数学物理方程讲义
数学物理方程
方程 uxx uyy A5ux B5uy C5u D5, 称为椭圆型方程的 标准形。
三、方程的化简
步骤:第一步:写出判别式 a122 a11a22 ,根据判别式判 断方程的类型;
第二步:根据方程(1)写如下方程
a11
(
dy dx
)
2
2a12
dy dx
a22
0
(2)
称为方程(1)的特征方
(2)当 0 时,特征线 (x, y) c. 令 (x, y), (x, y).
其中 (x, y)是与 (x, y)线性无关的任意函数,这样以, 为新变量方程(1)化为标准形 u Au Bu Cu D,
其中A,B,C,D都是 , 的已知函数。
(3)当 0 时,令 1 ( ), 1 ( ). 以 , 为新
程。方程(2)可分解为两个一次方程
dy a12 (3)
dx
a11
称为特征方程,其解为特征线。
设这两个特征线方程的特征线为 (x, y) c1, (x, y) c2.
令 (x, y), (x, y).
第三步(1)当 0 时,令 (x, y), (x, y). 以 , 为 新变量方程(1)化为标准形 u Au Bu Cu D, 其中A,B,C,D都是, 的已知函数。
(3)若在(x0, y0 ) 处 0, 称方程(1)在点 (x0, y0 ) 处为椭圆型方程。
例:波动方程 utt a2uxx f (x,t) a2 0 双曲型
热传导方程 ut a2uxx f (x,t) 0 抛物型
位势方程 uxx uyy f (x, y) 1
椭圆型
二、方程的标准形式
定义:方程
uxy A1ux B1uy C1u D1,
《数学物理方程讲义》课程教学大纲
《数学物理方程讲义》课程教学大纲第一部分大纲说明一、课程的作用与任务本课程教材采用的是由高等教育出版社出版第二版的《数学物理方程讲义》由姜礼尚、陈亚浙、刘西垣、易法槐编写《数学物理方程讲义》课程是中央广播电视大学数学与应用数学专业的一门限选课。
数学物理方程是工科类及应用理科类有关专业的一门基础课。
通过本课程的学习,要求学生了解一些典型方程描述的物理现象,使学生掌握三类典型方程定解问题的解法,重点介绍一些典型的求解方法,如分离变量法、积分变换法、格林函数法等。
本课程涉及的内容在流体力学、热力学、电磁学、声学等许多学科中有着广泛的应用。
为学习有关后继课程和进一步扩大数学知识面奠定必要的数学基础。
该课程所涉内容,不仅为其后续课程所必需,而且也为理论和实际研究工作广为应用。
它将直接影响到学生对后续课的学习效果,以及对学生分析问题和解决问题的能力的培养。
数学物理方程又是一门公认的难度大的理论课程。
二、课程的目的与教学要求1 了解下列基本概念:1) 三类典型方程的建立及其定解问题(初值问题、边值问题和混合问题)的提法,定解条件的物理意义。
2) 偏微分方程的解、阶、维数、线性与非线性、齐次与非齐次的概念,线性问题的叠加原理。
3) 调和函数的概念及其基本性质(极值原理、边界性质、平均值定理)。
2 掌握下列基本解法1) 会用分离变量法解有界弦自由振动问题、有限长杆上热传导问题以及矩形域、圆形域内拉普拉斯方程狄利克雷问题;会用固有函数法解非齐次方程的定值问题,会用辅助函数和叠加原理处理非齐次边值问题;2) 会用行波法(达郎贝尔法)解无界弦自由振动问题,了解达郎贝尔解的物理意义;了解齐次化原理及其在解无界弦强迫振动问题中的应用;3) 会用傅立叶变换法及拉普拉斯变换法解无界域上的热传导问题及弦振动问题;4) 了解格林函数的概念及其在求解半空间域和球性域上位势方程狄利克雷问题中的应用;5)掌握二阶线性偏微分方程的分类二、课程的教学要求层次教学要求层次:有关定义、定理、性质等概念的内容按“知道、了解、理解”三个层次要求;有关计算、解法、公式和法则等方法的内容按“会、掌握、熟练掌握” 三个层次要求。
北京大学数学物理方程讲义第十四章:分离变量法
分离变量法的基本步骤
1. 分离变量 必要条件: 偏微分方程和边界条件都是齐次的. 结果: 得到每一个一元函数满足的常微分方程. 其中包括齐次常微分方程+齐次边界条件的本征值问题.
2. 求解本征值问题. 即求非零解.
3. 求特解, 并叠加出一般解. 还是因为偏微分方程和边界条件都是齐次的. 另外, 本征函数的全体是完备的: 任何满足同样边界条件的, 足够“好” (一般要求连续, 分段光滑) 的函 数都可以展开为
∞
nπ
nπ
nπ
u(x, t) =
Cn sin
l
at + Dn cos
at l
sin
l
x
n=1
这种形式的解称为一般解.
利用本征函数的正交性定叠加系数 一般解满足方程和边界条件. 适当选择叠加系数 Cn 和 Dn, 使之满足初始条件
∞
nπ
u(x, 0) = Dn sin l x = φ(x)
(8)
n=1
n=1
∞
nπ
Ψ(x) = βn sin l x,
n=1
其中
1 αn = l
1 βn = l
l
nπ
2
Φ(x) sin xdx =
−l
l
l
l
nπ
2
Ψ(x) sin xdx =
−l
l
l
l
nπ
φ(x) sin xdx,
0
l
l
nπ
ψ(x) sin xdx.
0
l
与分离变量法的解比较,
αn = Dn,
nπa βn = l Cn.
第一项表示由初位移激发的行波, t = 0 时波形为 φ(x), 以后分成相等的两部分, 独立地向左右传播, 速率 为 a;
数学物理方程PPT讲义
解的存在性:是研究在一定的定解条件下,方程是否有解。
从物理意义上来看,对于合理的提出问题,解的存在似乎 不成问题,因为自然现象本身给出了问题的答案。 在数学上对解的存在性进行证明的必要性 从自然现象归结出偏微分方程时,总要经过一些近似的过 程,并提出一些附加的要求。 对于比较复杂的自然现象,有时也很难断定所给的定解条 件是否过多,或者互相矛盾。
(1) (2)
u方向
由于是微小的横振动,所以
cos 2 cos1 1
sin 2 tan2 ux xdx
sin 1 tan1 ux
x
u
1
T1 o x
2 T 2
x+dx
x
那么,有(1)可知张力T只与位置有关,且
1 T ( x) xdx 2 (l 2 x 2 ) x 2
不含初始条件,只含边界条件条件
注意:初始条件必须写完整,也就是要把整个体系所有点的初始态都写出来。
2、边界条件——描述系统在边界上的状况
第一类边界条件:直接规定了所研究的物理量 在边界上的数值,即
三 类 边 界 条 件
u S f (t )
第二类边界条件:规定了所研究的物理量在边 界外法线方向上方向导数的数值,即
如果定解问题的解是稳定的,那么就可断言,只要定 解条件的误差在一定的限制之间,我们所得的解就必然 近似于所需要的解。
2、叠加原理
线性方程的解具有叠加特性
Lui fi
f
i
f
u u
i
Lu f
i
u
Lu 0
Lui 0
u
几种不同的原因的综合所产生的效果等于这些不同原 因单独产生的效果的累加。(物理上)
数学物理方程讲义
x x0 y 0
y
w (s , t )dsdt f ( x ) g ( y )
(f , g为任意连续可微函数)
(4)u u ( x , y ) : u x u y
作变量代换s x y , t x y u x us s x ut t x us ut u y us s y ut t y us ut ut 0 u f (s ) (f为任意函数) u(x, y ) f (x y ) 一般地,au x bu y 0 (a, b为常数)
x 2t, x 6 xt 满足热传导方程
2 3
(6)u u ( x , y ) : u xx u yy 0(调和方程)
可验证: y 3 3x 2 y , x 3 3xy 2 , sin nx sinh ny (n 0) 均为解
(7)u u ( x , y ) : u xxyy 0
半线性(Semi-Linear):主部(含最高阶导数的部分)线性 N 1 A ( x ) D u A ( x , u , Du , , D u ) g ( x ), 0
N
N
拟线性(Quasi-Linear):最高阶导数本身是线性的 N 1 N 1 A ( x , u , Du , , D u ) D u A ( x , u , Du , , D u ) g ( x ), 0 完全非线性(Fully Nonlinear):最高阶导数是非线性的
§2.1 波动方程的定解问题 波动方 波动方程是描述振动与波的传播现象的一种发展方程 动 波 传 种发 方 弦的横振动(弦振动方程) 杆的纵振动 一维非线性弹性振动 报方程 电报方程 膜的横振动 声波方程 电磁波方程
数学物理方程课件
三、方程的化简
步骤:第一步:写出判别式 断方程的类型;
a122 a11a22 ,根据判别式判
第二步:根据方程(1)写如下方程
a11 ( dy 2 dy ) 2a12 a22 0 dx dx (2)
称为方程(1)的特征方
程。方程(2)可分解为两个一次方程
dy a12 dx a11 (3)
第二节一维齐次波动方程的cauchy问题
一、D’Alembert公式 考虑无界弦的自由振动(cauchy问题即初值问题)
utt a 2u xx , x , t 0, u ( x,0) ( x), ut ( x,0) ( x).
解:(1)化标准形,然后求通解
数学物理方程
第一章方程的一般概念
第一节方程的基本概念
Hale Waihona Puke 定义:一个含有多元未知函数及其偏导数的方程,称为
偏微分方程。 一般形式:
F ( x1 , x2 ,, xn , u, ux , ux ,, uxn , ux x , ) 0
1 2 1 1
其中u 为多元未知函数,F是 x1 , x2 ,, xn , u u的有限个偏导数的已知函数。
波动方程
热传导方程
utt a2uxx f ( x, t )
ut a uxx f ( x, t )
2
位势方程
f ( x, y ) 0, Laplace方程 u xx u yy f ( x, y ) f ( x, y ) 0, Poisson方程
第二节二阶线性偏微分方程的分类
2 x at c1 x at dx 2 a 0 x at c x at dt 2
北京大学数学物理方程讲义第十六章:球函数
f (x) = clPl(x)
l=0
当然, 展开系数由 Legendre 多项式的正交性得到
1
cl Pl(x) 2 = f (x)Pl(x)dx
−1
2l + 1 1
cl = 2
f (x)Pl(x)dx
−1
Example 16.1 将函数 f (x) = x3 按 Legendre 多项式展开.
Solution x3 为3次多项式, 而
方程+齐次边界条件构成本征值问题
d (1 − x2) dy + ν(ν + 1)y = 0
dx
dx
y(±1)有界
3
方程通解为 y(x) = APν(x) + BQν(x)
y(1) 有界, 而 Qν(x) 含对数项, ln(x − 1) 在 x = 1 无界, 所以 B = 0,
y(−1) = APν(−1)
(4)
即 θ = 0, π 不是方程解的奇点.
1
方程(3)为 Legendre 方程. 作变换
x = cos θ y(x) = Θ(θ)
Legendre 方程改写为
d (1 − x2) dy + λy = 0
(5)
dx
dx
16.1 Legendre 方程的解
令 λ = ν(ν + 1), 展开
(1
∼
(n + 1)2n+1e−(2n+2)
e
ν
ν+n+1/2
ν + 1 n−ν
=
1+
1−
n+1
n+1
n+1
→ e eν e−ν−1 = 1
数学物理方程习题讲义 (1)
1. 求下列定解问题的解
ut ux
a2uxx , 0 x 0, t ux l, t
l, 0,
t 0
t0
u x, 0 x , 0 x l
2.一半径为 a 的半圆形平板,其圆周边界上的温度
保持 u(a, ) T ( - ), 而直径边界上的温度保持
为0度,板的侧面绝缘,试求稳恒状态下的温度分布
解答过程见教材P38-40.最后结果为:
u(
x,
t)
1 2
a0
( n a
ane l
)2 t
cos
n
l
x
,
其中, an
2 l
l (x) cos n x dx
0
l
(n 0,1, 2,L ).
ch2 作业讲解
2.一半径为 a 的半圆形平板,其圆周边界上的温度
保持 u(a, ) T ( - ), 而直径边界上的温度保持
解法: 先把一组边界条件化成齐次的。比如把 x=0 及 x=a 上的边界条件化成齐次的,令
u x,t v x,t w x, y,
其中
w(
x,
y)
1(
y)
2
(
y)
a
1(
y)
x,
通过代换后得到关于 v 的定解问题
2v 2v
x2
y2
f1( x, y),
0 x a,
0 y b,
v
0,
2 Bn a
n b
e a Bn
a 0
1
sin
n
a
e
n a
b
2 a
a
0
2
d
sin
姜礼尚数学物理方程讲义(第三版)课后习题答案
公众号:菜没油
8
uv uv fv dx + x uv g v ds u = v ds v udx uv fvdx x uv gv ds n
u u u f vdx v x u g ds 0 2 n
6.解: 设 u u x, y, z, y 为 t 时刻在 x, y, z 处的温度,k 为导热系数, 0 为热交换 系数,于是有如下定解问题:
公众号:菜没油
4
10.泛定方程:ut a2 u 0
20.初始条件:u x, y, z, 0 100 u 0 37 u n
30.边界条件:u x, y, 0, t u 0 k
公众号:菜没油
5
10.解: 取传送带所在直线为 x 轴,起点为原点,任取一段传送带 x1 , x2 ,时间段
t1 , t2 .
由质量守恒: 即 dx
x1 x2 t2 x2 x1
t2
t dx dt a
2 2 2
从而由动量守恒及胡克定律可知:
S x xutt x, t ES x u x
再令 x 0 ,即有
2 x 2 x u 1- E 1 2 x h 2 h t 2
x x
ux
x
u x
0 0 1 1 1 1
u 0 y 0 u ydx 2 ydx y 0 0
0 0
u 2 0 u 0 1 0 u 1 0 u x2 x 2
第7讲数学物理方程PPT课件
X n (x)
Bn
sin
n
10
x
Tn 100n2 2Tn 0 Tn Cn cos10nt Dn sin10nt
(4)求通解
un X nTn
(C ncos10nt
Dn
sin10nt) sin
n
10
x
u
un
n 1
(C n
n 1
cos10nt
Dn
sin10nt) sin
n
10
x
(5)确定常量
X 0
2) 0 X (x) Ax B
AB0
X 0
3) 0 令 2 , 为非零实数 X (x) Acos x B sin x
(8)
A0
B sin l 0
n (n 1, 2,3, )
l
n2
l2
2
n
n2
l2
2
(n 1, 2,3, )
XXnn( x)
sinBnnslin
xn
l
x
u( x, t ) t
t0
Dn
n1
n a sin
l
n
l
x
(x)
l sin2 n xdx
l
1 cos 2n
/l
dx
l
0
l
0
2
2
l n
sin
0
l
x sin m
l
xdx 1 2
l 0
cos
n
l
m
x
cos
n
l
m
x
dx
0
l(x)sin m
0
l
xdx
l 0