哈工大机械设计大作业-轴系部件-5.1.3

合集下载

轴系-机械设计大作业

轴系-机械设计大作业

H a r b i n I n s t i t u t e o f T e c h n o l o g y哈尔滨工业大学机械设计作业设计说明书设计题目:设计液体搅拌机中的齿轮传动高速轴的轴系部件院系:英才学院班级:0936105班设计者:王天啸设计时间:2011年11月20日哈尔滨工业大学哈尔滨工业大学机械设计大作业任务书题目:设计液体搅拌机中的齿轮传动高速轴的轴系部件原始数据:由前两个大作业可知以下数据:n=7102.2r/min=322.73r/min T=65101N∙mmd=68mmb=31.68mmF t=2188.3NF r=765.8NF a=218.8NF Q=1149N目录一、选择轴的材料 (1)二、初算轴径 (1)三、轴承部件的结构设计 (1)1.各轴段直径的确定 (1)2.各轴段长的确定 (2)四、轴的受力分析 (2)1.轴的受力简图及各点力的计算 (2)2.弯矩图 (3)3.扭矩图 (3)五、轴的强度校核 (3)1.弯扭合成强度 (3)2.安全系数 (4)六、键的强度校核 (5)七、校核轴承寿命 (5)八、轴承端盖的设计 (5)九、轴承座的设计 (6)十、轴系部件装配图 (6)参考文献 (7)一、 选择轴的材料因传递的功率不大,且对质量和尺寸无特殊要求,故选择常用材料45钢,调质处理。

二、 初算轴径查[1]表9.4得C =106~118,C 取较小值106。

则得到 d min = C√Pn 3= 106×√ 2.2322.733mm = 20.10mm考虑到键槽对轴的影响,取d min = 20.10×1.05 mm = 21.10mm三、 轴承部件的结构设计为方便轴承部件的拆装,机体采用剖分式结构,因传递功率较小,齿轮减速的效率高,发热小,估计轴承不会长,故轴承结构设计草图如图 ⅠⅠ因为轴承转动线速度小于2000mm/min ,所以采用脂润滑。

1. 各轴段直径的确定(1) d 1和d 7的确定由于dmin = 21.10,即要求d1、d7≥d min ,取d 1=d 7 = 25mm 。

机械设计轴系大作业(最新版)

机械设计轴系大作业(最新版)

轴系部件设计计算说明书学院(系):机械工程与自动化学院专业:机械工程及自动化学院班:机械1209设计者:鲍涛(20123067)指导老师:闫玉涛2014 年 12 月13日东北大学目录一、设计任务书及原始数据 (1)二、根据已知条件计算传动件的作用力 (2)2.1计算齿轮处转矩T、圆周力Ft及径向力Fr (2)2.2计算支座反力 (2)三、初选轴的材料,确定材料的机械性能 (3)四、进行轴的结构设计 (3)4.1确定最小直径 (4)4.2设计其余各轴段的直径和长度,且初选轴承型号 (4)4.3选择连接形式与设计细部结构 (5)五、轴的疲劳强度校核 (5)5.1轴的受力图 (5)5.2绘制弯矩图 (6)5.3绘制转矩图 (7)5.4确定危险截面 (8)5.5计算安全系数,校核轴的疲劳强度 (8)六、选择轴承型号,计算轴承寿命 (13)6.1计算轴承所受支反力 (13)6.2计算轴承寿命 (14)七、键连接的计算 (14)八、轴系部件的结构装配图 (14)一、设计任务书及原始数据题目:一级直齿圆柱齿轮减速器输入轴组合结构设计轴系结构简图带轮受力分析简图原始数据见表1传动件计算结果T=36836NF t=1169.4NF r=425.6N理(ΣM z=0)得出求解b点垂直面支反力R bz的计算公式:R bz=F r/2代入圆周力F t的值,得:R bz=425.6/2=212.8N根据垂直面受力平衡原理(ΣF z=0),得出d点垂直面支反力R dz的计算公式:R dz=F r-R bz带入以求得的b点垂直面支反力的值R bz,得:R dz=425.6-212.8=212.8N2、计算水平面(XOY)支反力根据受力分析图,我们可以利用水平面力矩平衡原理(ΣM y=0)得出求解d点水平面支反力R dy的计算公式:R dy=(Q•s+F t•l/2)/l代入径向力F r与a点带传动轴压力Q的值,得:R dy=(900×100+1169.4×160/2)/160 =1147.2N根据水平面受力平衡原理(ΣF y=0),得出求解b点水平面支反力R by的计算公式:R by=F t-Q-R dy带入d点水平力支反力R dy的值,得:R by=1169.4-900-1147.2=-877.8N三、初选轴的材料,确定材料的机械性能支座反力计算结果R bz=212.8NR dz=212.8NR dy=1147.2NR by=-877.8N四、进行轴的结构设计4.1确定最小直径按照扭转强度条件计算轴的最小值d min。

机械设计课程设计轴系部件设计说明书

机械设计课程设计轴系部件设计说明书

机械设计课程设计-轴系部件设计说明书H a r b i n I n s t i t u t e o f T e c h n o l o g y机械设计大作业课程名称:机械设计设计题目:轴系部件设计院系:能源学院班级:0802105设计者:就是不告诉你学号:10802105XX指导教师:曲建俊设计时间:2010/11/21哈尔滨工业大学机械设计大作业轴系部件设计说明书题目:行车驱动装置的传动方案如下图所示。

室内工作、工作平稳、机器成批生产,其他数据见下表。

方案电动机工作功率Pd/kW电动机满载转速nm/(r/min)工作机得转速n w/(r/min)第一级传动比i1轴承座中心高H/mm最短工作年限5.4. 1 2.2 940 60 3.2 20010年1班一选择轴的材料因为传递功率不大,轴所承受的扭矩不大,故选择45号钢,调质处理。

二初算轴径d min对于转轴,按扭转强度初算直径d min≥C√P n m3式中 P——轴传递的功率;C——由许用扭转剪应力确定的系数;n——轴的转速,r/min。

由参考文献[1] 表10.2查得C=106~118,考虑轴端弯矩比转矩小,故取C=106。

输出轴所传递的功率:P3=P d·ηV带·η轴承·η齿轮=2.2×0.96×0.99×0.96=2.00724 kW输出轴的转速:nm=n wi1·i2=940355 112×9920=59.912 r/min代入数据,得d≥C√Pn m3=106√2.0072459.9123=34.172 mm考虑键的影响,将轴径扩大5%, d min≥34.172×(1+ 5%)=35.88 mm。

三结构设计1.轴承部件机体结构形式及主要尺寸为了方便轴承部件的装拆,减速器的机体采用剖分式结构。

取机体的铸造壁厚δ=8mm,机体上的轴承旁连接螺栓直径d2=12 mm,C1=18 mm,C2=16 mm,为保证装拆螺栓所需要的扳手空间,轴承座内壁至坐孔外端面距离L=δ+C1+C2+(5~8)mm=47~50 mm取L=48 mm。

哈工大_机械设计大作业_轴系部件设计_5.3.5

哈工大_机械设计大作业_轴系部件设计_5.3.5

Harbin Institute of Technology机械设计大作业题目:轴系部件设计院系:机电工程学院班级:指导老师:姓名:学号:©哈尔滨工业大学目录一、材料选择 (3)二、初算轴径 (4)三、轴系结构设计 (4)3.1轴承部件的结构型式及主要尺寸 (4)3.2及轴向固定方式 (4)3.3选择滚动轴承类型 (4)3.4 轴的结构设计 (5)3.5 键连接设计 (5)四、轴的受力分析 (6)4.1 画出轴的结构和受力简图 (6)4.2 计算支承反力 (6)4.3 画出弯矩图 (7)4.4 画出扭矩图 (7)五、校核轴的强度 (8)六、校核键连接强度 (9)七、校核轴承寿命 (9)7.1 当量动载荷 (9)7.2 校核轴承寿命 (9)八、轴上的其他零件 (10)8.1 毡圈 (10)8.2 两侧挡油板 (10)8.3 轴承端盖螺钉连接 (10)九、轴承端盖设计 (10)9.1 透盖 (10)9.2 轴承封闭端盖 (10)十、轴承座 (10)十一、参考文献 (11)轴系部件设计任务书题目: 设计绞车(带棘轮制动器)中的齿轮传动高速轴轴系部件结构简图见下图:。

原始数据如下:室内工作、工作平稳、机器成批生产一、材料选择通过已知条件和查阅相关的设计手册得知,该传动机所传递的功率属于中小型功率。

因此轴所承受的扭矩不大。

故选45号钢,并进行调质处理。

二、初算轴径对于转轴,按扭转强度初算直径:min d C ≥其中2P ——轴传递的功率,=2 3.0P KW m n ——轴的转速,r/min ,296.5/min m n r =C ——由许用扭转剪应力确定的系数。

查表10.2得C=106~118,考虑轴端弯矩比转矩小,取C=106。

≥=⨯=min d 10622.93Cmm由于考虑到轴的最小直径处要安装大带轮,会有键槽存在,故将其扩大5%,得min d 1.0524.07k d mm ≥⨯=,按标准GB2822-81的10R 圆整后取125=d mm 。

机械设计大作业-轴系设计-说明书

机械设计大作业-轴系设计-说明书

机械设计基础大作业计算说明书题目轴系部件设计学院材料学院班号1429201学号1142920102姓名胡佳伟日期2016年12月13日哈尔滨工业大学机械设计基础大作业任务书1.1设计题目直齿圆柱齿轮减速器轴系部件设计1.2设计原始数据1.3设计要求1.轴系部件装配图一张。

2.计算说明书一份,包括输出轴,输出轴上的轴承及键的校核计算。

2.设计过程(1)估算轴的基本直径。

选用45号钢,正火处理,σb=600MPa,估计直径<100mm。

查表可得C = 118,由公式得所求的d为受扭部分的最细处,即装联轴器处的轴径处。

但因为该处有一个键槽,故轴径应该增大3%,d=37.46 x 1.03=38.58mm取d=40mm。

(2)轴的结构设计(齿轮圆周速度<2m/s,采用脂润滑)○1.初定各个轴段直径位置轴径/mm 说明联轴器处40 按传递转矩估算的基本直径油封处42 该段轴径应满足油封标准轴承处45 选用6209深沟球轴承,为便于轴承从右端装拆,轴承内径应稍大于油封处轴径,并符合滚动轴承内径标准,故取轴径为45mm,初定轴承型号为6209,两端相同齿轮处48 考虑齿轮从右端装入,故齿轮孔径应大于轴承处轴径,并为标准直径。

轴环处56 齿轮左端用轴环定位,按齿轮处轴径d=48mm,查表知轴环高度a=(0.07-0.1)d=3.36-4.8mm,取a=4mm○2.确定各轴段长度位置轴段长度/mm说明齿轮处78 已知齿轮轮毂宽度为80mm,为保证齿轮能被压紧,此轴段长度应略小于齿轮轮毂宽度,故取78mm右端轴承处39 此轴段包括4部分,轴承内圈宽度19mm;考虑到箱体的铸造误差,装配时留有余地,轴承左端面与箱体内壁的间距取10mm,箱体内壁与齿轮右侧端面间距取8mm,齿轮轮毂宽度与齿轮处轴段长度之差为2mm。

最后该轴段长度为19+10+8+2=39mm油封处30 此段长度由轴承盖的总宽度加上轴承盖外端面与联轴器左端面的间距构成,为20+10=30mm。

哈工大机械设计大作业-v带传动-5.1.3

哈工大机械设计大作业-v带传动-5.1.3

一、设计题目设计带式运输机中的V带传动:带式运输机的传动方案如下图所示,机器运行平稳、单向回转、成批生产,其他数据参见下方表格。

方案电动机工作功率P d/kW 电动机满载转速n m/(r/min)工作机的转速n w/(r/min)第一级传动比i1轴承座中心高H/mm最短工作年限工作环境5.1.3396011021805年2班室外、有尘二、电动机的选择由本方案原始数据,查阅参考文献[2]表15.1 Y系列三相异步电动机的型号和相关数据,选择Y132S-6。

由参考文献[2]表15.2查得轴径D=38mm,轴颈长E=80mm。

三、确定设计功率设计功率是根据需要传递的名义功率再考虑载荷性质、原动机类型和每天连续工作的时间长短等因素而确定的,表达式为P d=K A P式中P——所需传递的名义功率(kW)K A——工况系数,由参考文献[1]表7.6,取K A=1.2考虑到本装置的工作环境,K A值应扩大1.1倍,因此P d=K A P=1.1×1.2×3=3.96kW四、选择带的型号根据P d、n m,查阅参考文献[1]图7.11,选取A型带。

五、确定带轮基准直径d d1和d d2查参考文献[1]表7.7知A型V带最小基准直径d dmin=75mm,再由表7.3选取小带轮基准直径 d d1=125mm,大带轮基准直径 d d2=i·d d1=2×125=250mm。

六、验算带的速度v=πn1d d160×1000=π×960×12560×1000=6.283m/s式中n1 ——电动机转速d d1——小带轮基准直径即v=6.283m/s< v max=25m/s,符合要求。

七、确定中心距a和V带基准长度d L由公式初步确定中心距:0.7(d d1+d d2)≤a0≤2(d d1+d d2)0.7×(125+250)=262.5≤a0≤750=2×(1125+250)故取a0=400mm,据此初算带的基准长度L’dL′d≈2a+π2(d d1+d d2)+(d d2−d d1)24a=2×400+π2×(125+250)+(250−125)24×400 =1398.814mm由参考文献[1]表7.2确定V带的基准长度d L=1400mm,此时的带长修正系数K L=0.96,则实际中心距:a≈a0+L d−L′d2=400+1400−1398,8142=400.593mm八、计算小轮包角根据公式有:a1≈180°−d d2−d d1a×57.3°=180−250−125400.593×57.3°=162.12°九、确定V带根数zz=P d(P0+∆P0)KαK L式中 Kα——包角修正系数,考虑包角α≠180°对传动能力的影响,由参考文献[1]表7.8得Kα=0.95K L——带长修正系数,考虑考虑带长不为特定带长时对使用寿命的影响,在上文中已得K L=0.96P d—— V带的设计功率P0—— V带的基本额定功率查阅参考文献[1]表7.3得单根V带传递的基本额定功率P0=1.37kW。

2021年哈工大机械设计大作业

2021年哈工大机械设计大作业

哈尔滨工业大学机械设计作业设计计算说明书题目: 轴系部件设计系别: 英才学院班号: 1436005姓名: 刘璐日期: .11.12哈尔滨工业大学机械设计作业任务书题目: 轴系部件设计设计原始数据:图1表 1 带式运输机中V带传动已知数据方案dP(KW)(/min)mn r(/min)wn r1i轴承座中心高H(mm)最短工作年限L工作环境5.1.2496010021803年3班室外有尘机器工作平稳、单向回转、成批生产目录一、带轮及齿轮数据 (1)二、选择轴材料 (1)三、初算轴径d min (1)四、结构设计 (2)1. 确定轴承部件机体结构形式及关键尺寸 (2)2. 确定轴轴向固定方法..................................................................................... 错误!未定义书签。

3. 选择滚动轴承类型, 并确定润滑、密封方法 ...................................... 错误!未定义书签。

4. 轴结构设计 ....................................................................................................... 错误!未定义书签。

五、轴受力分析 (4)1. 画轴受力简图 (4)2. 计算支承反力 (4)3. 画弯矩图 (5)4. 画扭矩图 (5)六、校核轴强度 (5)七、校核键连接强度 (7)八、校核轴承寿命 (8)1. 计算轴承轴向力 (8)2. 计算当量动载荷 (8)3. 校核轴承寿命 (8)九、绘制轴系部件装配图(图纸) (9)十、参考文件 (9)一、 带轮及齿轮数据已知带传动输出轴功率 P = 3.84 kW , 转矩 T = 97333.33 N·mm , 转速 n = 480 r/min , 轴上压力Q = 705.23 N , 因为原本圆柱直齿轮尺寸不满足强度校核, 故修改齿轮尺寸为分度圆直径d 1 =96.000 mm , 其它尺寸齿宽b 1 = 35 mm , 螺旋角β = 0°, 圆周力 F t = 2433.33 N , 径向力 F r = 885.66 N , 法向力 F n = 2589.50 N , 载荷变动小, 单向转动。

哈工大机械设计大作业轴系部件设计完美版

哈工大机械设计大作业轴系部件设计完美版
同时取
(4)轴段1和轴段7:
轴段1和7分别安装大带轮和小齿轮,故根据大作业3、4可知轴段1长度 ,轴段7长度 。
(5)计算
, ,
, ,
4、轴的受力分析
4.1画轴的受力简图
轴的受力简图见图3。
4.2计算支承反力
传递到轴系部压轴力
带初次装在带轮上时,所需初拉力比正常工作时大得多,故计算轴和轴承时,将其扩大50%,按 计算。
图2
3.2选择滚动轴承类型
因轴承所受轴向力很小,选用深沟球轴承,因为齿轮的线速度小于2m/s,齿轮转动时飞溅的润滑油不足于润滑轴承,采用油脂对轴承润滑,由于该减速器的工作环境有尘,脂润滑,密封处轴颈的线速度较低,故滚动轴承采用唇形圈密封,由于是悬臂布置所以不用轴上安置挡油板。
3.3键连接设计
齿轮及带轮与轴的周向连接均采用A型普通平键连接,齿轮、带轮所在轴径相等,两处键的型号均为12 8GB/T 1096—1990。
4.4画转矩图……………………………………………………………6
五、校核轴的弯扭合成强度……………………………………………………8
六、轴的安全系数校核计算……………………………………………………9七、键的强度校核………………………………………………………………10
八、校核轴承寿命………………………………………………………………11
在水平面上:
在垂直平面上
轴承1的总支承反力
轴承2的总支承反力
4.3画弯矩图
竖直面上,II-II截面处弯矩最大, ;
水平面上,I-I截面处弯矩最大, ;
合成弯矩,I-I截面:
II-II截面: ;
竖直面上和水平面上的弯矩图,及合成弯矩图如图5.4所示
4.4画转矩图

哈尔滨工业大学机械设计基础轴系部件设计

哈尔滨工业大学机械设计基础轴系部件设计

机械设计基础大作业计算说明书题目:朱自发学院:航天学院班号:1418201班姓名:朱自发日期:2016.12.05哈尔滨工业大学机械设计基础大作业任务书题目:轴系部件设计设计原始数据及要求:目录1.设计题目 (4)2.设计原始数据 (4)3.设计计算说明书 (5)3.1 轴的结构设计 (5)3.1.1 轴材料的选取 (5)3.1.2初步计算轴径 (5)3.1.3结构设计 (6)3.2 校核计算 (8)3.2.1轴的受力分析 (8)3.2.2校核轴的强度 (10)3.2.3校核键的强度 (11)3.2.4校核轴承的寿命 (11)4. 参考文献 (12)1.设计题目斜齿圆柱齿轮减速器轴系部件设计2.设计原始数据3.设计计算说明书3.1 轴的结构设计3.1.1 轴材料的选取大、小齿轮均选用45号钢,调制处理,采用软齿面,大小齿面硬度为241~286HBW,平均硬度264HBW;齿轮为8级精度。

因轴传递功率不大,对重量及结构尺寸无特殊要求,故选用常用材料45钢,调质处理。

3.1.2初步计算轴径按照扭矩初算轴径:d≥=式中: d ——轴的直径,mm ; τ——轴剖面中最大扭转剪应力,MPa ; P ——轴传递的功率,kW ; n ——轴的转速,r /min ; []τ——许用扭转剪应力,MPa ;C ——由许用扭转剪应力确定的系数;根据参考文献查得106~97C =,取106C =故10635.0mm d ≥== 本方案中,轴颈上有一个键槽,应将轴径增大5%,即35(15%)36.75mm d ≥⨯+=取圆整,38d mm =。

3.1.3结构设计(1)轴承部件的支承结构形式减速器的机体采用剖分式结构。

轴承部件采用两端固定方式。

(2)轴承润滑方式螺旋角:12()arccos=162n m z z aβ+= 齿轮线速度:-338310175 2.37/6060cos 60cos16n m zn dnv m sπππβ⨯⨯⨯====因3/v m s <, 故轴承用油润滑。

哈工大机械设计大作业

哈工大机械设计大作业

哈尔滨工业大学机械设计作业设计计算说明书题目: 轴系部件设计系别: 英才学院班号: 1436005姓名: 刘璐日期: 2016.11.12哈尔滨工业大学机械设计作业任务书题目:轴系部件设计设计原始数据:图1表1 带式运输机中V带传动的已知数据机器工作平稳、单向回转、成批生产目录一、带轮及齿轮数据 (1)二、选择轴的材料 (1)三、初算轴径d min (1)四、结构设计 (2)1.................................................................................................. 确定轴承部件机体的结构形式及主要尺寸 . (2)2.确定轴的轴向固定方式................. 错误!未定义书签3.选择滚动轴承类型,并确定润滑、密封方式........ 错误!未定义书签4.轴的结构设计..................... 错误!未定义书签五、轴的受力分析 (4)1.画轴的受力简图 (4)2.计算支承反力 (4)3.画弯矩图 (5)4.画扭矩图 (5)六、校核轴的强度 (5)七、校核键连接的强度 (7)八、校核轴承寿命 (8)1.计算轴承的轴向力 (8)2.计算当量动载荷 (8)3.校核轴承寿命 (8)九、绘制轴系部件装配图(图纸) (9)十、参考文献 (9)一、带轮及齿轮数据已知带传动输出轴功率P = 3.84 kW,转矩T = 97333.33 N mm,转速n = 480 r/min, 轴上压力Q = 705.23 N,因为原本圆柱直齿轮的尺寸不满足强度校核,故修改齿轮尺寸为分度圆直径d i =96.000 mm,其余尺寸齿宽b i = 35 mm,螺旋角B= 0°圆周力F t = 2433.33 N,径向力F r = 885.66 N,法向力F n = 2589.50 N,载荷变动小,单向转动。

哈工大机械设计大作业

哈工大机械设计大作业

哈尔滨工业大学机械设计作业设计计算说明书题目: 轴系部件设计系别: 英才学院班号: 1436005姓名: 刘璐日期: 2016.11.12哈尔滨工业大学 机械设计作业任务书题目: 轴系部件设计设计原始数据:图1表 1 带式运输机中V 带传动的已知数据方案 d P (KW ) (/min)m n r(/min)w n r1i轴承座中心高H (mm )最短工作 年限L 工作环境 5.1.2496010021803年3班室外 有尘机器工作平稳、单向回转、成批生产目录一、带轮及齿轮数据 (1)二、选择轴的材料 (1)三、初算轴径d min (1)四、结构设计 (2)1. 确定轴承部件机体的结构形式及主要尺寸 (2)2. 确定轴的轴向固定方式....................................... 错误!未定义书签。

3. 选择滚动轴承类型,并确定润滑、密封方式 .................. 错误!未定义书签。

4. 轴的结构设计................................................ 错误!未定义书签。

五、轴的受力分析 (4)1. 画轴的受力简图 (4)2. 计算支承反力 (4)3. 画弯矩图 (5)4. 画扭矩图 (5)六、校核轴的强度 (5)七、校核键连接的强度 (7)八、校核轴承寿命 (8)1. 计算轴承的轴向力 (8)2. 计算当量动载荷 (8)3. 校核轴承寿命 (8)九、绘制轴系部件装配图(图纸) (9)十、参考文献 (9)一、带轮及齿轮数据已知带传动输出轴功率P= 3.84 kW,转矩T= 97333.33 N·mm,转速n= 480 r/min,轴上压力Q = 705.23 N,因为原本圆柱直齿轮的尺寸不满足强度校核,故修改齿轮尺寸为分度圆直径d1 =96.000 mm,其余尺寸齿宽b1 = 35 mm,螺旋角β = 0°,圆周力F t = 2433.33 N,径向力F r = 885.66 N,法向力F n = 2589.50 N,载荷变动小,单向转动。

大作业5轴系部件设计

大作业5轴系部件设计

H a r b i n I n s t i t u t e o f T e c h n o l o g y机械设计大作业说明书设计题目:轴系部件设计院系:班级:设计者:学号:指导教师:张锋设计时间:2016.11目录任务书 (1)一、选择轴的材料 (2)二、初算轴径 (2)三、结构设计 (2)3.1 轴系部件的结构型式 (2)3.2 轴段设计 (3)3.3 箱体与其他尺寸 (3)四、轴的受力分析 (4)4.1 画轴的受力简图 (4)4.2 计算支反力 (4)4.3 计算弯矩 (5)4.4 画受力简图与弯矩图、转矩图 (5)五、校核轴的弯扭合成强度 (6)六、轴的安全系数校核计算 (7)七、校核键连接的强度 (8)八、校核轴承的寿命 (9)九、轴上其他零件设计 (9)十、轴承座结构设计 (10)十一、轴承端盖(透盖) (10)参考文献 (11)任务书带式运输机的传动方案如图1所示,机器工作平稳,单向回转,成批生产,原始数据见表1。

图 1 带式运输机传动方案表 1 带式运输机中V带传动的已知数据一、选择轴的材料因传递功率不大,且单向转动、无冲击,一般机械使用,对质量结构无特殊要求,所以选45钢,调质处理。

二、初算轴径对于转轴,按扭转强度初算轴径,查参考文献[1]表9.4得=106~118C ,弯矩较大故取=118C转速1960/2480/min m n n i r === 功率1120.960.993 2.8512P P kW ηη==⨯⨯=则11821.3703d mm ≥==考虑到轴端有一个键槽,轴径加大5%,则min 21.3703 1.05=22.4388d mm =⨯ 按标准GB2822-81的10R 圆整后取125d mm =。

三、结构设计3.1 轴系部件的结构型式箱体内无传动件,不需经常拆卸,箱体采用整体式。

由轴的功能决定,该轴至少应具有带轮、齿轮的安装段,两个轴承的安装段以及两个轴承对外的密封段,共7段尺寸。

哈工大机械设计大作业5轴系部件设计

哈工大机械设计大作业5轴系部件设计

哈工大机械设计大作业5轴系部件设计哈工大机械设计大作业5轴系部件设计Harbin Institute of Technology 机械设计大作业说明书设计题目:轴系部件设计院系:班级:设计者:学号:指导教师:设计时间:目录一、设计任务书1 二、选择轴的材料2 三、初算轴径2 四、结构设计2 五、轴的受力分析4 六、校核轴的强度5 七、校核键连接的强度6 八、校核轴承的寿命7 九、轴上其他零件设计8 十、参考文献8 1、设计任务书任务书: 设计带式运输机中的齿轮传动高速轴的轴系部件带式运输机的传动方案如图1所示,机器工作平稳,单向回转,成批生产,原始数据见表1。

图 1 带式运输机传动方案表 1 带式运输机原始数据方案电动机工作功率(KW)电动机满载转速工作机的转速第一级传动比轴承座中心高H(mm)最短工作年限L 工作环境5.1.3 3 960 110 2 180 5年2班室外,有尘2、选择轴的材料因传递功率不大,且单向转动、无冲击,一般机械使用,对质量结构无特殊要求,所以选45钢,调质处理。

3、初算轴径对于转轴,按扭转强度初算轴径,查参考文献[1]表9.4得,弯矩较大故取转速功率则考虑到轴端有一个键槽,轴径加大5%,则4、结构设计 1. 轴承部件的结构型式箱体内无传动件,不需经常拆卸,箱体采用整体式。

由轴的功能决定,该轴至少应具有带轮、齿轮的安装段,两个轴承的安装段以及两个轴承对外的密封段,共7段尺寸。

由于没有轴向力的存在,且载荷、转速较低,选用深沟球轴承,传递功率小,转速不高,发热小,轴承采用两端固定式。

轴低速旋转,且两轴承间无传动件,所以采用脂润滑、毛毡圈密封。

确定轴的草图如图1所示:图2 轴的草图2. 轴的伸出端(轴段1、7)由最小直径得由带轮和齿轮设计结构确定周向连接用A型普通平键,分别为,,GB/T 1096-2003 3. 轴段2、6 由参考文献[1]图9.8得得所以取 4. 轴段3、5 由参考文献[1]图9.8得得取由参考文献[2]表12.1初选轴承6207,查得、、,所以取5. 箱体与其他尺寸由参考文献[4]经验公式得跨距取,并取由于箱体内无润滑油(无传动件),可取小值,;选用整体式箱体,轴承盖凸缘厚为10mm;用M8螺栓连接轴承盖和箱体,为使螺栓头不与齿轮和带轮相碰,且因箱内无传动件箱体几乎不拆卸,K取小值,K=5mm。

轴系部件大作业

轴系部件大作业

H a r b i n I n s t i t u t e o f T e c h n o l o g y哈尔滨工业大学机械设计作业计算说明书题目:轴系部件设计院系:能源科学与工程学院班级:1002104班姓名:李敏学号:1100200420时间:2012.11.25-12.06哈尔滨工业大学目录1.任务书 (2)2.选择轴的材料、热处理方式 (3)3.初算轴径dmin ,并根据相配大带轮的尺寸确定轴径d1和长度L (3)4.结构设计 (3)5.轴的受力分析 (3)6.按照弯矩合成强度计算 (6)7.轴的安全系数校核计算 (6)8.校核键连接的强度 (7)9.校核轴承的寿命 (8)10.轴上其他零件设计 (10)11.参考文献 (11)哈尔滨工业大学机械设计作业任务书题目:行车驱动装置中的轴系部件设计设计原始数据:行车驱动装置的传动方案如图5.4所示。

室内工作、工作平稳、机器成批生产,其他数据见表5.4。

图5.4方案Pd(KW)(/min)mn r(/min)wn r1i轴承座中心高H(mm)最短工作年限L工作环境5.4.42.2 710 40 2.8 220 3年3班室内由先前的设计可知轴的输入功率P 1=2.8512KW,转矩T=29592 N ·mm ,转速n=290.91 r/min ,斜齿轮圆柱齿轮分度圆直径d=42mm ,螺旋ß=12.8386度,齿宽b=5.5mm1. 选择轴的材料及热处理方式因为传递功率不大,且对质量及结构尺寸无特殊要求,故选用常用材料45钢,调质处理。

2.初算轴径d min ,并根据相配联轴器的尺寸确定轴径d 1和长度L 1对于转轴,按扭转强度初算轴径,由文献[1]表10.2得C=106~118,考虑轴端弯矩比转矩小,故取C=106,则mm n P C d 45.157102.210633min =⨯== 考虑键槽的影响,取d min/mm=15.45⨯1.05=16.22mm ,考虑轴端1与带轮连接,按标准GB2822-81 的R10圆整后,取d 1=198mm ,L 1=28mm3.结构设计(1)确定轴承部件机体的结构形式及主要尺寸为方便轴承部件的装拆,铸造机体采用部分式结构(图1),取机体的铸造壁厚mm 8=δ,机体上轴承旁连接螺栓直径d 2=12mm ,装拆螺栓所需要的扳手空间C 1=18mm ,C 2=16mm ,故轴承旁内壁至座孔外端距离mm 50~47mm )8~5(21=+++=C C L δ,取L=50mm(2)确定轴的轴向固定方式因为行车驱动装置中的齿轮高速传动端的轴的跨距不大,且工作温度变化不大,故轴的轴向固定端采用两段固定方式(图3) (3)选择滚动轴承类型,并确定其润滑及密封方式因为轴受轴向力的作用,故选用角接触球轴承。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、设计题目设计带式运输机中的齿轮传动:带式运输机的传动方案如下图所示,机器运行平稳、单向回转、成批生产,其他数据参见下方表格。

二、选择齿轮材料、热处理方式、精度等级考虑到带式运输机为一般机械,且仅有一级齿轮减速传动,故大、小齿轮均选用40Cr 合金钢,调质处理,采用软齿面。

大小齿面硬度为241~286HBW,平均硬度264HBW。

由要求,该齿轮传动按8级精度设计。

三、初步计算传动主要尺寸本装置的齿轮传动为采用软齿面开式传动,齿面磨损是其主要失效形式。

其设计准则按齿根疲劳强度进行设计,并考虑磨损的影响将模数增大10%~15%。

齿根弯曲疲劳强度设计公式;m≥2KT1ϕd z12∙Y F Y s Yε[σ]F 3式中Y F——齿形系数,反映了轮齿几何形状对齿根弯曲应力σF的影响。

Y s——应力修正系数,用以考虑齿根过度圆角处的应力集中和除弯曲应力以外的其它应力对齿根应力的影响。

Yε——重合度系数,是将全部载荷作用于齿顶时的齿根应力折算为载荷作用于单对齿啮合区上界点时的齿根应力系数。

[σ]F——许用齿根弯曲应力。

1.小齿轮传递的转矩T1=9.55×106×P1 n1p1=η1η2P d根据参考文献[2]表9.1,取η1=0.96,η2=0.97。

由此P1=η1η2P d=0.96×0.97×3=2.7936KWT1=9.55×106×P1n1=9.55×106×2.79369602=55581N∙mm2.齿数Z的初步确定为了避免根切,选小齿轮z1=17,设计要求中齿轮传动比i=n1n w =960/2110=4.3636,故z2=i×z1=4.3636×17=74.1818,取z2=75。

此时的传动比误差为ε=i−i0×100%=4.3636−75/17×100%=1.1%<5%满足误差要求,故可用。

3.载荷系数K的确定由于v值未知,K v不能确定,故可初选载荷系数K t=1.1~1.8,本设计中初选K t=1.4。

4.齿宽系数ϕd的确定根据参考文献[1]表8.6,齿轮在轴承上为悬臂布置,软齿面,选取齿宽系数ϕd=0.35。

5.齿形系数Y F和应力修正系数Y s的确定根据参考文献[1]图8.19,Y F1=2.95,Y F2=2.25。

根据参考文献[2]图8.20,Y s1=1.52,Y s2=1.76。

6.重合度系数Yε的确定对于标准外啮合直齿圆柱齿轮传动,端面重合度εα= 1.88−3.21z1+1z2= 1.88−3.2117+175=1.6491Yε=0.25+0.75εα=0.25+0.751.6491=0.727.许用弯曲应力[σ]F的确定[σ]F=σFlim Y NF式中σFlim——计入了齿根应力修正系数之后,试验齿轮的齿根弯曲疲劳极限应力,根据参考文献[1]图8.28,取σFlim1=σFlim2=300MPa。

S F——齿根弯曲强度计算的安全系数;与疲劳点蚀相比,断齿的后果更为严重,故一般取S F=1.25。

Y N——弯曲强度计算的寿命系数。

小齿轮与大齿轮的应力循环次数可按下式计算:N=60na Lℎn——齿轮转速,r/min;a——齿轮转一周,同一侧齿面啮合的次数;Lℎ——齿轮的工作寿命,h;因此,N1=60×480×1×5×250×2×8=5.76×108ℎN2=N1i=5.76×1084.3636=1.32×108ℎ根据参考文献[1]图8.30,取Y N1=Y N2=1.0。

因此,需用弯曲应力:[σ]F1=[σ]F2=σFlim Y NS F=300×1.01.25=240MPa根据参考文献[1]Y F1Y S1F1=2.95×1.52=0.01868Y F2Y S2F2=2.25×1.76=0.0165因此,Y F Y S [σ]F =maxY F1Y S1[σ]F1,Y F2Y S2[σ]F2=0.01868综上,可初算模数:m≥2KT1d12∙Y F Y s YεF3=2×1.4×55581×0.01868×0.723=2.746mm对于开式齿轮传动,为考虑齿面磨损,要将上式计算出来的模数m后,增大10%~15%,即m=1+15%×2.746=3.157mm四、计算传动尺寸1.计算载荷系数K设计要求机器工作平稳,由参考文献[1]表8.3查得使用系数K A=1.00。

v=πdn=πmz1n1=π×3.157×17×480=1.349m/s由参考文献[1]图8.7得动载荷系数K v=1.15。

由参考文献[1]图8.11得齿向载荷分布系数Kβ=1.10。

由参考文献[1]表8.4得齿间载荷分布系数Kα=1.1。

K=K A K v KβKα=1.0×1.15×1.1×1.1=1.392由于该K值与初设的K t差距很小,故不必修正。

2.圆整m n根据参考文献表8.1,圆整取第一系列标准模数4mm。

3.其他传动尺寸中心距a=m(z1+z2)=4×(17+75)=184mm因此,d1=mz1=4×17=68mmd2=mz2=4×75=300mmb=ϕd d1=0.35×68=23.8mm,取b2=25mmb1=b2+5~10mm,取b1=30mm 五、齿面接触疲劳强度的校核齿面接触疲劳强度校核计算公式:σH=Z E Z H ZεKF tbd1∙u+1u≤[σ]H式中u——齿数比,为大齿轮齿数与小齿轮齿数之比,u=7517=4.41 Z E——材料弹性系数,由参考文献[1]表8.5,得Z E=189.8MPaZ H——节点区域系数,由参考文献[1]图8.14,得Z H=2.5Zε——重合度系数,由参考文献[1]图8.15,得Zε=0.89σH=Z E Z H ZεKF tbd1∙u+1u=189.8×2.5×0.89×1.392×2×5558123.8×682×4.41+14.41 =554.6MPa许用接触应力:[σ]H=σHmin Z NH式中σHmin——试验齿轮的齿面接触疲劳极限。

由参考文献[1]图8.28,得σHmin1=σHmin2=770MPaZ N——接触强度计算的寿命系数。

由参考文献[1]图8.29,得Z N1=1.07,Z N= 1.13S H——接触强度计算的安全系数。

取S H=1.0[σ]H=σHmin Z NH=770×1.07=823.9MPa因此有σH≤[σ]H,满足齿面接触疲劳强度要求。

六、计算齿轮传动其他尺寸1.齿轮结构型式的确定对于大齿轮,齿顶圆直径:d a=d2+2ℎa=mz2+2mℎ∗=4×75+2×4×1=308mm由于200mm<d a≤500mm,故采用腹板式结构。

为降低成本、提高效率、适于批量生产,采用模锻的加工方法,起模斜度为1:10。

同理对于小齿轮,d a=d1+2ℎa=mz1+2mℎ∗=76mm由于d a≤200mm,采用实心式结构。

2.轮毂孔径的确定大齿轮轮毂孔径是根据与孔相配合的轴径确定,此处按照扭矩初算轴径d≥C3P n式中P——轴传递的功率,由参考文献[2]表9.1可知8级精度的一般齿轮传动效率η3=0.97,因此P=η3P1=0.97×2.7936=2.71kWC——由许用扭转剪应力确定的系数,由参考文献[1]表10.2得C=112~97MPa,对于大齿轮,不安装在轴端部,取较大值C=110MPa,因此d≥C3Pn=1102.711103=32.00mm轴和大齿轮连接时用键连接,轴和联轴器连接时用键连接,即轴颈上有2个键槽,应将轴径增大10%,即d≥1+10%×32.00=35.21mm,根据参考文献[2]表9.4取d=36mm。

对于小齿轮,安装在轴端部,其C值应取较小值,即取C'=100MPa,因此d′≥C′3Pn=1002.711103=29.10mm轴和小齿轮连接时用键连接,轴和V带大轮连接时用键连接,即轴颈上有2个键槽,应将轴径增大10%,即d’≥1+10%×29.10=32.01mm,取d’=32mm。

3.大齿轮结构尺寸的确定参照参考文献[1]图8.38:d k=36mm,D1≈1.6d k=57.6mm,取D1=58mmD2≈d a−10m=268mmL= 1.2~1.5d k=43.2~54mm,取L=50mmc=0.2~0.3b=5~7.5mm,取c=7mmD0≈0.5D1+D2=163mmd0≈0.25D2−D1=52.5mm,取d0=52mmδ0= 2.5~4m=10~16mm≥10mm,取δ0=10mm4.键连接设计对于大齿轮一侧:使用圆头普通平键(A型),根据参考文献[2]表11.28,可知公称尺寸b×h=10×8,初选L=45mm,材料选用45#优质碳素钢。

根据公式校核强度:σP=2T≤[σ]P式中σP——工作面的挤压应力;T——传递的扭矩,T=T1=55581N∙mm;L——键的工作长度,对于该A型平键,l=L−b=35mmk——键与毂槽的接触高度,取k=h/2=4mm;[σ]P——许用挤压应力,由参考文献[1]表6.1,取[σ]P=120MPaσP=2Tkld=2×555814×35×36=22.05MPa≤[σ]P即该键满足要求。

参考文献[1]机械设计/王黎钦,陈铁鸣主编. —6版. —哈尔滨:哈尔滨工业大学出版社,2015.7[2] 机械设计课程设计/张锋,古乐主编. —5版. —哈尔滨:哈尔滨工业大学出版社,2012.8。

相关文档
最新文档