整式的乘法和因式分解专题训练

合集下载

(完整版)整式的乘法与因式分解考点练习(含答案)

(完整版)整式的乘法与因式分解考点练习(含答案)

整式的乘法与因式分解复习考点1 幂的运算1.下列计算正确的是( )A .(a 2)3=a 5B .2a -a =2C .(2a)2=4aD .a·a 3=a 42.(铜仁中考)下列计算正确的是( )A .a 2+a 2=2a 4B .2a 2·a 3=2a 6C .3a -2a =1D .(a 2)3=a 63.计算:x 5·x 7+x 6·(-x 3)2+2(x 3)4.A. 124xB. 122xC. 12xD. 64x考点2 整式的乘法 4.下列运算正确的是( )A .3a 2·a 3=3a 6B .5x 4-x 2=4x 2C .(2a 2)3·(-ab)=-8a 7bD .2x 2÷2x 2=05.计算:(3x -1)(2x +1)=________.A. 162-+x xB. 162--x xC. 1562-+x xD. 1562-+x x6.计算:(1)(-3x 2y)3·(-2xy 3); (2)(34x 2y -12xy 2)(-4xy 2). A. 636y x , 422323y x y x +- B. -636y x , 423323y x y x +-C. 6754y x ,423323y x y x +-D. -6754y x , 422323y x y x +-考点3 整式的除法7.计算8a 3÷(-2a)的结果是( )A .4aB .-4aC .4a 2D .-4a 28.若5a 3b m ÷25a n b 2=252b 2,则m =____________,n =__________. 9.化简:(a 2b -2ab 2-b 3)÷b -(a -b)2.考点4 乘法公式10.下列关系式中,正确的是( )A .(a +b)2=a 2-2ab +b 2B .(a -b)2=a 2-b 2C .(a +b)(-a +b)=b 2-a 2D .(a +b)(-a -b)=a 2-b 211.已知(x +m)2=x 2+nx +36,则n 的值为( )A .±6B .±12C .±18D .±7212.计算:(1)(-2m +5)2; (2)(a +3)(a -3)(a 2+9); (3)(a -1)(a +1)-(a -1)2.考点5 因式分解13.(北海中考)下列因式分解正确的是( )A .x 2-4=(x +4)(x -4)B .x 2+2x +1=x(x +2)+1C .3mx -6my =3m(x -6y)D .2x +4=2(x +2)14.多项式mx 2-m 与多项式x 2-2x +1的公因式是( )A .x -1B .x +1C .x 2-1D .(x -1)215.(黔西南中考)分解因式:4x 2+8x +4=________.16.若x -2y =-5,xy =-2,则2x 2y -4xy 2=________.综合训练17.(威海中考)下列运算正确的是( )A .(-3mn)2=-6m 2n 2B .4x 4+2x 4+x 4=6x 4C .(xy)2÷(-xy)=-xyD .(a -b)(-a -b)=a 2-b 218.(毕节中考)下列因式分解正确的是( )A .a 4b -6a 3b +9a 2b =a 2b(a 2-6a +9)B .x 2-x +14=(x -12)2 C .x 2-2x +4=(x -2)2D .4x 2-y 2=(4x +y)(4x -y)19.(大连中考)若a =49,b =109,则ab -9a 的值为________.20.(宁波中考)一个大正方形和四个全等的小正方形按图1、2两种方式摆放,则图2的大正方形中未被小正方形覆盖部分的面积是________(用a 、b 的代数式表示)[图1 图221.(绵阳中考)在实数范围内因式分解:x 2y -3y =________________.22.(崇左中考)4个数a ,b ,c ,d 排列成⎪⎪⎪⎪⎪⎪a b c d ,我们称之为二阶行列式.规定它的运算法则为:⎪⎪⎪⎪⎪⎪a b cd =ad -bc.若⎪⎪⎪⎪⎪⎪x +3 x -3x -3 x +3=12,则x =________. 23.计算:(1)5a 3b ·(-3b)2+(-ab)(-6ab)2;(2)x(x 2+3)+x 2(x -3)-3x(x 2-x -1).24.把下列各式因式分解:(1)2m(a-b)-3n(b-a);(2)16x2-64;(3)-4a2+24a-36.25先化简(a2b-2ab2-b3)÷b-(a+b)(a-b),然后对式子中a、b分别选择一个自己最喜欢的数代入求值.26.我们约定:a b=10a÷10b,如43=104÷103=10.(1)试求123和104的值;(2)试求(215)×102的值.参考答案1.D2.D3.原式=x 12+x 6·x 6+2x 12=x 12+x 12+2x 12=4x 12.4.C5.6x 2+x -16.(1)原式=-27x 6y 3×(-2xy 3)=54x 7y 6.(2)原式=34x 2y ·(-4xy 2)-12xy 2·(-4xy 2)=-3x 3y 3+2x 2y 4. 7.D8.4 39. 原式=a 2-2ab -b 2-a 2+2ab -b 2=-2b 2.10. C11. B12. (1)原式=4m 2-20m +25. (2)原式=(a 2-9)(a 2+9)=a 4-81. (3)原式=a 2-1-a 2+2a -1=2a -2.13. D14. A15.4(x +1)216.2017. C18. B19.4 90020.ab21.y(x -3)(x +3)22.123. (1)原式=5a 3b ·9b 2+(-ab)·36a 2b 2=45a 3b 3-36a 3b 3=9a 3b 3. (2)原式=x 3+3x +x 3-3x 2-3x 3+3x 2+3x =-x 3+6x.24.(1)原式=(a -b)(2m +3n). (2)原式=16(x +2)(x -2). (3)原式=-4(a -3)2.25.原式=a 2-2ab -b 2-(a 2-b 2)=a 2-2ab -b 2-a 2+b 2=-2ab.如选择一个喜欢的数为a =1,b =-1,则原式=2.26.(1)123=1012÷103=109,104=1010÷104=106. (2)(215)×102=(1021÷105)×102=1018.。

整式的乘法和因式分解计算题100道

整式的乘法和因式分解计算题100道

整式的乘法和因式分解计算题100道整式的乘法和因式分解计算题一、单项式乘以单项式1.(-4xy^3)·(-2x)2.x^2y^3·xyz3.4y·(-2xy^3)4.(2·10^3)·(3·10^6)5.(x^3y^2)(-x^2y^3)^26.8x^n·y^n+1·x^2y^27.(-0.25xy^3)·(-xy)·(0.5x^2y^3)8.(-2x^2y)·(-xy^2)·(-x^2y^2)·xyz9.(-3x^2n+1·y^n+1)/(-xn·y^2)10.-2a^2(x-2y)^3[-ab^2(2y-x)^3]11.4xy^2·(-x^2yz^3)12.(a^3b^2)·(-2a^3b^3c)13.3.2mn^2·(-0.125m^2n^3)14.()·x^2y^2·(-yz^3)15.5x·(ax)·(-2.25axy)·(1.2x^2y^2)16.x^2y·(-0.5xy)^2-(-2x)^3·xy^317.(-5xy)·3x^2y-12x^3·(-y^2)18.5a^3b·(-3b)^2+(-6ab)^2·(-ab)-ab^3·(-4a)^219.4xy^2·(-x^2yz^3)20.(a^3b^2)·(-2a^3b^3c)21.5x·(ax)·(-2.25axy)·(1.2x^2y^2)22.x^2y·(-0.5xy)^2-(-2x)^3·xy^323.(-5xy)·3x^2y-12x^3·(-y^2)24.5a^3b·(-3b)^2+(-6ab)^2·(-ab)-ab^3·(-4a)^2 单项式乘多项式1.(2xy^2-3xy)·2xy2.-x(2x+3x^2-2)3.-2ab(ab-3ab^2-1)4.(an+1-2b)·ab5.-10mn·(2mn-3mn)6.(-4ax)·(5a-3ax)7.(3x^2y-2xy^2)·(-3xy)8.7a(2ab-3b)9.x(x^2-1)+2x^2(x+1)-3x(2x-5)23)将(2x+3y)(3x-2y)展开,得到6x^2-xy-6y^2.24)将(3x-1)(4x+5)展开,得到12x^2+11x-5.25)将(x+3)(x+4)-(x-1)(x-2)展开,得到2x+11.26)将(3x+2y)(2x+3y)-(x-3y)(3x+4y)展开,得到11x^2+2xy-5y^2.27)将(x+2)(x+3)-(x+6)(x-1)展开,得到-4x-15.28)将(m+1)(2m-1)展开,得到2m^2+m-1.29)将(2a-3b)(3a+2b)展开,得到6a^2-5b^2.30)将(2x-3y)(4x+6xy+9y)展开,得到8x^2+18xy^2-3y^2.31)将(-2ab)(3ab-2ab+3b+1)展开,得到-2ab(3b+1)。

整式的乘法和因式分解经典练习题

整式的乘法和因式分解经典练习题

整式的乘法和因式分解经典练习题整式的乘法和因式分解一、选择题(共16小题)1.下列运算正确的是()A。

a+2a=3aB。

a3·a2=a5C。

(a4)2=a8D。

a4+a2=a62.若a+b=3,a2+b2=7,则ab等于()A。

2B。

1C。

-2D。

-13.计算(-a-b)2等于()A。

a2+b2B。

a2-b2C。

a2+2ab+b2D。

a2-2ab+b24.下列运算中正确的是()A。

(x4)2=x8B。

x+x=2xC。

x2·x3=x5D。

(-2x)2=4x25.(-am)5·an=A。

-a5+m+nB。

a5+m+nC。

a5m+nD。

-a5m+n6.若(x-3)(x+4)=x2+px+q,那么p、q的值是()A。

p=1,q=-12B。

p=-1,q=12C。

p=7,q=12D。

p=7,q=-127.(xn+1)2(x2)n-1=A。

x4nB。

x4n+3C。

x4n+1D。

x4n-18.下列各式中不能用平方差公式计算的是()A。

(x-y)(-x+y)B。

(-x+y)(-x-y)C。

(-x-y)(x-y)D。

(x+y)(-x+y)9.已知m+n=2,mn=-2,则(1-m)(1-n)的值为()A。

-3B。

-1C。

1D。

5二、填空题(共7小题)10.已知10m=3,10n=2,则102m-n=1000/10n-m,如果(a3)2·ax=a24,则x=1/a11.分解因式:x2-1=(x+1)(x-1)12.分解因式:3ax2-6axy+3ay2=3a(x-y)213.x2+kx+9是完全平方式,则k=-614.化简:(-2a2)3=-8a615.因式分解:y3-4x2y=y(y-2x)(y+2x)三、解答题16.(1) 分解因式:(a2+b2)2-4a2b2=(a+b)2(a-b)22) 化简求值:(x+3)-(x-1)(2x-2),其中x=-1.x+3)-(x-1)(2x-2)=x+3-(2x-2-x+1)=2,当x=-1时,(x+3)-(x-1)(2x-2)=217.已知。

中考数学总复习《整式的乘法与因式分解》专项提升练习题-带答案

中考数学总复习《整式的乘法与因式分解》专项提升练习题-带答案

中考数学总复习《整式的乘法与因式分解》专项提升练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列运算正确的是()A.(ab)5=ab5B.a8÷a2=a6C.(a2)3=a5D.a2⋅a3=a62.已知2m=a,2n=b,m,n为正整数,则2m+n为()A.a+b B.ab C.2ab D.a2+b23.若(x2−mx+1)(x−3)展开后不含x的一次项,则m的值是()A.3 B.1 C.−13D.04.多项式(x2−2x+1)与多项式(x−1)(x+1)的公因式是( )A.x−1B.x+1C.x2+1D.x25.下列代数式变形中,属于因式分解是()A.m(m−2)=m2−2m B.m2−2m+1=m(m−2)+1C.m2−1=(m+1)(m−1)D.m2−2+1m2=(m−1m)26.如图,阴影部分是在边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形.给出下列2种割拼方法,其中能够验证平方差公式的是()A.①B.②C.①②D.①②都不能7.已知x−1x =2,则x2+1x2的值为()A.2 B.4 C.6 D.88.如果二次三项式x2−ax−9(a为整数)在整数范围内可以分解因式,那么a可取值的个数是()A.2个B.3个C.4个D.无数个二、填空题9.如果a2⋅a m=a6,则m=.10.在实数范围内分解因式:x2−4x−2=.11.当4x2+2kx+25是一个完全平方式,则k的值是12.已知a−b=8,ab=−15则a2+b2=.13.因式分解x2+ax+b,甲看错了a的值,分解的结果是(x+6)(x−2),乙看错了b的值,分解的结果为(x−8)(x+4),那么x2+ax+b分解因式正确的结果为.三、解答题14.计算:(1)(2)15.分解因式:(1)4x2+20x+25;(2)(a2−9b2)+(a−3b).16.已知m+n=3,mn=2.(1)当a=2时,求a m⋅a n−(a m)n的值;(2)求(m−n)2+(m−4)(n−4)的值.17.为创建文明校园环境,高校长制作了“节约用水”“讲文明,讲卫生”等宣传标语,标语由如图①所示的板材裁剪而成,其为一个长为2m,宽为2n的长方形板材,将长方形板材沿图中虚线剪成四个形状和大小完全相同的小长方形标语,在粘贴过程中,同学们发现标语可以拼成图②所示的一个大正方形.(1)用两种不同方法表示图②中小正方形(阴影部分)面积:方法一:S小正方形=;方法二:S小正方形=;(2)(m+n)2,(m−n)2,4mn这三个代数式之间的等量关系为;(3)根据(2)题中的等量关系,解决如下问题:①已知:a−b=5,ab=−6求:(a+b)2的值;②已知:a−1a=1,求:(a+1a)2的值.18.阅读理解应用待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解x3−1.因为x3−1为三次多项式,若能因式分解,则可以分解成一个一次多项式和一个二次多项式的乘积.故我们可以猜想x3−1可以分解成x3−1=(x−1)(x2+ax+b),展开等式右边得:x3+(a−1)x2+(b−a)x−b,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:a−1= 0,b−a=0,−b=−1可以求出a=1,b=1.所以x3−1=(x−1)(x2+x+1)(1)若x取任意值,等式x2+2x+3=x2+(3−a)x+3恒成立,则a=;(2)已知多项式x4+x2+1有因式x2+x+1,请用待定系数法求出该多项式的另一因式.(3)请判断多项式x4−x2+1是否能分解成两个整系数二次多项式的乘积,并说明理由.参考答案1.B2.B3.C4.A5.C6.C7.C8.A9.410.(x−2+√6)(x−2−√6)11.±1012.3413.(x-6)(x+2)14.(1)解:原式=(2)解:原式=15.(1)解:4x2+20x+25=(2x)2+2⋅2x⋅5+52=(2x+5)2(2)解:(a2−9b2)+(a−3b)=[a2−(3b)2]+(a−3b)=(a+3b)(a−3b)+(a−3b)=(a−3b)(a+3b+1)16.(1)解:∵m+n=3mn=2∴a m⋅a n−(a m)n=a m+n−a mn=a3−a2∵a=2∴原式=23−22=8−4=4;(2)解:∵m +n =3∴(m −n)2=(m +n)2−4mn =32−4×2=1 ∴(m −n)2+(m −4)(n −4)=1+mn −4(m +n)+16=1+2−4×3+16=7.17.(1)(m −n)2;(m +n)2−4mn(2)(m +n)2=(m −n)2+4mn(3)(3)①a −b =5 ab =−6∴(a +b)2=(a −b)2+4ab=52+4×(−6)=25+(−24)=1;②(a +1a )2=(a −1a )2+4⋅a ⋅1a=12+4=1+4=5.18.(1)1(2)解:设x 4+x 2+1=(x 2+ax +1)(x 2+x +1)=x 4+(a +1)x 3+(a +2)x 2+(a +1)x +1∴a +1=0解得a =−1;∴多项式的另一因式是x 2−x +1;(3)解:不能,理由:∵设x 4−x 2+1=(x 2+ax +1)(x 2+bx +1)=x 4+(a +b)x 3+(ab +2)x 2+(a +b)x +1∴a +b =0 ab +2=−1解得:a =√3、b =−√3或a =−√3、b =√3 ∴系数不是整数∴多项式x 4−x 2+1是不能分解成的两个整系数二次多项式的乘积。

整式的乘法与因式分解习题带答案精选全文完整版

整式的乘法与因式分解习题带答案精选全文完整版

可编辑修改精选全文完整版Array第十四章、整式乘除与因式分解14.1 整式的乘法(1)(-3x)2(x+1)(x+3)+4x(x-1)(x2+x+1),其中x=-1;解:原式=9x2(x2+3x+x+3)+4x(x3+x2+x-x2-x-1)=9x2(x2+4x+3)+4x(x3-1)=9x4+36x3+27x2+4x4-4x=13x4+36x3+27x2-4x当x=-1时原式=13×(-1)4+36×(-1)3+27×(-1)2-4×(-1)=13-36+27+4=8(2)y n(y n+3y-2)-3(3y n+1-4y n),其中y=-2,n=2.解:原式=y2n+3y n+1-2y n-9y n+1+12y n=y2n-6y n+1+10y n当y=-2,n=2时原式=(-2)2×2-6×(-2)2+1+10×(-2)2=16+48+40=10415、已知不论x、y为何值时(x+my)(x+ny)=x2+2xy-8y2恒成立.求(m+n)mn的值.解:x2+nxy+mxy+mny2=x2+2xy-8y2x2+(m+n)xy+mny2=x2+2xy-8y2∴m+n=2,mn=-8∴(m+n)mn=2×(-8)=-166、已知31=+a a,则221a a +=( B ) A .5 B .7 C .9 D .117、如果x 2+kx +81是一个完全平方式,则k 的值是( D )A .9B .-9C .±9D .±188、下列算式中不正确的有( C )①(3x 3-5)(3x 3+5)=9x 9-25②(a +b +c +d)(a +b -c -d)=(a +b)2-(c +d)2③22)31(5032493150-=⨯ ④2(2a -b)2·(4a +2b)2=(4a -2b)2(4a -2b)2=(16a 2-4b 2)2A .0个B .1个C .2个D .3个9、代数式2)(2y x +与代数式2)(2y x -的差是( A ) A .xy B .2xy C .2xy D .0 10、已知m 2+n 2-6m +10n +34=0,则m +n 的值是( A )A .-2B .2C .8D .-8二、解答题11、计算下列各题:(1)(2a +3b)(4a +5b)(2a -3b)(5b -4a)(2)(x +y)(x -y)+(y -z)(y +z)+(z -x)(z +x);(3)(3m 2+5)(-3m 2+5)-m 2(7m +8)(7m -8)-(8m)2(1) 解:原式=(2a +3b)(2a -3b)(4a +5b)(5b -4a)=(4a 2-9b 2)(25b 2-16a 2)=100a 2b 2-64a 4-225b 4+144a 2b 2=-64a 4+244a 2b 2-225b 4(2) 解:原式=x 2-y 2+y 2-z 2+z 2-x 2=0(3) 解:原式=25-9m 4-m 2(49m 2-64)-64m 2=-58m 4+2512、化简求值:(1)4x(x 2-2x -1)+x(2x +5)(5-2x),其中x =-1(2)(8x 2+4x +1)(8x 2+4x -1),其中x =21 (3)(3x +2y)(3x -2y)-(3x +2y)2+(3x -2y)2,其中x =31,y =-21 (1) 解:原式=4x 3-8x 2-4x +x(25-4x 2)=4x 3-8x 2-4x +25x -4x 3=-8x 2+21x当x =-1时原式=-8×(-1)2+21×(-1)=-8-21=-29(2) 解:原式=(8x 2+4x)2-1当x =时,原式=[8×()2+4×]2-1=(2+2)2-1=15(3) 解:原式=9x 2-4y 2-9x 2-12xy -4y 2+9x 2-12xy +4y 2=9x 2-24xy -4y 2当x =,y =-时原式=9×()2-24××(-)-4×(-)2=1+4-1=413、解下列方程:(1)(3x)2-(2x +1)2=5(x +2)(x -2)解:9x 2-4x 2-4x -1=5x 2-205x 2-4x -1=5x 2-204x =19∴x =419(2)6x +7(2x +3)(2x -3)-28(x -21)(x +21)=4解:6x +28x 2-63-28x 2+7=46x -56=46x =60∴x =1014、解不等式:(1-3x)2+(2x -1)2>13(x -1)(x +1)解:1-6x +9x 2+4x 2-4x +1>13x 2-1313x 2-10x +2>13x 2-13-10x>-15∴x<2315、若n 满足(n -2004)2+(2005-n)2=1,求(2005-n)(n -2004)的值.解:(n -2004)2+2·(n -2004)·(2005-n)+(2005-n)2=1+2(n -2004)(2005-n)(n -2004+2005-n)2=1+2(n -2004)(2005-n)1=1+2(2005-n)(n -2004)∴(2005-n)(n -2004)=014.3 因式分解一、选择题1、下列各式,从左到右的变形是因式分解的为( B )A .x 2-9+5x =(x +3)(x -3)+5xB .x 2-4x +4=(x -2)2C .(x -2)(x -3)=x 2-5x +6D .(x -5)(x +2)=(x +2)(x -5)2、把多项式x 2-mx -35分解因式为(x -5)(x +7),则m 的值是( B)A .2B .-2C .12D .-123、分解因式:x 2-2xy +y 2+x -y 的结果是( A )A .(x -y )(x -y +1)B .(x -y )(x -y -1)C .(x +y )(x -y +1)D .(x +y )(x -y -1)4、若9x 2-12xy +m 是一个完全平方公式,那么m 的值是( B )。

《整式的乘除与因式分解》培优训练及答案

《整式的乘除与因式分解》培优训练及答案

整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。

中考数学《整式的乘法与因式分解》专题训练-附带参考答案

中考数学《整式的乘法与因式分解》专题训练-附带参考答案

中考数学《整式的乘法与因式分解》专题训练-附带参考答案一、选择题1.计算(-2a2)3的结果是()A.-6a6B.-8a6C.6a5D.-8a52.若3x=15,3y=5,则3x﹣y等于()A.10 B.5 C.15 D.33.若计算(3x2+2ax+1)⋅(−3x)−4x2的结果中不含x2项,则a的值为()A.2 B.0 C.−23D.−324.下列不能使用平方差公式因式分解的是()A.﹣16x2+y2B.b2﹣a2C.﹣m2﹣n2D.4a2﹣49n25.下列变形中正确的是()A.(x+y)(−x−y)=x2−y2B.x2−4x−4=(x−2)2C.x4−25=(x2+5)(x2−5)D.(−2x+3y)2=4x2+12xy+9y26.下列分解因式正确的是()A.x2+2xy−y2=(x−y)2B.3ax2−6ax=3(ax2−2ax)C.m3−m=m(m−1)(m+1)D.a2−4=(a−2)27.图(1)是一个长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,小长方形的长为a,宽为b(a>b),然后按图(2)拼成一个正方形,通过计算,用拼接前后两个图形中阴影部分的面积可以验证的等式是()A.a2b2=(ab)2B.(a+b)2=(a−b)2+4abC.(a+b)2=a2+b2+2ab D.a2−b2=(a+b)(a−b)8.若x−y=−3,xy=5则代数式2x3y−4x2y2+2xy3的值为()A.90 B.45 C.-15 D.-30二、填空题9.若3m=6,9n=2,则32m﹣4n+1=.10.计算2a2b÷(﹣4ab)的结果是.11.在实数范围内因式分解:2x 2−3xy −y 2= .12.当x=1,y= −13 时,代数式x 2+2xy+y 2的值是 .13.如图①,在边长为a 的正方形中剪去一个边长为b 的小正方形,然后把剩下部分沿图中虚线剪开后拼成如图②所示的梯形、通过计算图①、图②中阴影部分的面积,可以得到的代数恒等式为 .三、解答题14.计算:(1)()32426a a b a --++(2)()()22x y x y -+15. 因式分解:(1)(2)16. 已知x =2−√3,y =2+√3,求下列代数式的值:(1)x 2+2xy +y 2;(2)x 2−y 2.17.如图1,边长为a 的大正方形有一个边长为b 的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)(1)观察左、右两图的阴影部分面积,可以得到公式 ;(2)已知4m 2−n 2=12,2m +n =4,则2m −n = ;(3)请应用这个公式完成下列计算:(1−122)(1−132)(1−142)⋯(1−120222)(1−120232).18.阅读下列材料:因式分解的常用方法有提取公因式法和公式法,但有的多项式仅用上述方法就无法分解,如参考答案1.B2.D3.C4.C5.C6.C7.B8.A9.2710.−12a11.2(x-3+√174y )(x-3−√174y )12.4913.a 2﹣b 2=(a ﹣b )(a+b ) 14.(1)()32426a a b a --++261266a ab a a =-+-+2612a ab =-+; (2)()()22x y x y -+22242x xy xy y =-+-22232x xy y =--15.(1)解:== ;(2)解:== .16.(1)解:∵x =2−√3,y =2+√3∴x +y =4∴x 2+2xy +y 2=(x +y)2=42=16;(2)解:∵x =2−√3,y =2+√3∴x +y =4,x −y =−2√3∴x 2−y 2=(x +y)(x −y)=4×(−2√3)=−8√3.17.(1)a 2−b 2=(a +b)(a −b)(2)3(3)解:(1−122)(1−132)(1−142)⋯(1−120222)(1−120232)=(1+12)(1−12)(1+13)(1−13)(1+14)(1−14)⋯(1+12023)(1−12023) =32×12×43×23×54×34⋯20242023×20222023=12×20242023=10122023.18.(1)解:226925a ab b -+-()2325a b =-- ()()3535a b a b =---+;(2)解:255x x x +--()()255x x x =+-+()()151x x x =+-+()()15x x =+-;(3)证明:()()()214m n p n m p -=-- ()22224m mn n pm p mn pn -+=--+22224444m mn n pm p mn pn -+=--+222244440m mn n mn pm pn p -++--+=()()22224440m mn n pm pn p ++-++=()()22440m n p m n p +-++=()220m n p +-=⎡⎤⎣⎦()20m n p +-==+.∴2p m n。

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)一、选择题(每小题3分,共30分)1.下列计算正确的是( )A.x+x²=x³B.x²・x³=x6C.(x³)²=x6D.x9÷x³=x³2.若12x m y2与13x3y n是同类项,则m,n的值为( )A.m=3,n=2B.m=2,n =3C.m=-3.n=2D.m=-2,n=33.下列因式分解不完全的是( )A.a²-2ab+b²=(a-b)²B.a³-a =a (a²-1)C.a²b-ab²=ab(a-b)D.a²-b²=(a+b)(a-b)4.已知(a +b)²=(a-b)²+M,则M为( )A.abB.2abC.-2abD.4ab5.下列多项式乘法中,能运用平方差公式的是()A.(a-b)(a-b)B.(a-b)(-a+b)C.(a+b)(-a+b)D.(a-b)(b-a)6.如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( )A.-3B.3C.0D.17.如图的图形面积由以下哪个公式表示( )A.a²-b²=a(a-b)+b(a-b)B.(a-b)²=a²-2ab+b²C.(a+b)²=a²+2ab+b²D.a²-b²=(a+b)(a-b)8.若△ABC的三边a,b,c满足a²+b²+c²-ab-bc-ca=0,则△ABC是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形9.下列计算:①3a+2b=5ab;②3x³×(-2x²)=-6x5;③4a³b÷(-2a²b)=-2a;④(-a²)³=a6;⑤(-a)³÷(-a)=-a².其中正确的有( )A.1个B.2个C.3个D.4 个10.已知x+y=6,xy=8,下列结论:①(x+y)²=36;②x²+y²=20;③x-y=2;④x²y²=12.其中正确的是( )A.①②③④B.①②④C.①②D.①③④二、填空题(每小题3分,共18分)11.x平方x²+y²+2x-6y+10=0,则x・y=_________12.当x______时,(x-3)0=1.13.若x²+2(m-3)x+16是一个完全平方式,那么m应为_________.14.若x-1x =1,则x²+1x2的值是__________.15.观察下列关于自然数的等式:①3²-4X1²=5;②5²-4X2²=9;③7²-4X3²=13.根据上述规律解决下列问题:(1)完成第四个等式:____________________;(2)写出你猜想的第n个等式_____________________(用含n的式子表示).16.已知a,b满足等式x=a²+b²+5,y=2(2b-a),则x,y的大小关系为______________.三、解答题(72分)17.(10分)计算下列各题.(1)-2a²bx(−12ab2)x(-abc);(2)(5x-3)(-5x-3)-(5x+3)²+(5x-3)².18.(12分)分解因式。

完整版)《整式的乘法与因式分解》综合练习题

完整版)《整式的乘法与因式分解》综合练习题

完整版)《整式的乘法与因式分解》综合练习题1.若16÷2=2,则n等于()A。

10 B。

5 C。

3 D。

62.如果a写成下列各式,正确的共有()①a+a;②(a);③a÷a;④(a);⑤(a);⑥a÷a;⑦a·a;⑧2a-a=a答案:B。

6个3.已知4ab÷9ab=3mn2/8882b,则()A。

m=4.n=3 B。

m=4.n=1 C。

m=1.n=3 D。

m=2.n=3答案:A。

m=4.n=34.下列运算正确的是()A。

x·x=x B。

(x)2=x2 C。

x+x=2x D。

x6-x3=x3答案:C。

x+x=2x5.下面的计算正确的是()A。

6a-5a=a B。

a+2a=3a C。

-(a-b)=-a+b D。

2(a+b)=2a+2b 答案:B。

a+2a=3a6.下列运算正确的是()A。

a+a=2a B。

(-a)=a C。

3a·a=a3 D。

(a)2=2a2答案:A。

a+a=2a7.下列运算正确的是A。

x+x=2x B。

x÷x=1 C。

x·x=x2 D。

(2x)2=4x2答案:A。

x+x=2x8.下列计算正确的是A。

x·x=x2 B。

x·x=x C。

(-x)=-x D。

(x)2=x2答案:A。

x·x=x29.下列计算正确的是A。

a+a=2a B。

2a+3b=5ab C。

(a)3=a6 D。

a÷a=1答案:B。

2a+3b=5ab10.下列各式计算正确的是A。

(a+1)2=a2+2a+1 B。

a+a=2a C。

a÷a=1答案:A。

(a+1)2=a2+2a+111.下列运算正确的是A。

-3=-3 B。

-(-a)=a C。

3a-2a=a D。

a2/2=1/2a2 答案:B。

-(-a)=a12.下列计算正确的是A。

a·a=a2 B。

a+a=2a C。

(a)=a D。

(完整版)整式的乘法与因式分解专题训练

(完整版)整式的乘法与因式分解专题训练

整式的乘法和因式分解一、整式的运算1、已知a m =2,a n =3,求a m +2n 的值;2、若32=n a,则n a 6= . 3、若125512=+x ,求x x +-2009)2(的值。

4、已知2x +1⋅3x -1=144,求x ;5.2005200440.25⨯= .6、( 23)2002×(1.5)2003÷(-1)2004=________。

7、如果(x +q )(3x -4)的结果中不含x 项(q 为常数),求结果中的常数项8、设m 2+m -1=0,求m 3+2m 2+2010的值二、乘法公式的变式运用1、位置变化,(x +y )(-y +x )2、符号变化,(-x +y )(-x -y )3、指数变化,(x 2+y 2)(x 2-y 2)44、系数变化,(2a +b )(2a -b )5、换式变化,[xy +(z +m )][xy -(z +m )]6、增项变化,(x -y +z )(x -y -z )7、连用公式变化,(x +y )(x -y )(x 2+y 2)8、逆用公式变化,(x -y +z )2-(x +y -z )2三、乘法公式基础训练:1、计算 (1)1032 (2)19822、计算 (1)(a -b +c )2 (2)(3x +y -z )23、计算 (1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2)4、计算 (1)19992-2000×1998 (2)22007200720082006-⨯.四、乘法公式常用技巧1、已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。

变式练习:已知(a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值。

2、已知2=+b a ,1=ab ,求22b a +的值。

变式练习:已知8=+b a ,2=ab ,求2)(b a -的值。

第十四章 整式的乘法与因式分解

第十四章 整式的乘法与因式分解

第十四章 整式的乘法与因式分解一、选择题(每小题3分,共36分.每小题均有A,B,C,D四个选项,其中只有一个选项正确)1.(2024·遵义绥阳县期末)下列计算正确的是(A)A.(-2a)2=4a2B.x3·x3=x9C.(-b)7÷b5=b2D.(m2)3·m4=m92.(2024·黔南州期末)式子(-ab)4·a2化简后的结果是(B)A.a2b4B.a6b4C.a8b4D.a16b43.(2024·黔南州期末)下列等式中,从左到右的变形是因式分解的是(D)A.a(a-3)=a2-3aB.(a+1)2=a2+2a+1) D.a2-9=(a+3)(a-3)C.a+2=a(1+2a4.(2024·遵义红花岗区期中)若(x+4)(x-2)=x2+mx+n,则m,n的值分别是(C)A.2,8B.-2,-8C.2,-8D.-2,85.(2024·遵义播州区期末)已知实数n满足n2-n+1=0,则4n3-5n2+5n+11的值为(A)A.12B.10C.8D.66.(2024·黔南州期末)若x2-nx+36是关于x的完全平方式,则n的值为(C)A.6B.12C.±12D.367.若a+b=-5,ab=3,则a2+b2的值为(B)A.25B.19C.31D.168.(2023·六盘水期中)小明在做作业的时候,不小心把墨水滴到了作业本上,■×3ab=6ab-3ab3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的是(D)A.(2ab+b2)B.(3ab+2b2)C.(2+2b)D.(2-b2)9.如图,两个正方形边长分别为a,b,已知a+b=7,ab=9,则阴影部分的面积为(B)A.10B.11C.12D.1310.已知a,b,c为△ABC的三边长,且a2+ac=b2+bc,则△ABC是(D)A.等腰直角三角形B.直角三角形C.等边三角形D.等腰三角形11.(2023·黔西南州期末)在日常生活中取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:对于多项式x4-y4,因式分解的结果是(x+y)(x-y)(x2+y2),若取x=9,y=9,则各个因式的值是x-y=0,x+y=18,x2+y2=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x3-xy2,取x=20,y=10,用上述方法产生的密码不可能是(C)A.102030B.103020C.305010D.20103012.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”,比如8=32-12,16=52-32,即8,16均为“和谐数”.在不超过2 023的正整数中,所有的“和谐数”之和为(A)A.255 024B.253 008C.257 048D.255 054二、填空题(每小题4分,共16分)13.(2024·遵义绥阳县期末)计算:(2a)3·(-3a2)= -24a5 .14.(2023·沈阳中考)因式分解:a3+2a2+a= a(a+1)2 . .15.(2024·遵义红花岗区期中)若x m=5,x n=10,则x2m-n=5216.如图,点C 是线段BG 上的一点,以BC ,CG 为边向两边作正方形,面积分别是S 1和S 2,两正方形的面积和S 1+S 2=20,已知BG =6,则图中阴影部分面积为 4 .三、解答题(本大题共9题,共98分,解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算下列各题:(1)-12x 2y ·(13x 3y 2-34x 2y +16);(2)(x +3y -2z )(x -3y +2z );(3)(2x -1)2-(2x +5)(2x -5).【解析】(1)原式=-12x 2y ·13x 3y 2+12x 2y ·34x 2y -12x 2y ·16=-4x 5y 3+9x 4y 2-2x 2y.(2)原式=(x +3y -2z )[x -(3y -2z )]=x 2-(3y -2z )2=x 2-9y 2+12yz -4z 2.(3)原式=4x 2-4x +1-(4x 2-25)=4x 2-4x +1-4x 2+25=-4x +26.18.(10分)分解因式:(1)9a2(x-y)+4b2(y-x);(2)a2-2a(b+c)+(b+c)2.【解析】(1)9a2(x-y)+4b2(y-x)=9a2(x-y)-4b2(x-y)=(x-y)(9a2-4b2)=(x-y)(3a+2b)(3a-2b);(2)a2-2a(b+c)+(b+c)2=[a-(b+c)]2=(a-b-c)2.19.(10分)(2024·遵义红花岗区期中)先化简,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2.【解析】3a(2a2-4a+3)-2a2(3a+4)=6a3-12a2+9a-6a3-8a2=-20a2+9a,当a=-2时,原式=-20×4-9×2=-98.20.(10分)(2023·毕节七星关区期中)如图所示,某地区有一块长为(2a+3b)米、宽为(2a-b)米的长方形地块,角上有四个边长均为(a-b)米的小正方形空地,开发商计划将阴影部分进行绿化.(1)用含a,b的代数式表示绿化的面积是多少平方米?(2)若a=20,b=10,求出绿化面积.【解析】(1)绿化的面积:(2a-b)(2a+3b)-4(a-b)2=4a2+6ab-2ab-3b2-4(a2-2ab+b2)=4a2+4ab-3b2-4a2+8ab-4b2=(12ab-7b2)平方米.答:绿化的面积是(12ab-7b2)平方米.(2)当a=20,b=10时,原式=12×20×10-7×102=1 700(平方米),答:绿化面积为1 700平方米.21.(10分)(2024·上海期中)已知x-y=-5,xy=3,求下列各式的值:(1)x2+y2;(2)(3x+2)(3y-2);(3)(x+y)2.【解析】(1)∵x-y=-5,xy=3,∴x2+y2=(x-y)2+2xy=(-5)2+2×3=25+6=31;(2)∵x-y=-5,xy=3,∴(3x+2)(3y-2)=9xy-6x+6y-4=9xy-6(x-y)-4=9×3-6×(-5)-4=27+30-4=57-4=53;(3)∵x-y=-5,xy=3,∴(x+y)2=(x-y)2+4xy=(-5)2+4×3=25+12=37.22.(12分)(2024·黔西南州期末)先阅读材料,再解答问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1-2(x-y)+(x-y)2= ;(2)因式分解:9(x-2)2-6(x-2)+1.【解析】(1)将“x-y”看成整体,令x-y=m,则原式=1-2m+m2=(m-1)2.再将x-y=m代入,得原式=(x-y-1)2;答案:(x-y-1)2(2)将“x-2”看成整体,令x-2=t,则原式=9t2-6t+1=(3t-1)2.再将x-2=t代入,得原式=[3(x-2)-1]2=(3x-7)2.23.(12分)甲、乙两人共同计算一道整式乘法题(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“-a”,得到的结果为6x2+11x-10.乙由于漏抄了第二个多项式中x 的系数,得到的结果为2x2-9x+10.(1)求正确的a,b的值;(2)计算出这道整式乘法题的正确结果.【解析】(1)由题意得(2x-a)(3x+b)=6x2+(2b-3a)x-ab=6x2+11x-10,∴2b-3a=11①,∵乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2-9x+10,∴(2x+a)(x+b)=2x2+(2b+a)x+ab=2x2-9x+10,∴2b+a=-9②,由①②联立方程组,解得a=-5,b=-2;(2)(2x-5)(3x-2)=6x2-19x+10.24.(12分)(2023·铜仁石阡县期中)阅读下面的材料:材料一:比较322和411的大小.材料二:比较28和82的大小.解:因为411=(22)11=222,且3>2,所以322>222,即322>411.解:因为82=(23)2=26,且8>6,所以28>26,即28>82.小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小.小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小.解决下列问题:(1)比较344,433,522的大小;(2)比较8131,2741,961的大小.【解析】(1)∵344=(34)11=8111, 433=(43)11=6411,522=(52)11=2511,81>64>25,∴344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,124>123>122,∴8131>2741>961.25.(12分)(2023·贵阳南明区期中)八年级课外兴趣小组活动时,老师提出了如下问题:将2a-3ab-4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a-3ab)-(4-6b)=a(2-3b)-2(2-3b)=(2-3b)(a-2);解法二:原式=(2a-4)-(3ab-6b)=2(a-2)-3b(a-2)=(a-2)(2-3b);【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.【类比】(1)请用分组分解法将x2-a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2-2ab-bx+b2因式分解;(3)将a4-2a3b+2a2b2-2ab3+b4因式分解.【解析】(1)原式=(x2-a2)+(x+a)=(x+a)(x-a)+(x+a)=(x+a)(x-a+1);(2)原式=(ax-bx)+(a2-2ab+b2)=x(a-b)+(a-b)2=(a-b)(x+a-b);(3)原式=(a4+2a2b2+b4)-(2ab3+2a3b) =(a2+b2)2-2ab(a2+b2)=(a2+b2)(a2+b2-2ab)=(a2+b2)(a-b)2.。

整式的乘法与因式分解基础专项训练精选全文完整版

整式的乘法与因式分解基础专项训练精选全文完整版

可编辑修改精选全文完整版整式的乘法与因式分解基础专项训练1、同底数幂相乘:=•n m a a2、幂的乘方:()=n m a3、积的乘方:()=nab 4、单项式⨯单项式(1)系数相乘作为积的系数(2)相同字母的因式,利用同底数幂的乘法,作为一个因式(3)单独出现的字母,连同它的指数,作为一个因式注意点:单项式与单项式相乘,积仍然是一个单项式 6、单项式⨯多项式①单项式分别乘以多项式的各项;②将所得的积相加注意:单项式与多项式相乘,积仍是一个多项式,项数与多项式的项数相同7、多项式⨯多项式先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。

注意:运算的结果一般按某一字母的降幂或升幂排列。

8、平方差公式: ()()=-+b a b a ;变式:(1)=+-+))((a b b a ; (2)=++-))((b a b a ;(3)))((b a b a --+-= ; (4)))((b a b a ---= 。

9、完全平方公式:2)(b a ±= 。

公式变形:(1)ab b a ab b a b a 2)(2)(2222+-=-+=+(2)ab b a b a 4)()(22+-=+; (3)ab b a b a 4)()(22-+=-(4)ab b a b a 4)()(22=--+; (5))(2)()(2222b a b a b a +=-++1、计算:(1)52x x ⋅ (2)523)()()(x y x y y x -⋅-⋅- (3)52)(x x ⋅-(4)2233x x x x ⋅-⋅ (5) 532])][()[(m n n m -- (6)5342])[()(p p p -⋅-⋅-(7)32])(3[y x + (8)20082009)3()31(-⨯2、已知,32=x那么32+x 的值是 ;计算(-x 5)7+(-x 7)5的结果是__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法和因式分解
一、整式的运算
1、已知a m =2,a n =3,求a m +2n 的值;
2、若32=n a ,则n a 6= .
3、若125512=+x ,求x x +-2009)2(的值。

4、已知2x +13x 1=144,求x ; 5.2005200440.25⨯= . 6、( 23
)2002×2003
÷(-1)2004=________。

7、如果(x +q )(3x 4)的结果中不含x 项(q 为常数),求结果中的常数项
8、设m 2+m 1=0,求m 3+2m 2+2010的值

二、乘法公式的变式运用 1、位置变化,
x y y x
)
2、符号变化,x y x y
3、指数变化,x 2y 2x 2y 2
4
4、系数变化,2a b 2a b
5、换式变化,
xy z m xy z m

6、增项变化,x y z x y z
7、连用公式变化,x y
x y x 2y 2
8、逆用公式变化,x y z
2
x y z
2
`
三、乘法公式基础训练:
1、计算 (1)1032
(2)1982
2、计算 (1)a b c 2 (2)3x y
z
2

3、计算 (1)a 4b 3c a 4b 3c (2)3x y 23x y 2
4、计算 (1)19992-2000×1998 (2)2
2007
200720082006
-⨯.
"
四、乘法公式常用技巧 1、已知a 2b 213,ab 6,求a b 2,a b 2的值。

变式练习:已知a b 27,a b
2
4,求a 2b 2,ab 的值。


2、已知2=+b a ,1=ab ,求22b a +的值。

变式练习:已知8=+b a ,2=ab ,求2)(b a -的值。

3、已知a -a 1=3,求a 2+21
a
的值。

变式练习:已知a 2
5a +1=0,(1)求a +
a 1的值;(2)求a 2+21
a
的值; |
4、已知a a 1a
2
b
2,求22
2
a b ab +-的值。

变式练习:已知()()212
-=---y x x x ,则
xy y x -+2
2
2= .
5、已知x 2+2y 2+4x 12y +22=0,求x+y 的值

变式练习:已知2x 2+6xy +9y 26x +9=0,求x+y 的值
6、已知:20072008+=x a ,20082008+=x b ,20092008+=x c , 求ac bc ab c b a ---++222的值。


变式练习:△ABC 的三边a ,b ,c 满足a 2+b 2+c 2=ab +bc +ca ,判断△ABC 的形状
7、已知:x 2-y 2=6,x+y=3,求x-y 的值。

变式练习:已知x-y=2,y-z=2,x+z=14。

求x 2-z 2的值
五、因式分解的变形技巧
1、符号变换:有些多项式有公因式或者可用公式,但是结构不太清晰的情况下,可考虑变换部分项的系数,先看下面的体验题。

体验题1 (m+n)(x-y)+(m-n)(y-x)
指点迷津y-x= -(x-y)
$
实践题1 分解因式:-a2-2ab-b2
2、系数变换:有些多项式,看起来可以用公式法,但不变形的话,则结构不太清晰,这时可考虑进行系数变换。

体验题2 分解因式 4x2-12xy+9y2
#
实践题2 分解因式
2 2
1
439
xy y x++
3、指数变换:有些多项式,各项的次数比较高,对其进行指数变换后,更易看出多项式的结构。

体验题3 分解因式x4-y4
指点迷津把x2看成(x2)2,把y4看成(y2)2,然后用平方差公式。

|
实践题3 分解因式 a4-2a4b4+b4
4、展开变换:有些多项式已经分成几组了,但分成的几组无法继续进行因式分解,这时往往需要将这些局部的因式相乘的形式展开。

然后再分组。

体验题4 a(a+2)+b(b+2)+2ab
指点迷津表面上看无法分解因式,展开后试试:a2+2a+b2+2b+2ab。

然后分组。

实践题4 x(x-1)-y(y-1)

5、拆项变换:有些多项式缺项,如最高次数是三次,无二次项或者无一次项,但有常数项。

这类问题直接进行分解往往较为困难,往往对部分项拆项,往往拆次数处于中间的项。

体验题5 分解因式3a3-4a+1
指点迷津本题最高次是三次,缺二次项。

三次项的系数为3,而一次项的系数为-4,提公因式后,没法结合常数项。

所以我们将一次项拆开,拆成-3a-a试试。

实践题5 分解因式 3a3+5a2-2
$
6、添项变换:有些多项式类似完全平方式,但直接无法分解因式。

既然类似完全平方式,我们就添一项然后去一项凑成完全平方式。

然后再考虑用其它的方法。

体验题6 分解因式x2+4x-12
指点迷津本题用常规的方法几乎无法入手。

与完全平方式很象。

因此考虑将其配成完全平方式再说。

实践题6 分解因式x2-6x+8
~
实践题7 分解因式a4+4
7、换元变换:有些多项式展开后较复杂,可考虑将部分项作为一个整体,用换元法,结构就变得清晰起来了。

然后再考虑用公式法或者其它方法。

体验题7 分解因式 (x+1)(x+2)(x+3)(x+4)+1
/
实践题8 分解因式x(x+2)(x+3)(x+5)+9
实践题答案
实践题1 原式=-a 2-2ab-b 2=-( a 2+2ab+b 2)= -(a+b)2 实践题2
原式=(
2x )2
+2.2x •3y •+(3y )2
=(2x +3
y )2
实践题3 原式=(a 2-b 2)2=(a+b)2(a-b)2
实践题4 原式= x 2-x-y 2+y=(x 2-y 2)-(x-y)=(x+y)(x-y)-(x-y)=(x-y)(x+y-1) 实践题5 原式=3a 3+3a 2+2a 2-2=3a 2(a+1)+2(a 2-1)
=3a 2(a+1)+2(a+1)(a-1)=(a+1)(3a 2+2a-2)
实践题6 原式=x 2-6x+9-9+8=(x-3)2-1=(x-3)2-12 =(x-3+1)(x-3-1)=(x-2)(x-4)
实践题7 原式=a 4+4a 2+4-4a 2=(a 2+2)2-4a 2
=(a 2+2+2a)(a 2+2-2a)=(a 2+2a+2)(a 2-2a+2)
实践题8 原式=[x(x+5)][(x+2)(x+3)]+9=(x 2+5x)(x 2+5x+6)+9
令x 2+5x=m,上式可变形为m(m+6)+9=m 2+6m+9=(m+3)2=(x 2+5x+3)2。

相关文档
最新文档