解直角三角形导学案

合集下载

解直角三角形导学案

解直角三角形导学案

《解直角三角形》学案一、学习目标1、了解解直角三角形的定义,能通过已知条件解直角三角形。

2、通过本节课的学习,培养自己知识的运用能力和计算能力。

二、重点难点学习重点:对解直角三角形的理解。

学习难点:对解直角三角形的应用。

三、前置学习1、计算:︒︒+︒+︒-︒46tan 44tan 45tan 60cos 230sin 22、在ABC ∆中,若0)cos 23(|1sin |2=-+-B A ,则∠C=_______度 3、如图,在ABC Rt ∆中,∠C 为直角,其余5个元素之间有以下关系:(1)三边之间关系:222c b a =+ (勾股定理)(2)锐角之间的关系:∠A+∠B=90°(直角三角形的两个锐角互余) (3)边角之间的关系:c a A =sin 、c b A =cos 、baA =tan 。

利用以上关系,如果知道其中的2个元素(其中至少有一个是边),那么就可以求出其余的3个未知元素。

由直角三角形中的已知元素,求出所有未知元素的过程,叫做解直角三角形。

例1、在ABC Rt ∆中,∠C=90°,∠A=30°,5=a ,解这个直角三角形。

例2、在ABC Rt ∆中,∠C=90°,3=a ,3=b ,求:(1)c 的大小;(2)∠A 、∠B 的大小。

四、展示交流在ABC Rt ∆中,CD 是斜边上的高,若AC=8,cosB=0.6,求ABC ∆的面积。

五、达标拓展在ABC Rt ∆中,∠C=90°,根据下列条件解直角三角形:(1)32=b ,4=c ; (2)8=c ,∠A=60°;(3)7=b ,∠A=45°; (4)24=a ,38=b 。

六、学习评价在ABC Rt ∆中,∠C=90°,∠A=60°,13+=+b a ,解这个直角三角形。

七、合作探究如图是小朋友玩的“滚铁环”游戏的示意图,⊙O 向前滚动时,铁棒DE 保持与OE 垂直。

解直角三角形导学案

解直角三角形导学案

第20课解直角三角形【课标要求】1、认识锐角三角函数(sinA,c osA,tanA)30。

,45。

,60。

角的三角函数值。

2、使用计算器已知锐角求它的三角函数值,已知三角函数值求它对应的锐角。

3、运用三角函数解决与直角三角形有关的简单实际问题。

【知识要点】1.sinα,cosα,tanα定义sinα=______, cosα=_______,tanα=______ ,cotα=_______。

2.特殊角三角函数值3.解直角三角形的概念:在直角三角形中已知一些___________________叫做解直角三角形。

4.解直角三角形的类型:已知__________________________________;已知_______________________________。

5.如图(1)解直角三角形的公式:(1)三边关系:__________________。

(2)角关系:∠A+∠B=_____。

(3)边角关系:sinA=____,sinB=____,cosA=____.cosB=____,tanA=____ ,tanB=____。

6.如图(2)仰角是____________,俯角是____________。

7.如图(3)方向角:OA:_____,OB:_______,OC:_______,OD:________。

8.如图(4)坡度:AB的坡度i AB=_______,∠α叫_____,tanα=i=____。

【典型例题】1.在Rt△ABC中,a=5,c=13,求sinA,cosA,tanA。

2.矩形ABCD中AB=10,BC=8, E为AD边上一点,沿CE将△CDE对折,点D正好落在AB边上,求tan∠AFE。

3.已知:如图,在△ABC中,∠B = 45°,∠C = 60°,30°45°60°sinαcosαtanααabcBAC(图1)FA BCDEAB = 6.求BC的长. (结果保留根号)。

解直角三角形导学案

解直角三角形导学案

解直角三角形 导学案【复习目标】1. 能够综合利用解直角三角形知识,把锐角三角函数、勾股定理有机结合起来,通过添加适当的辅助线构造直角三角形解决较复杂的实际问题; 2. 通过做题,进一步体会数学中转化思想在解题中起的重要作用。

学习重、难点:1. 重点:把实际问题转化为数学问题;2. 难点:综合利用解直角三角形知识,把锐角三角函数、勾股定理有机结 合起来[课前延伸]【知识链接】1. 回顾直角三角形的边角关系,特殊角的三角函数值2. 解直角三角形的方法整理知识:如右图在直角三角形ABC 中(1)直角三角形三边之间的关系:—————————————— (2)锐角之间的关系:—————————————— (3)边角之间的关系:sin A c=c o sA c=sin B c=c o s Bc=tan aA =t a nB a=3. 小华去实验楼做实验, 两幢实验楼的高度AB=CD=20m, 两楼间的距离BC=15m ,已知太阳光与水平线的夹角为30°,求南楼的影子在北楼上有多高?4.【课内探究】(海阔凭鱼跃,天高任鸟飞!心有多大,舞台就有多大!)探究1:有关采光问题的计算(1) 小华想:若设计时要求北楼的采光,不受南楼的影响,请问楼间距BC 长至少应为多少米?特殊角的三角函数值表450 300 正切tan α余弦cos α 正弦sin α 三角函数锐角αbABCa┌ c(2) 小华又想:如果要使北楼实验室内的同学在室内也能惬意地享受阳光,已知窗台距地面1米,那么两楼应至少相距多少米?合作交流(相信自己,团结就是力量)小组内交流解题方法,总结解题思路,并得出结论:探究2:有关坡度问题的计算(相信自己,你是最棒的) 山坡上种树,要求株距(相临两树间的水平距离)是6米,测得斜坡坡度是1:求斜坡上相邻两树间的坡面距离是多少米?探究3有关近距离问题的计算(努力吧,有付出就有收获!)某船自西向东航行,在A 出测得某岛O 在北偏东60°的方向上,前进8千米到达B 处测得某岛在船北偏东45 °的方向上,问(1)轮船行到何处离小岛距离最近? (2)轮船要继续前进多少千米?课末小结 这节课你有哪些收获?C BABCD【自我检测】(时刻检验自己,将收获的智慧装满口袋!)1. 1. AC 是电线杆AB 的一根拉线,测得阳光下影子的长度BC=6米,太阳光线与影子的夹角是30°,则拉线AC 的长是———————米。

解直角三角形导学案

解直角三角形导学案

解直角三角形执笔:|花拉子米|一、学习目标1、了解解直角三角形的定义,能通过已知条件解直角三角形。

2、通过本节课的学习,培养自己知识的运用能力和计算能力。

二、重点难点学习重点:对解直角三角形的理解。

学习难点:对解直角三角形的应用。

三、前置学习1、计算:︒︒+︒+︒-︒46tan 44tan 45tan 60cos 230sin 22、在ABC ∆中,若0)cos 23(|1sin |2=-+-B A ,则∠C=_______度 3、如图,在ABC Rt ∆中,∠C 为直角,其余5个元素之间有以下关系: (1)三边之间关系:222c b a =+ (勾股定理)(2)锐角之间的关系:∠A+∠B=90°(直角三角形的两个锐角互余)(3)边角之间的关系:c a A =sin 、c b A =cos 、ba A =tan 。

利用以上关系,如果知道其中的2个元素(其中至少有一个是边),那么就可以求出其余的3个未知元素。

由直角三角形中的已知元素,求出所有未知元素的过程,叫做解直角三角形。

例1、在ABC Rt ∆中,∠C=90°,∠A=30°,5=a ,解这个直角三角形。

例2、在ABC Rt ∆中,∠C=90°,3=a ,3=b ,求:(1)c 的大小;(2)∠A 、∠B 的大小。

四、展示交流在ABC Rt ∆中,CD 是斜边上的高,若AC=8,cosB=0.6,求ABC ∆的面积。

A B 0 E C D 五、合作探究如图是小朋友玩的“滚铁环”游戏的示意图,⊙O 向前滚动时,铁棒DE 保持与OE 垂直。

⊙O 与地面接触点为A ,若⊙O 的半径为25cm ,53cos =∠AOE , (1)求点E 离地面AC 的距离BE 的长; (2)设人站立点C 与点A 的距离AC=53cm ,DC ⊥AC ,求铁棒DE 的长。

六、达标拓展在ABC Rt ∆中,∠C=90°,根据下列条件解直角三角形:(1)32=b ,4=c ; (2)8=c ,∠A=60°;(3)7=b ,∠A=45°; (4)24=a ,38=b 。

解直角三角形 导学案

解直角三角形 导学案

CBABA【总结反思】9.2解直角三角形【复习目标】知道解直角三角形的含义,会解直角三角形;能根据问题的需要添加辅助线构造直角三角形;会解由两个特殊直角三角形构成的组合图形的问题【学法指导】读图标图,确立边角关系,斜三角形转化为直角三角形 【教学过程】一、知识回顾1.解直角三角形的概念. 2. 在△ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边 (1)若 a = 6 ,∠B =45°,则∠A=____,b=_____c=_______(2)若a = 6 ,b = 36 ,则∠A=____∠B =_____c=_______ (3)若︒=∠60A ,a=15,则∠B=____,b=_____c=_______二、例题分析例1 已知,如图1,在△ABC 中, ∠B =600,∠C =450,AB =40求AC 的长.图1例2 在Rt △ABC 中,∠C =90°,a+b =34,125tan =A ,求a 、b 、c 的值.三、巩固练习1.在Rt △ABC 中,∠C =90°,∠B=150,a=5,则c=__________2. 已知:如图2在△ABC 中,∠A =30°,23tan =B , 32=AC ,则AB 的长为( )A .4B .5C .6D .7 图23.请你画出一 个以BC 为底边的等腰△ABC ,使底边上的高AD=BC. (1)sinB =_______(2)cosB=___________ (3)tanB=_________(2)在你所画的等腰△ABC 中,若底边BC =5米,则腰上的高BE=________MDBC AB CD 4.如图3,△ABC 中,∠A =750,∠B =450,AB =34,求AC 、BC 的长.CBA图35. 已知,在△ABC 中,∠B =30°,AB=6,AC=4,AD 是BC 边上的高,求BC 的长6.已知:如图4,在Rt △ABC 中,∠C=90°,D 是BC 边的中点,DE ⊥AB 于E ,tanB =21,AE =7,求DE .图47. 如图5,O 坐标为原点,点A 的坐标为(100),,点B 在第一象限内,5BO =,3sin 5BOA =∠.求:(1)点B 的坐标;(2)cos BAO ∠的值.四、拓展提高1. 如图6,在△ABC 中,∠ACB =90º,∠A ﹤∠B ,以AB 边上 的直线CM 为折痕,将△ACM 折叠,使点A 落在点D 处,如果CD 恰好与AB 垂直,则tan A = .图62. 一副直角三角板如图7放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,AC= 求CD 长.图7【总结反思】图5。

《解直角三角形》导学案4

《解直角三角形》导学案4

24.4解直角三角形(1)【学习目标】使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.渗透数形结合的数学思想,培养学生良好的学习习惯.【学习重点】直角三角形的解法.【学习难点】三角函数在解直角三角形中的灵活运用【课标要求】能利用三角函数的知识解决实际问题【知识回顾】1.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?(1)边角之间关系(2)三边之间关系(3)锐角之间关系【自主学习】1、如图所示,一棵大树在一次强烈的地震中于离地面10米处折断倒下,树顶落在离树根24米处.大树在折断之前高多少?【例题学习】2、一个公共房屋门前的台阶共高出地面1.2米.台阶被拆除后,换成供轮椅行走的斜坡.根据这个城市的规定,轮椅行走斜坡的倾斜角不得超过9°.从斜坡的起点至楼门的最短的水平距离该是多少?(sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,精确到0.1米)【巩固训练】3、如图,从点C测得树的顶角为33º,BC=20米,则树高AB多少米?(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,结果精确到0.1米)4、小明放一个线长为125米的风筝,他的风筝线与水平地面构成39°角.他的风筝有多高?(sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,精确到1米)【归纳小结】【作业】、在△2 A BC 中,∠C=90°,sinA= ,则 cosA 的值是( ) A . B . C . 3 D . 4 3△1、在 ABC 中,∠C=90°,AC=6,BC=8,那么 sinA=________.3 53 4 9 16 D . 5 5 25 25 3、如图是某商场一楼与二楼之间的手扶电梯示意图.其中 AB .CD 分别表示一楼.二 楼地面的水平线,∠ ABC =150°,BC 的长是 8 m ,则乘电梯从点 B 到点 C 上升的高度 h 是( )CD150° h AA .8 3 B 3 m B .4 m C . 4 3 m D .8 m 4、某人想沿着梯子爬上高 4 米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于 60°, 否则就有危险,那么梯子的长至少为( )A .8 米B . 8 3 米C . 8 3 米 3 米5、在平静的湖面上,有一枝红莲,高出水面1 米,阵风吹来,红莲被风吹到一 边,花朵齐及水面,已知红莲移动的水平距离为 2 米,问这里水深多少?6、如图,在一棵树的 10 米高 B 处有两只猴子,一只猴子爬下树走到离树 20 米处的池塘 A 处.另一只爬到树顶 D 后直接跃到 A 处,距离以直线计算,如 果两只猴子所经过的距离相等,求这棵树的高度.7、若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是600,船的速度为5米/秒,求船从A到B处约需时间几分。

《解直角三角形的应用》 导学案

《解直角三角形的应用》 导学案

《解直角三角形的应用》导学案一、学习目标1、能够运用解直角三角形的知识解决与测量、航海、工程等实际问题相关的数学问题。

2、通过将实际问题转化为数学问题,提高分析问题和解决问题的能力。

3、体会数学知识在实际生活中的广泛应用,增强应用意识和数学建模能力。

二、学习重难点1、重点(1)掌握解直角三角形在实际问题中的应用方法。

(2)能够准确地将实际问题中的数量关系转化为直角三角形中的元素关系。

2、难点(1)如何从实际问题中构建出合适的直角三角形模型。

(2)理解并灵活运用三角函数值来求解实际问题。

三、知识回顾1、直角三角形的边角关系在直角三角形中,若\(∠C =90°\),\(∠A\)、\(∠B\)、\(∠C\)的对边分别为\(a\)、\(b\)、\(c\),则有:(1)三边关系:\(a^2 + b^2 = c^2\)(勾股定理)(2)锐角关系:\(∠A +∠B = 90°\)(3)边角关系:\(\sin A =\frac{a}{c}\),\(\cos A =\frac{b}{c}\),\(\tan A =\frac{a}{b}\)\(\sin B =\frac{b}{c}\),\(\cos B =\frac{a}{c}\),\(\tan B =\frac{b}{a}\)2、解直角三角形由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形。

四、实际应用类型(一)测量物体的高度例 1:如图所示,为测量某建筑物的高度\(AB\),在离该建筑物底部\(B\)点\(30\)米的\(C\)处,测得建筑物顶端\(A\)的仰角为\(α\),且\(\tanα = 15\),求建筑物的高度。

分析:在\(Rt\triangle ABC\)中,已知\(BC = 30\)米,\(\tanα =\frac{AB}{BC} = 15\),则可求出\(AB\)的长度。

解:在\(Rt\triangle ABC\)中,\(\tanα =\frac{AB}{BC}\)因为\(\tanα = 15\),\(BC = 30\)米所以\(AB = BC \times \tanα = 30×15 = 45\)(米)答:建筑物的高度为\(45\)米。

九年级数学《解直角三角形4》导学案

九年级数学《解直角三角形4》导学案

《28.2.3 解直角三角形》导学案【知识脉络】【学习目标】1、了解方位角的命名特点,能准确把握所指的方位角是指哪一个角2、理解坡角、坡度的概念,并会用解直角三角形的相关知识解决航行、坡度等实际问题。

3、巩固用三角函数有关知识解决问题,学会解决方位角问题.逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.【要点检索】1、关于行程问题的解直角三角形的应用;2、坡角、坡度的意义及应用。

【方法导航】1、复习回顾行程、航行问题,并运用解直角三角形解决有关实际问题,认识坡角、坡度的意义,并解决实际问题。

2、课前热身:(1)直角三角形中三边、两锐角、边角关系分别是什么?(2)什么叫解直角三角形?直角三角形可解的条件是什么?在解法选择上应注意什么?3、自主探究:自学教科书内容,尝试解决下列问题(1)坡角指的是____________________,坡度指的是_______________,(2)通常情况下,坡度可表示为_______________,如图,坡角为α,则坡度i 与坡角之间的关系为_______________。

结合图形思考,坡度i 与坡角α之间具有什么关系?解直角三角形 坡角、坡度的意义航行问题 坡角、坡度等实际问题实际问题这一关系在实际问题中经常用到。

友情提示:坡度与坡角坡面的铅直高度h和水平宽度l的比叫做坡度(或叫做坡比),一般用i表示。

即i=,常写成i=1:m的形式如i=1:2.5把坡面与水平面的夹角α叫做坡角.(3)如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,海轮所在的B处距离灯塔P有多远?分析导引:要求BP,实质是求那个三角形的什么边,由题中已知条件可确定哪些元素的值?怎样求PC?应选择什么方法求BP?(4)汉江旬阳县城段拦河堤坝剖面如图6-33所示水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD 的坡度i=1∶2.5,你能根据所提供的数据求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长吗(精确到0.1m) ?试试看!分析导引:①坡度与坡角是什么关系?怎样求坡角α、β?②由坡度i=1:3,可知AE与BE的关系是_________,由BE=23m可求出AE=_____要求斜坡AB,可选方法是__________;③要求AD,只需求出________即可。

解直角三角形导学案

解直角三角形导学案

- - 1 - -§28.2解直角三角形应用导学案一、知识要点解直角三角形的应用题是建立在解直角三角形的基础之上,分为两个大的类型:一是在一个Rt △中;二是在两个Rt △中。

本节只讲在两个Rt △中。

二、概念:1、仰角和俯角:视线与水平线的夹角,如图所示。

2、方位角:目标方向与南北方向所夹的小于90°的角,如图所示点A 位于北偏东45°方向,点B 位于南偏西30°方向。

三、模板固化如图1在R t △ABC 中有:AC=BCctan α 在R t △DBC 中有:CD= BCctan βtan tan AD xc xc αβ=- (此处用减法)即:tan tan y xc xc αβ=- 也可写成:tan tan yx c c αβ=-如图2:在R t △ABC 中有:AC=BCctan α 在R t △DBC 中有:CD= BCctan βtan tan AD hc hc αβ=+ (此处用加法)今后我们将图1称做模式1,将图2称做模式2。

解直角三角形应用题多数情况下都能化归到以上两种情形,注意在解题中要有方程意识,如模式1中那样。

解题步骤一般分三步:1、将题中所给数据在图中标示出来;2、寻找或者构造直角三角形,构造就是通过作辅助线构成直角三角形,此处常用的辅助线就是作高;3、套用模式1、模式2解答。

下面通过两个例子说明两种模式在中考中的运用。

四、典例引导例1如图某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度水平线- 2 -C 处的飞机上,测量人员测得正前方A 、BAB 的长. 1.73) 分析:做此类题第一步是将已知数据标在图中,此图中各个已知数据已标明。

由于CD ∥OB,所以有∠OBC=45°,∠OAC=60°第二步寻找或构造(作高)Rt △,此题已有Rt △CBO 和Rt△CAO第三步与模式比对,显然属于模式1。

初中数学九年级下册《解直角三角形》导学案

初中数学九年级下册《解直角三角形》导学案

28.2.1 解直角三角形【学习目标】⑴ 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形⑵ 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.⑶ 渗透数形结合的数学思想,培养学生良好的学习习惯.【学习重点】直角三角形的解法.【学习难点】三角函数在解直角三角形中的灵活运用【导学过程】一、自学提纲:1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系a b A b a A c b A c a A ====cot ;tan ;cos ;sin b a B a b B c a B c b B ====cot ;tan ;cos ;sin如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成. 的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系 (3)锐角之间关系∠A+∠B=90°.a 2 +b 2 =c 2 (勾股定理) 以上三点正是解直角三角形的依据.二、合作交流:要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角一般要满足, (如图).现有一个长6m 的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0. 1 m)(2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角等于多少(精确到1o ) 这时人是否能够安全使用这个梯子三、教师点拨: 例1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b=2, a=6,解这个三角形.例2在Rt △ABC 中, ∠B =35o ,b=20,解这个三角形.四、学生展示:完成课本74页练习补充题1.根据直角三角形的__________元素(至少有一个边),求出________•其它所有元素的过程,即解直角三角形.2、在Rt△ABC中,a=104.0,b=20.49,解这个三角形.3、在△ABC中,∠C为直角,AC=6,BAC的平分线AD=43,解此直角三角形。

解直角三角形应用学案 (一)导学案

解直角三角形应用学案 (一)导学案

1.5解直角三角形应用学案(一)【学习目标】1、使学生掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形。

2、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力。

3、向学生渗透数形结合的数学思想,培养他们良好的学习习惯。

【教学重、难点】1、直角三角形的解法。

2、三角函数在解直角三角形中的灵活运用【导学流程】【知识再现】1.直角三角形的边角关系:在Rt△ABC中,∠C=90°,a,b,c分别是△ABC中∠A,∠B,∠C的对边.(1)三边之间的关系:a2+b2=_____;(2)两锐角之间的关系:∠A+∠B=______;(3)直角三角形斜边上的中线等于_____;(4)在直角三角形中,30°角所对的边等于_____.2.解直角三角形的四种类型:(1)已知两条直角边a、b,则c=______, tanA=____, ∠B=_____.(2)已知一条直角边a和斜边c,则b=______, sinA=_____,∠B=______.(3)已知一直角边a和锐角A,则c=_______,b=_______,∠B=______(4)已知斜边c和锐角A,则a=_______,b=_______,∠B=_______3.坡面的____________ 与________________的比叫坡度i(•也叫坡比)•,•坡度越大,•坡面越陡;•坡面与______的夹角,用a表示,tana=i=hl.4.视线在水平线上方的角叫做_______;视线在水平线下方的角叫________.5.方位角:正北或正南方向与目标方向线所成的_______的角叫方位角,•常用“北偏东(西)××度”或“南偏东(西)××度”来描述.【典例精析】例1、如图,在△ABC中,∠A=30°,,求AB的长.例2、如图,海中有一个小岛A,它的周围8海里内都有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,•这时测得小岛A在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?巩固练习1.在R t△ABC中,∠C=90°,已知a=5,,解这个直角三角形。

九年级数学《解直角三角形(2)》导学案

九年级数学《解直角三角形(2)》导学案

的邻边的对边A A ∠∠九年级数学《解直角三角形(2)》导学案【学习目标】1. 使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题.2. 逐步培养学生分析问题、解决问题的能力.3.渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识 【学习重点】将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识解决实际问题. 【学习难点】实际问题转化成数学模型 【学习过程】 一、学习准备:1.解直角三角形指什么?2.解直角三角形主要依据什么?(1)勾股定理:(2)锐角之间的关系:(3)边角之间的关系:tanA=3 .完成下表:斜边的邻边A A ∠=cos 斜边的对边A A ∠=sintanA二、教材解读:俯角与仰角从下往上看,视线与水平线的夹角叫仰角; 从上往下看,视线与水平线的夹角叫俯角。

如右图,1∠就是 角,2∠就是 角。

如:从船B 处测得高为35米的灯塔顶C 的仰角为60°,则该船C到灯塔A 的距离是 。

CBA(变式练习)如图,在离铁塔150m 的A 处(CD=150m ),用测角仪测得 塔顶仰角为300,已知测角仪高AD=1.5m 则铁塔的高BC=__________。

三、例题解析:例3 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km 的圆形轨道上运行.如图,当飞船运行到地球表面上P 点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P 点的距离是多少?(地球半径约为6 400 km ,结果精确到0. 1 km)ADCA30°例4热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果精确到0.1m)?【当堂检测】1、电视塔高为350m,一个人站在地面,离塔底O一定的距离A处望塔顶B,测得仰角为60°,若某人的身高忽略不计时,OA= m.2、如图,某探测队开车沿笔直的公路向山脚驶去,队长对小王说我们现在看山顶的仰角刚好为15o。

初三语文解直角三角形导学案

初三语文解直角三角形导学案

初三语文解直角三角形导学案【】初三语文解直角三角形导学案本文第一要使学生明白什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系。

具体如下述:一、教学目标1.使学生把握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力;3.通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习适应.二、重点难点疑点及解决方法1.重点:直角三角形的解法。

2.难点:三角函数在解直角三角形中的灵活运用。

3.疑点:学生可能不明白得在已知的两个元素中,什么缘故至少有一个是边。

4.解决方法:设置疑问,引导学生主动发觉方法与途径,解决重难点,以相似三角形知识为背景解决疑点。

三、教学步骤(一)明确目标1.在三角形中共有几个元素?2.直角三角形ABC中,这五个元素间有哪些等量关系呢?(1)边角之间关系(2)三边之间关系(勾股定理)(3)锐角之间关系。

以上三点正是解直角三角形的依据,通过复习,使学生便于应用。

(二)整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐用三角函数知识,对其加以复习巩固。

同时,本课又为以后的应用举例打下基础。

因此在把实际问题转化为数学问题之后,确实是运用本课解直角三角形的知识来解决的。

综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课。

(三)教学过程1.我们已把握Rt的边角关系、三边关系、角角关系,利用这些关系,在明白其中的两个元素(至少有一个是边)后,就可求出其余的元素。

如此的导语既能够使学生大致了解解直角三角形的概念,同时又陷入摸索,什么缘故两个已知元素中必有一条边呢,激发了学生的学习热情。

2.教师在学生摸索后,连续引导什么缘故两个已知元素中至少有一条边?让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形)。

《解直角三角形》导学案

《解直角三角形》导学案

一、想一想:(1(2∠A、∠B锐角之间填一填:利用上面在Rt△ABC(1)已知a(2)已知a二、例1:Rt△巩固练习:(1)已知总结归纳::例2:在角三角形。

巩固练习:在Rt△ABC中,∠C=90°,根据下列条件解直角三角形:(1)已知b=24,∠A=45°(2)已知c=20,∠A=60°总结归纳:已知一边一角解直角三角形的方法议一议:在Rt△ABC中,∠C=90°,已知∠A=60°, ∠B=30°,能解这个直角三角形吗?总结归纳:解直角三角形除直角外,至少要知道个元素。

(这两个元素中至少有一个是)三、解直角三角形的应用1.受台风的侵袭,一棵大树被拦腰折断,经测量,大树刮断一端的着地点A到树根部C的距离为4米,倒下部分AB与地平面AC的夹角为40°,你知道这棵大树有多高?(精确到0.01)参考数据(sin40°≈0.643; cos40°≈2.如图,在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为()A.10tan50° B.10cos50°C.10sin50° D.1050COS2、已知:如图,在ΔABC中,∠ACB=90°,CD⊥AB,三.总结归纳,畅谈收获你学会了哪些知识?四、随堂检测,快乐达标1.已知:在Rt△ABC中,∠C=90,b=c=4.解这个直角三角形。

2.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE为5m,AB为1.5m(即小颖的眼睛距地面的距离),求这棵树高?。

数学:27.3《解直角三角形》导学案(人教版九年级下)

数学:27.3《解直角三角形》导学案(人教版九年级下)

数学:27.3《直角三角形》导学案(人教版九年级下)课 题课 型 新授课 执笔人 审核人级部审核 讲学时间 第14周第3导学稿 教师寄语聪明出于勤奋,天才在于积累; 好学而不勤问非真好学者。

学习目标。

通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. 教学重点运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

教学难点培养学生分析问题、解决问题的能力 教学方法学生自主活动材料一.前置自学1.在三角形中有那几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系sinA=_________ cosA=________ tanA=________sinB=__________ cosB=_________ tanB=_________如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.sin α=____________ cos α= ____________ tan α=__________(2)三边之间关系___________________ (3)锐角之间关系∠A+∠B=90°.________________以上三点正是解直角三角形的依据二.课堂测试1、在△ABC 中,∠C=900,AC=3,AB=4,欲求∠A 的值,最适宜的做法是( )A 计算tanA 的值求出B 计算sinA 的值求出C 计算cosA 的值求出D 先根据sinB 求出∠B 再利用900-∠B 求出2、等腰三角形的三边长分别为1、1、3,那么它的底角为( )度A 15 B 30 C 45D 603、在△ABC 中,∠C=900 ,si nB=23,b=3则a=( ) A 3B 1 C 2 D 34、在Rt 在△ABC 中,∠C=900,AC=12,cosA=1312则tanA=________ 5、直角三角形的两条边长分别为3、4,则第三条边长为 ( )A .5B .7C .7D .5或76.如图19—7l ,菱形ABCD 的对角线AC =6,BD =8,∠ABD =a ,则下列结论正确的是 ( )A .54sin =a B .53cos =a C .34tan =a D .3tan 4a =7.如图19—73,钓鱼竿AC 长6m ,露在水面上的鱼线BC 长23m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到C A '的位置,此时露在水面上的鱼线 C B ''为33,则鱼竿转过的角度是 ( )A .60°B .45°C .15°D .90°8.如图5,某中学有一块三角形状的花圃ABC ,现可直接测量到45B ∠=,30C ∠=,8AC =米.请你求出这块花圃的面积.(结果可保留根号)9.如图6,河对岸有一高层建筑物AB ,为测其高,在C 处由点D 用测量仪测得顶端A 的仰角为30°,向高层建筑物前进50米,到达E 处,由点F 测得顶点A 的仰角为45°,已知测。

解直角三角形导学案

解直角三角形导学案

课题:24.2解直角三角形(1)【学习目标】⑴: 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形⑵: 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.⑶: 渗透数形结合的数学思想,培养学生良好的学习习惯. 【学习重点】直角三角形的解法. 【学习难点】三角函数在解直角三角形中的灵活运用 【导学过程】一、自学提纲:1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系a b A b a A c b A c a A ====cot ;tan ;cos ;sin b aB a b B c a B c b B ====cot ;tan ;cos ;sin如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系 (3)锐角之间关系∠A+∠B=90°.a 2 +b 2 =c 2 (勾股定理) 以上三点正是解直角三角形的依据.二、合作交流:要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角一般要满足, (如图).现有一个长6m 的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0. 1 m) (2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角等于多少(精确到1o ) 这时人是否能够安全使用这个梯子三、教师点拨:例1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且,解这个三角形.例2在Rt △ABC 中, ∠B =35o ,b=20,解这个三角形.四、学生展示:补充题1.根据直角三角形的__________元素(至少有一个边),求出________•其它所有元素的过程,即解直角三角形.2、在Rt△ABC中,a=104.0,b=20.49,解这个三角形.3、在△ABC中,∠C为直角,AC=6,BAC的平分线AD=43,解此直角三角形。

《解直角三角形的应用》 导学案

《解直角三角形的应用》 导学案

《解直角三角形的应用》导学案一、学习目标1、理解解直角三角形的概念,掌握直角三角形的边角关系。

2、能够运用直角三角形的边角关系解决与实际生活相关的问题,如测量物体的高度、距离等。

3、提高将实际问题转化为数学问题的能力,培养数学建模思想和分析问题、解决问题的能力。

二、学习重点1、直角三角形的边角关系。

2、解直角三角形在实际问题中的应用。

三、学习难点1、如何将实际问题中的数量关系转化为直角三角形中的元素关系。

2、正确选择合适的边角关系解决实际问题。

四、知识回顾1、直角三角形的边角关系在直角三角形中,若∠C = 90°,∠A、∠B、∠C 所对的边分别为a、b、c,则有:(1)三边关系:a²+ b²= c²(2)锐角关系:∠A +∠B = 90°(3)边角关系:sin A =\(\frac{a}{c} \),cos A =\(\frac{b}{c} \),tan A =\(\frac{a}{b} \)2、解直角三角形由直角三角形中的已知元素,求出所有未知元素的过程,叫做解直角三角形。

五、新课导入在我们的日常生活中,经常会遇到与直角三角形有关的实际问题。

比如,测量建筑物的高度、确定两点之间的距离等。

通过学习解直角三角形的应用,我们将能够运用数学知识解决这些实际问题。

六、例题讲解例 1:如图,为了测量旗杆的高度 AB,在离旗杆底部 10 米的 C 处,用高 15 米的测角仪 CD 测得旗杆顶端 A 的仰角为 50°,求旗杆 AB 的高度。

(结果精确到 01 米,参考数据:sin 50° ≈ 077,cos 50° ≈ 064,tan 50° ≈ 119)解:在 Rt△ADE 中,DE = CB = 10 米,∠ADE = 50°因为 tan∠ADE =\(\frac{AE}{DE} \)所以 AE = DE × tan∠ADE = 10 × 119 = 119 米所以 AB = AE + BE = 119 + 15 = 134 米答:旗杆 AB 的高度约为 134 米。

28.2.1解直角三角形导学案

28.2.1解直角三角形导学案

解直角三角形导学案【学习流程】一、导学自习:(一)知识链接1、在Rt △ABC 中,∠C=90°,AC=,则AB=2、在Rt △ABC 中,∠C=90°,∠B=35°,则∠A= .3、如图、在Rt △ABC 中,∠C=90°,∠A=60°,则sinA= — = cosA= — = tanA= — =sinB= — = cosB= — = tanB= — =(二)自主学习1.在直角三角形中共有几个元素?2.什么叫解直角三角形?3、分析上面三道小题中各运用了什么知识解决问题:(1)三边之间关系:(2)锐角之间关系:(3)边角之间关系:二、研习展平:探究一:在Rt △ABC 中,∠C=90°,已经会算AB 的长度。

那么∠ A ,∠B 的度数是多少?A C B a b cB B变式:在Rt △ABC 中,∠C=90°∠B=30°解这个直角三角形。

探究二如图:在Rt △ABC 中,∠C=90°,AC= 3cm ,AB = 5 cm,CD ⊥AB,求AD 的长度。

探究三:如图、在四边形ABCD 中,∠A= ,AB ⊥BC ,AD ⊥DC ,AB=20cm ,CD=10cm ,求AD ,BC 的长?(保留根号)┓D A BC 60° BAC D 20 10 60°C1、如图:在△ABC 中,∠C 为直角,AC=6,BAC ∠的平分线这个直角三角形。

2、如图,⊙O 的直径AB 交弦CD 于点M ,且M 是CD 的中点.过点B 作BE∥ CD ,交AC 的延长线于点E .连接BC .(1)求证:BE 为⊙O 的切线;(2)如果CD =6,tan ∠BCD=21,求⊙O 的直径的长.3、如图,根据图中已知数据,求△ABC 其余各边的长,各角的度数。

四、课堂小结:这节课你学到了些什么?B A 30° A BC 4cm 45°D AB CAD =1.如图,在△ABC 中,已知AC=8,∠C=75°,∠B= 45°,求△ABC 的面积.45° 75°2、已知,如图,在△ABC 中,BC=AC ,以BC 为直径的园O 与边AB 相交于点D ,DE ⊥AC ,垂足为点E 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:24.2解直角三角形(1)【学习目标】⑴: 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形⑵: 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.⑶: 渗透数形结合的数学思想,培养学生良好的学习习惯. 【学习重点】直角三角形的解法. 【学习难点】三角函数在解直角三角形中的灵活运用 【导学过程】一、自学提纲:1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系a b A b a A c b A c a A ====cot ;tan ;cos ;sin b aB a b B c a B c b B ====cot ;tan ;cos ;sin如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成. 的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系 (3)锐角之间关系∠A+∠B=90°.a 2 +b 2 =c 2 (勾股定理) 以上三点正是解直角三角形的依据.二、合作交流:要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角一般要满足, (如图).现有一个长6m 的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0. 1 m) (2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角等于多少(精确到1o ) 这时人是否能够安全使用这个梯子三、教师点拨:例1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b=2, a=6,解这个三角形.例2在Rt △ABC 中, ∠B =35o ,b=20,解这个三角形.四、学生展示: 补充题1.根据直角三角形的__________元素(至少有一个边),求出________•其它所有元素的过程,即解直角三角形.2、在Rt△ABC中,a=104.0,b=20.49,解这个三角形.3、在△ABC中,∠C为直角,AC=6,BAC的平分线AD=43,解此直角三角形。

4、Rt△ABC中,若sinA=45,AB=10,那么BC=_____,tanB=______.5、在△ABC中,∠C=90°,AC=6,BC=8,那么sinA=________.6、在△ABC中,∠C=90°,sinA=35,则cosA的值是()A.35B.45C.916.2525D五、课堂小结:小结“已知一边一角,如何解直角三角形?”六、作业设置:课本复习巩固第1题、第2题.七、自我反思:本节课我的收获: 。

课题:24.2解直角三角形(2)【学习目标】⑴:使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题.的邻边的对边A A ∠∠⑵: 逐步培养学生分析问题、解决问题的能力.⑶: 渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识 【学习重点】将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决. 【学习难点】实际问题转化成数学模型 【导学过程】 一、自学提纲:1.解直角三角形指什么?2.解直角三角形主要依据什么?(1)勾股定理: (2)锐角之间的关系: (3)边角之间的关系:tanA=二、合作交流: 仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.三、教师点拨:例3 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km 的圆形轨道上运行.如图,当飞船运行到地球表面上P 点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P 点的距离是多少?(地球半径约为6 400 km ,结果精确到0. 1 km)例4热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o ,看这栋离楼底部的俯角为60o ,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果精确到0.1m)?斜边的邻边A A ∠=cos 斜边的对边A A ∠=sin四、学生展示:一、课本练习第1 、2题五、课堂小结:六、自我反思:本节课我的收获: 。

课型:新授课课题:24.2解直角三角形(3)【学习目标】⑴:使学生了解方位角的命名特点,能准确把握所指的方位角是指哪一个角⑵: 逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.⑶:巩固用三角函数有关知识解决问题,学会解决方位角问题.【学习重点】用三角函数有关知识解决方位角问题【学习难点】学会准确分析问题并将实际问题转化成数学模型【导学过程】一、自学提纲:坡度与坡角坡面的铅直高度h和水平宽度l的比叫做坡度(或叫做坡比),一般用i表示。

即i=,常写成i=1:m的形式如i=1:2.5把坡面与水平面的夹角α叫做坡角.结合图形思考,坡度i与坡角α之间具有什么关系?这一关系在实际问题中经常用到。

二、教师点拨:例5如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,海轮所在的B处距离灯塔P有多远?例6同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)四、学生展示:完成课本91页练习补充练习(1)一段坡面的坡角为60°,则坡度i=______;______,坡角 ______度.2、利用土埂修筑一条渠道,在埂中间挖去深为0.6米的一块(图阴影部分是挖去部分),已知渠道内坡度为1∶1.5,渠道底面宽BC 为0.5米,求:①横断面(等腰梯形)ABCD 的面积;②修一条长为100米的渠道要挖去的土方数.五、课堂小结:六、作业设置:课本 习题24.2复习巩固第5、6、7题七、自我反思:本节课我的收获: 。

课题:锐角三角函数定义检测 :学习要求理解一个锐角的正弦、余弦、正切的定义.能依据锐角三角函数的定义,求给定锐角的三角函数值.课堂学习检测一、填空题1.如图所示,B 、B ′是∠MAN 的AN 边上的任意两点,BC ⊥AM 于C 点,B ′C ′⊥AM 于C ′点,则△B 'AC ′∽______,从而ACB A BC C B )()(='='',又可得①='''B A C B ______,即在Rt △ABC 中(∠C =90°),当∠A 确定时,它的______与______的比是一个______值; ②=''BA C A ______,即在Rt △ABC 中(∠C =90°),当∠A 确定时,它的______与______的比也是一个______; ③='''C A C B ______,即在Rt △ABC 中(∠C =90°),当∠A 确定时,它的______与______的比还是一个______.第1题图2.如图所示,在Rt △ABC 中,∠C =90°.第2题图①斜边)(sin =A =______, 斜边)(sin =B =______; ②斜边)(cos =A =______,斜边)(cos =B =______;③的邻边A A ∠=)(tan =______,)(tan 的对边B B ∠==______. 3.因为对于锐角α 的每一个确定的值,sin α 、cos α 、tan α 分别都有____________与它______,所以sin α 、cos α 、tan α 都是____________.又称为α 的____________. 4.在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______.5.在Rt △ABC 中,∠C =90°,若a =1,b =3,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______.6.在Rt △ABC 中,∠B =90°,若a =16,c =30,则b =______, sin A =______,cos A =______,tan A =______, sin C =______,cos C =______,tan C =______.7.在Rt △ABC 中,∠C =90°,若∠A =30°,则∠B =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______.二、解答题8.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .9.已知Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B .综合、运用、诊断10.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .11.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,⋅=31sin A(1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B .12.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B .拓展、探究、思考13.已知:如图,Rt △ABC 中,∠C =90°,按要求填空:(1),sin ca A =∴=⋅=c A c a ,sin ______; (2),cos c b A =∴b =______,c =______; (3),tan ba A =∴a =______,b =______;(4),23sin =B ∴=B cos ______,=B tan ______; (5),53cos =B ∴=B sin ______,=A tan ______;(6)∵=B tan 3,∴=B sin ______,=A sin ______.学后反思课题:特殊锐角三角函数定义检测学习要求1.掌握特殊角(30°,45°,60°)的正弦、余弦、正切三角函数值,会利用计算器求一个锐角的三角函数值以及由三角函数值求相应的锐角.2.初步了解锐角三角函数的一些性质.课堂学习检测一、填空题二、解答题2.求下列各式的值.(1)o2-︒sin245cos30(2)tan30°-sin60°·sin30°(3)cos45°+3tan30°+cos30°+2sin60°-2tan45°(4)︒+︒+︒+︒-︒45sin 30cos 30tan 130sin 145cos 2223.求适合下列条件的锐角α . (1)21cos =α (2)33tan =α(3)222sin =α(4)33)16cos(6=- α4.用计算器求三角函数值(精确到0.001). (1)sin23°=______; (2)tan54°53′40″=______. 5.用计算器求锐角α (精确到1″). (1)若cos α =0.6536,则α =______;(2)若tan(2α +10°31′7″)=1.7515,则α =______.综合、运用、诊断 6.已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.7.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5. 求:sin ∠ACB 的值.8.已知:如图,Rt △ABC 中,∠C =90°,∠BAC =30°,延长CA 至D 点,使AD =AB .求:(1)∠D 及∠DBC ; (2)tan D 及tan ∠DBC ;(3)请用类似的方法,求tan22.5°.9.已知:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD ;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .10.已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .11.已知:如图,∠AOB =90°,AO =OB ,C 、D 是上的两点,∠AOD >∠AOC ,求证:(1)0<sin ∠AOC <sin ∠AOD <1; (2)1>cos ∠AOC >cos ∠AOD >0;(3)锐角的正弦函数值随角度的增大而______; (4)锐角的余弦函数值随角度的增大而______.12.已知:如图,CA ⊥AO ,E 、F 是AC 上的两点,∠AOF >∠AOE .(1)求证:tan ∠AOF >tan ∠AOE ; (2)锐角的值随角度的增大而______.13.已知:如图,Rt △ABC 中,∠C =90°,求证:(1)sin 2A +cos 2A =1; (2)⋅=AAA cos sin tan课题:解直角三角形(一)检测学习要求理解解直角三角形的意义,掌握解直角三角形的四种基本类型.课堂学习检测一、填空题1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示): 在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,第1题图①三边之间的等量关系:__________________________________. ②两锐角之间的关系:__________________________________. ③边与角之间的关系:==B A cos sin ______; ==B A sin cos _______;==B A tan 1tan _____; ==B Atan tan 1______. ④直角三角形中成比例的线段(如图所示).第④小题图在Rt △ABC 中,∠C =90°,CD ⊥AB 于D . CD 2=_________;AC 2=_________; BC 2=_________;AC ·BC =_________. ⑤直角三角形的主要线段(如图所示).第⑤小题图直角三角形斜边上的中线等于斜边的_________,斜边的中点是_________. 若r 是Rt △ABC (∠C =90°)的内切圆半径,则r =_________=_________. ⑥直角三角形的面积公式. 在Rt △ABC 中,∠C =90°, S △ABC =_________.(答案不唯一)2.关于直角三角形的可解条件,在直角三角形的六个元素中,除直角外,只要再知道_________(其中至少_________),这个三角形的形状、大小就可以确定下来.解直角三角形的基本类型可分为已知两条边(两条_________或斜边和_________)及已知一边和一个锐角(_________和一个锐角或_________和一个锐角) 3已知条件解法一条边和斜边c 和锐角∠A ∠B =______,a =______,b =______ 一个锐角 直角边a 和锐角∠A ∠B =______,b =______,c =______ 两条边两条直角边a 和b c =______,由______求∠A ,∠B =______ 直角边a 和斜边cb =______,由______求∠A ,∠B =______4.在Rt △ABC 中,∠C =90°.(1)已知:a =35,235=c ,求∠A 、∠B ,b ;(2)已知:32=a ,2=b ,求∠A 、∠B ,c ;(3)已知:32sin =A ,6=c ,求a 、b ;(4)已知:,9,23tan ==b B 求a 、c ;(5)已知:∠A =60°,△ABC 的面积,312=S 求a 、b 、c 及∠B .综合、运用、诊断6.如图所示,图①中,一栋旧楼房由于防火设施较差,想要在侧面墙外修建一外部楼梯,由地面到二楼,再从二楼到三楼,共两段(图②中AB 、BC 两段),其中CC ′=BB ′=3.2m .结合图中所给的信息,求两段楼梯AB 与BC 的长度之和(结果保留到0.1m).(参考数据:sin30°=0.50,cos30°≈0.87,sin35°≈0.57,cos35°≈0.82)7.如图所示,某公司入口处原有三级台阶,每级台阶高为20cm ,台阶面的宽为30cm ,为了方便残疾人士,拟将台阶改为坡角为12°的斜坡,设原台阶的起点为A ,斜坡的起点为C ,求AC 的长度(精确到1cm).拓展、探究、思考8.如图所示,甲楼在乙楼的西面,它们的设计高度是若干层,每层高均为3m ,冬天太阳光与水平面的夹角为30°.◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆(1)若要求甲楼和乙楼的设计高度均为6层,且冬天甲楼的影子不能落在乙楼上,那么建筑时两楼之间的距离BD 至少为多少米?(保留根号)(2)由于受空间的限制,甲楼和乙楼的距离BD =21m ,若仍要求冬天甲楼的影子不能落在乙楼上,那么设计甲楼时,最高应建几层?9.王英同学从A 地沿北偏西60°方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地多少距离?10.已知:如图,在高2m ,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要多少米?(保留整数)、四中先学后教、当堂达标数学导学案年级:九年级 课 型: 新授课 课题:解直角三角形(二)检测 学习要求能将解斜三角形的问题转化为解直角三角形.课堂学习检测1.已知:如图,△ABC 中,∠A =30°,∠B =60°,AC =10cm . 求AB 及BC 的长.2.已知:如图,Rt △ABC 中,∠D =90°,∠B =45°,∠ACD =60°.BC =10cm .求AD 的长.3.已知:如图,△ABC 中,∠A =30°,∠B =135°,AC =10cm . 求AB 及BC 的长.4.已知:如图,Rt △ABC 中,∠A =30°,∠C =90°,∠BDC =60°,BC =6cm .求AD 的长.综合、运用、诊断5.已知:如图,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m .现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求山的高度及缆绳AC 的长(答案可带根号).6.已知:如图,一艘货轮向正北方向航行,在点A 处测得灯塔M 在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B 处,测得灯塔M 在北偏西45°,问该货轮继续向北航行时,与灯塔M 之间的最短距离是多少?(精确到0.1海里,732.13 )7.已知:如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC =60°,∠DAE =45°.点D 到地面的垂直距离m 23 DE ,求点B 到地面的垂直距离BC .8.已知:如图,小明准备测量学校旗杆AB 的高度,当他发现斜坡正对着太阳时,旗杆AB 的影子恰好落在水平地面和斜坡的坡面上,测得水平地面上的影长BC =20m ,斜坡坡面上的影长CD =8m ,太阳光线AD 与水平地面成26°角,斜坡CD 与水平地面所成的锐角为30°,求旗杆AB 的高度(精确到1m).9.已知:如图,在某旅游地一名游客由山脚A 沿坡角为30°的山坡AB 行走400m ,到达一个景点B ,再由B 地沿山坡BC 行走320米到达山顶C ,如果在山顶C 处观测到景点B 的俯角为60°.求山高CD (精确到0.01米).10.已知:如图,小明准备用如下方法测量路灯的高度:他走到路灯旁的一个地方,竖起一根2m长的竹竿,测得竹竿影长为1m,他沿着影子的方向,又向远处走出两根竹竿的长度,他又竖起竹竿,测得影长正好为2m.问路灯高度为多少米?3到达B点,然后11.已知:如图,在一次越野比赛中,运动员从营地A出发,沿北偏东60°方向走了500m 再沿北偏西30°方向走了500m,到达目的地C点.求(1)A、C两地之间的距离;(2)确定目的地C在营地A的什么方向?12.已知:如图,在1998年特大洪水时期,要加固全长为10000m的河堤.大堤高5m,坝顶宽4m,迎水坡和背水坡都是坡度为1∶1的等腰梯形.现要将大堤加高1m,背水坡坡度改为1∶1.5.已知坝顶宽不变,求大坝横截面面积增加了多少平方米,完成工程需多少立方米的土石?。

相关文档
最新文档