知识点-生物膜的流动镶嵌模型
课件4:4.2 生物膜的流动镶嵌模型
新的发现:
随着新技术的运用,科学家发现膜蛋白并不是全部 铺在脂质的表面,有的蛋白质是镶嵌在脂质双分子 层中的。
有什么证据说明细胞膜不是静止的呢?
[资料六]
时间:1970年(探究细胞膜的结构特性) 人物:Larry Frye等 实验:将人和鼠的细胞表面的蛋白分别用不同的荧光标记后, 让两种细胞融合,杂交细胞的一半发红色荧光、另一半发绿色 荧光,放置一段时间后发现两种荧光抗体均匀分布。
蛋白质分子有的镶嵌在磷脂双分子层表面,有的部分 或全部嵌入磷脂双分子层中,有的横跨整个磷脂双 分子层。(体现了膜结构内外的不对称性)
生物膜的特点
❖ 结构特点: 具有一定的流动性
❖ 功能特点: 具有选择透过性
课堂总结
主要 成分
结构
结构
细
模型
胞
膜
磷脂、蛋白质 (还有糖蛋白架:磷脂双分子层
例题
使用下列哪种物质处理会使细胞失去识别能力( C )
A . 核酸酶 C. 糖水解酶
B .龙胆紫 D .淀粉酶
5、磷脂分子和大多数蛋白质是可以运动的,体现 了膜的流动性(结构特点)
(1)磷脂分子的运动性 (2)膜蛋白的运动性
流动镶嵌模型的基本内容: 1、膜的组成成分: 主要是磷脂和蛋白质,还有少量的糖类。 2、膜的基本支架: 磷脂双分子层。 3、蛋白质分子的位置:
空气
空气
水
水
结论:细胞膜中的脂质分子排列成连续的两层
P66思考与讨论 磷脂是一种由甘油、脂肪酸和磷酸所 组成的分子,磷酸“头”部是亲水的, 脂肪酸“尾”部是疏水的。
亲水头部
疏水尾部
《生物流动镶嵌模型》课件
疾病。
细胞生物学研究
该模型为研究细胞膜上的物质 运输、信号转导等提供了理论
基础。
生物工程
在生物工程中,该模型用于理 解膜蛋白的构象和功能,以优 化生物反应器的设计和操作。
生物膜的结构与功能
结构
生物膜主要由脂质双分子层构成,其中镶嵌有蛋白质和糖类。脂质分 子可以自由移动,而蛋白质分子则以不同的方式固定在膜中。
光学显微镜观察
总结词
光学显微镜观察是通过观察生物膜的形态和结构,来间接推断生物膜分子运动情 况的技术。
详细描述
光学显微镜可以观察到细胞和细胞器的形态和结构,通过观察生物膜的形态变化 和细胞器的运动情况,可以间接推断出生物膜分子的运动情况。例如,通过观察 细胞膜的流动性,可以推断出膜蛋白和膜脂的流动性。
X射线晶体学与冷冻电镜技术
总结词
X射线晶体学与冷冻电镜技术是通过分析生物膜成分的晶体结构和电镜图像,来研究生物膜分子结构 和运动情况的技术。
详细描述
X射线晶体学与冷冻电镜技术的基本原理是,通过分析生物膜成分的晶体结构和电镜图像,可以获取 生物膜分子的结构和形态信息。通过比较不同状态下生物膜分子的结构和形态变化,可以推断出生物 膜分子的运动情况和相互关系。
具有重要意义。
03
生物膜的运输与功能
物质跨膜运
物质跨膜运输是指生物膜允许一些物质通过,而阻止其他物质通过的特 性。
物质跨膜运输的方式包括被动运输和主动运输。被动运输是物质顺浓度 梯度运输,不需要消耗能量;主动运输是物质逆浓度梯度运输,需要消
耗能量。
物质跨膜运输的机制包括载体介导的跨膜运输和通道介导的跨膜运输。 载体介导的跨膜运输需要载体蛋白的参与,通道介导的跨膜运输需要通 道蛋白的参与。
高中生物膜的流动镶嵌模型知识总结 新课标 人教版 必修1
高中生物膜的流动镶嵌模型知识总结新课标人教版必修1 (一)对生物膜结构的探索历程1.19世纪末,欧文顿提出:膜是由脂质组成的。
2.20世纪初,荷兰科学家提出:细胞膜中的脂质分子必为连续的两层。
3.1959年,罗伯特森提出生物膜的模型:蛋白质——脂质——蛋白质三层结构构成,并描述为静态结构。
4.1970年,科学家通过实验证明细胞膜具有流动性。
5.1972年,桑格和尼克森提出流动镶嵌模型。
(二)流动镶嵌模型的基本内容1.膜是由蛋白质和脂类组成的。
2.膜的基本支架:磷脂双分子层。
该支架具有流动性。
3.蛋白质分子有的镶嵌在磷脂双分子层表面,有的嵌入其中间,有的横跨整个磷脂双分子层,大多数蛋白质分子是可以运动的。
4.膜的结构特点:流动性。
5.膜的功能特点:选择透过性。
本节内容包括:①对生物膜结构的探索历程②流动镶嵌模型的基本内容。
本节内容充分体现了生物体结构与功能的适应。
(1)细胞膜的成分主要是蛋白质和脂类,其中,蛋白质约占膜干重的20%~70%,脂类约占30%~80%,各种膜所含蛋白质和脂类的比例同膜的功能有密切关系,功能活动较旺盛的细胞,其蛋白质的含量高,因为膜的功能主要由蛋白质来承担,此外,细胞膜中还有10%左右的糖类,它们与蛋白质或脂类结合成糖蛋白或糖脂,分布在细胞膜的外表面,与细胞表面的识别有密切关系。
(2)构成细胞膜的基本骨架是磷脂双分子层,蛋白质分子覆盖在磷脂双分子层表面,或贯穿在磷脂双分子层之间,或镶嵌在磷脂双分子层当中。
(3)结构特点:组成细胞膜的磷脂分子和蛋白质分子大都是可以运动的,这种结构特点,使细胞膜具有一定的流动性。
(4)细胞膜的功能:一是保护作用,包括支持、识别、免疫;二是控制物质进出细胞,包括吸收、分泌、排泄等。
学习本节知识,要注意用“结构与功能相适应”的观点来分析细胞膜的结构与其功能之间的关系。
【例题】根据细胞膜的化学成分和结构特点,分析下列材料并回答问题:(1)1895年,Overton在研究各类未受精卵细胞的透性时,发现脂溶性物质容易透过细胞膜,反之,则比较困难,这表明组成细胞膜的主要成分中有(2)1925年,Gorter Grendel用丙酮提取红细胞膜的类脂,它在空气一水面上展开时,这个单层分子的面积相当于原来红细胞表面积的两倍油此可以认为细胞膜由组成。
4.2 生物膜的流动镶嵌模型
▲
资料2
时 实 结 间:20世纪初 验:科学家对哺乳动物红细胞的细胞膜进行了化学分析 论: 膜的主要成分是蛋白质和脂质(磷脂)
资料3
时 间:1925年 科学家:荷兰科学家Gorter和Grendel 实 验:从红细胞膜中提取脂质,在空气—水界面上铺 展成单分子层 测得单分子层的面积恰为红细胞表面积的两倍 现 象: 得出结论: 细胞膜中的脂质分子必然排列为连续的两层
嵌入
镶
横跨
4、在细胞膜的外表,有一层由细胞膜上的 蛋白质与多糖结合形成的糖蛋白,叫做糖被。 有些多糖与磷脂分子结合形成糖脂。
糖蛋白的作用
1.有保护和 润滑作用; 2.与细胞识 别、信息交 流、免疫反 应、血型决 定等有关。
5.磷脂分子和大多数蛋白质是可以运动的
------体现了细胞膜的流动性
二、生物膜的流动镶嵌模型的基本内容
载体种类、数量
选择性。
流动性与选择透过性的关系 (1)区别:流动性是生物膜的结构特点, 选择透过性是生物膜的功能特性。 (2)联系:流动性是选择透过性的基础,膜只有具有流动 性,才能实现选择透过性。膜的流动性和选择透过性都是 活细胞的特性,死细胞将失去流动性和膜的选择透过性。
概念图
生物膜
结构特点
放置一段时间后发现两种颜色的荧光均匀分布
结
论: 细胞膜具有流动性
时间:1972年
人物:桑格和 尼克森
提出:
流动镶嵌模型
对生物膜结构的探索历程
时间
19世纪末
科学家
欧文顿
科学实验
假说或结论
用500多种物质对植物细胞进行 膜是由脂质组 上万次的通透性实验 成的
20世纪初
从哺乳动物红细胞中分离出细 膜的主要成分是 某科学家 脂质和蛋白质 胞膜,并分析其成分
第4章第2节 生物膜的流动镶嵌模型(笔记)
二、对生物膜结构的探索历程
1、19世纪末 1895年,欧文顿: 实验:用500多种物质对植物细胞进行上万次的通透
性实验,发现脂质更容易通过细胞膜。 提出假说:膜是由脂质组成的
2、20世纪初,科学家将膜从哺乳动物的红细胞分离出 来,通过化学分析表明,膜的主要成分是脂质和蛋白质。
3、1925年荷兰科学家:用丙酮从人红细胞膜中提取脂 质,在空气-水界面上铺成单层分子,测得单分子层 的面积恰为红细胞表面积的2倍。 结论:细胞膜中的脂质分子必然排列为两层
8
6、主动运输
特点: 从低浓度到高浓度; 需要载体蛋白的协助; 需要能量(ATP)。
如:Na+ 、K+、Ca2+、Mg2+等离子通过细胞膜;葡萄 糖、氨基酸通过小肠上皮细胞。
载体具有转一性,不同的离子 需要不同的载体运输。
7、主动运输具有重要的意义: 细胞膜的主动运输是活细胞的特性,它保
证了活细胞能够按照生命活动的需要,主动选 择吸收所需的营养物质,主动排出代谢废物和 对细胞有害的物质。
特点: • 从高浓度到低浓度; • 不需要载体蛋白的协助; • 不消耗能量。 如:水、氧气、二氧化碳、
甘油、乙醇、苯等。
4、协助扩散特点、物质: 特点: ➢从高浓度到低浓度; ➢需要载体蛋白的协助; ➢不需要能量。
如:葡萄糖分子进入红细胞。
5、自由扩散和协助扩散相同点和不同点: 都自自是由由顺扩扩浓散散度不梯需(度要fre运 载e 输 体di, ,ffu都 协si不 助on需 扩)要 散能 需量要载体 协助扩散 (facilitated diffusion)
4、磷脂是一种由甘油,脂肪酸和磷酸所组成的分子, 磷酸“头”部是亲水的,脂肪酸“尾”部是疏水的。 磷脂分子组成元素:C、H、O、N、P 磷脂在空气-水界面上铺成单层分子的排列方式:
课件12:4.2 生物膜的流动镶嵌模型
含氮 磷酸 甘油
脂肪酸
1.将大量磷脂分子放入清水中,搅拌后,不可能出现的
现象是( A )
解析:依据“相似相溶”原理,磷脂分子不可能散乱地分 布在水中。
活动
根据磷脂分子的特点,以及细胞膜的内外环境, 构建细胞膜中磷脂分子的排布模型
空气
水
①单层磷脂分子在空气—— ②单层磷脂分子完全
水界面中的分布情况
膜的主要成分是 脂质和蛋白质
对排列方式的探究
1925年,两位荷兰科学家用丙酮(一种有机 溶剂,可以溶解脂质)从人的红细胞膜中提 取脂质,在空气-水界面上铺展成单分子层, 测得单分子层的面积约为红细胞表面积的2 倍。
你能推出什么结论?
脂质在细胞膜中排列为连续的两层。
磷脂分子结构特点(P66)
头部
亲水性 疏水性
——更多精彩内容请登录
浸在水中的分布情况
细胞所处的环境是怎样的?
√A
B
C
对排列方式的探究
除脂质外,蛋白质也是细胞膜的成分。那么, 蛋白质位于细胞膜的什么位置?
1959年,罗伯特森(J.D.Robertsen)在电镜下看 到细胞膜清晰的暗—亮—暗三层结构。
生物膜是由“蛋白质—脂 质—蛋白质”的三层结构 构成的(三明治模型)
模型特点:
①蛋白质分子镶在磷脂双分子 层的两侧 ②生物膜是静态的结构
思考 “三明治”结构模型有什么不足?
①蛋白质并不只是在磷脂分子两侧; ②把生物膜描述为静态的结构,这显然与膜功能的 多样性相矛盾。
①蛋白质并不只是在磷脂分子两侧;
通过冰冻蚀刻电子显微法,科学家们发现膜蛋白并不是全部 平铺在脂质表面,有的蛋白质是镶嵌在脂质双分子层中的。
蛋白质
第5课 生物膜的流动镶嵌模型
①侧向扩散运动;②旋转运动;③摆动运动
在新的观察和实验证据的基础上,1972年桑格 (S.J.Singer)和尼克森(G.Nicolson)提出了新的生 物膜模型———流动镶嵌模型,为多数人所接受。
流动镶嵌模型的基本内容
脂质、蛋白质、糖类 ①组成成分:______________________
(4)脂质单分子层的面积是细胞表面积的2倍,说 明 磷脂分子在细胞膜中成双层排列 。
空气-水界面上铺展成单分子层,测得单分子层的
面积恰为红细胞表面积的2倍
脂质分子必然排列为连续 的两层
GORTER
想一想:
磷脂是组成细胞的 主要脂质,是一种 由甘油、脂肪酸、 和磷酸等所组成的 分子。 它有一个亲水磷酸 “头”部,和一个 疏水的脂肪酸的 “尾”部。
亲水 “头部” 疏 水 “ 尾 部 “
磷脂分子在空气-水界面 上会怎么样铺展?
亲水的“头部”不水接触, 疏水的“尾巴”远离水, 朝向空气的一面,在水空 气界面上铺展成单分子层。
空气
水
细胞膜的两侧都有水环境存在,同学们尝试着 大胆的推测和想象一下在这样的环境中,磷脂 分子在细胞膜中可能是怎样排布的呢?
水
水
水 A
水
水 B
水
水
水 C 水D
水E
生物膜的流动镶嵌模型是否已完 美无缺呢?
晶格镶嵌模型 板块镶嵌模型 ……
不断完善和发展的流动镶嵌模型
2003年度诺贝尔 化学奖授予两名研究 细胞膜的美国科学家 阿格雷和麦金农。以 表彰他们在细胞膜物 质运输的通道方面所 做的贡献。
人类对自然界的认识永无止境, 对膜的研究将更加细致入微……
概念图
膜是由脂质组成
选择何种细胞才能膜
4.2生物膜的流动镶嵌模型
背景知识:
蛋白质分子是水溶性的,蛋白质分子在整体 上表现为亲水性,而有些蛋白质有疏水性部位。
磷脂分子有亲水性头部和疏水性尾部,而且排 列为双分子层,那么蛋白质分子在磷脂双分子层中 是如何排列的呢?
蛋白质位于细胞膜的什么位置?
1959年,罗伯特森在电镜下看到细胞膜清晰的暗—亮—暗 的三层结构。
提出假说:生物膜是由“蛋白质—脂 质—蛋白质 ”的三层结构构成的静态统一结构。这种结构又称 为三明治结构模型。
4.生物膜的功能特性:选择透过性 (1)选择透过性的含义:水分子自由通过, 一些离子和小分子也可以通过,而其他的离子、 小分子和大分子则不能通过。 (2)原因:
5、细胞膜外表,有一层由细胞膜上的蛋白质
与糖类结合形成的糖蛋白,叫做糖被。(糖被 与细胞识别、胞间信息交流等有密切联系)
1.在水溶液中,磷脂分子不能单层存在的,会 自发形成双分子层(在其他溶液中可能成单层存 在)。 2.磷脂双分子层有屏障作用,使膜两侧的水溶 性物质不能自由通过,这对细胞的正常结构和功 能的保持是十分重要的。 3.和磷脂双分子层结合在一起的蛋白质是细胞 膜功能的主要执行者。 4.细胞对大分子物质摄入或排出时所进行的胞 吞与胞吐方式须依赖细胞膜的流动性方可完成。 胞吞与胞吐过程中,不曾跨越生物膜。(跨膜 层数为0层)
生命系统的边界
塑料袋
控制物质的进出
具有一定的伸缩性
普通布
功更用 能适哪 于种 体材 现料 细作 胞细 膜胞 的膜
弹力布
结 构
功能
生命系统的 控制物质的 具有一定的 边界 进 具有
-
具有 具有
-
-
具有
弹力布
一、对生物膜结构的探索历程
资料1. 19世纪末,欧文顿用500多种化学 物质对植物细胞进行了上万次的通透性 实验,发现脂质更容易通过细胞膜。
生物必修1知识点:四(2)生物膜的流动镶嵌模型_
生物必修1知识点:四(2)生物膜的流动镶嵌模型_*生物膜的分子结构模型有多种,较为流行的如流动镶嵌模型2、生物膜分子结构的基本特点是:(1)镶嵌性:膜的基本结构是由脂双分子层镶嵌蛋白质构成的(2)流动性:膜结构中的蛋白质和脂类分子在膜中可作多种形式的移动。
膜整体结构也具有流动性。
流动性的重要生理意义:物质运输、细胞识别、细胞融合、细胞表面受体功能调节等。
(3)不对称性:膜两侧的分子性质和结构不相同(4)蛋白质极性:多肽链的极性区突向膜表面,非极性部分埋在脂双层内部。
故蛋白质分子既和水溶性也和脂溶性分子具有亲和性。
3、流动镶嵌模型的基本内容结构特点:(1)磷脂双分子层:构成膜的基本支架(其中磷脂分子的亲水性头部朝向两侧,疏水性尾部朝向内侧)(2)蛋白质分子:在膜表面,或部分或全部镶嵌在磷脂双分子层糖被(少量):细胞膜外表功能特性:(3)脂分子是可以运动的,具有流动性;(4)膜的蛋白质分子也是可以运动的。
(也体现膜的流动性)(5)细胞膜外表,有一层由细胞膜上的蛋白质与糖类结合形成的糖蛋白,叫做糖被。
(糖被与细胞识别、胞间信息交流等有密切联系)4.为什么说细胞膜是选择透过性膜?水分子跨膜运输是顺相对含量梯度的,其他物质的跨膜运输并不都是这样,这取决于细胞生命活动的需要。
细胞对物质的吸收是有选择的。
结论:细胞膜不仅是半透膜,还是选择透过性膜1. 2012 山东济宁期末浸入1mol/L KNO3溶液中的洋葱表皮细胞,会发生质壁分离和自动复原的现象,此过程中没有发生( )A.主动运输 B.协助扩散 C.自由扩散 D.渗透作用解析:本题难度较大,浸入1摩尔每升的KNO3溶液中的洋葱表皮细胞,首先会通过渗透作用失水,本质是水的自由扩散,由于K+、NO-3可以通过主动运输的形式进入细胞,所以内部溶质浓度会不断增大,大于外侧时,就会吸水,导致质壁分离复原。
答案:B2.(2012 江西重点中学联考)下列有关物质跨膜运输的叙述中,正确的是( )A.神经递质由突触前膜释放到突触间隙中的方式是主动运输B.mRNA在细胞核中合成后进入细胞质中要穿过2层生物膜C.水稻叶肉细胞无氧呼吸产生的CO2被同一个细胞利用要穿过2层磷脂双分子层D.血液中的葡萄糖进入红细胞的方式是主动运输解析:分泌蛋白的分泌方式为胞吐,故A错误。
简述生物膜结构的流动镶嵌模型
简述生物膜结构的流动镶嵌模型,
自20世纪60年代以来,生物膜结构及其流动镶嵌模型一直是物理学和生物学领域的一大挑战性课题。
该概念源于发现膜的材料构成的方式是由大量的非晶态蛋白质和其他化合物组成的具有流变性质的复杂多孔结构。
因此,大量的生物流体成分,如溶质和蛋白质,可以通过这种复杂的结构进行流体交换。
基于生物膜结构的流动镶嵌模型(FPMM)是一种物理模拟方法,旨在研究在特定条件下重要生物膜结构的物理属性及其行为。
FPMM常用于模拟生物膜组织中材料流动,研究介质的水平渗透,以及模拟其有效渗透特性。
该模型使用经典力学技术,如拉普拉斯定律、电磁力学、流变学和热力学,来研究膜的环境响应、耐受性和可控特性,研究吸收、排出和拥挤等等。
目前,FPMM主要在制药产品开发过程中发挥着重要作用,将帮助开发出新型制药、改善现有制药和改善传统护理方法。
它可用于预测普通细胞内/外环境介质的流动情况,模拟不同密度、尺寸和表面性质的蛋白质的交互作用及其演变,研究在有效吸收和低效率药物排放等方面的细胞/活性物质行为。
生物膜结构的流动镶嵌模型(FPMM)有可能改变现有膜物理学、生物物理学和药物能力研究新视角,有助于改善制药产品的安全性和有效性,以及增加人类的健康。
该模型为流动膜的定向工程提供了参考,有望在新药或护理方面取得成功。
试述生物膜流动镶嵌模型的主要内容。
试述生物膜流动镶嵌模型的主要内容。
生物膜流动镶嵌模型是一种描述生物膜中蛋白质、脂类和其他生物分子在膜中流动的模型。
该模型认为膜中的生物分子分为三类:固定分子、扩散分子和流动分子。
其中,固定分子在膜中静止不动,扩散分子由于热力学作用而在膜中随机扩散,而流动分子则沿着膜表面流动。
该模型还提出了膜中生物分子之间的相互作用机制,包括膜蛋白质之间的相互作用、蛋白质和脂类之间的相互作用以及脂类之间的相互作用。
这些相互作用机制不仅影响了生物分子在膜中的流动,还影响了生物分子在膜中的分布和功能。
生物膜流动镶嵌模型的主要内容包括:生物膜结构的基本组成、生物分子在膜中的运动规律、生物分子之间的相互作用机制以及这些相互作用机制对生物分子在膜中的运动、分布和功能的影响。
该模型对于研究生物膜中的生物分子运动、分布和功能具有重要意义,也为生物物理学领域的研究提供了一个重要的理论框架。
- 1 -。
生物膜流动镶嵌模型的特点
生物膜流动镶嵌模型的特点生物膜是由脂质和蛋白质组成的双层结构,通过这一结构可以将细胞内外环境分隔开来,并且起到维持细胞内稳态、调控物质交换和信息传递等重要功能。
下面是生物膜流动镶嵌模型的几个主要特点:1.脂质双分子层结构:生物膜主要由磷脂双分子层组成,双分子层中的疏水磷脂分子互相靠近,而疏水头基则暴露在水相中。
这种双分子层结构使得生物膜对水和溶质具有选择性通透性。
2.脂质双分子层的流动性:生物膜双分子层具有高度的流动性,磷脂分子可以自由地在平面内扩散、旋转和翻转。
这种流动性使得生物膜能够快速恢复其形状,并且使得膜上的蛋白质能够在膜上自由扩散和交互作用。
3.蛋白质的镶嵌:蛋白质是生物膜的另一个重要组成部分,它们以不同方式镶嵌在脂质双分子层中。
有些蛋白质只在膜的一侧存在,而另一些则横跨整个膜。
这种镶嵌方式使得蛋白质能够在膜上进行特定的功能活动,如运输物质、感受外界刺激和媒介信号传递等。
4.膜蛋白的多样性和功能性:生物膜上的蛋白质非常多样,它们具有很多不同的结构和功能。
有些蛋白质是通道蛋白,用于调节物质的跨膜运输;还有一些蛋白质是受体蛋白,能够与外界的信号分子结合并传递信号。
这种多样性和功能性使得膜上的蛋白质能够满足细胞的不同需求。
5.糖基化的膜蛋白和糖脂:除了磷脂和蛋白质外,生物膜上还存在着糖基化的膜蛋白和糖脂。
这些糖基化物质能够参与细胞识别和黏附、免疫应答等重要过程。
总之,生物膜流动镶嵌模型描述了生物膜的双层结构和组成,以及膜上的蛋白质在其中的功能。
它强调了生物膜的流动性、蛋白质的镶嵌方式和多样性,以及糖基化的膜成分的重要性。
这个模型为我们理解生物膜的结构和功能提供了重要的指导,并且在生物学研究中得到广泛应用。
生物膜的流动镶嵌模型
生物膜的流动镶嵌模型
一、1.膜的组成成分:
脂质:溶解脂质物质能溶解细胞膜。
蛋白质:蛋白酶分解。
2.膜的磷脂双分子层:
磷脂分子铺在空气界面,发现面积是膜面积2倍。
磷脂是一种由甘油,脂肪酸,磷酸等所组成的分子。
3.蛋白质的位置:
蛋白质镶在、嵌入、横跨在磷脂双分子层中。
细胞膜具有流动性。
适当升高温度,流动性增强。
二、流动镶嵌模型(有流动性、不对称性、镶嵌型)
1.基本内容:①磷脂双分子层构成了膜的基本支架,具有流动性。
②蛋白质分子有的镶在磷脂双分子层表面,有的嵌入磷脂双分子层中,贯穿整个磷脂双分
子层。
③大多数蛋白质分子,磷脂也是可以运动的。
④糖蛋白在细胞膜上,是由糖类和蛋白质形成。
2.成分功能分析:①磷脂分子:构成了磷脂双分子层支架。
作用:脂溶性物质易透过。
②蛋白质:决定膜功能。
种类:结构蛋白:构成细胞膜成分。
载体蛋白:运输物质。
糖蛋白:保护、润滑、识别作用。
受体:信息交流。
抗原:免疫。
③糖类:糖蛋白、糖脂。
3.生物膜结构特性:膜具有流动性。
①结构基础:磷脂分子,蛋白质可运动。
②生理意义:细胞生长分裂,细胞融合。
分泌蛋白分泌。
③实例:白细胞吞噬细菌。
4.膜的功能特性:选择透过性。
①结构基础:膜上载体蛋白。
②生理意义:控制物质进出。
③实例:水分子进出,无机盐的吸收。
4.2-生物膜的流动镶嵌模型
变形虫
生物膜的结构特性:
1、镶嵌性:膜的基本结构是由脂质双分 子层及镶嵌在其上的蛋白质构成的。
2、流动性:磷脂分子和大多数蛋白质 分子是可以运动的。
3、不对称性:膜两侧的分子性质和结构 不同,如糖蛋白只分布在细胞膜外面。
生物膜的分子组成、结构、功能的关系:
磷脂分子、 组成 蛋白质分子
结构
决定
功能(物质交换)
4.2生物膜的流动镶嵌模型
一、对生物膜结构的探索历程
①19世纪末:细胞膜是由脂质组成的。 ②20世纪初:细胞膜的主要成分是脂质和蛋白质。 ③1925年:细胞膜中的脂质分子必然排列为连续的两层。 ④ 20世纪40年代:推测脂质两边各覆盖着蛋白质。 ⑤ 1959年:罗伯特森提出生物膜为静态结构,所有的 生物膜都是由蛋白质—脂质—蛋白质三层结构构成。 ⑥1970年:用荧光标记法证明细胞膜具有流动性。 ⑦ 1972年:桑格和尼克森提出流动镶嵌模型。
具有
具有
具有
运动性
导致
流动性
保证 物质交换 体现 正常进行
选择透过性
1、一分子CO2从叶肉细胞的线粒体基质中扩散 出来,进入一相邻细胞叶绿体基质内,共穿过
的磷脂分子层数是( C )。
A、4 B、8 C、12 D、16
2、一位细胞学家发现,当温度升高到一定程 度时,细胞膜的面积增大而厚度变小,其决定
种类: 1、有的只参与膜的构成; 2、有的起载体作用,参 与运输过程; 3、有的与糖结合,形成 糖蛋白。
蛋白质分子有的镶在磷脂双分子层表面 蛋白质分子有的部分或全部嵌入在磷脂双分子层中 蛋白质分子有的贯穿于整个磷脂双分子层
大多数蛋白质分子也是可以运动的。
流动性和选择透过性的关系:
《生物膜的流动镶嵌模型》 讲义
《生物膜的流动镶嵌模型》讲义一、引言在细胞这个微小而神奇的世界里,生物膜扮演着至关重要的角色。
它不仅将细胞内部与外界环境分隔开来,还承担着物质交换、信息传递等诸多关键功能。
而要深入理解生物膜的结构和功能,就不得不提到生物膜的流动镶嵌模型。
二、生物膜的探索历程(一)早期观点在对生物膜的研究早期,科学家们曾提出过多种假说。
其中,“三明治”模型认为生物膜是由蛋白质脂质蛋白质三层结构构成的静态结构。
然而,随着研究的深入,这一模型逐渐被证明存在局限性。
(二)新技术的推动随着电子显微镜技术的发展,科学家们能够更加清晰地观察到生物膜的细微结构,为新模型的提出提供了有力的证据。
三、流动镶嵌模型的主要内容(一)磷脂双分子层构成膜的基本支架磷脂分子具有亲水性的头部和疏水性的尾部。
在水环境中,它们自发地形成双层结构,头部朝向两侧的水相,尾部相对排列在内侧,构成了生物膜的基本骨架。
(二)蛋白质分子镶嵌、贯穿或覆盖在磷脂双分子层上有的蛋白质分子镶嵌在磷脂双分子层表面,有的部分或全部嵌入磷脂双分子层中,还有的贯穿整个磷脂双分子层。
这些蛋白质分子在生物膜中发挥着各种各样的功能,如运输物质、识别信号等。
(三)生物膜具有流动性1、磷脂分子的运动磷脂分子可以在膜内自由移动,横向扩散速度较快。
2、蛋白质分子的运动大部分蛋白质分子也能在膜上运动,这使得生物膜不是一个僵硬的结构,而是具有一定的流动性。
四、生物膜流动性的意义(一)物质运输流动性有助于物质更高效地通过生物膜,实现细胞内外的物质交换。
(二)细胞识别与通讯膜上的蛋白质分子可以在膜上移动,从而更灵活地与外界信号分子结合,完成细胞间的识别和信息传递。
(三)细胞生长与分裂在细胞生长和分裂过程中,生物膜的流动性使得膜能够适应细胞形态和体积的变化。
五、对流动镶嵌模型的补充和完善随着研究的不断深入,人们发现生物膜的结构和功能比最初想象的更加复杂。
例如,膜上还存在一些糖类分子,它们与蛋白质或脂质结合形成糖蛋白或糖脂,在细胞识别等方面发挥着重要作用。
高中生物必修一知识点总结-4.2生物膜的流动镶嵌模型
4.2生物膜的流动镶嵌模型与物质运输方式
1.结构模型
(1)磷脂双分子层
位置:生物膜两侧
作用:生物膜的基本支架
特点:具有流动性
注:因为生物膜内外为水环境,磷脂分子“头部”亲水,“尾部”疏水,所以呈现头朝两侧。
(2)蛋白质分子
位置:镶嵌在表面、嵌入或贯穿磷脂双分子层
作用:大部分作载体
特点:大部分具有流动性
(3)糖蛋白(糖被)
位置:细胞膜外表面
作用:保护、润滑、细胞识别
(4)糖脂
位置:细胞膜外表面
2.结构特点:流动性
(1)决定因素:磷脂分子和大所数蛋白质分子的流动性决定生物膜的流动性。
(2)影响因素:膜的流动性受温度影响,在一定温度范围内,随着温度升高,流动性加快。
(3)实例:质壁分离与复原、变形虫运动、胞吞与胞吐、白细胞的吞噬作用等。
3.功能特点:选择透过性
决定因素:①生物膜的流动性②载体蛋白种类和数量(∵载体蛋白具有专一性)。
知识点-生物膜的流动镶嵌模型
3、变形虫的任何部位都能伸出伪足,人体 某些白细胞能吞噬病菌,这些生理过程的完 成都依赖于细胞膜的( B)
A 保护作用
B 一定的流动性 C 主动
运输
D 、信息传 递和血型决定有着密切关系的化学物质是( ) A 糖A蛋白 B 磷脂 C 脂肪 D 核酸
知识点——生物膜的 流动镶嵌模型
流动镶嵌模型的基本内容
流动镶嵌模型
流动镶嵌模型的基本内容:
1、膜的组成成分: 主要是磷脂和蛋白质,还有少量的糖类.
2、膜的基本支架: 磷脂双分子层.(其中磷脂分子 的亲水性头部朝 向两侧,疏水性的尾部朝向内侧)
3、蛋白质分子的位置: 蛋白质分子有的镶嵌在磷脂双分子层表面,有的 部分或全部嵌入磷脂双分子层中,有的横跨整 个磷脂双分子层。(体现了膜结构内外的不对 称性)
5、一分子CO2从叶肉细胞的线粒体基质中扩散出
来,进入该细胞的叶绿体基质内,共穿过的磷脂分
子层层数是( B )
A6 B8
C 12 D 16
这种生理功能的结构基a细胞膜由磷脂分子和蛋白质分子构成b细胞膜表面有糖蛋白c细胞膜具有一定的流动性d细胞膜具有选择透过性3变形虫的任何部位都能伸出伪足人体某些白细胞能吞噬病菌这些生理过程的完成都依赖于细胞膜的4细胞膜上与细胞识别免疫反应信息传递和血型决定有着密切关系的化学物质是5一分子co2从叶肉细胞的线粒体基质中扩散出来进入该细胞的叶绿体基质内共穿过的磷脂分子层层数是
蛋白质分子的位置
蛋白质
4、生物膜的结构特点:
流动性.(磷脂分子是可以运动的,具有流动性;大多 数的蛋白质分子也是可以运动的,也体现了流动性 。)
流动镶嵌模型名词解释生物化学
流动镶嵌模型名词解释生物化学
流动镶嵌模型 (Flowing Shell Model) 是一种描述生物膜结构的模型,它认为生物膜是由磷脂分子以疏水作用形成的双分子层为骨架,蛋白质分子镶嵌于双分子层的骨架中,并在膜上自由移动。
这个模型得名于它的流动性质,因为它类似于流体在固体表面上的扩散过程。
在流动镶嵌模型中,磷脂分子以疏水端头碰头的方式排列成双分子层,蛋白质分子则镶嵌在这个双分子层的骨架中。
磷脂分子和蛋白质分子的疏水端都暴露在膜的外表面,而亲水端则指向膜的内部。
流动镶嵌模型是生物化学领域的重要模型之一,它对于理解生物膜的结构和功能具有重要的意义。
根据这个模型,生物膜中的蛋白质分子起到了交通枢纽的作用,它们能够在膜上进行自由移动,并将内外的物质进行交换和运输。
同时,生物膜中的磷脂分子也起到了骨架的作用,它们使得生物膜具有一定的强度和稳定性。
流动镶嵌模型是一个简明易懂的模型,它能够帮助人们更好地理解生物膜的结构和功能,并为研究生物膜提供了重要的理论依据。
生物膜的流动镶嵌模型
生物膜的流动镶嵌模型1、什么是生物膜的流动镶嵌模型生物膜指的是生物细胞中的膜状结构,包括细胞质膜、细胞核膜、细胞器膜等等。
这些膜之间以一种连续或不连续的方式连接起来,称为内膜系统。
生物膜的流动镶嵌模型是一种生物膜结构的模型,它认为生物膜是磷脂以疏水作用形成的双分子层为骨架,磷脂分子是流动性的,可以发生侧移、翻转等。
蛋白质分子镶嵌于双分子层的骨架中,可能全部埋藏或者部分埋藏,埋藏的部分是疏水的,同样,蛋白质分子也可以在膜上自由移动。
因此称为流动镶嵌模型。
2、生物膜的流动镶嵌模型的发现史(1)欧文顿(E.overton)的物质通透性实验,用500多中物质对植物细胞进行上万次通透性试验(1895年),发现脂质更容易通过细胞膜。
这里我们可以猜想到细胞膜由脂质物质构成。
(2)1917年,Langmuir的磷脂分子实验。
将磷脂溶于苯和水中,待苯挥发完后,发现磷脂分子分布凌乱,经推挤发现磷脂排列成单层,而且磷脂分子一头浸在水里,一头浮在水面。
再探究发现磷脂分子由头部和尾部组成,头部由一分子胆碱,一分子磷酸,一分子甘油组成,尾部由2个脂肪酸分子构成。
头部由极性分子组成形成亲水端,尾部由非极性分子组成形成疏水端。
所以磷脂在水中排列时,亲水端浸人水中,疏水端浮在水面。
(3)1925年,E.Corter和F.Grendel用有机溶剂抽取人的红细胞质膜的膜质成分,测定膜质单层分子在水中的展开面积,发现它是红细胞表面积的两倍。
这现象说明质膜是双层脂分子构成的。
之后Davson 和Danielli提出了“蛋白质-脂质-蛋白质”的三文治式的质膜结构模型,持续影响20年。
(4)20世纪初,科学家将细胞膜从哺乳动物细胞中分离出来,发现细胞膜不但会被溶脂质的物质溶解,还会被蛋白酶分离。
由此可以猜到细胞膜中含有蛋白质,同时还有疑问,蛋白质处于细胞膜的哪个位置,又有多少?(5)罗伯特森的电镜实验(1959年)用超薄切片技术获得清晰的细胞膜照片,明显的暗-明-暗3层结构,厚约7.5nm,由厚约3.5nm的较亮层和内外表面约2nm的较暗层组成的。
高一生物《生物膜的流动镶嵌模型》知识点
高一生物《生物膜的流动镶嵌模型》知识点
1、欧文顿(E .Overtn)的发现和结论
⑴、发现:细胞膜对不同物质的通透性不同。
但凡脂溶性物质都更容易通过细胞膜进入细胞。
⑵、结论:膜是由脂质组成的。
2、1925年荷兰科学家的实验发现和结论
⑴、实验:提取人红细胞中的脂质,在空气——水界面上铺展成单层分子。
⑵、发现:单层分子的面积为人红细胞外表积的2倍。
⑶、结论:细胞膜中的脂质分子必然排列为连续的两层。
3、1959年,罗伯特森( .D .Rbertsen)的发现和论断
⑴、发现:电镜下,发现细胞膜有清晰的“暗—亮—暗”三层结构。
⑵、论断:所有的生物膜都是由“蛋白质—脂质—蛋白质”三层结构构成。
4、“荧光标记的小鼠细胞和人细胞融合实验”的发现和结论(P—67图4—5)
⑴、发现:两种细胞刚融合时,融合细胞一半发绿色荧光,另一半发红色荧光;370C下40in后,
两种颜色的荧光均匀分布。
⑵、论断:细胞膜具有流动性。
5、1972年,桑格(S . .Singer)和尼克森(G .Niclsn)提出的流动镶嵌模型的根本内容
⑴、磷脂双分子层是细胞膜的根本支架。
⑵、蛋白质分子或镶或嵌入或横跨磷脂双分子层。
⑶、磷脂和蛋白质分子都是可以运动的。
6、糖被——糖蛋白
⑴、位置:细胞膜的外侧外表。
⑵、组成:蛋白质和多糖。
⑶、功能:细胞识别作用、信息传递等。
保护和润滑作用。
如消化道、呼吸道上皮细胞外表的糖蛋白。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、变形虫的任何部位都能伸出伪足,人体 某些白细胞能吞噬病菌,这些生理过程的完 成都依赖于细胞膜的( B)
A 保护作用
B 一定的流动性 C 主动
运输
D 选择透过性
4、细胞膜上与细胞识别、免疫反应、信息传 递和血型决定有着密切关系的化学物质是( ) A 糖A蛋白 B 磷脂 C 脂肪 D 核酸
蛋白质分子的位置
蛋白质
4、生物膜的结构特点:
流动性.(磷脂分子是可以运动的,具有流动性;大多 数的蛋白质分子也是可以运动的,也体现了流动性 。)
5、细胞膜外表,有一层由细胞膜上的蛋白质 与糖类结合形成的糖蛋白,叫做糖被。(糖被 与细胞识别、胞间信息交流等有密切联系)
磷脂分子的运动 ①侧向扩散运动;②旋转运动;③摆动运动 ④伸缩震荡运动;⑤翻转运动;⑥旋转异构 化运动。
课堂反馈
1、据研究发现,胆固醇、小分子脂肪酸、维生素D等
物质较容易优先通过细胞膜,这是因为(C )
A 细胞膜具有一定流动性
B 细胞膜是选择透过性C ຫໍສະໝຸດ 胞膜的结构是以磷脂分子层为基本骨架
D 细胞膜上镶嵌有各种蛋白质分子
2、异体器官的移植手术往往很难成功。最 大的障碍就是 异体细胞间的排斥,这主要是由 于细胞膜具有识别作用。这种生理功能的结构基 础是(B)
5、一分子CO2从叶肉细胞的线粒体基质中扩散出
来,进入该细胞的叶绿体基质内,共穿过的磷脂分
子层层数是( B )
A6 B8
C 12 D 16
知识点——生物膜的 流动镶嵌模型
流动镶嵌模型的基本内容
流动镶嵌模型
流动镶嵌模型的基本内容:
1、膜的组成成分: 主要是磷脂和蛋白质,还有少量的糖类.
2、膜的基本支架: 磷脂双分子层.(其中磷脂分子 的亲水性头部朝 向两侧,疏水性的尾部朝向内侧)
3、蛋白质分子的位置: 蛋白质分子有的镶嵌在磷脂双分子层表面,有的 部分或全部嵌入磷脂双分子层中,有的横跨整 个磷脂双分子层。(体现了膜结构内外的不对 称性)