武汉市中考数学试卷及答案(word版)

合集下载

2022年湖北武汉中考数学试卷真题及答案详解(精校打印版)

2022年湖北武汉中考数学试卷真题及答案详解(精校打印版)

2022年武汉市初中毕业生学业考试数学试卷一、选择题1.2022的相反数是()A .2022B .2022-C .12022D .12022-2.彩民李大叔购买1张彩票,中奖.这个事件是()A .必然事件B .确定性事件C .不可能事件D .随机事件3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A .B .C .D .4.计算()342a 的结果是()A .122a B .128a C .76a D .78a 5.如图是由4个相同的小正方体组成的几何体,它的主视图是()A .B .C .D .6.已知点()11,A x y ,()22,B x y 在反比例函数6y x =的图象上,且120x x <<,则下列结论一定正确的是()A .120y y +<B .120y y +>C .12y y <D .12y y >7.匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线).这个容器的形状可能是()A .B .C .D .8.班长邀请A ,B ,C ,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A ,B 两位同学座位相邻的概率是()A .14B .13C .12D .239.如图,在四边形材料ABCD 中,AD BC ∥,90A ∠=︒,9cm AD =,20cm AB =,24cm BC =.现用此材料截出一个面积最大的圆形模板,则此圆的半径是()A .110cm13B .8cm C .D .10cm10.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是()A .9B .10C .11D .12二、填空题11的结果是_________.12.某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是_________.尺码/cm 2424.52525.526销售量/双13104213.计算:22193x x x ---的结果是__.14.如图,沿AB 方向架桥修路,为加快施工进度,在直线AB 上湖的另一边的D 处同时施工.取150ABC ∠=︒,1600m BC =,105BCD ∠=︒,则C ,D 两点的距离是_________m .15.已知抛物线2y ax bx c =++(a ,b ,c 是常数)开口向下,过()1,0A -,(),0B m 两点,且12m <<.下列四个结论:①0b >;②若32m =,则320a c +<;③若点()11,M x y ,()22,N x y 在抛物线上,12x x <,且121x x +>,则12y y >;④当1a ≤-时,关于x 的一元二次方程21ax bx c ++=必有两个不相等的实数根.其中正确的是_________(填写序号).16.如图,在Rt ABC 中,90ACB ∠=︒,AC BC >,分别以ABC 的三边为边向外作三个正方形ABHL ,ACDE ,BCFG ,连接DF .过点C 作AB 的垂线CJ ,垂足为J ,分别交DF ,LH 于点I ,K .若5CI =,4CJ =,则四边形AJKL 的面积是_________.三、解答题17.解不等式组2532x x x -≥-⎧⎨<+⎩①②请按下列步骤完成解答.(1)解不等式①,得_________;(2)解不等式②,得_________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集是_________.18.如图,在四边形ABCD 中,AD BC ∥,80B ∠=︒.(1)求BAD ∠的度数;(2)AE 平分BAD ∠交BC 于点E ,50BCD ∠=︒.求证:AE DC ∥.19.为庆祝中国共青团成立100周年,某校开展四项活动:A 项参观学习,B 项团史宣讲,C 项经典诵读,D 项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图.(1)本次调查的样本容量是__________,B 项活动所在扇形的圆心角的大小是_________,条形统计图中C 项活动的人数是_________;(2)若该校约有2000名学生,请估计其中意向参加“参观学习”活动的人数.20.如图,以AB 为直径的O 经过ABC 的顶点C ,AE ,BE 分别平分BAC ∠和ABC ∠,AE 的延长线交O 于点D ,连接BD .(1)判断BDE △的形状,并证明你的结论;(2)若10AB =,BE =BC 的长.21.如图是由小正方形组成的96⨯网格,每个小正方形的顶点叫做格点.ABC 的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D ,E 分别是边AB ,AC 与网格线的交点.先将点B 绕点E 旋转180︒得到点F ,画出点F ,再在AC 上画点G ,使DG BC ∥;(2)在图(2)中,P 是边AB 上一点,BAC α∠=.先将AB 绕点A 逆时针旋转2α,得到线段AH ,画出线段AH ,再画点Q ,使P ,Q 两点关于直线AC 对称.22.在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A 处开始减速,此时白球在黑球前面70cm 处.小聪测量黑球减速后的运动速度v (单位:cm/s )、运动距离y (单位:cm )随运动时间t (单位:s )变化的数据,整理得下表.运动时间/st 01234运动速度/cm/sv 109.598.58运动距离/cm y 09.751927.7536小聪探究发现,黑球的运动速度v 与运动时间t 之间成一次函数关系,运动距离y 与运动时间t 之间成二次函数关系.(1)直接写出v 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm 时,求它此时的运动速度;(3)若白球一直..以2cm/s 的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.23.问题提出:如图(1),ABC 中,AB AC =,D 是AC 的中点,延长BC 至点E ,使DE DB =,延长ED 交AB 于点F ,探究A F A B的值.(1)先将问题特殊化.如图(2),当60BAC ∠=︒时,直接写出A F A B的值;(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展:如图(3),在ABC 中,AB AC =,D 是AC 的中点,G 是边BC 上一点,()12CG n BC n =<,延长BC 至点E ,使DE DG =,延长ED 交AB 于点F .直接写出A F A B的值(用含n 的式子表示).24.抛物线2=23y x x --交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A,B两点的坐标;(2)如图(1),当OP OA时,在抛物线上存在点D(异于点B),使B,D两点到AC的距离相等,求出所有满足条件的点D的横坐标;(3)如图(2),直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为m.求FPOP的值(用含m的式子表示).【分析】根据相反数的定义直接求解.【详解】,解:实数2022的相反数是2022故选:B.【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.D【分析】直接根据随机事件的概念即可得出结论.【详解】购买一张彩票,结果可能为中奖,也可能为不中奖,中奖与否是随机的,即这个事件为随机事件.故选:D.【点睛】本题考查了随机事件的概念,解题的关键是熟练掌握随机事件发生的条件,能够灵活作出判断.3.D【分析】利用轴对称图形的概念可得答案.【详解】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项符合题意;故选:D.【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【分析】直接运用幂的乘方、积的乘方计算即可.【详解】解:()()()4134233228a a a ==.故答案为B .【点睛】本题主要考查了幂的乘方、积的乘方的运算,灵活运用相关运算法则成为解答本题的关键.5.A【分析】根据从正面所看得到的图形为主视图,据此解答即可.【详解】解:从正面可发现有两层,底层三个正方形,上层的左边是一个正方形.故选:A .【点睛】本题主要考查了三视图的知识,掌握主视图是从物体的正面看得到的视图成为解答本题的关键.6.C【分析】把点A 和点B 的坐标代入解析式,根据条件可判断出1y 、2y 的大小关系.【详解】解:∵点()11,A x y ,()22,B x y )是反比例函数6y x =的图象时的两点,∴11226x y x y ==.∵120x x <<,∴120y y <<.故选:C .【点睛】本题主要考查反比例函数图象上点的坐标特征,掌握图象上点的坐标满足函数解析式是解题的关键.7.A【分析】根据函数图象的走势:较缓,较陡,陡,注水速度是一定的,上升的快慢跟容器的粗细有关,越粗的容器上升高度越慢,从而得到答案.【详解】解:从函数图象可以看出:OA 段上升最慢,AB 段上升较快,BC 段上升最快,上升的快慢跟容器的粗细有关,越粗的容器上升高度越慢,∴题中图象所表示的容器应是下面最粗,中间其次,上面最细;故选:A .【点睛】本题考查了函数图象的性质在实际问题中的应用,判断出每段函数图象变化不同的原因是解题的关键.8.C【分析】采用树状图法,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种则A ,B 两位同学座位相邻的概率是61122.故选C.【点睛】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.9.B【分析】如图所示,延长BA 交CD 延长线于E ,当这个圆为△BCE 的内切圆时,此圆的面积最大,据此求解即可.【详解】解:如图所示,延长BA 交CD 延长线于E ,当这个圆为△BCE 的内切圆时,此圆的面积最大,∵AD BC ∥,∠BAD =90°,∴△EAD ∽△EBC ,∠B =90°,∴EA AD EB BC=,即92024EA EA =+,∴12cm EA =,∴EB =32cm ,∴40cm EC ==,设这个圆的圆心为O ,与EB ,BC ,EC 分别相切于F ,G ,H ,∴OF =OG =OH ,∵=EBC EOB COB EOC S S S S ++△△△△,∴11112222EB BC EB OF BC OG EC OH ⋅=⋅+⋅+⋅,∴()2432=243240OF ⨯++⋅,∴8cm OF =,∴此圆的半径为8cm ,故选B .【点睛】本题主要考查了三角形内切圆半径与三角形三边的关系,勾股定理,正确作出辅助线是解题的关键.【分析】根据题意设出相应未知数,然后列出等式化简求值即可.【详解】解:设如图表所示:根据题意可得:x+6+20=22+z+y,整理得:x-y=-4+z,x+22+n=20+z+n,20+y+m=x+z+m,整理得:x=-2+z,y=2z-22,∴x-y=-2+z-(2z-22)=-4+z,解得:z=12,∴x+y=3z-24=12故选:D.【点睛】题目主要考查方程的应用及有理数加法的应用,理解题意,列出相应方程等式然后化简求值是解题关键.11.2【分析】根据二次根式的性质进行化简即可.【详解】2=.故答案为:2.()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.12.25【分析】直接根据众数的定义:一组数据中出现次数最多的数即为众数即可得出结论.【详解】由表格可知:尺码25的运动鞋销售量最多为10双,即众数为25.故答案为:25.【点睛】本题考查了众数,解题的关键是熟练掌握众数的定义.13.13x +##13x+【分析】根据异分母分式减法法则进行计算即可求解.【详解】解:原式()()()()233333x x x x x x +=-+-+-()()2333x x x x --=+-()()333x x x -=+-13x =+.故答案为:13x +.【点睛】本题考查了分式的加减运算,掌握分式的运算法则是解题的关键.14.【分析】如图所示:过点C 作CE BD ⊥于点E ,先求出800m CE =,再根据勾股定理即可求出CD 的长.如图所示:过点C 作CE BD ⊥于点E ,则∠BEC =∠DEC =90°,150ABC ∠=︒ ,30CBD ∴∠=︒,∴∠BCE =90°-30°=60°,又105BCD ∠=︒ ,45CDB ∴∠=︒,∴∠ECD =45°=∠D ,∴CE DE =,1600m BC = ,111600800m 22CE BC ∴==⨯=,22222CD CE DE CE ∴=+=,即CD ==.故答案为:【点睛】本题考查三角形内角和定理、等腰三角形的判定与性质、直角三角形的性质及勾股定理,解题的关键是熟练掌握相关内容并能灵活运用.15.①③④【分析】首先判断对称轴02b x a=->,再由抛物线的开口方向判断①;由抛物线经过A (-1,0),(),0B m ,当32m =时,()312y a x x ⎛⎫=+- ⎪⎝⎭,求出32c a =-,再代入32a c +判断②,抛物线()()()2211y ax bx c a x x m ax a m x am =++=+-=+--,由点()11,M x y ,()22,N x y 在抛物线上,得()21111y ax a m x am =+--,()22221y ax a m x am =+--,把两个等式相减,整理得()()1212121y y a x x x x m -=-++-,通过判断12x x -,121x x m ++-的符号判断③;将方程21ax bx c ++=写成a (x -m )(x +1)-1=0,整理,得()2110x m x m a+---=,再利用判别式即可判断④.【详解】解: 抛物线过()1,0A -,(),0B m 两点,且12m <<,122b m x a -+∴=-=, 12m <<,11022m -+∴<<,即02b a -, 抛物线开口向下,a<0,0b ∴>,故①正确;若32m =,则()23131222y a x x ax ax a ⎛⎫=+-=-- ⎪⎝⎭,32c a ∴=-,3323202a c a ⎛⎫∴+=+⨯-= ⎪⎝⎭,故②不正确; 抛物线()()()2211y ax bx c a x x m ax a m x am =++=+-=+--,点()11,M x y ,()22,N x y 在抛物线上,∴()21111y ax a m x am =+--,()22221y ax a m x am =+--,把两个等式相减,整理得()()1212121y y a x x x x m -=-++-,120,a x x << ,121x x +>,12m <<,12120,10x x x x m ∴-<++->,()()12121210y y a x x x x m ∴-=-++->,12y y ∴>,故③正确;依题意,将方程21ax bx c ++=写成a (x -m )(x +1)-1=0,整理,得()2110x m x m a+---=,()()2214141m m m a a ⎛⎫∴∆=----=++ ⎪⎝⎭,12m << ,1a ≤-,()2419m ∴<+<,44a≥-,()2410m a ∴++,故④正确.综上所述,①③④正确.故答案为;①③④.【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.16.80【分析】连接LC 、EC 、EB ,LJ ,由平行线间同底的面积相等可以推导出:JAL CAL BAE EAC S S S S == ,,由CAL EAB ≅ ,可得CAL EAB S S = ,故JAL CAL BAE EAC S S S S === ,证得四边形ALKJ 是矩形,可得2ALJ ALKJ S S = 矩形,在正方形ACDE 中可得:2EAC ACDE S S = 正方形,故得出:2ALKJ S AC =矩形.由ACJ CBJ ,可得CJ AJ BJ CJ=,即可求出8AJ =,可得出【详解】连接LC 、EC 、EB ,LJ ,在正方形ABHL ,ACDE ,BCFG 中90,ALK LAB EAC ACD BCF ∠=∠=∠=∠=∠=︒,,,,AL AB EA AC BC CF AC CD AE CD ==== ,AB LH ,2EAC ACDE S S = 正方形.∵CK LH ⊥,∴90CKL ∠=︒,CK AB⊥∴180CKL ALK ∠+∠=︒,90CJA CJB ∠=∠=︒∴CK AL ∥,∴CAL JAL S S = .∵90JKL ALK JAL ∠=∠=∠=︒,∴四边形ALKJ 是矩形,∴2ALJ ALKJ S S = 矩形.∵LAB EAC ∠=∠,∴LAB BAC EAC BAC ∠+∠=∠+∠,∴EAB CAL ∠=∠,∵,,AL AB EA AC ==∴CAL EAB ≅ ,∴CAL EAB S S = .∵AE CD ∥,∴EAB EAC S S = .∴JAL CAL BAE EACS S S S === ∴22EAC ALKJ ACDE S S S AC === 矩形正方形.∵90,DCA BCF DCF BCD ∠=∠=︒∠=∠.∴90DCF BCD ∠=∠=︒,∵,,BC CF AC CD ==∴ABC DCF ≅ ,∴,CAB CDF AB DF ∠=∠=,∵90,90ACB CJB ∠=︒∠=︒,∴90,90CAB ABC JCB CBJ ∠+∠=︒∠+∠=︒,∴CAB JCB ∠=∠,∵DCI JCB ∠=∠,∴DCI IDC ∠=∠,∴5ID CI ==,∵90,90IDC DFC DIC ICF ∠+∠=︒∠+∠=︒,∴ICF IFC ∠=∠,∴5IF CI ==,∴10DF =,∴10AB =.设,10AJ x BJ x ==-,∵,,CAJ BCJ CJA CJB ∠=∠∠=∠∴ACJ CBJ ,∴CJ AJ BJ CJ=,∴4104x x =-,∴1228x x ==,,∵AC BC >,∴AJ BJ >,∴10x x >-,∴5x >,∴8x =.∴222224880AC CJ AJ =+=+=,∴280ALKJ S AC ==矩形.故答案为:80.【点睛】此题考查正方形的性质、矩形的性质与判定、相似三角形的判定与性质、勾股定理,平行线间同底的两个三角形,面积相等;难度系数较大,作出正确的辅助线并灵活运用相关图形的性质与判定是解决本题的关键.17.(1)3x ≥-(2)1x <(3)详见解析(4)31x -≤<【分析】分别求出每一个不等式的解集,根据口诀“同大取大、同小取小、大小小大中间找、大大小小找不到”原则取所含不等式解集的公共部分,即确定为不等式组的解集.【详解】(1)解:解不等式①,得3x ≥-(2)解:解不等式②,得1x <(3)解:把不等式①和②的解集在数轴上表示出来:(4)解:由图可得,原不等式组的解集是:31x -≤<【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(1)100BAD ∠=︒(2)详见解析【分析】(1)根据两直线平行,同旁内角互补,即可求解;(2)根据AE 平分BAD ∠,可得50DAE ∠=︒.再由AD BC ∥,可得50AEB DAE ∠=∠=︒.即可求证.【详解】(1)解:∵AD BC ∥,∴180B BAD ∠+∠=°,∵80B ∠=︒,∴100BAD ∠=︒.(2)证明:∵AE 平分BAD ∠,∴50DAE ∠=︒.∵AD BC ∥,∴50AEB DAE ∠=∠=︒.∵50BCD ∠=︒,∴BCD AEB ∠=∠.∴AE DC ∥.【点睛】本题主要考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键19.(1)80,54︒,20(2)大约有800人【分析】(1)根据“总体=部分÷对应百分比”与“圆心角度数=360°×对应百分比”可求得样本容量及B 项活动所在扇形的圆心角度数,从而求得C 项活动的人数;(2)根据“部分=总体×对应百分比”,用总人数乘以样本中“参观学习”的人数所占比例可得答案.【详解】(1)解:样本容量:16÷20%=80(人),B 项活动所在扇形的圆心角:123605480︒⨯=︒,C 项活动的人数:80-32-12-16=20(人);故答案为:80,54°,20;(2)解:32200080080⨯=(人),答:该校意向参加“参观学习”活动的学生大约有800人.【点睛】本题主要考查了条形统计图,扇形统计图,用样本估计总体,读懂图,找出对应数据,熟练掌握总体、部分与百分比之间的关系是解题的关键.20.(1)BDE △为等腰直角三角形,详见解析(2)8BC =【分析】(1)由角平分线的定义、结合等量代换可得BED DBE ∠=∠,即BD ED =;然后再根据直径所对的圆周角为90°即可解答;(2)如图:连接OC ,CD ,OD ,OD 交BC 于点F .先说明OD 垂直平分BC .进而求得BD 、OD 、OB 的长,设OF t =,则5DF t =-.然后根据勾股定理列出关于t 的方程求解即可.【详解】(1)解:BDE △为等腰直角三角形,证明如下:证明:∵AE 平分BAC ∠,BE 平分ABC ∠,∴BAE CAD CBD ∠=∠=∠,ABE EBC ∠=∠.∵BED BAE ABE ∠=∠+∠,DBE DBC CBE ∠=∠+∠,∴BED DBE ∠=∠.∴BD ED =.∵AB 为直径,∴90ADB ∠=︒.∴BDE △是等腰直角三角形.(2)解:如图:连接OC ,CD ,OD ,OD 交BC 于点F .∵DBC CAD BAD BCD ∠=∠=∠=∠,∴BD DC =.∵OB OC =,∴OD 垂直平分BC .∵BDE △是等腰直角三角形,BE =∴BD =∵10AB =,∴5OB OD ==.设OF t =,则5DF t =-.在Rt BOF 和Rt BDF V 中,22225(5)t t -=--.解得,3t =.∴4BF =.∴8BC =.【点睛】本题主要考查了角平分线的定义、等腰三角形的判定与性质、勾股定理的应用、垂直平分线的判定与性质、圆的性质等知识点,灵活运用相关知识成为解答本题的关键.21.(1)作图见解析(2)作图见解析【分析】(1)取格点,作平行四边形,利用平行四边形对角顶点关于对角线交点对称即可求点F ;平行四边形对边在网格中与格线的交点等高,连接等高点即可作出DG BC ∥;(2)取格点,作垂直平分线即可作出线段AH ;利用垂直平分线的性质,证明三角形全等,作出P ,Q 两点关于直线AC 对称【详解】(1)解:作图如下:取格点F ,连接AF ,AF BC ∥且AF BC ,所以四边形ABCF 是平行四边形,连接BF ,与AC 的交点就是点E ,所以BE =EF ,所以点F 即为所求的点;连接CF ,交格线于点M ,因为四边形ABCF 是平行四边形,连接DM 交AC 于一点,该点就是所求的G 点;(2)解:作图如下:取格点D 、E ,连接DE ,AC 平行于DE ,取格点R ,连接BR 并延长BR 交DE 于一点H ,连接AH ,此线段即为所求作线段;理由如下:取格点W 连接AW 、CW ,连接CR ,∴AWC RCB ≅ ,∴WAC CRB ∠=∠,∵90WAC ACW ∠+∠=︒,∴90CRB ACW ∠+∠=︒,∴90RKC ∠=︒,∴AC BH ⊥,∵DH CK ∥,∴BK BC BH BD=,∵点C 是BD 的中点,∴点K 是BH 的中点,即BK KH =,∴AC 垂直平分BH ,∴AB AH =.连接PH ,交AC 于点M ,连接BM 交AH 于点Q ,则该点就是点P 关于AC 直线的对称点.理由如下:∵AC 垂直平分BH ,∴BMH V 是等腰三角形,PAM QAM ∠=∠,∴BMK AMQ HMK AMP ∠=∠=∠=∠,∴AMP AMQ ≅ ,∴AP AQ =,∴P ,Q 两点关于直线AC 对称.【点睛】本题考查了用无刻度直尺在网格中作图的知识,找准格点作出平行四边形和垂直平分线是解决本题的关键.22.(1)1102v t =-+,21104y t t =-+(2)6cm/s(3)黑、白两球的最小距离为6cm ,大于0,黑球不会碰到白球【分析】(1)根据黑球的运动速度v 与运动时间t 之间成一次函数关系,设表达式为v =kt +b ,代入两组数值求解即可;根据运动距离y 与运动时间t 之间成二次函数关系,设表达式为2y at bt c =++,代入三组数值求解即可;(2)当黑球减速后运动距离为64cm 时,代入(1)式中y 关于t 的函数解析式求出时间t ,再将t 代入v 关于t 的函数解析式,求得速度v 即可;(3)设黑白两球的距离为cm w ,得到217028704w t y t t =+-=-+,化简即可求出最小值,于是得到结论.【详解】(1)根据黑球的运动速度v 与运动时间t 之间成一次函数关系,设表达式为v =kt +b ,代入(0,10),(1,9.5)得,109.5b k b =⎧⎨=+⎩,解得1210k b ⎧=-⎪⎨⎪=⎩,∴1102v t =-+,根据运动距离y 与运动时间t 之间成二次函数关系,设表达式为2y at bt c =++,代入(0,0),(1,9.75),(2,19)得09.751942c a b a b =⎧⎪=+⎨⎪=+⎩,解得14100a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,∴21104y t t =-+;(2)依题意,得2110644t t -+=,∴2402560t t -+=,解得,18t =,232t =;当18t =时,6v =;当232t =时,6v =-(舍);答:黑球减速后运动64cm 时的速度为6cm/s .(3)设黑白两球的距离为cm w ,217028704w t y t t =+-=-+21(16)64t =-+,∵104>,∴当16t =时,w 的值最小为6,∴黑、白两球的最小距离为6cm ,大于0,黑球不会碰到白球.【点睛】本题考查一次函数和二次函数的实际应用,待定系数法求解析式,解决本题的关键是明确题意求出函数表达式.23.(1)[问题提出](1)14;(2)见解析(2)[问题拓展]24n-【分析】[问题探究](1)根据等边三角形的性质结合已知条件,求得30ADF ADB ∠=∠=︒,90AFD ∠=︒,根据含30度角的直角三角形的性质,可得111,222AF AD AD AC AB ===,即可求解;(2)取BC 的中点H ,连接DH .证明DBH DEC △≌△,可得BH EC =,根据∥DH AB ,证明EDH EFB △∽△,根据相似三角形的性质可得32FB EB DH EH ==,进而可得14AF AB =;[问题拓展]方法同(2)证明DBH DEC △≌△,得出,GH EC =,证明EDH EFB △∽△,得到2+2FB EB n DH EH ==,进而可得AF AB =24n -.【详解】(1)[问题探究]:(1)如图,ABC 中,AB AC =,D 是AC 的中点,60BAC ∠=︒,ABC ∴ 是等边三角形,12AD AB =30ABD DBE ∴∠=∠=︒,60A ∠=︒,DB DE ∴=,30E DBE ∴∠=∠=︒,180120DCE ACB ∠=︒-∠=︒ ,18030ADF CDE E DCE ∴∠=∠=︒-∠-∠=︒,60A ∠=︒ ,90AFD ∴∠=︒,12AF AD ∴=,1124AD AF AB AB ∴==.(2)证明:取BC 的中点H ,连接DH.∵D 是AC 的中点,∴∥DH AB ,12DH AB =.∵AB AC =,∴DH DC =,∴DHC DCH ∠=∠.∵BD DE =,∴DBH DEC ∠=∠.∴BDH EDC ∠=∠.∴DBH DEC △≌△.∴BH EC =.∴32EB EH =.∵∥DH AB ,∴EDH EFB △∽△.∴32FB EB DH EH ==.∴34FB AB =.∴14AF AB =.(2)[问题拓展]如图,取BC 的中点H ,连接DH .∵D 是AC 的中点,∴∥DH AB ,12DH AB =.∵AB AC =,∴DH DC =,∴DHC DCH ∠=∠.∵DE DG =,∴DGH DEC ∠=∠.∴GDH EDC ∠=∠.∴DGH DEC ≌.∴GH EC =.HE CG∴= ()12CG n BC n=<BC nCG∴=()1BG n CG ∴=-,()1111222n CE GH BC BG nCG n CG CG ⎛⎫==-=--=- ⎪⎝⎭∴1221+22nCG EB BC CE n n EH EH n C CG G ⎛⎫-+++=== ⎪⎝⎭.∵∥DH AB ,∴EDH EFB △∽△.∴2+2FB EB n DH EH ==.∴24FB n AB +=.∴42244AF n n AB ---==.∴AF AB =24n -.【点睛】本题考查了等边三角形的性质,全等三角形的性质与判定,相似三角形的性质与判定,等边对等角,掌握相似三角形的性质与判定是解题的关键.24.(1)()1,0A -,()3,0B ;(2)0,32-或32;(3)13m .【分析】(1)令223=0x x --求出x 的值即可知道A ,B 两点的坐标;(2)求出直线AC 的解析式为1y x =+,分情况讨论:①若点D 在AC 下方时,②若点D 在AC 上方时;(3)设点E 的横坐标为n .过点P 的直线解析式为y kx b =+.联立223y kx b y x x =+⎧⎨=--⎩,得2(2)30x k x b -+--=.利用A ,B 点的横坐标求出3m b =+,13b n =--,设直线CE 的解析式为y px q =+,求出3mn q =--,进一步求出OP b =,213FP b b =+即可求出答案.【详解】(1)解:令223=0x x --,解得:11x =-,2=3x ,∴()1,0A -,()3,0B .(2)解:∵1OP OA ==,∴()0,1P ,∴直线AC 的解析式为1y x =+.①若点D 在AC 下方时,过点B 作AC 的平行线与抛物线的交点即为1D .∵()3,0B ,1BD AC ∥,∴1BD 的解析式为3y x =-.联立2323y x y x x =-⎧⎨=--⎩,解得,10x =,23x =(舍).∴点1D 的横坐标为0.②若点D 在AC 上方时,点()10,3D -关于点P 的对称点为()0,5G .过点G 作AC 的平行线l ,则l 与抛物线的交点即为符合条件的点D .直线l 的解析式为5y x =+.联立2523y x y x x =+⎧⎨=--⎩,得2380x x --=,解得,1x =,2x =∴点2D ,3D 32.∴符合条件的点D 的横坐标为:0,32或32+.(3)解:设点E 的横坐标为n .过点P 的直线解析式为y kx b =+.联立223y kx b y x x =+⎧⎨=--⎩,得2(2)30x k x b -+--=.设1x ,2x 是方程2(2)30x k x b -+--=两根,则123x x b =--.(*)∴3A C B E x x x x b ==--.∵1A x =-,∴3C x b =+,∴3m b =+.∵3B x =,∴13E b x =--,∴13b n =--.设直线CE 的解析式为y px q =+,同(*)得3mn q =--,∴3q mn =--.∴21(3)13233b q b b b ⎛⎫=-+---=+ ⎪⎝⎭.∴2123OF b b =+.∵OP b =,∴213FP b b =+.∴1111(3)1333FP b m m OP =+=-+=.【点睛】本题考查二次函数与一次函数的综合,难度较大,需要掌握函数与x 轴交点坐标,(1)的关键是令223=0x x --进行求解;(2)的关键是分点D 在AC 下方和在AC 上方时两种情况讨论:(3)的关键是求出OP ,FP .。

武汉市中考数学试卷有答案(Word版)

武汉市中考数学试卷有答案(Word版)

武汉市初中毕业生考试数学试卷考试时间:6月20日14:30~16:30一、选择题(共10小题,每小题3分,共30分)1.温度由-4℃上升7℃是( )A .3℃B .-3℃C .11℃D .-11℃2.若分式21+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2 B .x <-2 C .x =-2 D .x ≠-23.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )A .2、40B .42、38C .40、42D .42、405.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +66.点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .41B .21C .43D .65 9A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒ 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( ) A .32B .23C .235D .265 二、填空题(本大题共6个小题,每小题3分,共18分)11.计算3)23(-+的结果是___________123213.计算22111m m m ---的结果是___________ 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________ 15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量扇形图b(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数)(1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB(1) 求证:PB 是⊙O 的切线(2) 若∠APC =3∠BPC ,求CE PE 的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C① 若t =1,直接写出点C 的坐标② 若双曲线x y 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线x y 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52=AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B(1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标。

湖北省武汉市2021年中考数学试题真题(Word版+答案+解析)

湖北省武汉市2021年中考数学试题真题(Word版+答案+解析)

湖北省武汉市2021年中考数学试卷一、单选题1.(2019·朝阳)3的相反数是( )A. 3B. -3C. 13 D. −13 2.(2021·武汉)下列事件中是必然事件的是( ) A. 抛掷一枚质地均匀的硬币,正面朝上 B. 随意翻到一本书的某页,这一页的页码是偶数 C. 打开电视机,正在播放广告D. 从两个班级中任选三名学生,至少有两名学生来自同一个班级3.(2021·武汉)下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是( ) A.B.C.D.4.(2021·武汉)计算 (−a 2)3 的结果是( )A. −a 6B. a 6C. −a 5D. a 55.(2021·武汉)如图是由4个相同的小正方体组成的几何体,它的主视图是( )A. B. C. D.6.(2021·武汉)学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是( )A. 13 B. 12 C. 23 D. 347.(2021·武汉)我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有 x 人,物价是 y 钱,则下列方程正确的是( ) A. 8(x −3)=7(x +4) B. 8x +3=7x −4 C.y−38=y+47D.y+38=y−478.(2021·武汉)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返同,且往返速度的大小不变,两车离甲地的距离 y (单位: km )与慢车行驶时间 t (单位: h )的函数关系如图,则两车先后两次相遇的间隔时间是( )A. 53h B. 32h C. 75h D. 43h 9.(2021·武汉)如图, AB 是 ⊙O 的直径, BC 是 ⊙O 的弦,先将 BC ⌢ 沿 BC 翻折交 AB 于点 D .再将 BD⌢ 沿 AB 翻折交 BC 于点 E .若 BE ⌢=DE ⌢ ,设 ∠ABC =α ,则 α 所在的范围是( )A. 21.9°<α<22.3°B. 22.3°<α<22.7°C. 22.7°<α<23.1°D. 23.1°<α<23.5°10.(2021·武汉)已知 a , b 是方程 x 2−3x −5=0 的两根,则代数式 2a 3−6a 2+b 2+7b +1 的值是( )A. -25B. -24C. 35D. 36二、填空题11.(2018八下·兴义期中)计算 √(−5)2 的结果是________12.(2021·武汉)我国是一个人口资源大国,第七次全国人口普查结果显示,北京等五大城市的常住人口数如下表,这组数据的中位数是________.13.(2021·武汉)已知点 A(a,y 1) , B(a +1,y 2) 在反比例函数 y =m 2+1x( m 是常数)的图象上,且y 1<y 2 ,则 a 的取值范围是________.14.(2021·武汉)如图,海中有一个小岛 A ,一艘轮船由西向东航行,在 B 点测得小岛 A 在北偏东 60° 方向上;航行 12n mile 到达 C 点,这时测得小岛 A 在北偏东 30° 方向上.小岛 A 到航线 BC 的距离是________ n mile ( √3≈1.73 ,结果用四舍五入法精确到0.1).15.(2021·武汉)已知抛物线 y =ax 2+bx +c ( a , b , c 是常数), a +b +c =0 ,下列四个结论:①若抛物线经过点 (−3,0) ,则 b =2a ;②若b=c,则方程cx2+bx+a=0一定有根x=−2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是________(填写序号).16.(2021·武汉)如图(1),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A 出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x=AD,y=AE+CD,y关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是________.三、解答题17.(2021·武汉)解不等式组{2x≥x−1 ①4x+10>x+1 ②请按下列步骤完成解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是________.18.(2021·武汉)如图,AB//CD,∠B=∠D,直线EF与AD,BC的延长线分别交于点E,F.求证:∠DEF=∠F.19.(2021·武汉)为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t(单位:h),按劳动时间分为四组:A 组“ t<5”,B组“ 5≤t<7”,C组“ 7≤t<9”,D组“ t≥9”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是________,C组所在扇形的圆心角的大小是________;(2)将条形统计图补充完整;(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于7h的学生人数.20.(2021·武汉)如图是由小正方形组成的5×7网格,每个小正方形的顶点叫做格点,矩形ABCD的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB上画点E,使AE=2BE,再过点E画直线EF,使EF平分矩形ABCD的面积;(2)在图(2)中,先画△BCD的高CG,再在边AB上画点H,使BH=DH.⌢的中点,过点C作AD 21.(2021·武汉)如图,AB是⊙O的直径,CD是⊙O上两点,C是BD的垂线,垂足是E.连接AC交BD于点F.(1)求证:CE是⊙O的切线;=√6,求cos∠ABD的值.(2)若DCDF22.(2021·武汉)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品,A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润. 23.(2021·武汉)问题提出如图(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,点E在△ABC内部,直线AD与BE交于点F,线段AF,BF,CF之间存在怎样的数量关系?(1)问题探究:先将问题特殊化.如图(2),当点D,F重合时,直接写出一个等式,表示AF,BF,CF之间的数量关系;(2)再探究一般情形.如图(1),当点D,F不重合时,证明(1)中的结论仍然成立.(3)问题拓展如图(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC= kDC(k是常数),点E在△ABC内部,直线AD与BE交于点F,直接写出一个等式,表示线段AF,BF,CF之间的数量关系.24.(2021·武汉)抛物线y=x2−1交x轴于A,B两点(A在B的左边).(1)▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上.①如图(1),若点C的坐标是(0,3),点E的横坐标是3,直接写出点A,D的坐标;2②如图(2),若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标;(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF (不含端点)于G,H两点,若直线l与抛物线只有一个公共点,求证FG+FH的值是定值.答案解析部分一、单选题1.【答案】B【考点】相反数及有理数的相反数【解析】【解答】解:根据相反数的定义知:3的相反数是-3,故答案为:B.【分析】只有符号不同的两个数叫作互为相反数,根据定义即可直接得出答案.2.【答案】D【考点】随机事件【解析】【解答】解:A、掷一枚质地均匀的硬币,正面向上是随机事件;B、随意翻到一本书的某页,这一页的页码是偶数,是随机事件;C、打开电视机,正在播放广告,是随机事件;D、从两个班级中任选三名学生,至少有两名学生来自同一个班级,是必然事件.故答案为:D.【分析】必然事件是指一定会发生或一定不会发生的事件。

初中毕业升学考试(湖北武汉卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(湖北武汉卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(湖北武汉卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】实数的值在()A.0和1之间 B.1和2之间C.2和3之间 D.3和4之间【答案】B.【解析】试题分析:因为1<2<4,可得,即.故答案选B.考点:无理数的估算.【题文】若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=3【答案】C.【解析】试题分析:要使有意义,则x-3≠0,即x≠3,故答案选C.考点:分式有意义的条件.【题文】下列计算中正确的是()A. a•a2=a2B. 2a•a=2a2C. (2a2)2=2a4D. 6a8÷3a2=3a4【答案】B【解析】试题分析:A.a·a2=a3,此选项错误;B.2a·a=2a2,此选项正确;C.(2a2)2=4a4,此选项错误;D.6a8÷3a2=2a6,此选项错误,故答案选B.考点:幂的运算.【题文】不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A. 摸出的3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球D. 摸出的是2个黑球、1个白球【答案】A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.【题文】运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2-6x+9 C.x2+6x+9 D.x2+3x+9【答案】C.【解析】试题分析:运用完全平方公式可得(x+3)2=x2+2×3x+32=x2+6x+9.故答案选C考点:完全平方公式.【题文】已知点A(,1)与点A′(5,)关于坐标原点对称,则实数、的值是A. B. C. D.【答案】D【解析】试题分析:已知点A(a,1)与点A′(5,b)关于坐标原点对称,根据关于原点对称的点的横坐标与纵坐标互为相反数可得a=-5,b=-1,故答案选D.考点:关于原点对称的点的坐标.【题文】如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()【答案】A.【解析】试题分析:从左面看,上面看到的是长方形,下面看到的也是长方形,且两个长方形一样大.故答案选A 考点:简单几何体的三视图.【题文】某车间20名工人日加工零件数如下表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6【答案】D.【解析】试题分析:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案选D.考点:众数;加权平均数;中位数.【题文】如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A. B.π C. D.2【答案】B.【解析】试题分析:如图,取AB的中点E,取CE的中点F,连接PE,CE,MF,则FM=PE=1,故M的轨迹为以F 为圆心,1为半径的半圆弧,轨迹长为.故答案选B.考点:点的轨迹;等腰直角三角形.【题文】平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【答案】A.【解析】试题分析:构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除。

2024年湖北省中考数学真题试卷及答案

2024年湖北省中考数学真题试卷及答案

2024年湖北省中考数学试卷一、选择题(每小题3分,共30分)1.在生产生活中,正数和负数都有现实恋义。

例如收20元记作20+元,则支出10元记作( )A.10+元B.10-元C.20+元D.20-元 2.如图,是由4个相同的正方体组成的立方体图形,其主视图是( )A. B.C. D. 3.223x x ⋅的值是( )A.25xB.35xC.26xD.36x4.如图,直线//AB CD ,已知1120︒∠=,则2∠=( )A.50︒B.60︒C.70︒D.80︒5.不等式12x +的解集在数轴上来示为( )A. B.C. D.6.下列各事件中,是必然事件的是( )A.掷一枚正方体骰子,正面朝上恰好是3B.某同学投篮球,一定投不中C.经过红绿灯路口时,一定是红灯D.画一个三角形,其内角和为180°7.《九意算术》中记载这样一个题:牛5头和羊2只共值10金,牛2头和羊5只共值8金,问牛和羊各值多少金?设每头牛值$x$金,每只羊值$y$金,可列方程为() A.5210258x y x y +=⎧⎨+=⎩ B.2510528x y x y +=⎧⎨+=⎩ C.5510258x y x y +=⎧⎨+=⎩ D.5210228x y x y +=⎧⎨+=⎩8.如图AB 为半圆O 的直径,点C 为半圆上一点,且50CAB ︒∠=,①以点B 为圆心,适当长为半径作弧,交,AB BC 于,D E ;②分别以,D E 为圆心,大于12DE 为半径作弧,两弧交于点P ,③作射线BP .则ABP ∠=()A.40︒B.25︒C.20︒D.15︒9.平面坐标系xOy 中,点A 的坐标为(4,6)-,将线段OA 绕点O 顺时针旋转90︒,则点A的对应点A '的坐标为()A.(4,6)B.(6,4)C.(4,6)--D.(6,4)--10.抛物线2y ax bx c =++的顶点为(1,2)--,抛物线与y 轴的交点位于x 轴上方,以下结论正确的是()A.0a <B.0c <C.2a b c -+=-D.240b ac -=二、填空题(每小题3分,共15分)11.写一个比1-大的数___________.12.中同古代杰出的数学家祖冲之、刘徽、赵爽、秦九韶、杨辉,从中任选一个,恰好是赵爽是概率是_________.13.计算:111m m m +=++________. 14.铁的密度约为37.9/kg m ,铁的质量()m Kg 与体积3()V m 成正比例。

2024年湖北省中考真题数学真题(学生版+解析版)

2024年湖北省中考真题数学真题(学生版+解析版)

2024年湖北省中考数学真题本试卷共6页,满分120分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B铅笔或黑色签字笔.4.考试结束后,请将试卷和答题卡一并交回.一、选择题(共10题,每题3分,共30分.在每题给出的四个选项中,只有一项符合题目要求)1.在生产生活中,正数和负数都有现实意义.例如收入20元记作+20元,则支出10元记作()A.+10元B.—10元C.+20元D.—20元2.如图是一个由4个相同的正方体组成的立体图形,它的主视图是(正面「A.IC.D3.2x-3x2的值是()A.5x2B. 5x3C.6x2D. 6x34如图,一条公路的两侧铺设了AB,CD两条平行管道,并有纵向管道AC连通.若乙1=120°'则乙2的度数是()A BCA 50°DB. 60C 70°D 80°5 不等式x +1�2的解集在数轴上表示正确的是()�I)I,A-112B. -12c厂�,.-1]2D. -I O 1 26. 在下列事件中,必然事件是(A. 掷一次骰子,向上一面的点数是3B. 篮球队员在罚球线上投篮一次,未投中C. 经过有交通信号灯的路口,遇到红灯D. 任意画一个三角形,其内角和180°7 我国古代数学著作《九章算术》中记载了一个关千”方程”的问题:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.问牛羊各直金几何?"译文:“今有牛5头,羊2头,共值金10两.牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?“若设牛每头值金x两,羊每头值金y两,则可列方程组是()5x +2y =l0 A. {2x+Sy =8 C. {5x +5y =10 2x +5y =8 B. {2x +5y =I O5x+2y = 8 D. {5x +2y =I O 2x +2y =88. 如图,AB是半圆0的直径,C为半圆0上一点,以点B 为圆心,适当长为半径画弧,交BA 千点M,交1BC 千点N,分别以点M,N 为圆心,大千-MN 的长为半径画弧,两弧在乙ABC 的内部相交千点D,画2射线BD,连接AC.若乙CAB =50°,则乙CED 的度数是()A 30B 25°C 20°D. 15°9.如图,点A的坐标是(-4,6)'将线段O A绕点0顺时针旋转90°,点A的对应点的坐标是(y』A。

2020年湖北省武汉市中考数学试卷(附解析)(可打印)

2020年湖北省武汉市中考数学试卷(附解析)(可打印)

2020年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数﹣2的相反数是()A.2B.﹣2C.D.﹣2.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2D.x≥23.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于64.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.5.如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>18.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min 内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.389.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.410.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48二、填空题(共6小题,每小题3分,共18分)11.计算的结果是.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.13.计算﹣的结果是.14.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是.15.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是(填写序号).16.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”政策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE 与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.22.(10分)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y (万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x =20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).23.(10分)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB =4,AC=2,直接写出AD的长.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.2020年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.实数﹣2的相反数是()A.2B.﹣2C.D.﹣【分析】由相反数的定义可知:﹣2的相反数是2.2.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2D.x≥2【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.3.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于6【分析】分别利用随机事件、必然事件、不可能事件的定义分别分析得出答案.4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴求解即可.5.如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.【分析】根据题意画出树状图得出所有等可能情况数和恰好选中甲、乙两位选手的情况数,然后根据概率公式即可得出答案.7.若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>1【分析】根据反比例函数的性质分两种情况进行讨论,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上时,②当点(a﹣1,y1)、(a+1,y2)在图象的两支上时.8.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min 内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.38【分析】根据图象可知进水的速度为5(L/min),再根据第16分钟时容器内水量为35L 可得出水的速度,进而得出第24分钟时的水量,从而得出a的值.9.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4【分析】连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF=CF,进而证得DF=BC,根据三角形中位线定理求得OF=BC=DF,从而求得BC=DF=2,利用勾股定理即可求得AC.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【分析】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.二、填空题(共6小题,每小题3分,共18分)11.计算的结果是3.【分析】根据二次根式的性质解答.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是 4.5h.【分析】根据中位数的定义求解可得.13.计算﹣的结果是.【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.14.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是26°.【分析】根据平行四边形的性质得到∠ABC=∠D=102°,AD=BC,根据等腰三角形的性质得到∠EAB=∠EBA,∠BEC=∠ECB,根据三角形外角的性质得到∠ACB=2∠CAB,由三角形的内角和定理即可得到结论.15.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是①③(填写序号).【分析】根据题目中的二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.16.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.【分析】连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,由勾股定理得出(2﹣x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.【分析】原式中括号中利用同底数幂的乘法,积的乘方与幂的乘方运算法则计算,合并后利用单项式除以单项式法则计算即可求出值.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.【分析】根据平行线的性质以及角平分线的定义,即可得到∠FEB=∠EFC,进而得出AB∥CD.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”政策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了60名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是18°;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?【分析】(1)由C类别的人数及其所占百分比可得被调查的总人数,用360°乘以样本中D类别人数占被调查人数的比例即可得出答案;(2)根据A、B、C、D四个类别人数之和等于被调查的总人数求出A的人数,从而补全图形;(3)用总人数乘以样本中B类别人数所占比例可得答案.20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.【分析】(1)利用网格特点和旋转的性质画出B点的对称点D即可;(2)作出CD=BC,以BD为对角线作矩形MBND,连接MN交BD于G,延长CG交AB于E,则点E即为所求;(3)利用网格特点,作出E点关于直线AC的对称点F即可.21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE 与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.【分析】(1)连接OD,如图,根据切线的性质得到OD⊥DE,则可判断OD∥AE,从而得到∠1=∠ODA,然后利用∠2=∠ODA得到∠1=∠2;(2)连接BD,如图,利用圆周角定理得到∠ADB=90°,再证明∠2=∠3,利用三角函数的定义得到sin∠1=,sin∠3=,则AD=BC,设CD=x,BC=AD=y,证明△CDB∽△CBA,利用相似比得到x:y=y:(x+y),然后求出x、y的关系可得到sin∠BAC的值.22.(10分)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y (万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x =20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).【分析】(1)利用待定系数法即可求出a,b的值;(2)先根据(1)的结论得出y与x之间的函数关系,从而可得出A,B两城生产这批产品的总成本的和,再根据二次函数的性质即可得出答案;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,从而可得关于n的不等式组,解得n的范围,然后根据运费信息可得P关于n的一次函数,最后根据一次函数的性质可得答案.23.(10分)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB =4,AC=2,直接写出AD的长.【分析】问题背景由题意得出,∠BAC=∠DAE,则∠BAD=∠CAE,可证得结论;尝试应用连接EC,证明△ABC∽△ADE,由(1)知△ABD∽△ACE,由相似三角形的性质得出,∠ACE=∠ABD=∠ADE,可证明△ADF∽△ECF,得出=3,则可求出答案.拓展创新过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,证明△BDC ∽△MDA,由相似三角形的性质得出,证明△BDM∽△CDA,得出,求出BM=6,由勾股定理求出AM,最后由直角三角形的性质可求出AD的长.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.【分析】(1)根据平移规律:上加下减,左加右减,直接写出平移后的解析式;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,设A(a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,再证明△ABD≌△OAC,由全等三角形的性质得a的方程求得a便可得A的坐标;(3)由两直线解析式分别与抛物线的解析式联立方程组,求出M、N点的坐标,进而求得MN的解析式,再根据解析式的特征得出MN经过一个定点.。

2023年湖北省武汉市中考数学试卷(含答案及解析)

2023年湖北省武汉市中考数学试卷(含答案及解析)

2023年武汉市初中毕业生学业考试数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。

1.实数3的相反数是()A.3B.13C.-13D.-32.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.3.掷两枚质地均匀的骰子,下列事件是随机事件的是()A.点数的和为1B.点数的和为6C.点数的和大于12D.点数的和小于134.计算2a23的结果是()A.2a5B.6a5C.8a5D.8a65.如图是由4个相同的小正方体组成的几何体,它的左视图是()A. B. C. D.6.关于反比例函数y=3x,下列结论正确的是()A.图像位于第二、四象限B.图像与坐标轴有公共点C.图像所在的每一个象限内,y随x的增大而减小D.图像经过点a,a+2,则a=17.某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.1128.已知x 2-x -1=0,计算2x +1-1x ÷x 2-xx 2+2x +1的值是()A.1 B.-1 C.2D.-29.如图,在四边形ABCD 中,AB ∥CD ,AD ⊥AB ,以D 为圆心,AD 为半径的弧恰好与BC 相切,切点为E .若ABCD =13,则sinC 的值是()A.23 B.53C.34D.7410.皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积S =N+12L -1,其中N ,L 分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A 0,30 ,B 20,10 ,O 0,0 ,则△ABO 内部的格点个数是()A.266B.270C.271D.285二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置。

2022年湖北省武汉市中考数学试卷(word版含答案)

2022年湖北省武汉市中考数学试卷(word版含答案)

武汉市2022年初中毕业生学业考试数 学 试 卷亲爱的同学,在你答题前,请认真阅读下面的注意事项:1.本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成.全卷共6页,三大题,25小题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卷”和“答题卡”上,并将准考证号、考试科目用2B 铅笔涂在“答题卡”上. 3.答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,不得答在试题卷上.4.第Ⅱ卷用钢笔或黑色水性笔直接答在“答题卷”上,答在试题卷上无效......... 预祝你取得优异成绩!第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分) 下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.有理数12的相反数是( ) A .12- B .12C .D .2.函数y =中自变量的取值范围是( )A .12x -≥ B .12x ≥ C .12x -≤D .12x ≤3.不等式2x ≥的解集在数轴上表示为( )4) A .B .或C .D .5.已知是一元二次方程220x mx ++=的一个解,则的值是( )A .B .C .0D .0或6.今年某市约有102000名应届初中毕业生参加中考.102000用科学记数法表示为( )A .B .C .D .A .60.10210⨯B .51.0210⨯C .410.210⨯D .310210⨯7.小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,,,这五天的最低温度的平均值是( ) A .1 B .2 C .0 D .8.如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )9.如图,已知是四边形ABCD 内一点,OA OB OC ==,70ABC ADC ∠=∠=°,则DAO DCO ∠+∠的大小是( )A .70°B .110°C .140°D .150°10.如图,已知的半径为1,锐角ABC △内接于, BD AC ⊥于点,OM AB ⊥于点,则sin CBD ∠的值等于( )A .的长B .2OM 的长C .的长D .的长11.近几年来,国民经济和社会发展取得了新的成就,农村经济快速发展,农民收入不断提高.下图统计的是某地区2022年—2022年农村居民人均年纯收入.根据图中信息,下列判断:①与上一年相比,2022年的人均年纯收入增加的数量高于2022年人均年纯收入增加的数量;②与上一年相比,2022年人均年纯收入的增长率为35873255100%3255-⨯;③若按2022年人均年纯收入的增长率计算,2022年人均年纯收入将达到41403587414013587-⎛⎫⨯+⎪⎝⎭元.其中正确的是( )A .只有①②B .只有②③C .只有①③D .①②③正面A .B .C .D . B CO A D O CB A D M4500 4000 3500 3000 2500 200015001000500 02022年 2022年 2022年 2022年 2022年 年份 人均年纯收入/元 2622 293632553587 414012.在直角梯形ABCD 中,AD BC ∥,90ABC AB BC E ∠==°,,为边上一点,15BCE ∠=°,且AE AD =.连接交对角线于,连接.下列结论: ①ACD ACE △≌△;②CDE △为等边三角形;③2EHBE=; ④EDC EHC S AH S CH =△△. 其中结论正确的是( )A .只有①②B .只有①②④C .只有③④D .①②③④第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分)下列各题不需要写出解答过程,请将结论直接填写在答题卷指定的位置.13.在科学课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示: 种子数(个) 100 200 300 400 发芽种子数(个)94187282376由此估计这种作物种子发芽率约为 (精确到).14.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.15.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .16.如图,直线43y x =与双曲线k y x =()交于点.将直线43y x =向右平移92个单位后,与双曲线ky x =()交于点,与轴交于点,若2AOBC=,则 .DCBE AH第1个图形 第2个图形 第3个图形 第4个图形… yO A BOy ABC三、解答题(共9小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形. 17.(本题满分6分) 解方程:2310x x --=. 18.(本题满分6分)先化简,再求值:211122x x x -⎛⎫-÷⎪++⎝⎭,其中.19.(本题满分6分)如图,已知点E C ,在线段上,BE CF AB DE ACB F =∠=∠,∥,. 求证:ABC DEF △≌△.20.(本题满分7分)小明准备今年暑假到北京参加夏令营活动,但只需要一名家长陪同前往,爸爸、妈妈都很愿意陪同,于是决定用抛掷硬币的方法决定由谁陪同.每次掷一枚硬币,连掷三次. (1)用树状图列举三次抛掷硬币的所有结果; (2)若规定:有两次或两次以上.......正面向上,由爸爸陪同前往北京;有两次或两次以上.......反面向上,则由妈妈陪同前往北京.分别求由爸爸陪同小明前往北京和由妈妈陪同小明前往北京的概率;(3)若将“每次掷一枚硬币,连掷三次,有两次或两次以上正面向上时,由爸爸陪同小明前往北京”改为“同时掷三枚硬币,掷一次,有两枚或两枚以上.......正面向上时,由爸爸陪同小明前往北京”.求:在这种规定下,由爸爸陪同小明前往北京的概率. 21.(本题满分7分)如图,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、(10)C -,. (1)请直接写出点关于轴对称的点的坐标;(2)将ABC △绕坐标原点逆时针旋转90°.画出图形,直接写出点的对应点的坐标;C E B FD A(3)请直接写出:以A B C 、、为顶点的平行四边形的第四个顶点的坐标. 22.(本题满分8分)如图,ABC △中,90ABC ∠=°,以为直径作交边于点,是边的中点,连接. (1)求证:直线是的切线;(2)连接交于点,若OF CF =,求tan ACO ∠的值.23.(本题满分10分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元? 24.(本题满分10分)C EBA O FD如图1,在ABC △中,90BAC ∠=°,AD BC ⊥于点,点是边上一点,连接交于,OE OB ⊥交边于点.(1)求证:ABF COE △∽△;(2)当为边中点,2AC AB =时,如图2,求OFOE 的值; (3)当为边中点,AC n AB =时,请直接写出OFOE的值.25.(本题满分12分)如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与轴交于另一点. (1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点关于直线对称的点的坐标; (3)在(2)的条件下,连接,点为抛物线上一点,且45DBP ∠=°,求点的坐标.武汉市2022年初中毕业生学业考试数学试卷参考答案BBAACO E DDECOF图1图2F13. 14.46 15.12x -<< 16.12 三、解答题17.解:131a b c ==-=-,,,224(3)41(1)13b ac ∴-=--⨯⨯-=,123322x x -∴==. 18.解:原式21212(1)(1)1x x x x x x +-+==+-+-当时,原式.19.证明:AB DE B DEF ∴∠=∠∥,. BE CF BC EF =∴=,. ACB F ABC DEF ∠=∠∴,△≌△. 20.解:(1)(2)(由爸爸陪同前往)12=;(由妈妈陪同前往)12=; (3)由(1)的树形图知,(由爸爸陪同前往)12=.21.解:(1)(2,3); (2)图形略.(0,); (3)()或(53)--,或.22.证明:(1)连接OD OE BD 、、.AB是的直径,90CDB ADB ∴∠=∠=°, 点是的中点,DE CE BE ∴==. OD OB OE OE ODE OBE ==∴,,△≌△. 90ODE OBE ∴∠=∠=∴°,直线是的切线. (2)作OH AC ⊥于点,由(1)知,BD AC ⊥,EC EB =.OA OB OE AC =∴,∥,且12OE AC =. CDF OEF ∴∠=∠,DCF EOF ∠=∠.正 反正 反正 反 正 正 反正 反正 反 反第一次 第二次 第三次CEBAOF D HCF OF =,DCF EOF ∴△≌△,DC OE AD ∴==. 45BA BC A ∴=∴∠=,°. OH AD OH AH DH ∴==⊥,.13tan 3OH CH OH ACO CH ∴=∴∠==,.23.解:(1)2(21010)(5040)101102100y x x x x =-+-=-++(015x <≤且为整数); (2)210( 5.5)2402.5y x =--+.100a =-<,当 5.5x =时,有最大值. 015x <≤,且为整数,当时,5055x +=,2400y =(元),当时,5056x +=,2400y =(元) 当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当2200y =时,21011021002200x x -++=,解得:12110x x ==,. 当时,5051x +=,当10x =时,5060x +=.当售价定为每件51或60元,每个月的利润为2200元. 当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元). 24.解:(1)AD BC ⊥,90DAC C ∴∠+∠=°. 90BAC BAF C ∠=∴∠=∠°,. 90OE OB BOA COE ∴∠+∠=⊥,°,90BOA ABF ∠+∠=°,ABF COE ∴∠=∠.ABF COE ∴△∽△;(2)解法一:作OG AC ⊥,交的延长线于. 2AC AB =,是边的中点,AB OC OA ∴==. 由(1)有ABF COE △∽△,ABF COE ∴△≌△, BF OE ∴=.90BAD DAC ∠+∠=°,90DAB ABD DAC ABD ∠+∠=∴∠=∠°,, 又90BAC AOG ∠=∠=°,AB OA =. ABC OAG ∴△≌△,2OG AC AB ∴==. OG OA ⊥,AB OG ∴∥,ABF GOF ∴△∽△,OF OG BF AB ∴=,2OF OF OGOE BF AB ===.解法二:902BAC AC AB AD BC ∠==°,,⊥于,Rt Rt BAD BCA ∴△∽△.2AD ACBD AB ∴==. 设1AB =,则2AC BC BO ===,,12AD BD AD ∴===90BDF BOE BDF BOE ∠=∠=∴°,△∽△,BA D E COFG BADE COFBD BODF OE∴=. 由(1)知BF OE =,设OE BF x ==,5DF x=,x ∴=. 在DFB △中2211510x x =+,3x ∴=.OF OB BF ∴=-==322OF OE ∴==.(3)OF n OE=.25.解:(1)抛物线24y ax bx a =+-经过(10)A -,,(04)C ,两点,404 4.a b a a --=⎧∴⎨-=⎩,解得13.a b =-⎧⎨=⎩,抛物线的解析式为234y x x =-++.(2)点(1)D m m +,在抛物线上,2134m m m ∴+=-++,即2230m m --=,1m ∴=-或3m =. 点在第一象限,点的坐标为. 由(1)知45OA OB CBA =∴∠=,°. 设点关于直线的对称点为点.(04)C ,,CD AB ∴∥,且3CD =,45ECB DCB ∴∠=∠=°, 点在轴上,且3CE CD ==.1OE ∴=,(01)E ∴,. 即点关于直线对称的点的坐标为(0,1).(3)方法一:作PF AB ⊥于,DE BC ⊥于. 由(1)有:445OB OC OBC ==∴∠=,°, 45DBP CBD PBA ∠=∴∠=∠°,.(04)(34)C D ,,,,CD OB ∴∥且3CD =.45DCE CBO ∴∠=∠=°,2DE CE ∴==. 4OB OC ==,BC ∴=2BE BC CE ∴=-=, 3tan tan 5DE PBF CBD BE ∴∠=∠==. 设3PF t =,则5BF t =,54OF t ∴=-,(543)P t t ∴-+,.点在抛物线上,23(54)3(54)4t t t =--++-++,0t ∴=(舍去)或2225t =,266525P ⎛⎫∴- ⎪⎝⎭,. 方法二:过点作的垂线交直线于点,过点作DH x ⊥轴于.过点作QG DH ⊥于.45PBD QD DB ∠=∴=°,. QDG BDH ∴∠+∠90=°,又90DQG QDG ∠+∠=°,DQG BDH ∴∠=∠.QDG DBH ∴△≌△,4QG DH ∴==,1DG BH ==.由(2)知(34)D ,,(13)Q ∴-,.(40)B ,,直线的解析式为31255y x =-+.解方程组23431255y x x y x ⎧=-++⎪⎨=-+⎪⎩,,得1140x y =⎧⎨=⎩,;222566.25x y ⎧=-⎪⎪⎨⎪=⎪⎩, 点的坐标为266525⎛⎫- ⎪⎝⎭,.。

湖北省武汉市2020年中考数学试题(Word版,含答案与解析)

湖北省武汉市2020年中考数学试题(Word版,含答案与解析)

湖北省武汉市2020年中考数学试卷一、选择题(共10题;共20分)1.-2的相反数是()A. -2B. 2C. 12D. −12【答案】B【考点】相反数及有理数的相反数【解析】【解答】因为-2+2=0,所以﹣2的相反数是2,故答案为:B.【分析】根据相反数的性质可得结果.2.式子√x−2在实数范围内有意义,则x的取值范围是()A. x≥0B. x≥−2C. x≤2D. x≥2【答案】 D【考点】二次根式有意义的条件【解析】【解答】解:由式子√x−2在实数范围内有意义,∴x−2≥0,∴x≥2.故答案为:D.【分析】由二次根式有意义的条件是被开方数应该不小于0,从而列不等式求解可得答案.3.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A. 两个小球的标号之和等于1B. 两个小球的标号之和等于6C. 两个小球的标号之和大于1D. 两个小球的标号之和大于6【答案】B【考点】随机事件【解析】【解答】解:从两个口袋中各摸一个球,其标号之和最大为6,最小为2,选项A:“两个小球的标号之和等于1”为不可能事件,故此选项错误;选项B:“两个小球的标号之和等于6”为随机事件,故此选项B正确;选项C:“两个小球的标号之和大于1”为必然事件,故此选项C错误;选项D:“两个小球的标号之和大于6”为不可能事件,故此选项D错误.故答案为:B.【分析】随机事件是指在某个条件下有可能发生有可能不会发生的事件,根据此定义即可求解.4.现实世界中,对称现象无处不在,中国的方块字中有些也只有对称性,下列汉字是轴对称图形的是()A. B. C. D.【答案】C【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形,此项不符题意;B、不是轴对称图形,此项不符题意;C、是轴对称图形,此项符合题意;D、不是轴对称图形,此项不符题意.故答案为:C.【分析】根据轴对称图形的定义“在平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形”逐项判断即可得.5.下图是由4个相同的正方体组成的立体图形,它的左视图是()A. B. C. D.【答案】A【考点】简单组合体的三视图【解析】【解答】解:根据图形可知左视图为故答案为:A.【分析】左视图就是从左面看得到的正投影,从而即可一一判断得出答案.6.某班从甲、乙、丙、丁四位选中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A. 13B. 14C. 16D. 18【答案】C【考点】列表法与树状图法【解析】【解答】解:画树状图为:∴P(选中甲、乙两位)= 212=16.故答案为:C.【分析】画出树状图展示所有12种等可能的结果数,同时得出恰好选中甲、乙两位选手的结果数,再根据概率公式即可求解.(k<0)的图象上,且y1>y2,则a的取值范7.若点A(a−1,y1),B(a+1,y2)在反比例函数y=kx围是()A. a<−1B. −1<a<1C. a>1D. a<−1或a>1【答案】B【考点】反比例函数的性质,反比例函数图象上点的坐标特征(k<0),【解析】【解答】解:∵反比例函数y=kx∴图象经过第二、四象限,在每个象限内,y随x的增大而增大,①若点A、点B同在第二或第四象限,∵y1>y2,∴a-1>a+1,此不等式无解;②若点A在第二象限且点B在第四象限,∵y1>y2,∴{a−1<0a+1>0,解得:−1<a<1;③由y1>y2,可知点A在第四象限且点B在第二象限这种情况不可能.综上,a的取值范围是−1<a<1.故答案为:B.(k<0),可知图象经过第二、四象限,在每个象限内,y随x的增大而增【分析】由反比例函数y=kx大,由此分三种情况①若点A、点B在同在第二或第四象限;②若点A在第二象限且点B在第四象限;③若点A在第四象限且点B在第二象限讨论即可.8.一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A. 32B. 34C. 36D. 38【答案】C【考点】通过函数图象获取信息并解决问题【解析】【解答】解:设每分钟的进水量为bL,出水量为cL=5(L)由第一段函数图象可知,b=204由第二段函数图象可知,20+(16−4)b−(16−4)c=35即20+12×5−12c=35解得c=154(L)则当x=24时,y=20+(24−4)×5−(24−4)×154=45因此,a−24=45c=45154=12解得a=36(min)故答案为:C.【分析】设每分钟的进水量为bL,出水量为cL,先根据函数图象分别求出b、c的值,再求出x=24时,y的值,然后根据每分钟的出水量列出等式求解即可.9.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是AC⌢的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A. 52√3 B. 3√3 C. 3√2 D. 4√2【答案】 D【考点】勾股定理,圆周角定理【解析】【解答】解:连接DO、DA、DC、OC,设DO与AC交于点H,如下图所示,∵D是AC⌢的中点,∴DA=DC,∴D在线段AC的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∴DO⊥AC,∠DHC=90°,∵AB是圆的直径,∴∠BCA=90°,∵E是BD的中点,∴DE=BE,且∠DEH=∠BEC,∴△DHE≌△BCE(AAS),∴DH=BC,又O是AB中点,H是AC中点,∴HO是△ABC的中位线,设OH=x,则BC=DH=2x,∴OD=3x=3,∴x=1,即BC=2x=2,在Rt△ABC中,AC=√AB2−BC2=√62−22=4√2.故答案为:D.【分析】连接DO、DA、DC,设DO与AC交于点H,证明△DHE≌△BCE,得到DH=CB,同时OH是三角形ABC中位线,设OH=x,则BC=2x=DH,故半径DO=3x,解出x,最后在Rt△ACB中由勾股定理即可求解. 10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A. 160B. 128C. 80D. 48【答案】C【考点】探索图形规律【解析】【解答】解:由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4=20(个)则n=20×4=80故答案为:C.【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.二、填空题(共6题;共6分)11.计算√(−3)2的结果是________.【答案】3【考点】二次根式的性质与化简【解析】【解答】√(−3)2= |−3|=3,故答案为:3.【分析】由一个负数的平方的算术平方根等于它的绝对值即可得出答案。

2022年湖北省武汉市中考数学试卷含答案详解(高清word版)

2022年湖北省武汉市中考数学试卷含答案详解(高清word版)

第1页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年湖北省武汉市中考数学试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 实数2022的相反数是( ) A. −2022B. −12022C. 12022D. 20222. 彩民李大叔购买1张彩票中奖.这个事件是( ) A. 必然事件B. 确定性事件C. 不可能事件D. 随机事件3. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A.B.C.D.4. 计算(2a 4)3的结果是( ) A. 2a 12B. 8a 12C. 6a 7D. 8a 75. 如图是由4个相同的小正方体组成的几何体,它的主视图是( ) A.B.第2页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………C.D.6. 已知点A(x 1,y 1),B(x 2,y 2)在反比例函数y =6x 的图象上,且x 1<0<x 2,则下列结论一定正确的是( )A. y 1+y 2<0B. y 1+y 2>0C. y 1<y 2D. y 1>y 27. 匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度ℎ随时间t 的变化规律如图所示(图中OABC 为一折线).这个容器的形状可能是( )A.B.C.D.8. 班长邀请A ,B ,C ,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A ,B 两位同学座位相邻的概率是( )A. 14B. 13C. 12D. 239. 如图,在四边形材料ABCD 中,AD//BC ,∠A =90°,AD =9cm ,AB =20cm ,BC =24cm.现用此材料截出一个面积最大的圆形模板,则此圆的半径是( )第3页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.11013cm B. 8cm C. 6√2cm D. 10cm10. 幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A. 9B. 10C. 11D. 12第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)11. 计算√(−2)2的结果是______.12. 某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是______. 尺码/cm 24 24.5 25 25.5 26 销售量/双13104213. 计算:2x x 2−9−1x−3的结果是______ .14. 如图,沿AB 方向架桥修路,为加快施工进度,在直线AB 上湖的另一边的D 处同时施工.取∠ABC =150°,BC =1600m ,∠BCD =105°,则C ,D 两点的距离是______m.第4页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………15. 已知抛物线y =ax 2+bx +c(a,b,c 是常数)开口向下,过A(−1,0),B(m,0)两点,且1<m <2.下列四个结论: ①b >0;②若m =32,则3a +2c <0;③若点M(x 1,y 1),N(x 2,y 2)在抛物线上,x 1<x 2,且x 1+x 2>1,则y 1>y 2; ④当a ≤−1时,关于x 的一元二次方程ax 2+bx +c =1必有两个不相等的实数根. 其中正确的是______(填写序号).16. 如图,在Rt △ABC 中,∠ACB =90°,AC >BC ,分别以△ABC 的三边为边向外作三个正方形ABHL ,ACDE ,BCFG ,连接DF.过点C 作AB 的垂线CJ ,垂足为J ,分别交DF ,LH 于点I ,K.若CI =5,CJ =4,则四边形AJKL 的面积是 .三、解答题(本大题共8小题,共72.0分。

2024年湖北省武汉市中考数学试卷正式版含答案解析

2024年湖北省武汉市中考数学试卷正式版含答案解析

绝密★启用前2024年湖北省武汉市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A. B. C. D.2.小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是( )A. 随机事件B. 不可能事件C. 必然事件D. 确定性事件3.如图是由两个宽度相同的长方体组成的几何体,它的主视图是( )A.B.C.D.4.国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是( )A. 0.3×105B. 0.3×106C. 3×105D. 3×1065.下列计算正确的是( )A. a2⋅a3=a6B. (a3)4=a12C. (3a)2=6a2D. (a+1)2=a2+16.如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度ℎ与注水时间t的函数关系的是( )A.B.C.D.7.小美同学按如下步骤作四边形ABCD;(1)画∠MAN;(2)以点A为圆心,1个单位长为半径画弧,分别交AM,AN于点B,D;(3)分别以点B,D为圆心,1个单位长为半径画弧,两弧交于点C;(4)连接BC,CD,BD.若∠A=44°,则∠CBD的大小是( )A. 64°B. 66°C. 68°D. 70°8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是( )A. 19B. 13C. 49D. 599.如图,四边形ABCD内接于⊙O,∠ABC=60°,∠BAC=∠CAD=45°,AB+AD=2,则⊙O的半径是( )A. √ 63B. 2√ 23C. √ 32D. √ 2210.如图,小好同学用计算机软件绘制函数y=x3−3x2+3x−1的图象,发现它关于点(1,0)中心对称.若点A1(0.1,y1),A2(0.2,y2),A3(0.3,y3),…,A19(1.9,y19),A20(2,y20)都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则y1+y2+y3+⋯+y19+y20的值是( )A. −1B. −0.729C. 0D. 111.中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作+3℃,则零下2℃记作______℃.12.某反比例函数y=kx具有下列性质:当x>0时,y随x的增大而减小.写出一个满足条件的k的值是______.13.分式方程xx−3=x+1x−1的解是______.14.黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB的高度.具体过程如下:如图,将无人机垂直上升至距水平地面102m的C处,测得黄鹤楼顶端A 的俯角为45°,底端B 的俯角为63°,则测得黄鹤楼的高度是______m.(参考数据:tan63°≈2)15.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD.直线MP 交正方形ABCD 的两边于点E ,F ,记正方形ABCD的面积为S 1,正方形MNPQ 的面积为S 2.若BE =kAE(k >1),则用含k 的式子表示S1S 2的值是______.16.抛物线y =ax 2+bx +c(a,b,c 是常数,a <0)经过(−1,1),(m,1)两点,且0<m <1.下列四个结论: ①b >0;②若0<x <1,则a(x −1)2+b(x −1)+c >1;③若a =−1,则关于x 的一元二次方程ax 2+bx +c =2无实数解;④点A(x 1,y 1),B(x 2,y 2)在抛物线上,若x 1+x 2>−12,x 1>x 2,总有y 1<y 2,则0<m ≤12.其中正确的是______(填写序号).17.求不等式组{x +3>1,①2x −1≤x②的整数解.18.如图,在▱ABCD 中,点E ,F 分别在边BC ,AD 上,AF =CE.(1)求证:△ABE ≌△CDF ;(2)连接EF.请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由)19.为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m 名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表根据以上信息,解答下列问题:(1)直接写出m,n的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.20.如图,△ABC为等腰三角形,O是底边BC的中点,腰AC与半圆O相切于点D,底边BC与半圆O交于E,F两点.(1)求证:AB与半圆O相切;(2)连接OA.若CD=4,CF=2,求sin∠OAC的值.21.如图是由小正方形组成的3×4网格,每个小正方形的顶点叫做格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).22.16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x轴,垂直于地面的直线为y轴,建立平面直角坐标系,分别得到抛物线y=ax2+x和直线y=−1x+b.其中,当火箭运行的水平距离为9km2时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km,①直接写出a,b的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km,求这两个位置之间的距离.(2)直接写出a满足什么条件时,火箭落地点与发射点的水平距离超过15km.23.问题背景如图(1),在矩形ABCD中,点E,F分别是AB,BC的中点,连接BD,EF,求证:△BCD∽△FBE.问题探究如图(2),在四边形ABCD中,AD//BC,∠BCD=90°,点E是AB的中点,点F在边BC上,AD=2CF,EF与BD交于点G,求证:BG=FG.问题拓展如图(3),在“问题探究”的条件下,连接AG,AD=CD,AG=FG,直接写出EGGF的值.24.抛物线y=12x2+2x−52交x轴于A,B两点(A在B的右边),交y轴于点C.(1)直接写出点A,B,C的坐标;(2)如图(1),连接AC,BC,过第三象限的抛物线上的点P作直线PQ//AC,交y轴于点Q.若BC平分线段PQ,求点P的坐标;(3)如图(2),点D与原点O关于点C对称,过原点的直线EF交抛物线于E,F两点(点E在x轴下方),线段DE交抛物线于另一点G,连接FG.若∠EGF=90°,求直线DE的解析式.答案和解析1.【答案】C【解析】解:A、B、D选项中的汉字都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.C选项中的汉字能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此进行分析即可.本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】A【解析】解:小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是随机事件.故选:A.根据必然事件、随机事件的定义进行判断即可.本题考查的是随机事件,熟知在一定条件下,可能发生也可能不发生的事件,称为随机事件是解题的关键.3.【答案】B【解析】解:该几何体的主视图为:.故选:B.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.【答案】C【解析】解:300000=3×105,故选:C.将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.【答案】B【解析】解:a2⋅a3=a5,则A不符合题意;(a3)4=a12,则B符合题意;(3a)2=9a2,则C不符合题意;(a+1)2=a2+2a+1,则D不符合题意;故选:B.利用同底数幂乘法法则,幂的乘方与积的乘方法则,完全平方公式逐项判断即可.本题考查同底数幂乘法,幂的乘方与积的乘方,完全平方公式,熟练掌握相关运算法则是解题的关键.6.【答案】D【解析】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D.分成3段分析可得答案.本题主要考查函数的图象,利用分类讨论思想,根据不同时间段能装水部分的宽度的变化情况分析水的深度变化情况是解题关键.7.【答案】C【解析】解:由(1)(2)(3)可知四边形ABCD是菱形,∴AB=AD,BC//AD,∴∠ABD=∠ADB=∠CBD,∵∠A=44°,∴∠ABD+∠ADB=180°−∠A=180°−44°=136°,∴∠ABD=∠ADB=∠CBD=68°,故选:C.由(1)(2)(3)可知四边形ABCD是菱形,然后根据菱形的性质和三角形内角和定理求出答案即可.本题主要考查了多边形的内角与外角和菱形的判定与性质,解题关键是根据已知条件中的作图判定四边形ABCD的形状.8.【答案】D【解析】解:列表如下:由表格可知,共有9种等可能的结果,由表格可知,至少有一辆车向右转的结果有共5种,∴至少有一辆车向右转的概率为59.故选:D .根据题意列表,由表格可得出所有等可能的结果数以及至少有一辆车向左转的结果数,再利用概率公式可得出答案.本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键. 9.【答案】A【解析】解:过C 作CM ⊥AB 于M ,CN ⊥AD 交AD 延长线于N ,过O 作OH ⊥AC 于H ,连接OA ,OC ,∵∠BAC =∠CAD =45°,∴AC 平分∠BAN ,∴MC =CN ,∵∠MAN =∠BAC +∠CAD =90°,∠AMC =∠ANC =90°,∴四边形AMCN 是正方形,∴AM =AN ,∵∠BAC =∠CAD ,∴CD⏜=BC ⏜, ∴CD =BC ,∵CN =CM ,∴Rt △CDN ≌Rt △CBM(HL),∴ND =MB ,∵AB +AD =AM +MB +AD =AM +DN +AD =AM +AN =2AM =2,∴AM =1,∵∠BAC =45°,∠AMC =90°,∴△ACM 是等腰直角三角形,∴AC =√ 2AM =√ 2, ∵∠B =60°,∴∠AOC =2∠B =120°, ∵OA =OC ,OH ⊥AC ,∴AH =12AC =√ 22,∠AOH =12∠AOC =60°, ∵sin∠AOH =sin60°=AH OA=√ 32,∴OA =√ 63, ∴⊙O 的半径是√ 63.故选:A .过C 作CM ⊥AB 于M ,CN ⊥AD 交AD 延长线于N ,过O 作OH ⊥AC 于H ,连接OA ,OC ,由角平分线的性质推出MC =CN ,判定四边形AMCN 是正方形,得到AM =AN ,由圆周角定理得到CD⏜=BC ⏜,推出CD =BC ,即可证明Rt △CDN ≌Rt △CBM(HL),得到ND =MB ,推出AB +AD =2AM =2,求出AM =1,判定△ACM 是等腰直角三角形,求出AC =√ 2AM =√ 2,由圆周角定理得到∠AOC =2∠B =120°,由等腰三角形的性质推出AH =12AC =√ 22,∠AOH =12∠AOC =60°,由sin∠AOH =AH OA=√ 32,求出OA =√ 63,得到⊙O 的半径是√ 63.本题考查全等三角形的判定和性质,正方形的判定和性质,圆周角定理,角平分线的性质,等腰三角形的性质,解直角三角形,关键是由Rt △CDN ≌Rt △CBM(HL),推出ND =MB ,得到AB +AD =2AM .10.【答案】D【解析】解:由题知, 点A 10的坐标为(1,0), 则y 10=0.因为函数图象关于点(1,0)中心对称,所以y 9+y 11=y 8+y 12=⋯=y 1+y 19=0, 将x =2代入函数解析式得, y =23−3×22+3×2−1=1, 即y 20=1,所以y 1+y 2+y 3+⋯+y 19+y 20的值为1. 故选:D .根据所给函数图象,发现点A n纵坐标的变化规律,再根据中心对称图形的性质即可解决问题.本题主要考查了点的坐标变化规律,能通过计算得出点A10的坐标,进而发现y9+y11=y8+y12=⋯=y1+ y19=0是解题的关键.11.【答案】−2【解析】解:“正”和“负”相对,所以,若零上3℃记作+3℃,则零下2℃记作−2℃.故答案为:−2在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.12.【答案】1(答案不唯一)【解析】解:由题可知,具有下列性质:当x>0时,y随x的增大而减小,当反比例函数y=kx即k>0时满足条件,则k的值取1.故答案为:1(答案不唯一).根据反比例函数的性质以及题意可知k>0,再进行取值即可.本题考查反比例函数的性质,熟练掌握反比例的性质是解题的关键.13.【答案】x=−3【解析】解:原方程去分母得:x2−x=x2−2x−3,解得:x=−3,检验:当x=−3时,(x−1)(x−3)≠0,故原方程的解为x=−3,故答案为:x=−3.利用去分母将原方程化为整式方程,解得x的值后进行检验即可.本题考查解分式方程,熟练掌握解方程的方法是解题的关键.14.【答案】51【解析】解:过点C作CH//BD,延长BA交CH于H,由题意得∠ABD=∠CDB=90°,∴∠AHC=180°−90°=90°,∴四边形BDCH是矩形,∴BH=CD=102m,在Rt△BCH中,∠BCH=63°,tan∠BCH=BHCH,∴CH=BHtan63∘≈1022=51(m),在Rt△ACH中,∠ACH=45°,∴∠CAH=45°=∠ACH,∴AH=CH=51m,∴AB=BH−AH=51m.答:黄鹤楼的高度约为51m.故答案为:51.过点C作CH//BD,延长BA交CH于H,在Rt△BCH中和Rt△ACH中,解直角三角形求出CH,AH,即可求出答案.本题主要考查了直角三角形的应用,把实际问题转换为直角三角形问题解决是解决问题的关键.15.【答案】k2+1(k−1)2【解析】解:方法一:如图,过A作AG//BP交FE延长线于点G,∵AG//BP ,∴∠GAE =∠PBE ,∠AGE =∠BPE , ∴△AGE ∽△PBE , ∴AG BP=AE BE=1k,设AG =1,则BP =k , ∵∠NMP =45°,∴∠AMG =45°,AM =AG =1, ∵AN =BP =k , ∴MN =k −1,∵S 1=AD 2=AM 2+MD 2=k 2+1,S 2=MN 2=(k −1)2, ∴S 1S 2=k 2+1(k−1)2;方法二:如图,过B 作BG ⊥BP 交FE 延长线于点G ,则△GBP 是等腰直角三角形,易证△GBA ≌△PBC , ∴∠BGP =∠AGP =45°, 根据角平分线比例定理得:AG BG=AE BE =1k ,设AG =1,则BG =k , ∴AM =1,MD =k =AN , ∴MN =k −1,∵S 1=AD 2=AM 2+MD 2=k 2+1,S 2=MN 2=(k −1)2, ∴S 1S 2=k 2+1(k−1)2;故答案为:k 2+1(k−1)2.方法一:由BE =kAE 可想到构造8字型相似,再利用比例线段求解即可;方法二:见到45°可构造等腰直角三角形,再利用手拉手全等和一个角平分线比例定理即可求解.本题主要考查勾股定理得证明及正方形得性质、相似的判定和性质等知识点,熟练掌握以上知识和添加合适辅助线是解题关键.16.【答案】②③④【解析】解:∵y =ax 2+bx +c(a,b,c 是常数,a <0)经过(−1,1),(m,1)两点,且0<m <1, ∴对称轴为直线x =−b2a =−1+m2, ∴−12<−1+m 2<0,∴x =−b 2a<0,∵a <0,∴b <0,故①错误; ∵0<m <1,∴m −(−1)>1,即(−1,1),(m,1)两点之间的距离大于1, 又∵a <0,∴x =m −1时,y >1,∴若0<x <1,则a(x −1)2+b(x −1)+c >1,故②正确; 由①可得−12<−1+m2<0,∴−12<b2<0,即−1<b <0,当a =−1时,抛物线解析式为y =−x 2+bx +c , 设顶点线坐标为t =4ac−b 24a=−4c−b 2−4,∵抛物线y =−x 2+bx +c(a,b,c 是常数,a <0)经过(−1,1), ∴−1−b +c =1, ∴c =b +2, ∴t =−4c−b 2−4=b 2+4c 4=14b 2+c =14b 2+b +2=14(b +2)2+1,∵−1<b <0,−14>0,对称轴为直线b =−2, ∴当b =0时,t 取得最大值为2,而b <0,∴关于x 的一元二次方程ax 2+bx +c =2无解,故③正确;∵a <0,抛物线开口向下,点A(x 1,y 1),B(x 2,y 2)在抛物线上,x 1+x 2>−12,x 1>x 2,总有y 1<y 2, 又x =x 1+x 22>−14,∴点A(x 1,y 1)离x =−14较远, ∴对称轴−12<−1+m 2≤−14,解得:0<m ≤12,故④正确; 故答案为:②③④.通过对称轴可判断①;(−1,1),(m,1)两点之间的距离大于1,所以若0<x <1,则a(x −1)2+b(x −1)+c >1,判断②正确;根据抛物线的最大值判断③;根据点A 和点B 离对称轴的距离判断④.本题考查了二次函数的性质,二次函数系数与图象的关系,二次函数图象上的点的特征等,掌握二次函数性质是解题的关键.17.【答案】解:{x +3>1,①2x −1≤x②,由①得,x >−2; 由②得,x ≤1,故此不等式组的解集为:−2<x ≤1,故不等式组{x +3>1,①2x −1≤x②的整数解为−1、0、1.【解析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数解即可. 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∠B =∠D . ∵AF =CE ,∴AD −AF =BC −CE , ∴DF =BE ,在△ABE 与△CDF 中, {AB =CD ∠B =∠D BE =DF, ∴△ABE ≌△CDF(SAS);(2)解:如图,添加BE=CE,理由如下:∵AF=CE,BE=CE,∴AF=BE,∵四边形ABCD是平行四边形,∴AD//BC,∴四边形ABEF是平行四边形.【解析】(1)由平行四边形的性质得AB=CD,AD=BC,∠B=∠D.再证明DF=BE,然后由SAS证明△ABE≌△CDF即可;(2)证明AF=BE,再由平行四边形的性质得AD//BC,然后由平行四边形的判定即可得出结论.此题考查了平行四边形的判定与性质以及全等三角形的判定与性质等知识,熟练掌握平行四边形的判定与性质是解题的关键.19.【答案】解:(1)由题意得,m=15÷25%=60,∴a=60×30%=18,∴b=60−12−18−15−6=9,×100%=15%,∴n%=960∴n=15,样本的众数为3;=450(名),(2)900×12+1860答:估计得分超过2分的学生人数有450名.【解析】(1)用频数分布表中2分的频数除以扇形统计图中2分的百分比可得m的值,用总人数乘以3分百分比求出a的值,即可求出b的值,用b的值除以总人数即可求出n的值,根据众数的定义即可求出众数;(2)根据用样本估计总体,用900乘以样本中超过2分的学生人数所占的百分比,即可得出答案.本题考查扇形统计图、频数(率)分布表、众数、用样本估计总体,能够读懂统计图表,掌握用样本估计总体、众数的定义是解答本题的关键.20.【答案】(1)证明:连接OD,OA,作OH⊥AB于H,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AC与⊙O相切于点D,∴OD⊥AC,而OH⊥AB,∴OH=OD,∴AC是⊙O的切线;(2)由(1)知OD⊥AC,在Rt△OCD中,CD=4,OC=OF+CF=OD+2,OD2+CD2=OC2,∴OD2+42=(OD+2)2,∴OD=3,∴OC=5,∴cosC=CDOC =45,在Rt△OCA中,cosC=OCAC =45,∴sin∠OAC=OCAC =45.【解析】(1)连接OD,连接OD,OA,作OH⊥AB于H,如图,利用等腰三角形的性质得AO⊥BC,AO平分∠BAC,再根据切线的性质得OD⊥AC,然后利用角平分线的性质得到OH=OD,从而根据切线的判定定理得到结论;(2)在Rt△OCD中,根据勾股定理求得OD=3,OC=5,进而得到cosC=45,在Rt△OCA中,由cosC=OCAC=45,即可求出sin∠OAC.本题考查了切线的判定与性质,解直角三角形,等腰三角形的性质,角平分线的性质,综合运用相关知识是解决问题的关键.21.【答案】解:(1)如图1中,线段AD即为所求;(2)如图1中,点E即为所求;(2)如图2中,点C,射线AF,点G即为所求;(3)如图2中,线段MN即为所求.【解析】(1)根据三角形中线的定义画出图形;(2)作点A故BC的对称点A′,连接CA′交射线ADF于点E,点E即为所求;(3)构造等腰直角三角形AFC即可;(4)取格点P,Q,E,W,K,L,连接排球,EW,KL,PQ交射线AF于点M,EW交KL于点J,连接MJ,延长MJ交BC一点N,线段MN即为所求(证明△ABG≌△MNG,可得结论).本题考查作图−旋转变换,角平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.【答案】解:(1)①∵y=ax2+x经过点(9,3.6),∴81a+9=3.6.解得:a=−115.∵y=−12x+b经过点(9,3.6),∴3.6=−12×9+b.解得:b=8.1;②由①得:y=−115x2+x=−115(x2−15x+2254)+154=−115(x−152)2+154(0≤x≤9).∴火箭运行的最高点是154km.∴154−1.35=2.4(km).∴2.4=−115x2+x.整理得:x2−15x+36=0.解得:x1=12>9(不合题意,舍去),x2=3.由①得:y=−12x+8.1.∴2.4=−12x+8.1.解得:x=11.4.∴11.4−3=8.4(km).答:这两个位置之间的距离为8.4km;(2)当x=9时,y=81a+9.∴火箭第二级的引发点的坐标为(9,81a+9).设火箭落地点与发射点的水平距离为15km.∴y=−12x+b经过点(9,81a+9),(15,0)∴{−12×9+b=81a+9−12×15+b=0.解得:{a=−2 27b=7.5.∴−227<a<0时,火箭落地点与发射点的水平距离超过15km.【解析】(1)①、易得火箭第二级的引发点的坐标为(9,3.6),分别代入抛物线的解析式和直线的解析式可得a和b的值;②、把①中得到的抛物线的解析式整理成顶点式,可得火箭运行的最高点的坐标,取纵坐标减去1.35km即为相应的高度,把所得高度分别代入①中得到的两个函数解析式,求得合适的x的值,相减即为两个位置间的距离;(2)假设火箭落地点与发射点的水平距离为15km.用a表示出火箭第二级的引发点的坐标,把火箭第二级的引发点的坐标和(15,0)代入直线解析式可得火箭落地点与发射点的水平距离恰好为15km时a和b的值,进而结合抛物线开口向下可得a的取值范围.本题考查二次函数的应用.比火箭运行的最高点低的高度,要从求得的两个函数解析式去考虑合适的自变量的取值;求火箭落地点与发射点的水平距离超过15km时a的取值范围,需要求出火箭落地点与发射点的水平距离恰好是15km时a的值.23.【答案】(1)证明:∵E、F分别是AB和BC中点,∴BE AB =12,BFBC=12,∵四边形ABCD是矩形,∴AB=CD,∴BE CD =BFBC,∵∠EBF=∠C=90°,∴△BCD∽△FBE;(2)方法一:如图延长FE交DA延长线于点M,作FH⊥AD于点H,则四边形CDHF是矩形.∵E是AB中点,∴AE=BE,∵AM//BC,∴∠AME=∠BFE,∠MAE=∠FBE,∴△AME≌△BFE(AAS),∴AM=BF,∵AD=2CF,CF=DH,∴AH=DH=CF,∴AM+AH=BF+CF,即MH=BC,∵FH=CD,∠MHF=∠BCD=90°,∴△MFH≌△BDC(SAS),∴∠AMF=∠CBD,又∵∠AMF=∠BFG,∴∠CBD=∠BFG,∴BG=FG;方法二:如图,取BD中点H,连接EH、CH,∵E是AB中点,H是BD中点,∴EH=1AD,EH//AD,2∵AD=2CF,∴EH=CF,∵AD//BC,∴EH//CF,∴四边形EHCF是平行四边形,∴EF//CH,∴∠HCB=∠GFB,∵∠BCD=90°,H是BD中点,∴CH=12BD=BH,∴∠HCB=∠HBC,∴∠GFB=∠HBC,∴BG=FG;(3)如图,过F作FM⊥AD于点M,取BD中点H,连接AF,则四边形CDMF是矩形,∴CF=DM,∵AD=2CF,∴AM=DM=CF,设CF=a,则AM=DM=CF=a,AD=CD=2a=MF,∴AF=√ AM2+MF2=√ 5a,∵E是AB中点,且AG=FG,∴FE垂直平分AB,∴BF=AF=√ 5a,∵H是BD中点,∴EH是△ABD中位线,∴EH=12AD=a,EH//AD//BC,∴△EGH∽△FGB,∴EG GF =EHBF=√ 5a=√ 55.【解析】(1)根据中点可得出两边对应成比例且夹角相等得两个三角形相似;(2)由中点和平行线可以联想作倍长中线全等,即延长FE 交DA 延长线于点M ,作FH ⊥AD 于点H ,证△AME ≌△BFE(AAS),再证△MFH ≌△BDC(SAS)即可得证;(3)这一问是建立在第二问的基础上,所以很容易想到构造相似通过线段关系转化求解,过F 作FM ⊥AD 于点M ,取BD 中点H ,连接AF ,设CF =a ,则AM =DM =CF =a ,AD =CD =2a =MF ,AF =√ 5a ,证FE 垂直平分AB 得到AF =BF =√ 5a ,再证△EGH ∽△FGB 即可求解.本题主要考查了相似三角形的判定和性质、矩形的性质、全等三角形的判定和性质、直角三角形斜边中线等于斜边的一半以及中位线定理等知识点,熟练掌握以上知识和添加辅助线是解题的关键.24.【答案】解:(1)在y =12x 2+2x −52中,令x =0得y =−52,∴C(0,−52),令y =0得0=12x 2+2x −52,解得x =−5或x =1, ∴A(1,0),B(−5,0);(2)设直线AC 的解析式为y =kx +b(k ≠0), 把A(,0),C(0,−52)代入得: {k +b =0b =−52, 解得:{k =52b =−52, ∴直线AC 的解析式为y =52x −52,由PQ//AC ,设直线PQ 的解析式为y =52x +b′,设P(t,12t 2+2t −52), ∴12t 2+2t −52=52t +b′, ∴b′=12t 2−12t −52,∴直线PQ 的解析式为y =52x +12t 2−12t −52,令x =0得y =12t 2−12t −52,∴Q(0,12t 2−12t −52); ∵BC 平分线段PQ ,∴PQ 的中点(t 2,12t 2+34t −52)在直线BC 上,由B(−5,0),C(0,−52)得直线BC 解析式为y =−12x −52,∴12t 2+34t −52=−t 4−52, 解得t =−2或t =0(舍去), ∴P(−2,−92);(3)过点G 作TS//x 轴,过点E ,F 分别作TS 的垂线,垂足分别为T ,S ,如图:∴∠T =∠S =∠EGF =90°, ∴∠EGT =90°−∠FGS =∠GFS , ∴△ETG ∽△GSF , ∴ET GS=TG FS, ∴ET ⋅FS =GS ⋅TG ,∵点D 与原点O 关于C(0,−52) 对称,∴D(0.−5),设直线EF 的解析式为y 1=k 1x ,直线ED 的解析式为y 2=k 2x −5, 联立{y 1=k 1x y =12x 2+2x −52得:k 1x =12x 2+2x −52,∴12x 2+(2−k 1)x −52=0,联立{y 2=k 2x −5y =12x 2+2x −52得:k 2x −5=12x 2+2x −52,∴12x 2+(2−k 2)x +52=0, 设x E =e ,x F =f ,x G =g ,∴ef =−5,eg =5,e +g =2k 2−4,∴f =−g ,ET =12e 2+2e −52−(12g 2+2g −52)=12(e +g +4)(e −g),FS =12f 2+2f −52−(12g 2+2g −52)=12(f +g +4)(f −g),∵ET ⋅FS =GS ⋅TG ,∴12(e +g +4)(e −g)⋅12(f +g +4)(f −g)=(g −e)(f −g), ∴12(e +g +4)(e −g)⋅12(−g +g +4)(−g −g)=(g −e)(−g −g), ∴e +g =−5, ∴2k 2−4=−5, 解得k 2=−12,∴直线DE 解析式为y =−12x −5.【解析】(1)在y =12x 2+2x −52中,令x =0得C(0,−52),令y =0得A(1,0),B(−5,0);(2)由A(,0),C(0,−52)得直线AC 的解析式为y =52x −52,设直线PQ 的解析式为y =52x +b′,P(t,12t 2+2t −52),可得b′=12t 2−12t −52,故Q(0,12t 2−12t −52);根据BC 平分线段PQ ,知PQ 的中点(t 2,12t 2+34t −52)在直线BC 上,求得直线BC 解析式为y =−12x −52,有12t 2+34t −52=−t 4−52,解出t 的值从而可得P(−2,−92); (3)过点G 作TS//x 轴,过点E ,F 分别作TS 的垂线,垂足分别为T ,S ,证明△ETG ∽△GSF ,可得ET ⋅FS =GS ⋅TG ,求出D(0.−5),设直线EF 的解析式为y 1=k 1x ,直线ED 的解析式为y 2=k 2x −5,联立{y 1=k 1x y =12x 2+2x −52得12x 2+(2−k 1)x −52=0,联立{y 2=k 2x −5y =12x 2+2x −52得12x2+(2−k 2)x +52=0,设x E =e ,x F =f ,x G =g ,故ef =−5,eg =5,e +g =2k 2−4,从而知f =−g ,ET =12e 2+2e −52−(12g 2+2g −52)=12(e +g +4)(e −g),FS =12f 2+2f −52−(12g 2+2g −52)=12(f +g +4)(f −g),故12(e +g +4)(e −g)⋅12(f +g +4)(f −g)=(g −e)(f −g),可得e +g =−5,即得2k 2−4=−5,k 2=−12,得直线DE 解析式为y=−1x−5.2本题考查二次函数综合问题,一次函数与二次函数综合,中点坐标公式,相似三角形的性质与判定,一元二次方程根与系数的关系,熟练掌握以上知识是解题的关键.。

武汉市中考数学试题及答案

武汉市中考数学试题及答案

武汉市中考数学试题及答案(此处省略题目和其他无关内容)
正文:
为了帮助广大考生更好地复习数学,下面是武汉市中考数学试题及答案的详细内容。

第一部分:选择题(共40分)
1. ...
2. ...
3. ...
......
第二部分:填空题(共20分)
1. ...
2. ...
3. ...
......
第三部分:解答题(共40分)
1. ...
解答:
解答:
3. ...
解答:
......
最后附上武汉市中考数学试题的答案解析,以供参考:选择题答案及解析:
1. ...
2. ...
3. ...
......
填空题答案及解析:
1. ...
2. ...
3. ...
......
解答题答案及解析:
1. ...
3. ...
......
通过对以上试题及答案的学习和理解,希望广大考生能够更好地掌握数学知识,为中考取得好成绩打下坚实的基础。

祝愿每一位考生都能在中考中取得优异的成绩!
(以上内容仅为示例,实际的武汉市中考数学试题及答案可根据实际情况进行撰写。

本文档不包含实际试题与答案,请考生自行查阅相关资料。

)。

2024年湖北省中考数学试题含答案解析

2024年湖北省中考数学试题含答案解析

2024年湖北省中考数学试卷一、选择题(每小题3分,共30分)1. 在生产生活中,正数和负数都有现实意义.例如收入20元记作20+元,则支出10元记作( )A. 10+元B. 10−元C. 20+元D. 20−元【答案】B【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:如果收入20元记作20+元,那么支出10元记作10−元,故选:B .2. 如图,是由4个相同的正方体组成的立方体图形,其主视图是( )A.B. C. D.【答案】A【解析】 【分析】本题考查了简单组合体的三视图.根据主视图的意义,从正面看该组合体所得到的图形对每一项判断即可.【详解】解:从正面看该组合体,所看到的主视图与选项A 相同,故选:A .3. 223x x ⋅的值是( )A. 25xB. 35xC. 26xD. 36x【答案】D【解析】【分析】本题主要考查单项式与单项式的乘法.运用单项式乘单项式运算法则求出结果即可判断.【详解】解:23236x x x ⋅=,故选:D .4. 如图,直线AB CD ∥,已知1120∠=°,则2∠=( )A. 50°B. 60°C. 70°D. 80°【答案】B【解析】【分析】本题主要考查了平行线性质,解题的关键是熟练掌握平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.根据同旁内角互补,1120∠=°,求出结果即可.【详解】解:∵AB CD ∥,∴12180∠+∠=°,∵1120∠=°,∴218012060∠=°−°=°,故选:B .5. 不等式12x +≥的解集在数轴上表示为( )A.B. C.D.【答案】A【解析】【分析】本题考查了一元一次不等式的解法即在数轴上表示不等式的解集.根据一元一次不等式的性质解出未知数的取值范围,在数轴上表示即可求出答案.【详解】解:12x +≥ , 1x ∴≥.∴在数轴上表示如图所示:故选:A .6. 下列各事件是,是必然事件的是( )A. 掷一枚正方体骰子,正面朝上恰好是3B. 某同学投篮球,一定投不中的C. 经过红绿灯路口时,一定是红灯D. 画一个三角形,其内角和为180°【答案】D【解析】 【分析】本题考查了随机事件和必然事件,解题的关键是掌握一定会发生的是必然事件,有可能发生,也有可能不发生的是随机事件,据此逐个判断即可.【详解】解:A 、掷一枚正方体骰子,正面朝上恰好是3,是随机事件,不符合题意;B 、某同学投篮球,一定投不中,是随机事件,不符合题意;C 、经过红绿灯路口时,一定是红灯,是随机事件,不符合题意;D 、画一个三角形,其内角和为180°,是必然事件,符合题意;故选:D .7. 《九章算术》中记载这样一个题:牛5头和羊2只共值10金,牛2头和羊5只共值8金,问牛和羊各值多少金?设每头牛值x 金,每只羊值y 金,可列方程为( )A. 5210258x y x y += +=B. 2510528x y x y += +=C. 5510258x y x y += +=D. 5210228x y x y += +=【答案】A【解析】【分析】本题考查了二元一次方程组的应用.根据未知数,将今有牛5头,羊2头,共值10金;牛2头,羊5头,共值8金,两个等量关系具体化,联立即可.【详解】解:设每头牛值x 金,每头羊值y 金,∵牛5头,羊2头,共值10金;牛2头,羊5头,共值8金,∴5210258x y x y += +=, 故选:A .8. AB 为半圆O 的直径,点C 为半圆上一点,且50CAB ∠=°.①以点B 为圆心,适当长为半径作弧,交,AB BC 于,D E ;②分别以DE 为圆心,大于12DE 为半径作弧,两弧交于点P ;③作射线BP ,则ABP ∠=( )A. 40°B. 25°C. 20°D. 15°【答案】C【解析】 【分析】本题主要考查圆周角定理以及角平分线定义,根据直径所对的圆周角是直角可求出=40ABC ∠°,根据作图可得1202ABP ABC ∠==°,故可得答案 【详解】解:∵AB 为半圆O 的直径, ∴90ACB ∠=°, ∵50CAB ∠=°,∴=40ABC ∠°,由作图知,AP 是ABC ∠的角平分线, ∴1202ABP ABC ∠==°, 故选:C9. 平面坐标系xOy 中,点A 的坐标为()4,6−,将线段OA 绕点O 顺时针旋转90°,则点A 的对应点A ′的坐标为( )A. ()4,6B. ()6,4C. ()4,6−−D. ()6,4−−【答案】B【解析】 【分析】本题考查坐标系下的旋转.过点A 和点A ′分别作x 轴的垂线,证明()AAS AOB OA C ′ ≌,得到4A C OB ′==,6OC AB ==,据此求解即可.【详解】解:过点A 和点A ′分别作x 轴的垂线,垂足分别为B C ,,∵点A 的坐标为()4,6−,∴4OB =,6AB =,∵将线段OA 绕点O 顺时针旋转90°得到OA ′,∴OA OA ′=,90AOA ′∠=°,∴90AOB A OC OA C ′′∠=°−∠=∠,∴()AAS AOB OA C ′ ≌,∴4A C OB ′==,6OC AB ==,∴点A ′坐标为()6,4,故选:B .10. 抛物线2y ax bx c ++的顶点为()1,2−−,抛物线与y 轴的交点位于x 轴上方.以下结论正确的是( )A. 0a <B. 0c <C. 2a b c −+=−D. 240b ac −=【答案】C【解析】【分析】本题考查了二次函数的性质以及二次函数图像与系数的关系.根据二次函数的解析式结合二次函数的性质,画出草图,逐一分析即可得出结论.【详解】解:根据题意画出函数2y ax bx c ++的图像,如图所示:的∵开口向上,与y 轴的交点位于x 轴上方,∴0a >,0c >,∵抛物线与x 轴有两个交点,∴240b ac ∆=−>,∵抛物线2y ax bx c ++的顶点为()1,2−−,∴2a b c −+=−, 观察四个选项,选项C 符合题意,故选:C .二、填空题(每小题3分,共15分)11. 写一个比1−大的数______.【答案】0【解析】【分析】本题考查了有理数比较大小.根据有理数比较大小的方法即可求解.【详解】解:10−<.故答案为:0(答案不唯一).12. 中国古代杰出的数学家祖冲之、刘徽、赵爽、秦九韶、杨辉,从中任选一个,恰好是赵爽是概率是______. 【答案】15【解析】【分析】本题主要考查运用概率公式求概率,根据概率公式即可得出答案.【详解】解:共有5位数学家,赵爽是其中一位,所以,从中任选一个,恰好赵爽是概率是15, 故答案为:1513. 计算:111m m m +=++______. 【答案】1【解析】【分析】本题主要考查了分式的加减运算.直接按同分母分式加减运算法则计算即可.是【详解】解:111111m m m m m ++==+++. 故选:1.14. 铁的密度约为37.9kg /m ,铁的质量()kg m 与体积()3mV 成正比例.一个体积为310m 的铁块,它的质量为______kg .【答案】79【解析】【分析】本题考查了正比例函数的应用.根据铁的质量()kg m 与体积()3mV 成正比例,列式计算即可求解.【详解】解:∵铁的质量()kg m 与体积()3mV 成正比例, ∴m 关于V 的函数解析式为7.9m V =,当10V =时,()7.91079kg m =×=,故答案为:79.15. DEF 为等边三角形,分别延长FD DE EF ,,,到点A B C ,,,使DA EB FC ==,连接AB AC ,,BC ,连接BF 并延长交AC 于点G .若2AD DF ==,则DBF ∠=______,FG =______.【答案】 ①. 30°##30度 ②.【解析】 【分析】本题考查了相似三角形的判定和性质,等边三角形的判定和性质,勾股定理.利用三角形的外角性质结合EB EF =可求得30DBF ∠=°;作CH BG ⊥交BG 的延长线于点H ,利用直角三角形的性质求得1CH =,FH =AGF CGH ∽,利用相似三角形的性质列式计算即可求解.【详解】解:∵DEF 为等边三角形,DA EB FC ==,∴2AD DF EB EF ====,60DEF DFE ∠=∠=°,∴1302DBF EFB DEF ∠=∠=∠=°,90AFB EFB DFE ∠=∠+∠=°,30EFB HFC ∠=∠=°,作CH BG ⊥交BG 的延长线于点H ,∴112CH CF ==,FH =,∵90AFB H ∠=∠=°,∴AF CH ∥,∴AGF CGH ∽,∴AF FG CH GH=,即41=解得FG =故答案为:30° 三、解答题(75分)16. 计算:()201322024−×+− 【答案】3【解析】【分析】本题主要考查了实数混合运算,根据零指数幂运算法则,算术平方根定义,进行计算即可.【详解】解:()201322024−×+− 3341=−++−3=.17. 已知:如图,E ,F 为□ABCD 对角线AC 上的两点,且AE =CF ,连接BE ,DF ,求证:BE =DF .【答案】证明见解析.【解析】【分析】利用SAS 证明△AEB ≌△CFD ,再根据全等三角形的对应边相等即可得.【详解】∵四边形ABCD 是平行四边形,∴AB //DC ,AB =DC ,∴∠BAE =∠DCF ,在△AEB 和△CFD 中,AB CD BAE DCF AE CF = ∠=∠ =, ∴△AEB ≌△CFD (SAS ),∴BE =DF .【点睛】本题考查了平行四边形性质以及全等三角形的判定与性质,熟练掌握相关的性质是解题的关键.18. 小明为了测量树AB 的高度,经过实地测量,得到两个解决方案:方案一:如图(1),测得C 地与树AB 相距10米,眼睛D 处观测树AB 的顶端A 的仰角为32°: 方案二:如图(2),测得C 地与树AB 相距10米,在C 处放一面镜子,后退2米到达点E ,眼睛D 在镜子C 中恰好看到树AB 的顶端A .已知小明身高1.6米,试选择一个方案求出树AB 的高度.(结果保留整数,tan320.64°≈)【答案】树AB 的高度为8米【解析】【分析】本题考查了相似三角形的实际应用题,解直角三角形的实际应用题.方案一:作DE AB ⊥,在Rt ADE △中,解直角三角形即可求解;方案二:由光的反射规律知入射角等于反射角得到相似三角形后列出比例式求解即可.【详解】解:方案一:作DE AB ⊥,垂足为E ,的则四边形BCDE 是矩形,∴10DE BC ==米,在Rt ADE △中,32ADE ∠=°,∴tan 32100.64 6.4AE DE =⋅°≈×=(米), 树AB 的高度为6.4 1.68+=米.方案二:根据题意可得ACB DCE ∠=∠,∵90B E ∠=∠=°,∴ACB DCE ∽ ∴AB BC DE CE =,即101.62AB = 解得:8AB =米,答:树AB 的高度为8米.19. 为促进学生全面发展,学校开展了丰富多彩的体育活动.为了解学生引体向上的训练成果,调查了七年级部分学生,根据成绩,分成了ABCD 四组,制成了不完整的统计图.分组:05A ≤<,510B ≤<,1015C ≤<,1520D ≤<.(1)A 组的人数为______:(2)七年级400人中,估计引体向上每分钟不低于10个的有多少人?(3)从众数、中位数、平均数中任选一个,说明其意义.【答案】(1)12 (2)180(3)见解析【解析】【分析】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)先根据C 组人数除以所占百分比求出总人数,再减去B ,C ,D 组人数即可得A 的人数;(2)求出C ,D 组人数在样本中所占百分比,再乘以400即可得答案;(3)根据众数、中位数、平均数的意义进行解答即可.【小问1详解】解:1435%40÷=(人), A 组人数为:401014412−−−=(人), 故答案为:12;【小问2详解】 解:14440018040+×=(人), 答:估计引体向上每分钟不低于10个的有180人;【小问3详解】解:从A ,B ,C ,D 组人数来看,最中间的两个数据是第20,21个,中位数落在B 组,说明B 组靠后的成绩处于中等水平;由于统计图中没有具体体现学生引体向上的训练成绩,只给出训练成绩的范围,无法计算出训练成绩的众数和平均数.20. 一次函数y x m =+经过点()3,0A −,交反比例函数k y x=于点(),4B n .(1)求m n k ,,;(2)点C 在反比例函数k y x=第一象限的图象上,若AO OB C A S S <△△,直接写出C 的横坐标a 的取值范围.【答案】(1)3m =,1n =,4k =;(2)1a >.【解析】【分析】本题主要考查了一次函数和反比例函数的综合,求反比例函数解析式,解题的关键是熟练掌握数形结合的思想.(1)利用一次函数y x m =+经过点()30A −,,点(),4B n ,列式计算求得3m =,1n =,得到点()1,4B ,再利用待定系数法求解即可;(2)利用三角形面积公式求得6AOB S = ,得到362C y <,据此求解即可. 【小问1详解】解:∵一次函数y x m =+经过点()30A −,,点(),4B n , ∴304m n m −+= +=, 解得31m n = =, ∴点()1,4B , ∵反比例函数k y x=经过点()1,4B , ∴144k =×=;【小问2详解】 解:∵点()30A −,,点()1,4B , ∴3AO =, ∴1134622AOB B S AO y =×=××=△,1322AOC C C S AO y y =×=△, 由题意得362C y <, ∴4C y <,∴1C x >,∴C 的横坐标a 的取值范围为1a >.21. Rt ABC △中,90ACB ∠=°,点O 在AC 上,以OC 为半径的圆交AB 于点D ,交AC 于点E .且BD BC =.(1)求证:AB 是O 的切线.(2)连接OB 交O 于点F,若1AD AE =,求弧CF 的长.【答案】(1)见解析 (2)弧CF 的长为3π.【解析】【分析】(1)利用SSS 证明OBD OBC ≌△△,推出90ODB OCB ∠=∠=°,据此即可证明结论成立; (2)设O 的半径为x ,在Rt AOD 中,利用勾股定理列式计算求得1x =,求得60AOD ∠=°,再求得60COF ∠=°,利用弧长公式求解即可.【小问1详解】证明:连接OD ,在OBD 和OBC △中,BD BC OB OB OD OC = = =,∴()SSS OBD OBC ≌,∴90ODB OCB ∠=∠=°, ∵OD 为O 的半径,∴AB 是O 的切线;【小问2详解】解:∵90ODB ∠=°,∴90ODA =∠°,设O 的半径为x ,在Rt AOD 中,222AO OD AD =+,即()2221x x +=+, 解得1x =,∴1OD OC ==,2OA =,cos 12AODOD OA ==∠, ∴60AOD ∠=°,∵OBD OBC ≌△△, ∴()118060602BOD COF ∠=∠=°−°=°, ∴弧CF 的长为6011803ππ×=. 【点睛】本题考查了切线的判定,勾股定理,三角函数的定义,弧长公式.正确引出辅助线解决问题是解题的关键.22. 学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m ,篱笆长80m .设垂直于墙的边AB 长为x 米,平行于墙的边BC 为y 米,围成的矩形面积为2cm S .(1)求y 与,x s 与x 的关系式.(2)围成的矩形花圃面积能否为2750cm ,若能,求出x 的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x 的值.【答案】(1)()8021940y x x =−≤<;2280s x x =−+(2)能,25x =(3)s 的最大值为800,此时20x【解析】【分析】本题主要考查一元二次方程的应用和二次函数的实际应用:(1)根据80AB BC CD ++=可求出y 与x 之间的关系,根据墙的长度可确定x 的范围;根据面积公式可确立二次函数关系式;(2)令750s =,得一元二次方程,判断此方程有解,再解方程即可 ;(3)根据自变量的取值范围和二次函数的性质确定函数的最大值即可.【小问1详解】解:∵篱笆长80m ,∴80AB BC CD ++=,∵,,ABCD x BC y === ∴80,x y x ++=∴802y x =− ∵墙长42m ,∴080242x <−≤,解得,1940x ≤<,∴()8021940y x x =−≤<;又矩形面积s BC AB =⋅y x =⋅()802x x −2280x x =−+;【小问2详解】解:令750s =,则2280750x x −+=,整理得:2403750x x −+=,此时,()224404375160015001000b ac ∆=−=−−×=−=>,所以,一元二次方程2403750x x −+=有两个不相等的实数根,∴围成的矩形花圃面积能为2750cm ;∴x = ∴1225,15,x x == ∵1940x ≤<,∴25x =;【小问3详解】解:()22280220800s x x x =−+=−−+∵20,-<∴s 有最大值,又1940x ≤<,∴当20x 时,s 取得最大值,此时800s =,即当20x 时,s 最大值为80023. 如图,矩形ABCD 中,,E F 分别在,AD BC 上,将四边形ABFE 沿EF 翻折,使A 的对称点P 落在AB 上,B 的对称点为G PG ,交BC 于H .(1)求证:EDP PCH △∽△.(2)若P 为CD 中点,且2,3AB BC ==,求GH 长. (3)连接BG ,若P 为CD 中点,H 为BC 中点,探究BG 与AB 大小关系并说明理由.【答案】(1)见详解 (2)34GH = (3)AB =【解析】 【分析】(1)根据矩形的性质得90A D C ∠=∠=∠=°,由折叠得出90EPH A ∠=∠=°,得出32∠=∠,证明EDP PCH △∽△;(2)根据矩形的性质以及线段中点,得出1DP CP ==,根据222EP ED DP =+代入数值得()2231x x =−+,进行计算53x =,再结合EDP PCH △∽△,则ED EP PC PH=,代入数值,得54PH =,所以34GH PG PH =−=; (3)由折叠性质,得AP EF BG ⊥⊥,直线EF ,,BG AP BAP GPA ∠=∠,MAP △是等腰三角形,则MA MP =,因为P 为CD 中点,H 为BC 中点,所以DPCP y ==,BH CH =,所以()ASA MBH PCH ≌,则CH y =,所以CH y =,证明的BMG MAP ∽,则BG y =,即可作答. 【小问1详解】解:如图:∵四边形ABCD 是矩形,∴90A D C ∠=∠=∠=°,∴1+3=90∠∠°,∵,E F 分别在,AD BC 上,将四边形ABFE 沿EF 翻折,使A 的对称点P 落在DC 上,∴90EPH A ∠=∠=°,∴1290∠+∠=°, ∴32∠=∠,∴EDP PCH △∽△;【小问2详解】解:如图:∵四边形ABCD 是矩形,∴23CD AB BC ====,AD ,90A D C ∠=∠=∠=°, ∵P 为CD 中点, ∴1212DP CP ==×=, 设EP AP x ==,∴3ED AD x x =−=−,在Rt EDP △中,222EP ED DP =+,即()2231x x =−+,解得53x =, ∴53EP AP x ===, ∴43ED AD AE =−=, ∵EDP PCH △∽△, ∴ED EP PC PH=, ∴45331PH=, 解得54PH =, ∵2PG AB ==, ∴34GH PG PH =−=; 【小问3详解】解:如图:延长AB PG ,交于一点M ,连接AP∵,E F 分别在,AD BC 上,将四边形ABFE 沿EF 翻折,使A 的对称点P 落在CD 上,∴AP EF BG ⊥⊥,直线EF ,BG AP ∴AE EP =EAP EPA ∴∠=∠,BAP GPA ∠=∠∴,∴MAP △是等腰三角形,∴MA MP =,∵P 为CD 中点,∴设DPCP y ==, ∴2ABPG CD y ===, ∵H 为BC 中点,∴BH CH =,∵BHM CHP ∠=∠,CBM PCH ∠=∠,∴()ASA MBH PCH ≌,∴BMCP y ==,HM HP =, 3MP MA MB AB y ==+=∴ ∴1322HP PM y ==, 在Rt PCH △中,CH y =,∴2BC CH ==,∴AD BC ==,在Rt APD中,AP =, ∵BG AP ∥,∴BMG MAP ∽, ∴13BGBM AP AM ==,∴BG y =,∴AB BG =∴AB =,【点睛】本题考查了矩形与折叠,相似三角形的判定与性质,勾股定理,全等三角形的判定与性质,正确掌握相关性质内容是解题的关键.24. 如图1,二次函数23y x bx =−++交x 轴于()1,0A −和B ,交y 轴于C .(1)求b 的值.(2)M 为函数图象上一点,满足MAB ACO ∠=∠,求M 点的横坐标. (3)如图2,将二次函数沿水平方向平移,新的图象记为,L L 与y 轴交于点D ,记DC d ,记L 顶点横坐标为n .①求d 与n 的函数解析式.②记L 与x 轴围成的图象为,U U 与ABC 重合部分(不计边界)记为W ,若d 随n 增加而增加,且W 内恰有2个横坐标与纵坐标均为整数的点,直接写出n 的取值范围.【答案】(1)2b =;(2)103m =或83m =;(3)n n ≤<11n −≤≤−.【解析】【分析】(1)利用待定系数法求解即可;(2)先求得()3,0B ,()0,3C ,作MN x ⊥轴于点N ,设()2,23M m m m −++,分当M 点在x 轴上方和M 点在x 轴下方时,两种情况讨论,利用相似三角形的判定和性质,列式求解即可;(3)①利用平移的性质得图象L 的解析式为()24y x n =−−+,得到图象L 与y 轴交于点D 的坐标()20,4n −+,据此列式计算即可求解; ②先求得10n −≤≤或1n ≥,ABC 中含()0,1,()0,2,()1,1三个整数点(不含边界),再分三种情况讨论,分别列不等式组,求解即可.【小问1详解】解:∵二次函数23y x bx =−++交x 轴于()1,0A −,∴013b =−−+,解得2b =;【小问2详解】解:∵2b =,∴()222314y x x x =−++=−−+,令0y =,则()2140x −−+=,解得=1x −或3x =,令0y =,则3y =,∴()1,0A −,()3,0B ,()0,3C ,作MN x ⊥轴于点N ,设()2,23M m m m −++,当M 点在x 轴上方时,如图,∵MAB ACO ∠=∠,∴MAN ACO ∽△△, ∴OC AN OA MN =,即231123m m m +=−++, 解得83m =或1−(舍去); 当M 点在x 轴下方时,如图,∵MAB ACO ∠=∠,∴MAN ACO ∽△△,∴OC AN OA MN =,即()231123m m m +=−−++, 解得103m =或1−(舍去); ∴103m =或83m =; 【小问3详解】解:①∵将二次函数沿水平方向平移,∴纵坐标不变是4,∴图象L 的解析式为()222424y x n x nx n =−−+=−+−+,∴()20,4D n −+, ∴22431CD d n n ==−+−=−+, ∴()()22111111n n n d n n −≥≤ = −−<<或; ②由①得()()22111111n n n d n n −≥≤ = −−<< 或, 则函数图象如图,∵d 随n 增加而增加,∴10n −≤≤或1n ≥,ABC 中含()0,1,()0,2,()1,1三个整数点(不含边界), 当W 内恰有2个整数点()0,1,()0,2时,当0x =时,2L y >,当1x =时,1L y ≤,∴()2242141n n −+> −−+≤ ,∴n <<,1n ≥+或1n ≤−∴1n <≤∵10n −≤≤或1n ≥,∴11n −≤≤;当W 内恰有2个整数点()0,1,()1,1时,当0x =时,12L y <≤,当1x =时,1L y >,∴()22142141n n <−+≤ −−+> ,∴n <≤n ≤<,11n <<,n ≤<;∵10n −≤≤或1n ≥,n ≤<;当W 内恰有2个整数点()0,2,()1,1时,此情况不存在,舍去,综上,n n ≤<或11n −≤≤−.【点睛】本题主要考查了用待定系数法求二次函数的表达式及二次函数与线段的交点问题,也考查了二次函数与不等式,相似三角形的判定和性质.熟练掌握二次函数图象的性质及数形结合法是解题的关键.。

2020年湖北省武汉市中考数学试题及参考答案(word解析版)

2020年湖北省武汉市中考数学试题及参考答案(word解析版)

2020年武汉市初中毕业生学业考试数学试卷(满分120分,考试用时120分钟)第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案。

1.实数﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.式子在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≤2 C.x≥﹣2 D.x≥23.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1 B.两个小球的标号之和等于6C.两个小球的标号之和大于1 D.两个小球的标号之和大于64.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.5.如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1 B.﹣1<a<1 C.a>1 D.a<﹣1或a>18.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32 B.34 C.36 D.389.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.410.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160 B.128 C.80 D.48第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解题过程,请将结果直接填写在题中的横线上。

湖北省武汉市中考数学试卷(word版含答案)

湖北省武汉市中考数学试卷(word版含答案)

武汉市初中毕业生学业考试数学试卷亲爱的同学,在你答题前,请仔细阅读下边的注意事项:1.本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分构成.全卷共 6 页,三大题,25 小题,满分 120 分.考试用时 120 分钟.2.答题前,请将你的姓名、准考据号填写在“答题卷”和“答题卡”上,并将准考据号、考试科目用 2B 铅笔涂在“答题卡”上.3.答第Ⅰ卷时,选出每题答案后,用 2B 铅笔把“答题卡” 上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案,不得答在试题卷上.4.第Ⅱ卷用钢笔或黑色水性笔挺接答在“答题卷”上,答在试题卷上无效.........预祝你获得优秀成绩!第Ⅰ卷(选择题,共36 分)一、选择题(共12 小题,每题 3 分,共36 分)以下各题中均有四个备选答案,此中有且只有一个正确,请在答题卡大将正确答案的代号涂黑.1.有理数1的相反数是()21B.1C.2 D.2A .222.函数y 2x 1 中自变量 x 的取值范围是()A .x≥1B .x≥1C.x≤1 12 2D .x≤2 23.不等式x≥2 的解集在数轴上表示为()1 0 123 1 0 1 2 3A .B .1 0 123 1 0 1 2 3C.D.4.二次根式( 3)2 的值是()A .3 B.3或3 C.9 D .35 x 2是一元二次方程x2mx 2 0的一个解,则 m 的值是().已知A .3 B.3 C. 0 D.0 或36.今年某市约有102000 名应届初中毕业生参加中考.102000 用科学记数法表示为()A . 0.102106 B . 1.02 105 C . 10.2 104D .102 1037.小明记录了今年元月份某五天的最低温度(单位:℃) :1,2,0,1, 2 ,这五天的最低温度的均匀值是( )A . 1B . 2C . 0D . 18.以下图,一个斜插吸管的盒装饮料从正面看的图形是()正面A .B .C .D .9.如图,已知O是四边形ABCD内一点,OA OBOCB,ABCADC70°,则 DAODCO 的大小是()A .70°B .110°OCC . 140°D .150°AD10.如图,已知 ⊙O 的半径为 1,锐角 △ ABC 内接于 ⊙O ,CD BD ⊥ AC 于点 D , OM ⊥ AB 于点 M ,则 sin CBD的值等于( )OA . OM 的长B . 2OM 的长 AMBC . CD 的长D . 2CD 的长11.近几年来,公民经济和社会发展获得了新的成就,乡村经济迅速发展,农民收入不停提高.以下图统计的是某地域 2004 年— 2008 年乡村居民人均年纯收入.依据图中信息,以下判断:①与上一年对比, 2006 年的人均年纯收入增添的数目高于 2005 年人均年纯收入增添的数目;②与上一年对比, 2007 年人均年纯收入的增添率为3587 3255100% ;③若按 20083255年人均年纯收入的增添率计算,2009 年人均年纯收入将达到 414014140 3587 元.3587此中正确的选项是()人均年纯收入 /元450041404000 35873500293632553000 2622 2500 2000 1500 1000 5002004 年 2005年 2006 年 2007年 2008年 年份A .只有①②B .只有②③C .只有①③D .①②③12.在直角梯形ABCD 中, AD ∥ BC , ABC 90°, AB BC ,E 为 AB 边上一点,BCE 15°,且 AE AD .连结 DE 交对角线 AC 于 H ,连结 BH .以下结论: ① △ ACD ≌△ ACE ;② △CDE 为等边三角形;③ EH2 ;BE此中结论正确的选项是(A .只有①② C .只有③④S △ EDCAH .④ S △ EHCCH)B .只有①②④D .①②③④ADHEBC第Ⅱ卷(非选择题,共 84 分)二、填空题(共 4 小题,每题 3 分,共 12 分)以下各题不需要写出解答过程,请将结论直接填写在答题卷指定的地点.13.在科学课外活动中, 小明同学在同样的条件下做了某种作物种子抽芽的实验, 结果以下表所示:种子数(个) 100 200 300 400 抽芽种子数(个)94187282376由此预计这类作物种子抽芽率约为(精准到 0.01).14.将一些半径同样的小圆按以下图的规律摆放: 第 1 个图形有 6 个小圆, 第 2 个图形有 10 个小圆,第 3 个图形有 16 个小圆,第 4 个图形有24 个小圆, ,挨次规律,第6 个图形有 个小圆.第 1个图形第 2个图形 第 3个图形 第 4个图形15.如图,直线 ykx b 经过 A(2,1) , B( 1, 2) 两点,则不等式y1 xAkx b2的解集为.Ox2B16.如图,直线 y4 x 与双曲线 y k( x 0 )交于点 A .将直3xy线 y4x 向右平移 9个单位后,与双曲线 yk( x 0 )交于点A3 2 AOxBB ,与 x 轴交于点C ,若.x2 ,则 kOCBC三、解答题(共9 小题,共 72 分)以下各题需要在答题卷指定地点写出文字说明、证明过程、演算步骤或画出图形.17.(此题满分6 分)解方程: x23x 1 0.18.(此题满分 6 分)先化简,再求值: 1 1 x2 1,此中 x 2 .x 2 x 219.(此题满分6 分)如图,已知点E,C 在线段 BF 上, BE CF, AB∥ DE,ACB F .求证:△ ABC ≌△ DEF .A DB EC F20.(此题满分7 分)小明准备今年暑期到北京参加夏令营活动,但只要要一名家长陪伴前去,爸爸、妈妈都很愿意陪伴,于是决定用投掷硬币的方法决定由谁陪伴.每次掷一枚硬币,连掷三次.(1)用树状图列举三次投掷硬币的全部结果;(2)若规定:有两次或两次以上正面向上,由爸爸陪伴前去北京;有两次或两次以上反面..............向上,则由妈妈陪伴前去北京.分别求由爸爸陪伴小明前去北京和由妈妈陪伴小明前去北京的概率;(3)若将“每次掷一枚硬币,连掷三次,有两次或两次以上正面向上时,由爸爸陪伴小明前去北京”改为“同时掷三枚硬币,掷一次,有两枚或两枚以上正面向上时,由爸爸陪伴小.......明前去北京” .求:在这类规定下,由爸爸陪伴小明前去北京的概率.21.(此题满分7 分)如图,已知△ ABC 的三个极点的坐标分别为A( 2,3) 、 B( 6,0) 、 C ( 1,0) .(1)请直接写出点 A 对于 y 轴对称的点的坐标;(2)将 △ ABC 绕坐标原点 O 逆时针旋转 90°.画出图形, 直接写出点 B 的对应点的坐标; (3)请直接写出:以A 、B 、C 为极点的平行四边形的第四个极点D 的坐标.yAB C O x22.(此题满分 8 分)如图, Rt △ ABC中, ABC 90° AB 为直径作 ⊙O 交 AC 边于点 D, E是边 BC,以的中点,连结 DE .(1)求证:直线DE 是 ⊙O 的切线;(2)连结 OC 交 DE 于点 F ,若 OF CF ,求 tan ACO 的值.CD FEABO23.(此题满分10 分)某商品的进价为每件 40 元,售价为每件 50 元,每个月可卖出 210 件;假如每件商品的售价每上升 1 元,则每个月少卖10 件(每件售价不可以高于 65 元).设每件商品的售价上升x 元( x 为正整数),每个月的销售收益为 y 元.(1)求 y 与 x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获取最大收益?最大的月收益是多少元?(3)每件商品的售价定为多少元时,每个月的收益恰为2200 元?依据以上结论, 请你直接写销售价在什么范围时,每个月的收益不低于2200 元?24.(此题满分 10 分)如图 1,在 Rt △ ABC 中,,于点D ,点O 是AC 边上一点,连BAC 90° AD ⊥ BC接 BO 交 AD 于 F ,OE ⊥OB 交 BC 边于点 E .(1)求证: △ ABF ∽△COE ; (2)当 O 为 AC 边中点, AC 2 时,如图 2,求OF ABOE (3)当 O 为 AC 边中点,ACn 时,请直接写出 OF ABOE BBD的值;的值.DFFEEACAO CO图 1图 225.(此题满分 12 分)如图,抛物线 y ax 2bx 4a 经过 A( 1,0) 、 C (0,4) 两点,与 x 轴交于另一点 B .(1)求抛物线的分析式;(2)已知点 D (m , m 1) 在第一象限的抛物线上,求点D 对于直线 BC 对称的点的坐标;(3)在( 2)的条件下,连结 BD,点 P为抛物线上一点,且 DBP 45° P的坐,求点 标.yCABOx数学试卷参照答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案A B C D A B C A D A D B 二、填空题13. 0.94 14.46 15.1 x 2 16. 12三、解答题17.解: a 1, b 3,c 1 ,b2 4ac ( 3) 2 4 1 ( 1) 13 ,x1 3 13, x2 3213 .218.解:原式x 2 1 x 2 1x 2 ( x 1)(x 1) x 1当 x 2时,原式 1 .19.证明:AB ∥ DE, B DEF .BE CF, BC EF .ACB F,△ ABC ≌△ DEF .20.解:( 1)第一次正反第二次正反正反第三次正反正反正反正反(2)P(由爸爸陪伴前去)1; P (由妈妈陪伴前去)1 2;2(3)由( 1)的树形图知,P (由爸爸陪伴前去)1 .221.解:( 1)( 2, 3);(2)图形略.( 0,6);(3)(7,3)或( 5,3)或(3,3).22.证明:( 1)连结AB 是⊙O 的直径,CDB ADB90°,E 点是 BC 的中点,DE CE BE .OD OB, OE OE,△ ODE ≌△OBE .ODE OBE90°,直线 DE 是⊙O 的切线.(2)作OH⊥AC于点H,由(1)知,BD⊥AC,EC EB. CD FHEA BOD、OE、BD .OOA OB , OE ∥ AC ,且 OE1AC .2CDF OEF , DCF EOF .CF OF , △DCF ≌△ EOF , DC OE AD .BABC ,A 45°.OH ⊥ AD , OHAHDH .CH 3OH , tan ACOOH 1CH.323.解:( 1) y (210 10x)(50 x40)10x 2 110 x 2100 ( 0x ≤ 15且 x 为整数);(2) y10( x 5.5)22402.5 .a10 0 , 当 x 5.5时, y 有最大值 2402.5.0 x ≤ 15 ,且 x 为整数,当 x5时, 50 x 55 , y 2400 (元),当 x 6 时, 50 x 56 , y 2400 (元)当售价定为每件 55 或 56 元,每个月的收益最大,最大的月收益是 2400 元.(3)当 y2200 时, 10x 2110x 2100 2200 ,解得: x 1 1, x 2 10 .当 x 1时, 50 x 51 ,当 x 10 时, 50 x 60 .当售价定为每件 51 或 60 元,每个月的收益为2200 元.当售价不低于 51 或 60 元,每个月的收益为 2200 元.当售价不低于 51 元且不高于 60 元且为整数时,每个月的收益不低于2200 元(或当售价分别为 51, 52, 53, 54, 55, 56, 57, 58, 59, 60 元时,每个月的收益不低于 2200 元).24.解:( 1)AD ⊥ BC , DAC C 90°.GBAC 90°, BAFC . OE ⊥ OB , BOA COE 90°,BOAABF90°ABF COE.,B△ ABF ∽△ COE ;D(2)解法一:作 OG ⊥ AC ,交 AD 的延伸线于 G . FEAC 2AB , O 是 AC 边的中点, AB OC OA .由( 1)有 △ ABF ∽△COE , △ ABF ≌△COE ,AOCBF OE .BAD DAC 90°, DAB ABD 90°, DAC ABD ,又BAC AOG 90° AB OA.,△ ABC ≌△ OAG , OG AC 2AB .OG ⊥OA , AB ∥ OG , △ ABF ∽△GOF , OF OG OF OF OG2 . ,BF AB OE BF AB解法二:BAC 90°,AC 2AB ,AD ⊥ BC 于 D , Rt △BAD ∽ Rt △ BCA . AD ACBD 2 .AB设AB ,则 AC 2, BC5, BO 2 ,B1DAD 2 5,BD 1 AD 1 .FE5 2 55ABDF BOE 90°,△ BDF ∽△ BOE ,OCBD BODF.OE1 52由( 1)知 BFOE ,设 OE BF x , 5x10DF .DF,x在 △ DFB 中 x211 x2 , x2 .5 1032 4OF 4 2OFOBBF22 .32 .2OE23323(3)OFn .OE25.解:( 1) 抛物线 yax 2 bx 4a 经过 A( 1,0) , C (0,4) 两点,a b 4a ,4a 4.a1,解得b 3.抛物线的分析式为 yx23x 4 .(2) 点 D (m , m 1) 在抛物线上,m1 m2 3m 4 ,y即 m 2 2m 3 0 , m 1 或 m 3.点 D 在第一象限, 点 D 的坐标为 (3,4). CD由( 1)知 OA OB , CBA 45°.设点 D 对于直线 BC 的对称点为点 E .A E BC (0,4) ,CD ∥AB ,且 CD 3,OxECBDCB ,45°E 点在 y 轴上,且 CE CD 3 .OE 1,E(01), .yDCPE即点 D 对于直线 BC 对称的点的坐标为(0, 1).( 3)方法一:作 PF ⊥ AB 于 F ,DE ⊥BC 于E .由( 1)有: OB OC 4, OBC 45°,DBP 45°, CBDPBA .C (0,4),D (3,4) ,CD ∥ OB 且 CD 3 .DCECBO 45°,DECE3 2.2OB OC 4 , BC4 2 , BE5 2 BC CE,2tan PBF tan CBDDE3BE .5设 PF 3t ,则 BF 5t , OF5t 4 ,P( 5t4,3t ) .P 点在抛物线上,3t( 5t4) 2 3( 5t 4) 4 ,t0 (舍去)或 t 22 P2 66.,5 ,2525方法二:过点D 作 BD 的垂线交直线 PB 于点 Q ,过点 D 作 DH ⊥ x 轴于 H .过 Q 点作QG ⊥DH 于G .yPBD 45°, QDDB .90°,C DQDGBDHQGP又 DQGQDG 90°,DQGBDH .AB△QDG ≌△ DBH ,QG DH4, DGBH 1.xOH由( 2)知 D (3,4) , Q( 13), .B(4,0) , 直线 BP 的分析式为 y3 x 12 . 5 5y x 2 3x ,,x22 ,4x 15解方程组3 12得 4y, y 1;66x5 0.5y 2252 66 点 P 的坐标为,.5 25。

word完整版武汉市中考教育数学习题以及答案,文档

word完整版武汉市中考教育数学习题以及答案,文档

2019年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每题3分,共30分)1.实数2019的相反数是()A.2019B.-2019C.1D.1201920192.式子x1在实数范围内存心义,则x的取值范围是()A.x>0B.x≥-1C.x≥1D.x≤1 3.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其余差异,随机从袋子中一次摸出3个球,以下事件是不行能事件的是()A.3个球都是黑球B.3个球都是白球C.三个球中有黑球D.3个球中有白球4.现实世界中,对称现象无处不在,中国的方块字中有些也拥有对称性,以下美术字是轴对称图形的是()A.诚B.信C.友D.善5.如图是由5个同样的小正方体构成的几何体,该几何题的左视图是()6.“漏壶”是一种这个古代计时器,在它内部盛必定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们依据壶中水面的地点计算时间,用t表示漏水时间,y表示壶底到水面的高度,以下图象合适表示y与x的对应关系的是()7.从1、2、3、4四个数中随机选用两个不一样的数,分别记为a、c,则对于x的一元二次方程ax2+4x+c=0有实数解的概率为()1B.11D.2A.C.43238.已知反比率函数y的图象分别位于第二、第四象限,A(x,y)、B(x,y)两点在该图象上,k1122x以下命题:①过点A作AC⊥x轴,C为垂足,连结OA.若△ACO的面积为3,则k=-6;②若x1<0<x2,则y1>y2;③若x1+x2=0,则y1+y2=0此中真命题个数是()A.0B.1C.2D.39.如图,AB是⊙O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上一动点,∠ACB的角均分线交⊙O于点D,∠BAC的均分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.2B.235 C.D.2210.察看等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2已知按必定规律摆列的一组数:250、251、252、、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2C.2a2-a D.2a2+a二、填空题(本大题共6个小题,每题3分,共18分)11.计算16的结果是___________12.武汉市某气象观察点记录了5天的均匀气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是___________2a1的结果是___________13.计算a216a414.如图,在□ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为___________15.抛物线y=ax2+bx+c经过点A(-3,0)、B(4,0)两点,则对于x的一元二次方程a(x-1)2+c=b-bx的解是___________ 16.问题背景:如图1,将△ABC绕点A逆时针旋转60°获得△ADE,DE与BC交于点P,可推出结论:PA+PC=PE问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=4 2.点O是△MNG内一点,则点O到△MNG三个极点的距离和的最小值是___________三、解答题(共8题,共72分)17.(此题8分)计算:(2x2)3-x2·x418.(此题8分)如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F19.(此题8分)为弘扬中华传统文化,某校展开“双剧进讲堂”的活动,该校童威随机抽取部分学生,按四个类型:A表示“很喜爱”,B表示“喜爱”,C表示“一般”,D表示“不喜爱”,检查他们对汉剧的喜爱状况,将结果绘制成以下两幅不完好的统计图,依据图中供给的信息,解决以下问题:(1)此次共抽取_________名学生进行统计检查,扇形统计图中,D类所对应的扇形圆心角的大小为__________(2)将条形统计图增补完好(3)该校共有1500名学生,预计该校表示“喜爱”的B类的学生大概有多少人?各种学生人数条形统计图各种学生人数扇形统计图20.(此题8分)如图是由边长为1的小正方形构成的网格,每个小正方形的极点叫做格点.四边形ABCD的极点在格点上,点E 是边DC与网格线的交点.请选择合适的格点,用无刻度的直尺在网格中达成以下绘图,保存连线的印迹,不要求说明原由如图1,过点A画线段AF,使AF∥DC,且AF=DC如图1,在边AB上画一点G,使∠AGD=∠BGC如图2,过点E画线段EM,使EM∥AB,且EM=AB21.(此题8分)已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点如图1,求证:AB2=4AD·BC如图2,连结OE并延伸交AM于点F,连结CF.若∠ADE=2∠OFC,AD=1,求图中暗影部分的面积22.(此题10分)某商铺销售一种商品,童威经市场检查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售收益w(元)的三组对应值以下表:售价x(元/件)506080周销售量y(件)1008040周销售收益w(元)100016001600注:周销售收益=周销售量×(售价-进价)①求y对于x的函数分析式(不要求写出自变量的取值范围)②该商品进价是_________元/件;当售价是________元/件时,周销售收益最大,最大收益是__________元(2)因为某种原由,该商品进价提升了m元/件(m>0),物价部门规定该商品售价不得超出65元/件,该商铺在此后的销售中,周销售量与售价仍旧知足(1)中的函数关系.若周销售最大收益是1400元,求m的值23.(此题 10分)在△ABC 中,∠ABC =90°,ABn ,M 是BC 上一点,连结AMBC如图1,若n =1,N 是AB 延伸线上一点,CN 与AM 垂直,求证:BM =BN(2) 过点B 作BP ⊥AM ,P 为垂足,连结 CP 并延伸交AB 于点Q① 如图2,若n =1,求证:CPBMPQBQ② 如图3,若M 是BC 的中点,直接写出 tan ∠BPQ 的值(用含n 的式子表示)24.(此题12分)已知抛物线 C 1:y =(x -1) 2-4和C :y =x 22(1) 怎样将抛物线C 1平移获得抛物线C 2? (2) 如图1,抛物线C 1与x 轴正半轴交于点A ,直线y4xb 经过点A ,交抛物线C 1于另一3点B .请你在线段AB 上取点P ,过点P 作直线PQ ∥y 轴交抛物线 C 1于点Q ,连结AQ① 若AP =AQ ,求点P 的横坐标② 若PA =PQ ,直接写出点P 的横坐标(3)如图2,△MNE 的极点M 、N 在抛物线 C 2上,点M 在点N 右侧,两条直线ME 、NE 与抛物线C 2均有独一公共点, ME 、NE 均与标分别为 m 、n ,求m 与n 的数目关系y 轴不平行.若 △MNE的面积为 2,设M 、N 两点的横坐2019年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每题3分,共30分)1.实数2019的相反数是()A.2019B.-2019C.1D.1 20192019答案:B考点:相反数。

2023年湖北省武汉市中考数学试卷(含答案及解析)

2023年湖北省武汉市中考数学试卷(含答案及解析)

2023年武汉市初中毕业生学业考试数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。

1.实数3的相反数是()A.3B.13C.-13D.-32.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.3.掷两枚质地均匀的骰子,下列事件是随机事件的是()A.点数的和为1B.点数的和为6C.点数的和大于12D.点数的和小于134.计算2a23的结果是()A.2a5B.6a5C.8a5D.8a65.如图是由4个相同的小正方体组成的几何体,它的左视图是()A. B. C. D.6.关于反比例函数y=3x,下列结论正确的是()A.图像位于第二、四象限B.图像与坐标轴有公共点C.图像所在的每一个象限内,y随x的增大而减小D.图像经过点a,a+2,则a=17.某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.1128.已知x 2-x -1=0,计算2x +1-1x ÷x 2-xx 2+2x +1的值是()A.1 B.-1 C.2D.-29.如图,在四边形ABCD 中,AB ∥CD ,AD ⊥AB ,以D 为圆心,AD 为半径的弧恰好与BC 相切,切点为E .若ABCD =13,则sinC 的值是()A.23 B.53C.34D.7410.皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积S =N+12L -1,其中N ,L 分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A 0,30 ,B 20,10 ,O 0,0 ,则△ABO 内部的格点个数是()A.266B.270C.271D.285二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉市初中毕业生学业考试亲爱的同学,在你答题前,请认真阅读下面的注意事项:1.本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成.全卷共6页,三大题,25小题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卷”和“答题卡”上,并将准考证号、考试科目用2B 铅笔涂在“答题卡”上. 3.答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,不得答在试题卷上.4.第Ⅱ卷用钢笔或黑色水性笔直接答在“答题卷”上,答在试题卷上无效......... 预祝你取得优异成绩!第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分) 下列各题中均有四个备选答案,其中有且只有一个准确,请在答题卡上将准确答案的代号涂黑.1.有理数12的相反数是( ) A .12- B .12C .2-D .22.函数y =x 的取值范围是( )A .12x -≥ B .12x ≥ C .12x -≤D .12x ≤3.不等式2x ≥的解集在数轴上表示为( )4) A .3-B .3或3-C .9D .35.已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( )A .3-B .3C .0D .0或36.今年某市约有102000名应届初中毕业生参加中考.102000用科学记数法表示为( ) A .60.10210⨯B .51.0210⨯C .410.210⨯D .310210⨯A .B .C .D .7.小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,1-,2-,这五天的最低温度的平均值是( ) A .1 B .2 C .0 D .1-8.如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )9.如图,已知O 是四边形ABCD 内一点,OA OB OC ==,70ABC ADC ∠=∠=°,则DAO DCO ∠+∠的大小是( ) A .70° B .110°C .140°D .150°10.如图,已知O ⊙的半径为1,锐角ABC △内接于O ⊙,BD AC ⊥于点D ,OM AB ⊥于点M ,则sin CBD ∠的值等于( )A .OM 的长B .2OM 的长C .CD 的长D .2CD 的长11.近几年来,国民经济和社会发展取得了新的成就,农村经济快速发展,农民收入持续提升.下图统计的是某地区2004年—2008年农村居民人均年纯收入.根据图中信息,下列判断:①与上一年相比,2006年的人均年纯收入增加的数量高于2005年人均年纯收入增加的数量;②与上一年相比,2007年人均年纯收入的增长率为35873255100%3255-⨯;③若按2008年人均年纯收入的增长率计算,2009年人均年纯收入将达到41403587414013587-⎛⎫⨯+ ⎪⎝⎭元.其中准确的是( )A .只有①②B .只有②③C .只有①③D .①②③ 12.在直角梯形ABCD 中,AD BC ∥,90ABC AB BCE ∠==°,,为AB 边上一点,15BCE ∠=°,且AE AD =.连接DE 交对角线AC 于H ,连接BH .下列结论:正面A .B .C .D . B CO A D O CB A DM 4500 4000 3500 3000 2500 200015001000 5002004年 2005年 2006年 2007年 2008年 人均年纯收入/元2622 293632553587 4140①ACD ACE △≌△;②CDE △为等边三角形; ③2EHBE=; ④EDC EHC S AH S CH =△△. 其中结论准确的是( )A .只有①②B .只有①②④C .只有③④D .①②③④第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分)下列各题不需要写出解答过程,请将结论直接填写在答题卷指定的位置.13.在科学课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下种子数(个) 100200300400发芽种子数(个)94 187 282 376 由此估计这种作物种子发芽率约为 (精确到0.01).14.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.15.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .16.如图,直线43y x =与双曲线ky x=(0x >)交于点A .将直线43y x =向右平移92个单位后,与双曲线k y x =(0x >)交于点B ,与x 轴交于点C ,若2AOBC=,则k = .三、解答题(共9小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形.DCBE AH第1个图形第2个图形第3个图形第4个图形…yO A BOy ABC17.(本题满分6分) 解方程:2310x x --=.18.(本题满分6分)先化简,再求值:211122x x x -⎛⎫-÷⎪++⎝⎭,其中2x =.19.(本题满分6分)如图,已知点E C ,在线段BF 上,BE CF AB DE ACB F =∠=∠,∥,. 求证:ABC DEF △≌△.20.(本题满分7分)小明准备今年暑假到北京参加夏令营活动,但只需要一名家长陪同前往,爸爸、妈妈都很愿意陪同,于是决定用抛掷硬币的方法决定由谁陪同.每次掷一枚硬币,连掷三次. (1)用树状图列举三次抛掷硬币的所有结果; (2)若规定:有两次或两次以上.......正面向上,由爸爸陪同前往北京;有两次或两次以上.......反面向上,则由妈妈陪同前往北京.分别求由爸爸陪同小明前往北京和由妈妈陪同小明前往北京的概率;(3)若将“每次掷一枚硬币,连掷三次,有两次或两次以上正面向上时,由爸爸陪同小明前往北京”改为“同时掷三枚硬币,掷一次,有两枚或两枚以上.......正面向上时,由爸爸陪同小明前往北京”.求:在这种规定下,由爸爸陪同小明前往北京的概率.21.(本题满分7分)如图,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、(10)C -,. (1)请直接写出点A 关于y 轴对称的点的坐标;(2)将ABC △绕坐标原点O 逆时针旋转90°.画出图形,直接写出点B 的对应点的坐标; (3)请直接写出:以A B C 、、为顶点的平行四边形的第四个顶点D 的坐标.C E B FD A22.(本题满分8分)如图,Rt ABC △中,90ABC ∠=°,以AB 为直径作O ⊙交AC 边于点D ,E 是边BC 的中点,连接DE .(1)求证:直线DE 是O ⊙的切线;(2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠的值.23.(本题满分10分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?24.(本题满分10分)C EBA O FD如图1,在Rt ABC △中,90BAC ∠=°,AD BC ⊥于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE OB ⊥交BC 边于点E . (1)求证:ABF COE △∽△;(2)当O 为AC 边中点,2AC AB =时,如图2,求OFOE 的值; (3)当O 为AC 边中点,AC n AB =时,请直接写出OFOE的值.25.(本题满分12分)如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B . (1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=°,求点P 的坐标.武汉市初中毕业生学业考试BBAACO E DDECO F图1图2F数学试卷参考答案二、填空题13.0.94 14.46 15.12x -<< 16.12 三、解答题17.解:131a b c ==-=-,,,224(3)41(1)13b ac ∴-=--⨯⨯-=,123322x x -∴==. 18.解:原式21212(1)(1)1x x x x x x +-+==+-+-当2x =时,原式1=. 19.证明:AB DE B DEF ∴∠=∠∥,. BE CF BC EF =∴=,. ACB F ABC DEF ∠=∠∴,△≌△. 20.解:(1)(2)P (由爸爸陪同前往)12=;P (由妈妈陪同前往)12=; (3)由(1)的树形图知,P (由爸爸陪同前往)12=.21.解:(1)(2,3); (2)图形略.(0,6-);(3)(7-3,)或(53)--,或(33),. 22.证明:(1)连接OD OE BD 、、.AB 是O ⊙的直径,90CDB ADB ∴∠=∠=°, E 点是BC 的中点,DE CE BE ∴==. OD OB OE OE ODE OBE ==∴,,△≌△. 90ODE OBE ∴∠=∠=∴°,直线DE 是O ⊙的切线. (2)作OH AC ⊥于点H ,由(1)知,BD AC ⊥,EC EB =.正 反正 反正 反 正 正 反正 反正 反 反第一次 第二次 第三次CEFDOA OB OE AC =∴,∥,且12OE AC =. CDF OEF ∴∠=∠,DCF EOF ∠=∠. CF OF =,DCF EOF ∴△≌△,DC OE AD ∴==. 45BA BC A ∴=∴∠=,°. OH AD OH AH DH ∴==⊥,.13tan 3OH CH OH ACO CH ∴=∴∠==,.23.解:(1)2(21010)(5040)101102100y x x x x =-+-=-++(015x <≤且x 为整数);(2)210( 5.5)2402.5y x =--+.100a =-<,∴当 5.5x =时,y 有最大值2402.5. 015x <≤,且x 为整数,当5x =时,5055x +=,2400y =(元),当6x =时,5056x +=,2400y =(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当2200y =时,21011021002200x x -++=,解得:12110x x ==,. ∴当1x =时,5051x +=,当10x =时,5060x +=.∴当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元). 24.解:(1)AD BC ⊥,90DAC C ∴∠+∠=°. 90BAC BAF C ∠=∴∠=∠°,. 90OE OB BOA COE ∴∠+∠=⊥,°,90BOA ABF ∠+∠=°,ABF COE ∴∠=∠.ABF COE ∴△∽△;(2)解法一:作OG AC ⊥,交AD 的延长线于G . 2AC AB =,O 是AC 边的中点,AB OC OA ∴==.由(1)有ABF COE △∽△,ABF COE ∴△≌△, BF OE ∴=.90BAD DAC ∠+∠=°,90DAB ABD DAC ABD ∠+∠=∴∠=∠°,, 又90BAC AOG ∠=∠=°,AB OA =. ABC OAG ∴△≌△,2OG AC AB ∴==. OG OA ⊥,AB OG ∴∥,ABF GOF ∴△∽△,OF OG BF AB ∴=,2OF OF OGOE BF AB ===. 解法二:902BAC AC AB AD BC ∠==°,,⊥于D ,Rt Rt BAD BCA ∴△∽△.2AD ACBD AB∴==. BAD E CO FG设1AB =,则2AC BC BO ===,,12AD BD AD ∴===. 90BDF BOE BDF BOE ∠=∠=∴°,△∽△,BD BODF OE∴=. 由(1)知BF OE =,设OE BF x ==,5DF x=,x ∴=. 在DFB △中2211510x x =+,3x ∴=.OF OB BF ∴=-==322OF OE ∴==.(3)OF n OE=.25.解:(1)抛物线24y ax bx a =+-经过(10)A -,,(04)C ,两点,404 4.a b a a --=⎧∴⎨-=⎩, 解得13.a b =-⎧⎨=⎩,∴抛物线的解析式为234y x x =-++.(2)点(1)D m m +,在抛物线上,2134m m m ∴+=-++,即2230m m --=,1m ∴=-或3m =. 点D 在第一象限,∴点D 的坐标为(34),. 由(1)知45OA OB CBA =∴∠=,°. 设点D 关于直线BC 的对称点为点E .(04)C ,,CD AB ∴∥,且3CD =,45ECB DCB ∴∠=∠=°,E ∴点在y 轴上,且3CE CD ==.1OE ∴=,(01)E ∴,. BA DE COF即点D 关于直线BC 对称的点的坐标为(0,1). (3)方法一:作PF AB ⊥于F ,DE BC ⊥于E . 由(1)有:445OB OC OBC ==∴∠=,°, 45DBP CBD PBA ∠=∴∠=∠°,.(04)(34)C D ,,,,CD OB ∴∥且3CD =.45DCE CBO ∴∠=∠=°,DE CE ∴==4OB OC ==,BC ∴=2BE BC CE ∴=-=, 3tan tan 5DE PBF CBD BE ∴∠=∠==. 设3PF t =,则5BF t =,54OF t ∴=-,(543)P t t ∴-+,.P 点在抛物线上,∴23(54)3(54)4t t t =--++-++,0t ∴=(舍去)或2225t =,266525P ⎛⎫∴- ⎪⎝⎭,. 方法二:过点D 作BD 的垂线交直线PB 于点Q ,过点D 作DH x ⊥轴于H .过Q 点作QG DH ⊥于G .45PBD QD DB ∠=∴=°,. QDG BDH ∴∠+∠90=°,又90DQG QDG ∠+∠=°,DQG BDH ∴∠=∠.QDG DBH ∴△≌△,4QG DH ∴==,1DG BH ==.由(2)知(34)D ,,(13)Q ∴-,.(40)B ,,∴直线BP 的解析式为31255y x =-+.解方程组23431255y x x y x ⎧=-++⎪⎨=-+⎪⎩,,得1140x y =⎧⎨=⎩,;222566.25x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴点P 的坐标为266525⎛⎫- ⎪⎝⎭,.。

相关文档
最新文档