三、知识点回顾
n 4、最小二乘估计量的性质及分布
随机干扰项 i 的方差 2 的估计 ˆ 0 和 ˆ 1 的方差表达式中都包含随机干扰项 i 的方差 2
,由于随机干扰项 i 实际上是无法观察测量的,因此其
量 Y 的平均值。
三、知识点回顾
1、四种重要的关系式
(2)总体回归函数(方程): E(YXi)01Xi
其中总体回归参数真值 0 , 1 是未知的;总体回归方程也是 未知的。
(3)样本回归函数(方程): Yˆi ˆ0 ˆ1Xi
在实际应用中,从总体中抽取一个样本,进行参数估计,从 而获得估计的回归方程,系数 ˆ 0 , ˆ1 为估计的回归系数;用 这个估计的回归方程近似替代总体回归方程,其中估计的回 归系数 ˆ 0 , ˆ1 是总体参数真值 0 , 1 的估计值;基于估计方程 计算的 Y ˆ i 就为 E (Y X i ) 的估计值; 由于我们从来就无法知道真实的回归方程,因此计量经济学 分析注重的是这个估计的回归方程和估计的回归系数;
据;普通最小二乘法给出的判断拟合程度的标准是:残差平
方和最小,即:m in Q ne i2n(Y i Y ˆi)2n Y i (ˆ0ˆ1 X i) 2
i 1
i 1
i 1
最小二乘法就是:在使上述残差平方和Q 达到最小时,确定
模型中的参数 ˆ 0 和 ˆ 1 的值,或者说在给定观测值之下,选
择出 ˆ 0 , ˆ1 的值,使残差平方和Q 达到最小。
接近,这也说明OLS估计值是非常有价值的。
三、知识点回顾
n 4、最小二乘估计量的性质及分布

计量经济学实验报告一元线性回归模型实验

计量经济学实验报告一元线性回归模型实验

2013-2014第1学期计量经济学实验报告实验(一):一元线性回归模型实验学号姓名:专业:国际经济与贸易选课班级:实验日期:2013年12月2日实验地点:K306实验名称:一元线性回归模型实验【教学目标】《计量经济学》是实践性很强的学科,各种模型的估计通过借助计算机能很方便地实现,上机实习操作是《计量经济学》教学过程重要环节。

目的是使学生们能够很好地将书本中的理论应用到实践中,提高学生动手能力,掌握专业计量经济学软件EViews的基本操作与应用。

利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。

【实验目的】使学生掌握1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换。

2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测【实验内容】1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换;2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。

实验内容以下面1、2题为例进行操作。

1、为了研究深圳地方预算中财政收入与国内生产总值关系,运用以下数据:(1)建立深圳的预算内财政收入对GDP的回归;(2)估计模型的参数,解释斜率系数的意义;(3)对回归结果进行检验;(4)若2002年的国内生产总值为3600亿元,试确定2002年财政收入的预测值和预α=)。

测区间(0.052、在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上,公布有美国各航空公司业绩的统计数据。

航班正点准时到达的正点率和此公司每10万名乘客中投诉1(1)做出上表数据的散点图(2)依据散点图,说明二变量之间存在什么关系?(3)描述投诉率是如何根据航班正点率变化,并求回归方程。

一元线性回归模型的参数估计实验报告

一元线性回归模型的参数估计实验报告

山西大学实验报告实验报告题目:计量经济学实验报告学院:专业:课程名称:计量经济学学号:学生姓名:教师名称:崔海燕上课时间:一、实验目的:掌握一元线性回归模型的参数估计方法以及对模型的检验和预测的方法。

二、实验原理:1、运用普通最小二乘法进行参数估计;2、对模型进行拟合优度的检验;3、对变量进行显著性检验;4、通过模型对数据进行预测。

三、实验步骤:(一)建立模型1、新建工作文件并保存打开Eviews软件,在主菜单栏点击File\new\workfile,输入start date 1978和end date 2006并点击确认,点击save键,输入文件名进行保存。

2输入并编辑数据在主菜单栏点击Quick键,选择empty\group新建空数据栏,先输入被解释变量名称y,表示中国居民总量消费,后输入解释变量x,表示可支配收入,最后对应各年分别输入数据。

点击name键进行命名,选择默认名称Group01,保存文件。

得到中国居民总量消费支出与收入资料:年份X Y19786678.83806.719797551.64273.219807944.24605.5198184385063.919829235.25482.4198310074.65983.21984115656745.7198511601.77729.2198613036.58210.9198714627.788401988157949560.5198915035.59085.5199016525.99450.9199118939.610375.8199222056.511815.3199325897.313004.7199428783.413944.2199531175.415467.9199633853.717092.5199735956.218080.6199838140.919364.119994027720989.3200042964.622863.92001 46385.4 24370.1 2002 51274 26243.2 2003 57408.1 28035 2004 64623.1 30306.2 2005 74580.4 33214.4 2006 85623.1 36811.2注:y 表示中国居民总量消费 x 表示可支配收入3、 画散点图,判断被解释变量与解释变量之间是否为线性关系在主菜单栏点击Quick\graph 出现对话框,输入 “x y ”,点击确定。

EViews计量经济学实验报告-简单线性回归模型分析

EViews计量经济学实验报告-简单线性回归模型分析

时间地点实验题目简单线性回归模型分析一、实验目的与要求:目的:影响财政收入的因素可能有很多,比如国内生产总值,经济增长,零售物价指数,居民收入,消费等。

为研究国内生产总值对财政收入是否有影响,二者有何关系。

要求:为研究国内生产总值变动与财政收入关系,需要做具体分析。

二、实验内容根据1978-1997年中国国内生产总值X和财政收入Y数据,运用EV软件,做简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用,得出回归结果。

三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用。

(一)模型设定为研究中国国内生产总值对财政收入是否有影响,根据1978-1997年中国国内生产总值X 和财政收入Y,如图1:1978-1997年中国国内生产总值和财政收入(单位:亿元)根据以上数据,作财政收入Y 和国内生产总值X 的散点图,如图2:从散点图可以看出,财政收入Y 和国内生产总值X 大体呈现为线性关系,所以建立的计量经济模型为以下线性模型:01i i i Y X u ββ=++(二)估计参数1、双击“Eviews ”,进入主页。

输入数据:点击主菜单中的File/Open /EV Workfile —Excel —GDP.xls;2、在EV 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation Specification ”对话框,选择OLS 估计,输入“y c x ”,点击“OK ”。

即出现回归结果图3:图3. 回归结果Dependent Variable: Y Method: Least Squares Date: 10/10/10 Time: 02:02 Sample: 1978 1997 Included observations: 20Variable Coefficient Std. Error t-Statistic Prob. C 857.8375 67.12578 12.77955 0.0000 X0.1000360.00217246.049100.0000R-squared 0.991583 Mean dependent var 3081.158 Adjusted R-squared 0.991115 S.D. dependent var 2212.591 S.E. of regression 208.5553 Akaike info criterion 13.61293 Sum squared resid 782915.7 Schwarz criterion 13.71250 Log likelihood -134.1293 F-statistic 2120.520 Durbin-Watson stat0.864032 Prob(F-statistic)0.000000参数估计结果为:i Y = 857.8375 + 0.100036i X(67.12578) (0.002172)t =(12.77955) (46.04910)2r =0.991583 F=2120.520 S.E.=208.5553 DW=0.8640323、在“Equation ”框中,点击“Resids ”,出现回归结果的图形(图4):剩余值(Residual )、实际值(Actual )、拟合值(Fitted ).(三)模型检验1、 经济意义检验回归模型为:Y = 857.8375 + 0.100036*X (其中Y 为财政收入,i X 为国内生产总值;)所估计的参数2ˆ =0.100036,说明国内生产总值每增加1亿元,财政收入平均增加0.100036亿元。

计量经济学实验报告

计量经济学实验报告

计量经济学实验报告实验一:一元线性回归模型题目:已知某城镇居民年人均可支配收入X,研究它与人均消费性支出Y之间的关系。

实验目的:通过了解19805年~1998年的样本观测值,得到一元线性回归模型、以此得到1999、2000年的人均消费性支出的预测值。

实验时间:10月12日(星期三)实验地点:科技楼3楼实验内容:1,主菜单-File―New-Workfile打开工作文件范围选择框,选择Annual,分别输入1980,20002,主菜单-Quick-Sample在打开的当前的样本区间选择框中分别输入1980,1998。

3,主菜单-Quick-Empty Group打开空白表格数据窗口,分别输入变量Y,X的数据。

4,主菜单-Quick-Estimate Equation打开估计模型对话框,选择Least Squares,输入Y CX。

下面是Eviews的估计结果:得到回归方程为:Y =283.84+0.51X5,主菜单-Quick-Sample在打开的当前样本区间选择框中分别输入1980,20006,主菜单-Quick-Empty Group编辑变量X的数据,输入X1999,X2000年的实际值。

在回归模型估计结果显示窗口的命令行中,单击Forecast命令,预测结果变量名的缺省选择为YF,选择静态预测,点击ok。

得到1999,2000年的城镇居民年人均消费性支出预测值分别为1354.89和1424.05.实验二:二元线性回归方程模型实验目的:通过了解学生用于购买书籍及课外读物的支出与本人受教育年限和其家庭收入水平有关,了解预测当学生的受教育年限为10年,家庭月可支配收入为480元时,该学生全年购买书籍以及课外读物的支出。

实验时间:10月26日(星期三)实验地点:科技楼3楼实验内容:1,主菜单-File―New-Workfile打开工作文件范围选择框,选择Integer date,分别输入1,192,主菜单-Quick-Sample在打开的当前的样本区间选择框中分别输入1,18。

计量经济学实验报告回归分析

计量经济学实验报告回归分析

计量经济学实验报告回归分析计量经济学实验报告:回归分析一、实验目的本实验旨在通过运用计量经济学方法,对收集到的数据进行分析,研究自变量与因变量之间的关系,并估计回归模型中的参数。

通过回归分析,我们可以深入了解变量之间的关系,为预测和决策提供依据。

二、实验原理回归分析是一种常用的统计方法,用于研究自变量与因变量之间的线性或非线性关系。

在回归分析中,我们通过最小二乘法等估计方法,得到回归模型中未知参数的估计值。

根据估计的参数,我们可以对因变量进行预测,并分析自变量对因变量的影响程度。

三、实验步骤1.数据收集:收集包含自变量与因变量的数据集。

数据可以来自数据库、调查、实验等。

2.数据预处理:对收集到的数据进行清洗、整理和格式化,以确保数据的质量和适用性。

3.模型选择:根据问题的特点和数据的特性,选择合适的回归模型。

常见的回归模型包括线性回归模型、多元回归模型、岭回归模型等。

4.模型估计:运用最小二乘法等估计方法,对选择的回归模型进行估计,得到模型中未知参数的估计值。

5.模型检验:对估计后的模型进行检验,以确保模型的适用性和可靠性。

常见的检验方法包括残差分析、拟合优度检验等。

6.预测与分析:根据估计的模型参数,对因变量进行预测,并分析自变量对因变量的影响程度。

四、实验结果与分析1.数据收集与预处理本次实验选取了某网站的销售数据作为样本,数据包含了商品价格、销量、评价等指标。

在数据预处理阶段,我们剔除了缺失值和异常值,以确保数据的完整性和准确性。

2.模型选择与估计考虑到商品价格和销量之间的关系可能存在非线性关系,我们选择了多元回归模型进行建模。

采用最小二乘法进行模型估计,得到的估计结果如下:销量 = 100000 + 10000 * 价格 + 5000 * 评价 + 随机扰动项3.模型检验对估计后的模型进行残差分析,发现残差分布较为均匀,且均在合理范围内。

同时,拟合优度检验也表明模型对数据的拟合程度较高。

计量经济学Eviews简单线性回归模型的建立与分析应用实验报告

计量经济学Eviews简单线性回归模型的建立与分析应用实验报告

实验一:简单线性回归模型的建立与分析应用【实验目的】1、熟悉计量经济学软件包EViews的界面和基本操作;2、掌握计量经济学分析实际经济问题的具体步骤;3、掌握简单线性回归模型的参数估计、统计检验、预测的基本操作方法;4、理解简单线性回归模型中参数估计值的经济意义。

【实验类型】综合型【实验软硬件要求】计量经济学软件包EViews、微型计算机【实验内容】为研究深圳市地方预算内财政收入(Y)与地区生产总值(X)的关系,建立简单线性回归模型,现根据深圳市统计局网站的相关信息,得到统计数据如下表:请按照下列步骤完成实验一,每个步骤要写出操作过程:(1)打开EViews,新建适当的工作文件夹;打开Eviews后,依次点击File-New-Workfile,新建一个时间序列数据(Dated-regular frequencied)类型的文件,频率选择年度(Annual),键入起止日期1990-2008(如图一),点击ok,新建工作文件夹完成(如图二)(图一)(图二)(2)在工作文件夹中新建变量X和Y,并输入数据;依次点击Objects-New Object,对象类型选择序列(Series),并输入序列名Y(如图三),点击OK,重复以上操作,新建系列对象X。

新建系列对象完成后如(图四)按住ctrl并同时选定X和Y,用鼠标右击选择open—as group,点击Edit +/-开始编辑,输入数据,数据输入完毕再点击Edit+/-一次。

数据输入后如(图五)。

(图三)(图四)(图五)(3)生成X和Y的自然对数序列,保存在工作文件夹中,命名为lnX和lnY;依次点击Objects-Generate Sereies,出现Generate Series by Equation 窗口,在Enter equation窗口中输入公式:lnY=log(Y)点击ok,重复以上操作,输入:lnX=log(X) 创建序列lnX。

(如图六)(图六)(4)求X和Y的描述统计量的值,写出操作过程并画出相应表格;依次点击Quick-Group Statistics—Descriptive Statistics-Common sample,打开Series List窗口,输入x y,点击ok,输出结果(如图七)(图七)(5)作出X和Y的散点图,写出操作过程并画出相应图像,并判断模型是否接近于线性形式;依次点击Quick-Graph,打开Graph Options窗口,在Specific 中选择Scatter(散点图) (如图八)点击OK,得到散点图(如图九)(图八)由散点图可以看出模型接近线性形式(图九)(6) 用OLS 法对模型i i i u X Y ++=21ββ做参数估计,将估计结果保存在工作文件夹中,命名为eq01,写出操作过程和回归分析报告,并解释斜率的经济含义;在窗口空白处输入:ls y c x ,回车,得到结果如图回归分析报告:根据输出结果可得Ŷi = 26.02096 + 0.088820Xi (14.80278) (0.004356) t= (1.757843) (20.38986) R 2 = 0.960716 F=415.7464 D.W=0.626334 n=19 斜率的经济含义:斜率为0.088820,表示地区生产总值每增加1亿元,地方预算内财政收入平均来说增加0.088820亿元(7) 用OLS 法对模型i i i u X Y ++=ln ln 21ββ做参数估计,将估计结果保存在工作文件夹中,命名为eq02,写出操作过程和回归分析报告,并解释斜率 的经济含义;在主窗口空白处输入:ls lny c lnx ,回车,结果如图回归分析报告:根据输出结果可得lny = -1.272730 + 0.873867lnx(0.238775) (0.032394) t= (-5.330249) (26.9761) R 2 = 0.977172 F=727.7097 D.W= 0.811127 n=19 斜率的经济含义:斜率为0.873867,表示地区生产总值每增加1亿元,地方预算内财政收入平均来说增加0.0873867亿元(8) 将保存工作文件夹保存在桌面,文件名为test1.wfl ;依次点击File-Save As 将文件保存在桌面,命名为test1.wfl (9) 对eq01的估计结果做经济意义检验和统计检验(05.0=α),估计的效果如何?经济意义检验:x 的系数β2的估计值为0.088820,说明地区生产总值每增加1亿元,地方预算内财政收入平均来说增加0.088820亿元,该值处于(0,1)符合预期。

计量经济学 实验3 多元回归模型

计量经济学 实验3 多元回归模型

目录目录 (1)一、建立多元线性回归模型 (3)(一) 建立包括时间变量的三元线性回归模型; (3)1. 建立工作文件:CREATE A 78 94 (3)2. 输入统计资料:DATA Y L K (3)3. 生成时间变量t:GENR T=@TREND(77) (3)4. 建立回归模型:LS Y C T L K (3)(二) 建立剔除时间变量的二元线性回归模型; (4)(三) 建立非线性回归模型——C-D生产函数。

(5)二、比较、选择最佳模型 (8)(一) 回归系数的符号及数值是否合理; (8)(二) 模型的更改是否提高了拟合优度; (8)(三) 模型中各个解释变量是否显著; (8)(四) 残差分布情况 (8)实验三多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。

【实验内容】建立我国国有独立核算工业企业生产函数。

根据生产函数理论,生产函数的基本形式为:()ε,tY=。

其中,L、K分别为生产过程中投入的劳动与资金,fL,K,时间变量t反映技术进步的影响。

表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。

资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、 建立多元线性回归模型(一) 建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:1. 建立工作文件: CREATE A 78 942. 输入统计资料: DATA Y L K3. 生成时间变量t : GENR T=@TREND(77)4. 建立回归模型: LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。

图3-1 我国国有独立核算工业企业生产函数的估计结果 因此,我国国有独立工业企业的生产函数为:K L t y 7764.06667.06789.7732.675ˆ+++-= (模型1)t =(-0.252) (0.672) (0.781) (7.433)9958.02=R 9948.02=R 551.1018=F 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.6667,资金的边际产出为0.7764,技术进步的影响使工业总产值平均每年递增77.68亿元。

多元线性回归模型实验报告 计量经济学

多元线性回归模型实验报告 计量经济学

多元线性回归模型实验报告计量经济学多元线性回归模型是一种比较常见的经济学建模方法,其可用于对多个自变量和一个因变量之间的关系进行分析和预测。

在本次实验中,我们将使用一个包含多个自变量的数据集,对其进行多元线性回归分析,并对分析结果进行解释。

数据集介绍本次实验使用的数据集来自于UCI Machine Learning Repository,数据集包含有关汽车试验的多个自变量和一个连续因变量。

数据集中包含了204条记录,其中每条记录包含了一辆汽车的14个属性,分别是:MPG(燃油效率),气缸数(Cylinders)、排量(Displacement)、马力(Horsepower)、重量(Weight)、加速度(Acceleration)、模型年(Model Year)、产地(Origin)等。

模型建立在进行多元线性回归分析之前,我们首先需要对数据进行预处理。

为了确保数据的可用性,我们需要先检查数据是否存在缺失值和异常值。

如果有,需要进行相应的处理,以确保因变量和自变量之间的关系受到了正确地分析。

在对数据进行预处理之后,我们可以使用Python中的statsmodels包来对数据进行多元线性回归分析。

具体建模过程如下:```import statsmodels.api as sm# 准备自变量和因变量数据X = data[['Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin']]y = data['MPG']# 添加常数项X = sm.add_constant(X)# 拟合线性回归模型model = sm.OLS(y, X).fit()# 输出模型摘要print(model.summary())```在上述代码中,我们首先通过data[['Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin']]选择了所有自变量列,用于进行多元线性回归分析;然后,我们又通过`sm.add_constant(X)`,向自变量数据中添加了一列全为1的常数项,用于对截距进行建模;最后,我们使用`sm.OLS(y, X).fit()`来拟合线性回归模型,并使用`model.summary()`输出模型摘要。

计量经济学实验报告

计量经济学实验报告

武汉轻工大学经济与管理学院实验报告> ¹éÄ£Ðͺ¯ÊýÐÎʽ°¸Àý£¨ÃÀ¹úÈË¿Ú£©.dta", clear . use "C:\Documents and Settings\Administrator\×ÀÃæ\¼ÆÁ¿¾­¼ÃѧÉÏ»ú°¸Àýdta Îļþ\»Ø. clear. g lny=ln(y)clear_cons 1506.244 188.0096 8.01 0.000 1080.937 1931.552income .0589824 .0061174 9.64 0.000 .0451439 .072821sex -228.9868 107.0582 -2.14 0.061 -471.1694 13.19576food Coef. Std. Err. t P>|t| [95% Conf. Interval]Total 4018118.25 11 365283.477 Root MSE = 178.77Adj R-squared = 0.9125Residual 287626.106 9 31958.4562 R-squared = 0.9284Model 3730492.14 2 1865246.07 Prob > F = 0.0000F( 2, 9) = 58.36Source SS df MS Number of obs = 12. reg food sex income . g incomesex=incomereg food sex income sexincome 实验表明:差别截距与差别斜率都不是显著的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回归模型分析报告
背景意义:
教育是立国之本,强国之基。

随着改革开放的进行、经济的快速发展和人们生活水平的逐步提高,“教育”越来越受到人们的重视。

一方面,人均国内生产总值的增加与教育经费收入的增加有着某种联系,而人口的增长也必定会对教育经费收入产生影响。

本报告将从这两个方面进行分析。

我国1991年~2013年的教育经费收入、人均国内生产总值指数、年末城镇人口数的统计资料如下表所示。

试建立教育经费收入Y关于人均国内生产总值指数X1和年末城镇人口数X2的回归模型,并进行回归分析。

年份教育经费收入
Y(亿元)
人均国内生产总值指数
X1(1978年=100)
年末城镇人口数
X2(万人)
199131203
199232175
199333173
199434169
199535174
199637304
199739449
199841608
199943748
200045906
200148064
200250212
200352376
200454283
200556212
200658288
200760633
200862403
200964512
201066978
201169079
201271182
201373111
资料来源:中经网统计数据库。

根据经济理论和对实际情况的分析可以知道,教育经费收入Y依赖于人均国内生产总值指数X1和年末城镇人口数X2的变化,因此我们设定回归模型为
Y Y=Y0+Y1Y1Y+Y2Y2Y+Y Y
应用EViews的最小二乘法程序,输出结果如下表
ŶY=5058.835+28.7491Y1Y−0.3982Y2Y
R2= Y̅̅̅2= F=
异方差的检验
1.Goldfeld-Quandt检验
X1和X2的样本观测值均已按照升序排列,去掉中间X1和X2各5个观测值,用第一个子样本回归:
ŶY=−3510.668+5.9096Y1Y+0.0839Y2Y SSE1=
用第二个子样本回归:
ŶY=178636.6+107.5861Y1Y−4.7488Y2Y SSE2=6602898
H0=u t具有同方差,
H1=u t具有递增型异方差
构造F统计量。

F=SSE2
SSE1=6602898
45633.64
=>(9,9) =
所以拒绝原假设,计量模型的随机误差项存在异方差
2.White检验
因为模型中含有两个解释变量,辅助回归式一般形式如下
ŶY2=Y0+Y1Y Y1+Y2Y Y2+Y3Y Y12+Y4Y Y22+Y5Y Y1Y Y2+Y Y 辅助回归式估计结果如下
ŶY2=−−40478.23Y Y1+1067.432Y Y2−18.9196Y Y12−0.0202Y Y22
+1.3633Y Y1Y Y2
因为TR2=>Y0.12 (5)=
该回归模型中存在异方差
3.克服异方差
以1/X1做加权最小二乘估计,
估计的结果还原变量,得
ŶY=3878.201+27.0246Y1Y−0.3462Y2Y 再用上表对应的残差做White检验
由上表可知TR2=<Y0.12 (5)=,说明以及克服了异方差性
自相关的检验
1.DW检验
已知DW=,若给定α=,查表得DW检验的临界值d L=,d U=。

因为DW=<,根据判别规则,认为误差项u t存在严重的正自相关。

2.LM检验
LM=>Y0.05
2(2)=5.991
所以误差项存在二阶自相关
3.克服自相关
首先估计自相关系数
Ŷ=1−YY
2
=1−
0.47
2
=0.765
对原变量做广义差分变换。


GDY t=
GDX1t=
GDX2t=
以GDY t,GDX1t,GDX2t(1992~2013年)为样本再次回归
得到GDY t=+,介于d L=,d U=之间,所以不能判别u t是否存在一阶自相关,自相关性没
有消除
由上一步LM 统计量知误差项存在二阶自相关,采用直接拟合的估计结果是, Y ̂Y =2610.313+24.9083Y 1Y −0.2899Y 2Y +1.3898Y ̂Y −1−1.1527Y ̂Y −2+Y ̂Y
DW= 介于d U =和4- d U =,依据判别规则,误差项已消除自相关
多重共线性的检验
1. Klein 判别法
因为|r x1 x2|=<R 2=,所以不存在多重共线性
2. 修正Frisch 法
用每个解释变量对被解释变量做最小二乘回归
Y ̂=−6097.333+18.0786Y 1
R2= Y 2̅̅̅̅=
Y ̂=−21977.09+0.6147Y 2
R2= Y 2̅̅̅̅=
取第一个方程为基本回归方程,引入X 2,对Y 做关于X 1 和X 2的最小二乘回归,
Y ̂=5058.835+28.7491Y 1−0.3982Y 2 R2= Y 2̅̅̅̅=
可以看出,加入X 2后,R2和 Y
2̅̅̅̅均有所增加,X 1系数显着性不受影响,所以在模型中保留X 2
综上:
估计的回归模型为
Y ̂Y =2610.313+24.9083Y 1Y −0.2899Y 2Y +1.3898Y ̂Y −1−1.1527Y ̂Y −2+Y ̂Y 模型总显着性的F 检验
H 0=β1=β2=⋯=βY =0
H 1=βY 不全为零
F=> (2,17) =,拒绝H 0,总体回归方程存在显着的线性关系
模型单个回归参数显着性的t 检验
由上表看出,截距项的t 检验未通过,接受H 0,β0=0
ŶY=2610.313+24.9083Y1Y−0.2899Y2Y+1.3898ŶY−1−1.1527ŶY−2+ŶY ŶY=22.2478Y1Y−0.1953Y2Y+1.4974ŶY−1−1.1726ŶY−2+ŶY
检验若干线性约束条件是否成立的F检验
假设原假设β1=β2=0
因为F=远远大于临界值F(2,17)=,所以拒绝原假设,不能从模型中删除X1和X2似然比(LR)检验
LR=>Y2(2)=,所以推翻原假设。

结论是不能从模型中删除解释变量X1和X2
JB正态分布检验
因为JB=<Y2(2)=,所以误差项服从正态分布。

Granger因果性检验
因为F=< (2,17)=,所以接受原假设
X2是X1变化的Granger原因。

因为F=< (2,17)=,所以接受原假设
X1是X2变化的Granger原因。

相关文档
最新文档