最新一元一次方程中考真题汇编[解析版]
2020年中考数学一元一次方程真题汇编(含答案)
2020年中考数学一元一次方程真题汇编【名师精选全国真题,值得下载练习】一.选择题1.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元2.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3 B.5x+45=7x+3 C.=D.=3.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+x+x=346854.欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.盈利B.亏损C.不盈不亏D.与售价a有关5.一元一次方程x﹣2=0的解是()A.x=2 B.x=﹣2 C.x=0 D.x=16.已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30 B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72 D.3x+2(30﹣x)=727.关于x的一元一次方程2x a﹣2+m=4的解为x=1,则a+m的值为()A.9 B.8 C.5 D.48.蚊香长度y(厘米)与燃烧时间t(小时)之间的函数表达式为y=105﹣10t.则蚊香燃烧的速度是()A.10厘米/小时B.105厘米/小时C.10.5厘米/小时D.不能确定9.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1 B.1 C.﹣2 D.﹣310.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏二.填空题11.代数式与代数式3﹣2x的和为4,则x=.12.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x个人共同出钱买鸡,根据题意,可列一元一次方程为.13.关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,则其解为.14.若关于x的方程3x﹣kx+2=0的解为2,则k的值为.15.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.16.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.17.若m+1与﹣2互为相反数,则m的值为.18.小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为元.19.古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为.20.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.三.解答题21.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?22.为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?23.小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?24.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.25.“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?26.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?27.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式由于0.=0.777…,设x=0.777…①则10x=7.777…②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,1.=1+0.=1+=根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【基础训练】(1)0.=,5.=;化为分数形式,写出推导过程;(2)将0.【能力提升】(3)0.1=,2.0=;(注:0.1=0.315315…,2.0=2.01818…)【探索发现】(4)①试比较0.与1的大小:0.1(填“>”、“<”或“=”)②若已知0.8571=,则3.1428=.(注:0.8571=0.285714285714…)参考答案一.选择题1.解:设这种衬衫的原价是x元,依题意,得:0.6x+40=0.9x﹣20,解得:x=200.故选:C.2.解:设合伙人数为x人,依题意,得:5x+45=7x+3.故选:B.3.解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.4.解:设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设第二件衣服的进价为y元,依题意得:y(1﹣20%)=a,∴x(1+20%)=y(1﹣20%),整理得:3x=2y,该服装店卖出这两件服装的盈利情况为:0.2x﹣0.2y=0.2x﹣0.3x=﹣0.1x,即赔了0.1x元,故选:B.5.解:x﹣2=0,解得:x=2.故选:A.6.解:设男生有x人,则女生(30﹣x)人,根据题意可得:3x+2(30﹣x)=72.故选:D.7.【解答】解:因为关于x的一元一次方程2x a﹣2+m=4的解为x=1,可得:a﹣2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C.8.解:设时间t1时蚊香长度为y1,时间t2时蚊香长度为y2∴y1=105﹣10t1,y2=105﹣10t2则:速度=(y1﹣y2)÷(t1﹣t2)=[(105﹣10t1)﹣(105﹣10t2)]÷(t1﹣t2)=﹣10∴蚊香燃烧的速度是10厘米/小时故选:A.9.解:将x=4代入2(x﹣1)+3a=3,∴2×3+3a=3,∴a=﹣1,故选:A.10.解:设盈利的商品的进价为x元,亏损的商品的进价为y元,根据题意得:150﹣x=25%x,150﹣y=﹣25%y,解得:x=120,y=200,∴150+150﹣120﹣200=﹣20(元).故选:A.二.填空题(共10小题)11.解:根据题意得:+3﹣2x=4,去分母得:2x﹣1+9﹣6x=12,移项合并得:﹣4x=4,解得:x=﹣1,故答案为:﹣112.解:设有x个人共同买鸡,根据题意得:9x﹣11=6x+16.故答案为:9x﹣11=6x+16.13.解:∵关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,∴当m=1时,方程为x﹣2=0,解得:x=2;当m=0时,方程为﹣x﹣2=0,解得:x=﹣2;当2m﹣1=0,即m=时,方程为﹣x﹣2=0,解得:x=﹣3,故答案为:x=2或x=﹣2或x=﹣3.14.解:∵关于x的方程3x﹣kx+2=0的解为2,∴3×2﹣2k+2=0,解得:k=4.故答案为:4.15.解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为200016.解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.17.解:根据题意得:m+1﹣2=0,解得:m=1,故答案为:1.18.解:设这双鞋的标价为x元,根据题意,得0.8x=x﹣40x=200.200﹣40=160(元)故答案是:160.19.解:设快马x天可以追上慢马,据题题意:240x=150x+12×150,故答案为:240x=150x+12×15020.解:设小华购买了x个笔袋,根据题意得:18(x﹣1)﹣18×0.9x=36,解得:x=30,∴18×0.9x=18×0.9×30=486.答:小华结账时实际付款486元.故答案为:486.三.解答题(共7小题)21.解:(1)设当走路慢的人再走600步时,走路快的人的走x步,由题意得x:600=100:60∴x=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+y∴y=500答:走路快的人走500步才能追上走路慢的人.22.解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米,由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.23.解:设这本名著共有x页,根据题意得:36+(x﹣36)=x,解得:x=216.答:这本名著共有216页.24.解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.25.解:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.26.解:设城中有x户人家,依题意得:x+=100解得x=75.答:城中有75户人家.27.解:(1)由题意知0.=、5.=5+=,故答案为:、;(2)0.=0.232323……,设x=0.232323……①,则100x=23.2323……②,②﹣①,得:99x=23,解得:x=,∴0.=;(3)同理0.1==,2.0=2+=故答案为:,(4)①0.==1故答案为:=②3.1428+0.8571=3.=4∴4﹣0.8571=4﹣=故答案为:。
最新初中数学方程与不等式之一元一次方程难题汇编含答案
最新初中数学方程与不等式之一元一次方程难题汇编含答案一、选择题1.已知今年甲的年龄比乙的年龄多12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是( )A .20岁B .16岁C .15岁D .12岁【答案】A【解析】【分析】设乙今年的年龄是x 岁,则甲今年的年龄是(x+12)岁.根据等量关系:4年后甲的年龄恰好是乙的年龄的2倍,列出方程进行求解即可.【详解】设乙今年的年龄是x 岁,根据题意得:(x+12)+4=2(x+4),解得:x=8,则:x+12=20,即甲今年的年龄是20岁,故选A.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.下列说法正确的是( )A .若a c =b c,则a=b B .若-12x=4y ,则x=-2y C .若ax=bx ,则a=bD .若a 2=b 2,则a=b 【答案】A【解析】【分析】按照分式和整式的性质解答即可.【详解】 解:A .因为C 做分母,不能为0,所以a=b ;B .若-x=4y ,则x=-8y ;C .当x=0的时候,不论a ,b 为何数,00a b ⨯=⨯,但是a 不一定等于b ;D .a 和b 可以互为相反数.故选 :A【点睛】本题考查了整式和分式的性质,掌握整式和分式的性质是解答本题的关键.3.若关于x 的方程(m-3)x |m|-2 -m+3=0是一元一次方程,则m 的值为( )A .m=3B .m=-3C .m=3或-3D .m=2或-2【答案】B【解析】【分析】 根据一元一次方程的定义得到|m |-2=1且m-3≠0,解得m的取值范围即可..【详解】解:有题意得:|m |-2=1且m-3≠0,解得m=-3,故答案为B .【点睛】本题考查了一元一次方程的概念和解法.掌握一元一次方程的未知数的指数为1且一次项系数不等于0是解答本题的关键.4.已知△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x ﹣2,2x ﹣1,若这两个三角形全等,则x 为( )A .B .4C .3D .不能确定【答案】C【解析】试题分析:根据三角形全等可得:3x -2=5且2x -1=7或3x -2=7且2x -1=5;第一个无解,第二个解得:x=3.考点:三角形全等的性质5.下列关于a 、b 的等式,有一个是错误的,其它都是正确的,则错误的是( ) A .3b a =B .0b a -=C .2290b a -=D .26b m a m +=+【答案】B【解析】【分析】观察四个等式可发现都含有一个相同的等式b-3a=0,由此即可判断出错误的选项.【详解】由题意知,选项A 可以化为b-3a=0;选项C 可以化为(b-3a )(b+3a)=0,可以得到b-3a=0;选项D 可以化为2b-6a=0,即b-3a=0,由此可以判断选项A 、C 、D 都是正确的,选项B 中的等式是错误的,故选:B.【点睛】此题考查等式的性质,根据等式的性质正确化简是解题的关键.6.等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.7.下列方程的变形中正确的是( )A .由567x x +=-得675x x -=-B .由2(1)3x --=得223x --=C .由310.7x -=得1030107x -= D .由139322x x +=--得212x =- 【答案】D【解析】【分析】根据解一元一次方程的一般步骤对各选项进行逐一分析即可.【详解】A .由567x x +=-得675x x -=--,故错误;B .由2(1)3x --=得223x -+=,故错误;C .由310.7x -=得103017x -=,故错误; D .正确.故选:D .【点睛】 本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.8.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ). A .3229x x -=+ B .3(2)29x x -=+C .2932x x +=- D .3(2)2(9)x x -=+ 【答案】B【解析】【分析】 根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】 根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.9.方程2﹣24736x x --=-去分母得( )A .2﹣2(2x ﹣4)=﹣(x ﹣7)B .12﹣2(2x ﹣4)=﹣x ﹣7C .12﹣2(2x ﹣4)=﹣(x ﹣7)D .以上答案均不对【答案】C【解析】【分析】两边同时乘以6即可得解.【详解】 解方程:247236x x ---=- 去分母得:122(24)(7)x x --=--. 故选C.【点睛】本题考查了解一元一次方程的去分母,两边乘以同一个数时要注意整数也要乘以这个数.10.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤2【答案】C【解析】试题分析:∵程x ﹣m+2=0的解是负数,∴x=m ﹣2<0,解得:m <2,故选C . 考点:解一元一次不等式;一元一次方程的解.11.已知方程3x –2y=5,把它变形为用含x 的代数式表示y ,正确的是( )A .y=352x - B .y=352x + C .y=352-+x D .y=352--x 【答案】A【解析】【分析】 根据等式的性质,把x 看做已知数求出y 即可. 【详解】解:方程3x –2y=5解得:y=352x - 故选:A.【点睛】 本题主要考查了等式的性质,解题的关键是将x 看做已知数求出y.12.下列各式属于一元一次方程的是( )A .3x+1B .3x+1>2C .y =2x+1D .3x+1=2【答案】D【分析】直接利用一元一次方程的定义分析得出答案.【详解】A 、3x+1是代数式,故此选项错误;B 、3x+1>2,是不等式,故此选项错误;C 、y=2x+1,是一次函数,故此选项错误;D 、3x+1=2属于一元一次方程,故此选项正确.故选:D .【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.13.下列等式的变形中,正确的有( )①由53x =得53x =;②由a=b 得,-a=-b ;③由a b c c =得a b =;④由m n =得m 1n = A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】本题需先根据等式的性质对每一选项灵活分析,即可得出正确答案.【详解】①若53x =,则35x =故本选项错误 ②若由a=b 得,-a=-b ,则-a=-b 故本选项正确③由a b c c=,说明c ≠0,得a b =故本选项正确 ④若m n =≠0时,则m 1n =故本选项错误 故选:B【点睛】本题考查了等式的基本性质,在已知等式等号两边同时加减或乘除等式是否仍然成立.14.《算法统宗》是我国明代数学家程大位的一部著作.在这部著作中,许多数学问题都是以诗歌的形式呈现.“以碗知僧”就是其中一首。
中考数学《一元一次方程》专题练习(附带答案)
中考数学《一元一次方程》专题练习(附带答案)一、单选题1.方程x ﹣3=2x ﹣4的解为( )A .1B .﹣1C .7D .﹣72.下列等式变形正确的是( ) A .如果s=12ab ,那么b=s2aB .如果12x=6,那么x=3C .如果x ﹣3=y ﹣3,那么x ﹣y=0D .如果mx=my ,那么x=y3.某种商品,若单价降低110,要保持销售收入不变,那么销售量应增加( )A .110B .19C .18D .174.一个长方形的周长为 26cm ,若这个长方形的长减少 2cm ,宽增加 3cm ,就可以成一个正方形.设长方形的长为 xcm ,可列方程( ) A .x +2=(13−x)−3 B .x +2=(26−x)−3 C .x −2=(26−x)+3D .x −2=(13−x)+35.某超市将两件商品都以84元售出,一件提价 40% ,一件降价 20% ,则最后是( )A .无法确定B .亏本3元C .盈利3元D .不赢不亏6.下列方程变形中,正确的是( )A .方程3x +4=4x −5,移项得3x −4x =5−4B .方程−32x =4,系数化为1得x =4×(−32)C .方程3−2(x +1)=5,去括号得3−2x −2=5D .方程x−12−1=3x+13,去分母得3(x −1)−1=2(3x +1) 7.已知关于x 的一元一次方程 12020x +3=2x +b 的解为x=-3,那么关于y 的一元一次方程 12020(y +1)+3=2(y +1)+b 的解为( ) A .y=1B .y=-1C .y=-3D .y=-48.若(m ﹣2)x |2m ﹣3|=6是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数9.若关于x 的方程(k+1)x 2﹣ √2−k x+ 14=0有实数根,则k 的取值范围是( )A .k≤2且k≠﹣1B .k≤ 12且k≠﹣1C .k≤ 12D .k≥ 1210.下面是一个被墨水污染过的方程 12(1-2ax)=x+a ,答案显示此方程的解是x=-2,被墨水遮盖的是一个常数a ,则这个常数是( )A .1B .−52C .52D .−1211.把方程x2﹣x−16=1去分母,正确的是( )A .3x ﹣(x ﹣1)=1B .3x ﹣x ﹣1=1C .3x ﹣x ﹣1=6D .3x ﹣(x ﹣1)=612.解方程 2x−13+3x−44=0 时,去分母正确的是( ) A .4(2x −1)+9x −4=12 B .4(2x −1)+3(3x −4)=12 C .8x −1+9x +12=0D .4(2x −1)+3(3x −4)=0二、填空题13.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程 .14.如表所示,已知a ,b 满足表格中的条件,则b 的值是 .x ﹣1 ax ﹣1 ax 2+b415.若关于x ,y 的方程组{x −y =m +2x +3y =m的解适合方程x +y =−2,则m = .16.某村原有林地108公顷,旱地54公公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%.设把x 公顷旱地改为林地,则为可列方程为 .17.将方程 2x +3y =6 写成用含x 的代数式表示y ,则y= .18.在①2x ﹣1②2x+1=3x ③|π﹣3|=π﹣3④t+1=3中,等式有 方程有 (填入式子的序号)三、综合题19.在习近平主席提出的“一带一路”战略构想下,甲、乙两城市决定开通动车组高速列车,如图, AD是从乙城开往甲城的第一列动车组列车距甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象, BC 是一列从甲城开往乙城的普通快车离开甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象,它比第一列动车组动车晚出发 1 小时,请根据图中的信息,解答下列问题:(1)填空:甲、乙两城市之间的距离为千米(2)若普通快车的速度为100km/ℎ,①用待定系数法求BC的函数表达式,并写出自变量的取值范围:②若普通快车与第一列动车组列车相遇后0.4小时与第二列动车组列车相遇,请直接写出相邻两列动车组列车间隔的时间③在②的条件下,请直接写出第二列动车组列车与第一列动车组列车和普通快车距离相等时的t值.20.某超市购进甲、乙两种节能灯共1200只,这两种商品的进价、售价如下表进价(元|只)售价(元|只)甲2530乙4560(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?21.根据下列条件列出方程(1)x比它的78大15(2)2xy与5的差的3倍等于24(3)y的13与5的差等于y与1的差.22.“双11”期间,某市各大商场掀起促销狂潮,现有甲、乙、丙三个商场开展的促销活动如下表所示商场优惠活动甲全场按标价的6折销售乙实行“每满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“每满100元减50元的优惠”(如某顾客购物220元,他只需付款120元)(1)三个商场同时出售某种标价为370元的破壁机和某种标价为350元的空气炸锅,若赵阿姨想买这两样厨房电器,她选择哪家商场最实惠?(2)黄先生发现在甲、乙商场同时购买一件标价为280元的上衣和一条标价为200多元的裤子,最后付款额一样,请问这条裤子的标价是多少元?(3)如果某品牌的巴西大豆在三所商场的标价都是5元/kg,请探究是否存在分别在三个商场付同样多的100多元,并且都能够购买同样质量同品牌的该大豆?如果存在,请求出在乙商场购买该大豆的方案(并指出在三个商场购买大豆的质量是多少千克,支付的费用是多少元)如果不存在,请直接回答“不存在”.23.如图,点A、B、C是数轴上三点,点A、B、C表示的数分别为-10、2、6,我们规定数铀上两点之间的距离用字母表示.例如点A与点B之间的距离,可记为AB(1)写出AB= ,BC=,AC=(2)点P是A、C之间的点,点P在数轴上对应的数为x①若PB=5时,则x=②PA =,PC=(用含x的式子表示)(3)动点M、N同时从点A、C出发,点M以每秒2个单位长度的速度沿数轴向右运动,点N以每秒2个单位长度的速度沿数向左运动,设运动时间为t(t>0)秒,求当t为何值时,点M、N之间相距2个单位长度?24.某商场将进货价为35元台灯以50元销售价售出,平均每月能售出500个,市场调研表明当销售价每上涨1元时,其销售量就将减少10个,若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空涨价后,每个台灯的销售价为元,每台利润为元,商场的台灯平均每月的销售量为台,共可获利元.(2)如果商场要想销售利润平均每月至少达到10000元,现有三种方案.方案一“在原售价每台50元的基础上再上涨25元”方案二“在原售价每台50元的基础上在上涨15元”方案三“在原售价每台50元的基础上在上涨8元”.若为了减少库存,应该采用哪一种方案?并说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】A9.【答案】C 10.【答案】B 11.【答案】D 12.【答案】D 13.【答案】8x+38=50 14.【答案】3 15.【答案】−316.【答案】20%(108+x )=54﹣x 17.【答案】6−2x 3 (或 2−23x )18.【答案】②③④②④ 19.【答案】(1)600(2)解①设BC 的解析式为s=kt+b , 由题意B (1,0),C (7,600),则有 {k +b =07k +b =600 ,解得 {k =100b =−100 .∴s=100t − 100(1≤t≤7)②设普通快车与第一列动车组列车x 小时后相遇,则100(x -1)+150x=600 解得x=145(小时) 设第二列动车组列车行驶了y 小时与普通快车相遇,则150y+100×(0.4+ 145-1)=600 解得y=3815∴相邻两列动车组列车间隔的时间= 145 − ( 3815 − 0.4)= 23(小时)③当t= 145小时时,普通快车与第一列动车组列车相遇,此时第二列动车组列车与第一列动车组列车和普通快车距离相等.当 100(t −1)+150(t −23)−600=23×150 时,第二列动车组列车与第一列动车组列车和普通快车距离相等.∴100(t −1)+150(t −23)−600=23×150解得 t =185答第二列动车组列车与第一列动车组列车和普通快车距离相等时,t 的值是 145 或 185 .20.【答案】(1)解设商场购进甲型节能灯x 只,则购进乙型节能灯(1200-x )只由题意,得25x+45(1200-x )=46000 解得x=400购进乙型节能灯1200-x=1200-400=800只.答购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元(2)解设乙型节能灯需打a折0.1×60a-45=45×20%解得a=9答乙型节能灯需打9折.21.【答案】(1)解根据题意可得x﹣78x=15(2)解根据题意可得3(2xy﹣5)=24(3)解根据题意可得13y﹣5=y﹣122.【答案】(1)解选甲商场需付(370+350)×0.6=432(元)选乙商场需付370+(350−3×100)=420(元)选丙商场需付370+350−7×50=370(元)因为370<420<432,故答案为丙商场最实惠.(2)解设这条裤子的标价为x元.根据题意,得(280+x)×0.6=280+x−2×100解得x=220.故这条裤子的标价为220元.(3)解设在乙商场先购买ykg大豆,需付100多元,再用100元的购物券再在乙商场购买100÷5=20kg 大豆.根据题意,得5(y+20)×0.6=5y,解得y=30.此时,在甲商场和乙商场都购买了30+20=50kg大豆,都需付30×5=150元.在丙商场购买50kg需付5×50−2×50=150元.所以存在分别在三个商场付同样多的100多元,并且都能买到同样质量同样品牌的该大豆.所以在乙商场的购买方案为先购买30kg大豆付150元,再用100元的购物券再在乙商场购买20kg大豆,共付了150元,购买了50kg大豆.23.【答案】(1)12416(2)解-3x+106-x(3)解相遇前,(6-2t)-(-10+2t) =2,解得t= 3.5相遇后(-10+2t)-(6-2t) = 2,解得t= 4.5.答当t=3.5或t=4.5时,点M、N之间相距2个单位长度.24.【答案】(1)(50+a)(15+a)(500-10a)(15+a)(500-10a)(2)解方案一当a=25时,(15+25)(500-10×25)=10000(元).方案二当a=15时,(15+15)(500-10×15)=10500(元).方案三当a=8时,(15+8)(500-10×8)=9660(元)<10000元,故舍去该方案.因为要减少库存,所以应采用方案二.。
初三数学一元一次方程试题答案及解析
初三数学一元一次方程试题答案及解析1.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为()A.5.5公里B.6.9公里C.7.5公里D.8.1公里【答案】B.【解析】设人坐车可行驶的路程最远是xkm,根据题意得:5+1.6(x-3)=11.4,解得:x=7.观察选项,只有B选项符合题意.故选B.【考点】一元一次方程的应用.2.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多元.【答案】120【解析】设这款服装每件的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.∴标价比进价多300﹣180=120元.故答案为:120.【考点】一元一次方程的应用3.以下是根据北京市统计局公布的2010—2013年北京市城镇居民人均可支配收入和农民人均现金收入的数据绘制的统计图的一部分:根据以上信息,解答下列问题:(1)2012年农民人均现金收入比2011年城镇居民人均可支配收入的一半少0.05万元,则2012年农民人均现金收入是万元,请根据以上信息补全条形统计图,并标明相应的数据(结果精确到0.1);(2)在2010—2013年这四年中,北京市城镇居民人均可支配收入和农民人均现金收入相差数额最大的年份是年;(3)①2011—2013年城镇居民人均可支配收入的年平均增长率最接近;A.14%B.11%C.10%D.9%②若2014年城镇居民人均可支配收入按①中的年平均增长率增长,请预测2014年的城镇居民人均可支配收入为万元(结果精确到0.1).【答案】(1)1.6;(2)2013;(3)①B;②4.4.【解析】(1)利用条形统计图得出2011年城镇居民人均可支配收入为3.3万元,进而得出2012年农民人均现金收入.(2)利用折线条求出2012年城镇居民人均可支配收入,进而分别求出各年份的城镇居民人均可支配收入和农民人均现金收入相差数额进而得出答案.根据2011年以及2013年城镇居民人均可支配收入进而得出等式方程求出即可;②利用①中所求直接求出2014年的城镇居民人均可支配收入即可.试题解析:(1)∵由条形图可得出:2011年城镇居民人均可支配收入为3.3万元,2012年农民人均现金收入比2011年城镇居民人均可支配收入的一半少0.05万元,∴2012年农民人均现金收入是:3.3÷2-0.05=1.6(万),(2)∵2011年到2012年城镇居民人均可支配收入增长率为9.1%,∴2012年人均可支配收入为:3.3×(1+9.1%)≈3.6(万元),∵2.9-1.3=1.6(万),3.3-1.5=1.8(万),3.6-1.6=2(万),4-1.8=2.2(万),∴在2010-2013年这四年中,北京市城镇居民人均可支配收入和农民人均现金收入相差数额最大的年份是2013年;(3)①设2011-2013年城镇居民人均可支配收入的年平均增长率为x,则3.3(1+x)2=4,解得:x1≈-2.1(不合题意舍去),x2≈0.11=11%.故选B.②由①得:2014年的城镇居民人均可支配收入为:4×(1+11%)=4.4(万).【考点】1.折线统计图;2.条形统计图;3.一元二次方程的应用(增长率问题).4.(1)解方程:(2)解方程组:【答案】(1);(2).【解析】(1)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,化x的系数为1进行即可.(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.试题解析:(1)去分母,得,去括号,得,移项,得,合并同类项,得,化x的系数为1,得.∴原方程的解为.(2),①×3+②,得,解得,把代入①,得,解得,∴原方程组的解为.【考点】1.解一元一次方程;2.解二元一次方程组.5.在“五·一”黄金周期间,某超市推出如下购物优惠方案:(1)一次性购物在100元(不含100元)以内的,不享受优惠;(2)一次性购物在100元(含100元)以上,300元(不含300元)以内的,一律享受九折的优惠;(3)一次性购物在300元(含300元)以上时,一律享受八折的优惠。
石家庄市第二十二中数学一元一次方程中考真题汇编[解析版]
一、初一数学一元一次方程解答题压轴题精选(难)1.先阅读下列解题过程,然后解答问题⑴、⑵,解方程:。
解:①当3x≥0时,原方程可化为一元一次方程3x=1,它的解是;②当3x≤0时,原方程可化为一元一次方程-3x=1,它的解是。
(1)请你根据以上理解,解方程:;(2)探究:当b为何值时,方程,①无解;②只有一个解;③有两个解。
【答案】(1)解:当x−3≥0时,原方程可化为一元一次方程为2(x−3)+5=13,方程的解是x=7;②当x−3<0时,原方程可化为一元一次方程为2(3−x)+5=13,方程的解是x=−1(2)解:∵|x−2|≥0,∴当b+1<0,即b<−1时,方程无解;当b+1=0,即b=−1时,方程只有一个解;当b+1>0,即b>−1时,方程有两个解【解析】【分析】(1)当x−3≥0时,得出方程为2(x−3)+5=13,求出方程的解即可;当x−3<0时,得出方程为2(3−x)+5=13,求出方程的解即可;(2)根据绝对值具有非负性得出|x−2|≥0,分别求出b+1<0,b+1=0,b+1>0的值,即可求出答案.2.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?【答案】(1)解:设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得49+3x=100.解得,x=17.64+2y=100.解得,y=18.因为y>x,所以,进入该公园次数较多的是B类年票.答:进入该公园次数较多的是B类年票(2)解:设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得49+3z=64+2z.解得z=15.答:进入该公园15次,购买A类、B类年票花钱一样多【解析】【分析】(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,根据总费用都是100元列出方程,并求得x、y的值,通过比较它们的大小即可得到答案;(2)设进入该公园z次,购买A类、B类年票花钱一样多.根据题意列方程求解.3.对于任意有理数,我们规定 =ad-bc.例如 =1×4-2×3=-2(1)按照这个规定,当a=3时,请你计算(2)按照这个规定,若 =1,求x的值。
最新初中数学方程与不等式之一元一次方程易错题汇编附答案解析
最新初中数学方程与不等式之一元一次方程易错题汇编附答案解析一、选择题1.已知今年甲的年龄比乙的年龄多12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是( )A .20岁B .16岁C .15岁D .12岁【答案】A【解析】【分析】设乙今年的年龄是x 岁,则甲今年的年龄是(x+12)岁.根据等量关系:4年后甲的年龄恰好是乙的年龄的2倍,列出方程进行求解即可.【详解】设乙今年的年龄是x 岁,根据题意得:(x+12)+4=2(x+4),解得:x=8,则:x+12=20,即甲今年的年龄是20岁,故选A.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 【答案】A【解析】【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x 互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A .【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.3.若x=-2是方程ax-b=1的解,则代数式4a+2b-3的值为()A.1 B.3-C.1-D.5-【答案】D【解析】【分析】把x=-2代入ax-b=1得到关于a和b的等式,利用等式的性质,得到整式4a+2b-3的值,即可得到答案.【详解】解:把x=-2代入ax-b=1得:-2a-b=1,等式两边同时乘以-2得:4a+2b=-2,等式两边同时减去3得:4a+2b-3=-2-3=-5,故选:D.【点睛】本题考查了一元一次方程的解和代数式求值,正确掌握代入法和等式的性质是解题的关键.4.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【答案】C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.5.某学校,安排50人打扫校园卫生,20人拉垃圾,后因两边的人手不够,又增派30人去支援,结果打扫卫生的人数是拉垃圾人数的3倍,若设支援打扫卫生的同学有x人,则下列方程正确的是()A.50+x=3×30 B.50+x=3×(20+30-x)C.50+x=3×(20-x) D.50+x=3×20【答案】B【解析】【分析】可设支援打扫卫生的人数有x人,则支援拉垃圾的人数有(30﹣x)人,根据题意可得题中存在的等量关系:原来打扫卫生的人数+支援打扫卫生的人数=3×(原来拉垃圾的人数+支援拉垃圾的人数),根据此等量关系列出方程即可.【详解】解:设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,依题意有 50+x =3[20+(30﹣x )],故选:B .【点睛】本题考查了一元一次方程的应用,列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐蔽,要注意仔细审题,耐心寻找.6.下列关于a 、b 的等式,有一个是错误的,其它都是正确的,则错误的是( ) A .3b a =B .0b a -=C .2290b a -=D .26b m a m +=+【答案】B【解析】【分析】观察四个等式可发现都含有一个相同的等式b-3a=0,由此即可判断出错误的选项.【详解】由题意知,选项A 可以化为b-3a=0;选项C 可以化为(b-3a )(b+3a)=0,可以得到b-3a=0;选项D 可以化为2b-6a=0,即b-3a=0,由此可以判断选项A 、C 、D 都是正确的,选项B 中的等式是错误的,故选:B.【点睛】此题考查等式的性质,根据等式的性质正确化简是解题的关键.7.一个书包的标价为a 元,按八折出售仍可获利20%,该书包的进价为( ) A .23a B .34a C .45a D .56a 【答案】A【解析】【分析】设进价为x 元,根据题意可得820%10=-x a x ,解得23x a =,即为所求. 【详解】设进价为x 元 根据题意得:820%10=-x a x ∴41.25=x a∴23x a = 故选:A【点睛】本题考查了一元一次方程的应用,理解题意,分清已知量和未知量,根据题目中的等量关系列出需要的代数式,进而列出方程,解所列的方程,求出未知数的值,检验所得的解是否符合实际问题的意义.8.下列等式变形正确的是( )A .如果0.58x =,那么x=4B .如果x y =,那么-2-2x y =C .如果a b =,那么a b c c = D .如果x y =,那么x y = 【答案】B【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时除以一个不为0的数,等式依然成立;两个数的绝对值相等,其本身不一定相等,据此逐一判断即可.【详解】A :如果0.58x =,那么16x =,故选项错误;B :如果x y =,那么22x y -=-,故选项正确;C :如果a b =,当0c ≠时,那么a b c c=,故选项错误; D :如果x y =,那么x y =±,故选项错误;故选:B.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.9.一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x 千米/时,那么下列方程中正确的是( )A .()()24164163x x ⎛⎫+=+- ⎪⎝⎭ B .()24164163x ⎛⎫⨯=+- ⎪⎝⎭C .()()()41640.416x x +=+-D .()24164163x ⎛⎫+=+⨯ ⎪⎝⎭【答案】A【解析】【分析】 由已知条件得到顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,根据时间关系列方程即可.【详解】由题意得到:顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时, ∴()()24164163x x ⎛⎫+=+- ⎪⎝⎭, 故选:A.【点睛】此题考查一元一次方程的实际应用,正确理解顺水航行和逆水航行的速度是解题的关键.10.如图,平行四边形ABCD 中,AB=8cm ,AD=12cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有( )A .4次B .3次C .2次D .1次【答案】B【解析】【分析】【详解】试题解析:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD ∥BC ,∵四边形PDQB 是平行四边形,∴PD=BQ ,∵P 的速度是1cm/秒,∴两点运动的时间为12÷1=12s ,∴Q 运动的路程为12×4=48cm ,∴在BC 上运动的次数为48÷12=4次,第一次PD=QB 时,12-t=12-4t ,解得t=0,不合题意,舍去;第二次PD=QB 时,Q 从B 到C 的过程中,12-t=4t-12,解得t=4.8;第三次PD=QB 时,Q 运动一个来回后从C 到B ,12-t=36-4t ,解得t=8;第四次PD=QB 时,Q 在BC 上运动3次后从B 到C ,12-t=4t-36,解得t=9.6.∴在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有3次,故选:B .考点:平行四边形的判定与性质11.根据等式性质,下列结论正确的是( )A .如果22a b -=,那么=-a bB .如果22a b -=-,那么=-a bC .如果22a b =-,那么a b =D .如果122a b =,那么a b = 【答案】A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A 正确;B.左边加2,右边加-2,故B 错误;C.左边除以2,右边加2,故C 错误;D.左边除以2,右边乘以2,故D 错误;故选A .【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.12.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .72【答案】D【解析】 设第一个数为x ,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x ,看是否存在.解:设第一个数为x ,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.13.已知∠1:∠2:∠3=2:3:6,且∠3比∠1大60°,则∠2=()A.10°B.60°C.45°D.80°【答案】C【解析】【分析】根据∠1:∠2:∠3=2:3:6,则设∠1=2x,∠2=3x,∠3=6x,再根据∠3比∠1大60°,列出方程解出x即可.【详解】解:∵∠1:∠2:∠3=2:3:6,设∠1=2x,∠2=3x,∠3=6x,∵∠3比∠1大60°,∴6x-2x=60,解得:x=15,∴∠2=45°,故选C.【点睛】本题是对一元一次方程的考查,准确根据题意列出方程是解决本题的关键.14.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴3733 88a a-+⎛⎫--=⎪⎝⎭∴7a=.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a的方程是解决问题的关键.15.若代数式x+2的值为1,则x等于( )A.1 B.-1 C.3 D.-3【答案】B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.16.下列等式变形错误的是( )A.若x=y,则x-5=y-5 B.若-3x=-3y,则x=yC.若xa=ya,则x=y D.若mx=my,则x=y【答案】D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.【详解】A :等式两边同时减去了5,等式依然成立;B :等式两边同时除以3-,等式依然成立;C :等式两边同时乘以a ,等式依然成立;D :当0m =时,x 不一定等于y ,等式不成立;故选:D.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.17.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%x =330B .(1﹣10%)x =330C .(1﹣10%)2x =330D .(1+10%)x =330【答案】D【解析】解:设上个月卖出x 双,根据题意得:(1+10%)x =330.故选D .18.小明和小亮两人在长为50m 的直道AB(A 、B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若小明跑步速度为5m/s ,小亮跑步速度为4m/s ,则起跑后60s 内,两人相遇的次数为( )A .3B .4C .5D .6 【答案】C【解析】【分析】设在60s 内两人相遇x 次,根据每次相遇的时间50254⨯+,一共是60s ,列出方程求解即可. 【详解】设两人起跑后60s 内相遇x 次,依题意得:5026054x ⨯=+, 解得x=5.4,∵x 为整数,∴x 取5,故选:C.【点睛】 此题考查一元一次方程的实际应用,解题的关键一是求出两人每一次相遇间隔的实际,二是找到隐含的等量关系:每一次相遇时间乘以次数等于总时间,由此构建一元一次方程.19.甲、乙两人都从A出发经B地去C地,乙比甲晚出发1分钟,两人同时到达B地,甲在B地停留1分钟,乙在B地停留2分钟,他们行走的路程y(米)与甲行走的时间x (分钟)之间的函数关系如图所示,则下列说法中正确的个数有()①甲到B地前的速度为100/minm②乙从B地出发后的速度为600/minm③A、C两地间的路程为1000m④甲乙在行驶途中再次相遇时距离C地300mA.1个B.2个C.3个D.4个【答案】C【解析】【分析】①②③直接利用图中信息即可解决问题,求出到B地后的函数关系式,利用方程组求交点坐标即可判定④的正确性.【详解】解:由图象可知:甲到B地前的速度为400÷4=100米/分钟,故①正确,乙从B地出发后的速度为600÷2=300米/分钟,故②错误,由图象可知,A、C两地间的路程为1000米,故③正确,设甲到B地后的函数关系为y=kx+b,则有5400 91000k bk b+=⎧⎨+=⎩,解得150350kb=⎧⎨=-⎩,∴y=150x-350,设乙到B地后的函数关系为y=mx+n,则有6400 81000m nm n+=⎧⎨+=⎩,解得3001400mn=⎧⎨=-⎩,∴y=300x-1400,由1503503001400 y xy x=-⎧⎨=-⎩解得7700xy=⎧⎨=⎩,∴甲乙再次相遇时距离A地700米,∵1000-700=300,∴甲乙再次相遇时距离C 地300米,故④正确,故选:C .【点睛】本题考查一次函数的应用、路程=速度×时间的关系等知识,解题的关键是读懂图象信息,学会构建一次函数,利用方程组求交点坐标解决实际问题,属于中考常考题型.20.点P (x 1,y 1)和点Q (x 2,y 2)是关于x 的函数y =mx 2﹣(2m +1)x +m +1(m 为实数)图象上两个不同的点.对于下列说法:①不论m 为何实数,关于x 的方程mx 2﹣(2m +1)x +m +1=0必有一个根为x =1;②当m =0时,(x 1﹣x 2)(y 1﹣y 2)<0成立;③当x 1+x 2=0时,若y 1+y 2=0,则m =﹣1;④当m ≠0时,抛物线顶点在直线y =﹣12x +1上.其中正确的是( ) A .①②B .①②③C .③④D .①②④【答案】A【解析】【分析】根据方程解的定义对①进行判断;先得到当m=0时,函数解析式为y=﹣x+1,则可计算出()()2121212()x x y y x x =﹣﹣﹣﹣,于是可根据非负数的性质对②进行判断;当m=﹣1时,解析式为y =﹣2x +x ,可计算出1y +2y =212x x ≠0,于是可对③进行判断;先计算出顶点坐标,然后根据一次函数图象上点的坐标特征对④进行判断.【详解】当x =1时,y =mx 2﹣(2m +1)x +m +1=m ﹣2m ﹣1+m +1=0,则方程mx 2﹣(2m +1)x +m +1=0必有一个根为x =1,所以①正确;当m =0时,y =﹣x +1,则y 1=﹣x 1+1,y 2=﹣x 2+1,所以(x 1﹣x 2)(y 1﹣y 2)=(x 1﹣x 2)(﹣x 1+x 2)=﹣(x 1﹣x 2)2,而点P (x 1,y 1)和点Q (x 2,y 2)是两个不同的点,所以x 1≠x 2,则(x 1﹣x 2)(y 1﹣y 2)=﹣(x 1﹣x 2)2<0,所以②正确;当m =﹣1时,y =﹣x 2+x ,则y 1=﹣x 12+x 1,y 2=﹣x 22+x 2,所以y 1+y 2=﹣x 12+x 1﹣x 22+x 2=﹣(x 1+x 2)2+2x 1x 2+(x 1+x 2),当x 1+x 2=0时,y 1+y 2=2x 1x 2≠0,所以③错误;当m ≠0时,顶点的横坐标为2122b m a m+-=,纵坐标为()()22412141444m m m ac b a m m+-+-==-,当x=212mm+时,112121112224m my xm m+-=-+=-+=n,所以抛物线的顶点不在直线112y x=-+上,所以④错误.综上:①②正确,故选:A.【点睛】本题考查了二次函数的性质、方程解的定义、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.。
初三数学一元一次方程试题答案及解析
初三数学一元一次方程试题答案及解析1.天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为()A.10克B.15克C.20克D.25克【答案】A.【解析】根据天平仍然处于平衡状态列出一元一次方程求解即可:设左、右侧秤盘中一袋玻璃球的质量分别为m克、n克,根据题意得:m=n+40.设被移动的玻璃球的质量为x克,根据题意得:,解得.故选A.【考点】1.阅读理解型问题;2.一元一次方程的应用.2.方程x+2=1的解是()A.B.C.D.【答案】D.【解析】根据等式的性质,移项得到x=1﹣2,即可求出方程的解:由x+2=1移项得:x=1﹣2,∴x=﹣1.故选D.【考点】解一元一次方程.3.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为()A.5.5公里B.6.9公里C.7.5公里D.8.1公里【答案】B.【解析】设人坐车可行驶的路程最远是xkm,根据题意得:5+1.6(x-3)=11.4,解得:x=7.观察选项,只有B选项符合题意.故选B.【考点】一元一次方程的应用.4.若代数式2x+3的值为6,则x的值为A.B.3C.D.3【答案】A.【解析】根据题意得:2x+3=6,移项合并得:2x=3,解得:x=.故选A.【考点】解一元一次方程.5. (1) 解方程:-=1;(2) 解不等式组:【答案】(1) x="3.(2)" .【解析】(1)根据去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可求得方程的解.(2)先求出不等式组中每个不等式的解集,再取它们的公共解即可.试题解析:(1)去分母得:3(x+1)-2(2x-3)=6去括号得:3x+3-4x+6=6整理得:-x=-3解得:x=3.(2) ①式解得:②式解得:∴【考点】1.解一元一次方程;2.解一元一次不等式组.6.为确保信息安全,信息需要加密传输,发送方由明文⇒密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a,b,c对应的密文a+1,2b+4,3c+9.例如明文1,2,3对应的密文2,8,18.如果接收方收到密文7,18,15,则解密得到的明文为()A.4,5,6B.6,7,2C.2,6,7D.7,2,6【答案】B【解析】此题的关键是读懂加密规则:“明文a,b,c对应的密文a+1,2b+4,3c+9.”把7,18,15分别代入这三个式子,计算即可.由题意知a+1=7,2b+4=18,3c+9=15,解得明文a=6,b=7,c=2.故选B.7.如果x=2是方程x+a=-1的根,那么a的值是()A.0B.2C.-2D.-6【答案】C【解析】把x=2代入x+a=-1,得1+a=-1∴a=-2.8.毕业在即,某商店抓住商机,准备购进一批纪念品,若商店花440元可以购进50本学生纪念品和10本教师纪念品,其中教师纪念品的成本比学生纪念品的成本多8元.(1)请问这两种不同纪念品的成本分别是多少?(2)如果商店购进1200个学生纪念品,第一周以每个10元的价格售出400个,第二周若按每个10元的价格仍可售出400个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余学生纪念品清仓处理,以每个4元的价格全部售出,如果这批纪念品共获利2500元,问第二周每个纪念品的销售价格为多少元?【答案】(1)学生纪念品的成本为6元,教师纪念品的成本为14元;(2)5.【解析】(1)可设学生纪念品的成本为x元,根据题意列方程即可求解;(2)第二周销售的销量=400+降低的元数×100;第二周每个旅游纪念品的销售价格降x元,根据纪念品的进价和售价以及销量分别表示出两周的总利润,进而得出等式求出即可.试题解析:(1)设学生纪念品的成本为x元,根据题意得:50x+10(x+8)=440解得:x=6∴x+8=6+8=14.答:学生纪念品的成本为6元,教师纪念品的成本为14元.(2)第二周单价降低x元后,这周销售的销量为400+100x;由题意得出:400×(10-6)+(10-x-6)(400+100x)+(4-6)[(1200-400)-(400+100x)]=2500,即1600+(4-x)(400+100x)-2(400-100x)=2500,整理得:x2-2x+1=0,解得:x1=x2=1,∴6-1=5.答:第二周的销售价格为5元.考点: 1.一元一次方程的应用;(2)一元二次方程的应用.9.一元一次方程2x=4的解是A.x=1B.x="2"C.x=3D.x=4【答案】B【解析】方程两边都除以2即可得解:x=2。
中考数学试题分类解析汇编:一元一次方程
中考数学试题分类解析汇编一元一次方程及其应用一、选择题1.(2012铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=考点:由实际问题抽象出一元一次方程。
解答:解:设原有树苗x 棵,由题意得5(211)6(1)x x +-=-.故选A .2.(2012•重庆)已知关于x 的方程2x+a ﹣9=0的解是x=2,则a 的值为( )A .2B .3C .4D .5考点: 一元一次方程的解。
专题: 常规题型。
分析: 根据方程的解的定义,把x=2代入方程,解关于a 的一元一次方程即可.解答: 解;∵方程2x+a ﹣9=0的解是x=2,∴2×2+a ﹣9=0,解得a=5.故选D .点评: 本题考查了一元一次方程的解,把解代入方程求解即可,比较简单.二、填空题1.(2012•湘潭)湖南省2011年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20000元.设每人向旅行社缴纳x 元费用后,共剩5000元用于购物和品尝台湾美食.根据题意,列出方程为 20000﹣3x=5000 .考点: 由实际问题抽象出一元一次方程。
分析: 根据设每人向旅行社缴纳x 元费用后,共剩5000元用于购物和品尝台湾美食,得出等式方程即可.解答: 解:设每人向旅行社缴纳x 元费用,根据题意得出:20000﹣3x=5000,故答案为:20000﹣3x=5000.点评: 此题主要考查了由实际问题抽象出一元一次方程,根据全家3人去台湾旅游,计划花费20000元得出等式方程是解题关键.2.(2012山西)图1是边长为30的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.考点:一元一次方程的应用。
最新七年级数学一元一次方程中考真题汇编[解析版]
一、初一数学一元一次方程解答题压轴题精选(难)1.同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)求=________.(2)若,则 =________(3)同理表示数轴上有理数x所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得,这样的整数是________(直接写答案)【答案】(1)7(2)7或-3(3)-1,0,1,2.【解析】【解答】(1)|5-(-2)|=7,故答案为:7;( 2 )|x-2|=5,x-2=5或x-2=-5,x=7或-3,故答案为:7或-3;( 3 )如图,当x+1=0时x=-1,当x-2=0时x=2,如数轴,通过观察:-1到2之间的数有-1,0,1,2,都满足|x+1|+|x-2|=3,这样的整数有-1,0,1,2,故答案为: -1,0,1,2.【分析】(1)化简符号求出式子的值;(2)根据绝对值的性质得到x-2=5或x-2=-5,求出x的值;(3)根据题意画出数轴,得到-1到2之间的整数有-1,0,1,2,得到满足方程的整数值有-1,0,1,2.2.(公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元1)班人数较少,不足50人,(2)班超过50人,但不足100人。
经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【答案】(1)解:设七(1)班有x人,由题意可知:七(2)班的人数应不足64人,且多于54人则根据题意,列方程得:13x+11(104-x)=1240解得:x=48.即七(1)班48人,七(2)班56人;(2)解:1240-104×9=304,所以可省304元钱(3)解:要想省钱,由(1)可知七(1)班48人,只需多买3张票,51×11=561,48×13=624>561,∴ 48人买51人的票可以更省钱【解析】【分析】(1)设七(1)班有x人,根据条件:某校七(1)、(2)两个班共104人去游览该公园,其中七(1)班人数较少,不足50人,但超过40人,可得七(2)班的人数应不足64人,且多于54人,再根据1240元的门票钱可列方程解得答案;(2)如果两班联合起来作为一个团体购票,则每张票9元,可省1240-104×9元;(3)由(1)可得七(1)班48人,所以多买3张票,按照第二种售票方案买票.3.先阅读下列解题过程,然后解答问题⑴、⑵,解方程:。
晋中数学一元一次方程中考真题汇编[解析版]
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。
中考数学专题复习《一元一次方程》测试卷(附参考答案)
中考数学专题复习《一元一次方程》测试卷(附参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每题3分,共18分)1. (2023·温州中考)解方程-2(2x +1)=x,以下去括号正确的是( )A.-4x +1=-xB.-4x +2=-xC.-4x -1=xD.-4x -2=x 2. (2023·河北唐山·三模)已知2×m=1,则m 表示数( ) A.12B.-12C.2D.-23. (2023·河北廊坊)已知2a=3b,且a ≠0,则ba=( ) A.23 B.32 C.-23 D.-324. (2023七上·盐都月考)在方程①3x+y =4,②2x-x1=5,③3y+2=2-y,④2x 2-5x+6=2(x 2+3x)中,是一元一次方程的个数为( ) A.1个 B.2个 C.3个 D.4个 5. (2023·南充)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x 元,则可列方程为( )A.10x +5(x -1)=70B.10x +5(x +1)=70C.10(x -1)+5x =70D.10(x +1)+5x =70 6. (2023湖南长沙模拟)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A.2×1000(26﹣x)=800x;B.1000(13﹣x)=800x;C.1000(26﹣x)=2×800x;D.1000(26﹣x)=800x7. (2023•永康市模拟)明代程大位的《算法统宗》记载这样一首打油诗: 《李白沽酒》无事街上走,提壶去买酒.遇店加一倍,见花喝一斗. 三遇花和店,喝光壶中酒.就问此壶中,原有多少酒?李白出门遇到花和店各三次,且花、店交替遇到,则此打油诗答案为( ) A.34斗 B.78斗 C.98斗 D.118斗 8. (2023·杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x >0),则( )A.60.5(1-x)=25B.25(1-x)=60.5C.60.5(1+x)=25D.25(1+x)=60.5 9. (2023七上·乐清)如图,在11月的日历表中用框数器框出3,5,11,17,19五个数,它们的和为55,若将在图中换个位置框出五个数,则它们的和可能是( )A.40B.88C.107D.11010. (2023七上·东莞)下列说法中,不正确的个数是( ) ①若a+b =0,则有a,b 互为相反数,且ba=-1;②若|a|>|b|,则有(a+b)(a-b)是正数;③三个五次多项式的和也是五次多项式;④a+b+c <0,abc >0,则|abc |abc|ac |ac |bc |bc |ab |ab -+-的结果有三个;⑤方程ax+b =0(a,b 为常数)是关于x 的一元一次方程. A.1个 B.2个 C.3个 D.4个 二、填空题(每题3分,共30分)11. (2023·重庆中考B 卷)方程2(x -3)=6的解是____. 12. (2023·贵州贵阳)已知方程2x-4=0,则x=______. 13. (2023·贵州铜仁)方程3x-6=-6的解是_______.14. (2023七上·温州)若|△-3|=1,则“△”所表示的数为 .15. (2023·枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为 . 16. (2023•绍兴)有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是 元.17. (2023·陕西)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价. 18. (2023•牡丹江)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 折.三、解答题(第17—20题每题10分,第21题12分,共52分) 19. (2023秋•金安区校级期中)如果关于x 的方程8的解与方程4x ﹣(3a+1)=6x+2a ﹣1的解相同,求a 的值.20. (2023春•碑林区校级月考)已知关于y 的方程的解比关于x 的方程3a-x3的解小3,求a 的值.21. (2023·台州)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.22. (2023秋•九龙县期末)一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是60千米/小时,卡车的行驶速度是40千米/小时,客车比卡车早2小时经过B 地,A、B两地间的路程是多少千米?23. (2023•泸州)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?24. (2023秋•吉林期末)《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?答案一、选择题(每题3分,共18分)1. D2. A3. A4. B5. A6. C【解析】题目已经设出安排x 名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.由题意得 1000(26﹣x)=2×800x,故C 答案正确。
2022年全国中考数学真题分类汇编专题19:一元一次方程(附答案解析)
出 a(1<a<m)个黑子放入乙盒中,此时乙盒棋子总数比甲盒所剩棋子数多
个;
接下来,嘉嘉又从乙盒拿回 a 个棋子放到甲盒,其中含有 x(0<x<a)个白子,此时乙
盒中有 y 个黑子,则 的值为
.
24.如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”.如
图所示,“优美矩形”ABCD 的周长为 26,则正方形 d 的边长为
A.( )x=1 B.( )x=1 C.(9﹣7)x=1 D.(9+7)x=1
14.在物理学中,导体中的电流 I 跟导体两端的电压 U、导体的电阻 R 之间有以下关系:I ,
去分母得 IR=U,那么其变形的依据是( )
A.等式的性质 1
B.等式的性质 2
C.分式的基本性质
D.不等式的性质 2
第 4 页 共 21 页
.
第 6 页 共 21 页
25.元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,
驽马先行一十二日,问良马几何追及之.”其题意为:“良马每天行 240 里,劣马每天行
150 里,劣马先行 12 天,良马要几天追上劣马?”答:良马追上劣马需要的天数
是
.
三.解答题(共 4 小题)
里.驽马先行一十二日,问良马几何追及之.”意思是:“跑得快的马每天走 240 里,跑
得慢的马每天走 150 里,慢马先走 12 天,快马几天可以追上慢马?”若设快马 x 天可以
追上慢马,则可列方程为( )
A.150(12+x)=240x
B.240(12+x)=150x
C.150(x﹣12)=240x
应 的 常 数 项 , 即 表 示 方 程 x+4y = 23 , 则
【详解版】中考总复习精练精析试题及答案(一元一次方程2)(含考点+分析+点评)
方程与不等式——一元一次方程2一.选择题(共9小题)1已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为()A.1 B.﹣1 C.9 D.﹣92.王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825 C.3×4.25%x=33825 D.3(x+4.25x)=338253.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.200元B.240元C.250元D.300元4.某服装店同时以300元的价钱出售两件不同进价的衣服,其中一件赚了20%,而另一件亏损了20%.则这单买卖是()A.不赚不亏 B.亏了 C.赚了 D.无法确定5.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元6.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多()A.180元B.120元C.80元D.60元7.把一根长100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为()A.70cm B.65cm C.35cm D.35cm或65cm8.图(①)为一正面白色,反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上黏贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图(②)所示.若图(②)中白色与灰色区域的面积比为8:3,图(②)纸片的面积为33,则图(①)纸片的面积为何?()A.B.C.42 D.449.我市围绕“科学节粮减损,保障食品安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分比农户实际出资的三倍还多30元,则购买一套小货仓农户实际出资是()A.80元B.95元C.135元D.270元二.填空题(共8小题)10.方程3x+1=7的根是_________.11.某地居民年收入所得税征收标准如下:不超过28000元部分征收a%的税,超过28000元的部分征收(a+2)%的税.如果某居民年收入所得税是其年收入的(a+0.25)%,那么该居民的年收入为_________元.12.某市按以下规定收取每月的水费:用水量不超过6吨,按每吨1.2元收费;如果超过6吨,未超过部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份实际用水_________吨.13.当m=_________时,关于x的方程x2﹣m﹣mx+1=0是一元一次方程.14.若关于x的方程ax=2a+3的根为x=3,则a的值为_________.15.如果关于x的方程(a2﹣1)x=a+1无解,那么实数a=_________.16.若5x﹣5的值与2x﹣9的值互为相反数,则x=_________.17.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价_________元.三.解答题(共9小题)18.解方程:3(x+4)=x.19.解方程:.20.一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件外衣的标价为多少元?(注:)21.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.22.为迎接6月5日的“世界环境日”,某校团委开展“光盘行动”,倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加,七(1)班参加的人数比七(2)班多10人,请问七(1)班和七(2)班各有多少人参加“光盘行动”?23.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?24.某天,一蔬菜经营户用114元从蔬菜批发市场购进黄瓜和土豆共40kg到菜市场去卖,黄瓜和土豆这天的批发价和零售价(单位:元/kg)如下表所示:品名批发价零售价黄瓜 2.4 4土豆 3 5(1)他当天购进黄瓜和土豆各多少千克?(2)如果黄瓜和土豆全部卖完,他能赚多少钱?25.列方程或方程组解应用题:为保证学生有足够的睡眠,政协委员于今年两会向大会提出一个议案,即“推迟中小学生早晨上课时间”,这个议案当即得到不少人大代表的支持.根据北京市教委的要求,学生小强所在学校将学生到校时间推迟半小时.小强原来7点从家出发乘坐公共汽车,7点20分到校;现在小强若由父母开车送其上学,7点45分出发,7点50分就到学校了.已知小强乘自家车比乘公交车平均每小时快36千米,求从小强家到学校的路程是多少千米?26.将一箱苹果分给一群小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则最后有一个小朋友只分到2个苹果.求这群小朋友的人数.方程与不等式——一元一次方程2参考答案与试题解析一.选择题(共9小题)1.已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为()A. 1 B.﹣1 C 9 D.﹣9考点:一元一次方程的解.专题:计算题.分析:将x=﹣2代入方程即可求出a的值.解答:解:将x=﹣2代入方程得:﹣4﹣a﹣5=0,解得:a=﹣9.故选:D点评:此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825 C.3×4.25%x=33825 D. 3(x+4.25x)=33825考点:由实际问题抽象出一元一次方程.专题:增长率问题.分析:根据“利息=本金×利率×时间”(利率和时间应对应),代入数值,计算即可得出结论.解答:解:设王先生存入的本金为x元,根据题意得出:x+3×4.25%x=33825;故选:A.点评:此题主要考查了一元一次方程的应用,计算的关键是根据利息、利率、时间和本金的关系,进行计算即可.3.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.200元B.240元C.250元D.300元考点:一元一次方程的应用.分析:设这种商品每件的进价为x元,根据按标价的八折销售时,仍可获利10%,列方程求解.解答:解:设这种商品每件的进价为x元,由题意得,330×0.8﹣x=10%x,解得:x=240,即每件商品的进价为240元.故选B.点评:本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.4.某服装店同时以300元的价钱出售两件不同进价的衣服,其中一件赚了20%,而另一件亏损了20%.则这单买卖是()A.不赚不亏B.亏了C.赚了D.无法确定考点:一元一次方程的应用.分析:根据已知条件,分别求出两件不同进价的衣服盈利和亏本的钱数,两者相比较即可得到服装店的盈亏情况.解答:解:设两种衣服的进价分别为a元、b元,则有:a(1+20%)=300,b(1﹣20%)=300,解得:a=250,b=375;∴赚了20%的衣服盈利了:300﹣250=50元,亏损了20%的衣服亏本了:375﹣300=75元;∴总共亏本了:75﹣50=25元,故选B.点评:本题考查了一元一次方程的应用,解决此题的关键是求出两种衣服各自的进价,难度适中.5.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元考点:一元一次方程的应用.专题:应用题.分析:设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.解答:解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.点评:此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.6.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多()A.180元B.120元C.80元D.60元考点:一元一次方程的应用.分析:设这款服装的进价为x元,就可以根据题意建立方程300×0.8﹣x=60,就可以求出进价,再用标价减去进价就可以求出结论.解答:解:设这款服装的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.300﹣180=120,∴这款服装每件的标价比进价多120元.故选B.点评:本题时一道销售问题.考查了列一元一次方程解实际问题的运用,利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.7.把一根长100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为()A.70cm B.65cm C.35cm D.35cm或65cm考点:一元一次方程的应用.分析:设一段为x(cm),则另一段为(2x﹣5)(cm),再由总长为100cm,可得出方程,解出即可.解答:解:设一段为x,则另一段为(2x﹣5),由题意得,x+2x﹣5=100,解得:x=35(cm),则另一段为:65(cm).故选A.点评:本题考查了一元一次方程的应用,解答本题的关键是设出未知数,根据总长为100cm得出方程,难度一般.8.图(①)为一正面白色,反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上黏贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图(②)所示.若图(②)中白色与灰色区域的面积比为8:3,图(②)纸片的面积为33,则图(①)纸片的面积为何?()A.B. C 42 D.44考点:一元一次方程的应用.分析:设每一份为x,则图②中白色的面积为8x,灰色部分的面积为3x,根据②中的纸片的面积为33为等量关系建立方程,求出其解即可.解答:解:设每一份为x,则图②中白色的面积为8x,灰色部分的面积为3x,由题意,得8x+3x=33,解得:x=3,∴灰色部分的面积为:3×3=9,∴图(①)纸片的面积为:33+9=42.故选:C.点评:本题考查了比列问题在解实际问题中的运用,一元一次方程的解法的运用,解答时根据条件建立方程求出灰色部分的面积是关键.9.我市围绕“科学节粮减损,保障食品安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分比农户实际出资的三倍还多30元,则购买一套小货仓农户实际出资是()A.80元B.95元C.135元D.270元考点:一元一次方程的应用.分析:设购买一套小货仓农户实际出资是x元,根据政府补贴是农户实际出资的三倍还多30元后,每套小粮仓的定价是350元,可列方程求解.解答:解:设购买一套小货仓农户实际出资是x元,依题意有x+3x+30=350,4x=320,x=80.答:购买一套小货仓农户实际出资是80元.故选:A.点评:本题考查理解题意的能力,设出购买一套小货仓农户实际出资,以每套小粮仓的定价作为等量关系列方程求解.二.填空题(共8小题)10.方程3x+1=7的根是x=2.考点:解一元一次方程.专题:常规题型.分析:根据一元一次方程的解法,移项、合并同类项、系数化为1即可.解答:解:移项得,3x=7﹣1,合并同类项得,3x=6,系数化为1得,x=2.故答案为:x=2.点评:本题考查了移项、合并同类项解一元一次方程,是基础题,比较简单.11.某地居民年收入所得税征收标准如下:不超过28000元部分征收a%的税,超过28000元的部分征收(a+2)%的税.如果某居民年收入所得税是其年收入的(a+0.25)%,那么该居民的年收入为32000元.考点:一元一次方程的应用.分析:设该居民的年收入为x元,根据不超过28000元部分征收a%的税+超过28000元的部分征收(a+2)%的税=年收入所得税是其年收入的(a+0.25)%列方程解答即可.解答:解:该居民的年收入为x元,由题意得,28000×a%+(x﹣28000)(a+2)%=x(a+0.25)%整理得:1.75x=56000解得:x=32000答:该居民的年收入为32000元.故答案为:32000.点评:此题考查一元一次方程的实际运用,注意题目蕴含的数量关系,正确列出方程解决问题.12.某市按以下规定收取每月的水费:用水量不超过6吨,按每吨1.2元收费;如果超过6吨,未超过部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份实际用水8吨.考点:一元一次方程的应用.分析:水费平均为每吨1.4元大于1.2元,说明本月用水超过了6吨,那么标准内的水费加上超出部分就是实际水费.根据这个等量关系列出方程求解.解答:解:设该用户5月份实际用水x吨,则1.2×6+(x﹣6)×2=1.4x,7.2+2x﹣12=1.4x,0.6x=4.8,x=8.答:该用户5月份实际用水8吨.故答案为8.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13.当m=2时,关于x的方程x2﹣m﹣mx+1=0是一元一次方程.考点:一元一次方程的定义.分析:根据一元一次方程的定义列出2﹣m=0,通过解该方程可以求得m的值.解答:解:∵关于x的方程x2﹣m﹣mx+1=0是一元一次方程,∴2﹣m=0,解得,m=2.故答案为:2.点评:本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.14.若关于x的方程ax=2a+3的根为x=3,则a的值为3.考点:一元一次方程的解.专题:计算题.分析:把方程的解代入原方程得a为未知数的方程,再求解.解答:解:把x=3代入方程ax=2a+3,得:3a=2a+3,解得:a=3.故填:3.点评:本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.15.如果关于x的方程(a2﹣1)x=a+1无解,那么实数a=1.考点:一元一次方程的解.专题:计算题.分析:当x系数为0时,方程无解,即可求出此时a的值.解答:解:∵方程(a2﹣1)x=a+1无解,∴a2﹣1=0,且a+1≠0,解得:a=1.故答案为:1点评:此题考查了一元一次方程的解,弄清题意是解本题的关键.16.若5x﹣5的值与2x﹣9的值互为相反数,则x=2.考点:解一元一次方程;相反数.专题:计算题.分析:由5x﹣5的值与2x﹣9的值互为相反数可知:5x﹣5+2x﹣9=0,解此方程即可求得答案.解答:解:由题意可得:5x﹣5+2x﹣9=0,∴7x=14,∴x=2.点评:本题比较简单,考查了相反数的性质以及一元一次方程的解法.17.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价2750元.考点:一元一次方程的应用.分析:设空调的标价为x元,根据销售问题的数量关系利润=售价﹣进价=进价×利润率建立方程求出其解就可以了.解答:解:设空调的标价为x元,由题意,得80%x﹣2000=2000×10%,解得:x=2750.故答案为:2750.点评:本题是一道关于销售问题的运用题,考查了利润=售价﹣进价=进价×利润率在实际问题中的运用,解答时根据销售问题的数量关系建立方程是关键.三.解答题(共9小题)18.解方程:3(x+4)=x.考点:解一元一次方程.专题:计算题.分析:方程去分母,移项合并,将x系数化为1,即可求出解.解答:解:去括号得:3x+12=x,移项合并得:2x=﹣12,解得:x=﹣6.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.19.解方程:.考点:解一元一次方程.专题:计算题.分析:方程去括号,移项合并,将x系数化为1,即可求出解.解答:解:方程去括号得:3x+2=8+x,移项合并得:2x=6,解得:x=3.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.20.一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件外衣的标价为多少元?(注:)考点:一元一次方程的应用.分析:设这件外衣的标价为x元,就可以表示出售价为0.8x元,根据利润的售价﹣进价=进价×利润率建立方程求出其解即可.解答:解:设这件外衣的标价为x元,依题意得0.8x﹣200=200×10%.0.8x=20+200.0.8x=220.x=275.答:这件外衣的标价为275元.点评:本题考查了销售问题在实际生活中的运用,列一元一次方程解实际问题的运用,根据)建立方程是解答本题的关键.21.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.考点:一元一次方程的应用.分析:设甲队整治了x天,则乙队整治了(20﹣x)天,由两队一共整治了360m 为等量关系建立方程求出其解即可.解答:解:设甲队整治了x天,则乙队整治了(20﹣x)天,由题意,得24x+16(20﹣x)=360,解得:x=5,∴乙队整治了20﹣5=15天,∴甲队整治的河道长为:24×5=120m;乙队整治的河道长为:16×15=240m.答:甲、乙两个工程队分别整治了120m,240m.点评:本题是一道工程问题,考查了列一元一次方程解实际问题的运用,设间接未知数解应用题的运用,解答时设间接未知数是解答本题的关键.22.为迎接6月5日的“世界环境日”,某校团委开展“光盘行动”,倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加,七(1)班参加的人数比七(2)班多10人,请问七(1)班和七(2)班各有多少人参加“光盘行动”?考点:一元一次方程的应用.分析:首先确定相等关系:该校七年级(1)、(2)、(3)三个班共128人参加了活动,由此列一元一次方程求解.解答:解:设七(2)班有x人参加“光盘行动”,则七(1)班有(x+10)人参加“光盘行动”,依题意有(x+10)+x+48=128,解得x=35,则x+10=45.答:七(1)班有45人参加“光盘行动”,七(2)班有35人参加“光盘行动”.点评:此题考查的知识点是一元一次方程组的应用,关键是先确定相等关系,然后列方程求解.23.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?考点:一元一次方程的应用.分析:设该市规定的每户每月标准用水量为x吨,然后可得出方程,解出即可.解答:解:设该市规定的每户每月标准用水量为x吨,∵12×1.5=18<20,∴x<12则1.5x+2.5(12﹣x)=20,解得:x=10.答:该市规定的每户每月标准用水量为10吨.点评:本题考查了一元一次方程的应用,属于基础题,解题关键是判断出x的范围,根据等量关系得出方程.24.某天,一蔬菜经营户用114元从蔬菜批发市场购进黄瓜和土豆共40kg到菜市场去卖,黄瓜和土豆这天的批发价和零售价(单位:元/kg)如下表所示:品名批发价零售价黄瓜 2.4 4土豆 3 5(1)他当天购进黄瓜和土豆各多少千克?(2)如果黄瓜和土豆全部卖完,他能赚多少钱?考点:一元一次方程的应用.分析:(1)设他当天购进黄瓜x千克,则土豆(40﹣x)千克,根据黄瓜的批发价是2.4元,土豆批发价是3元,共花了114元,列出方程,求出x的值,即可求出答案;(2)根据(1)得出的黄瓜和土豆的斤数,再求出每斤黄瓜和土豆赚的钱数,即可求出总的赚的钱数.解答:解:(1)设他当天购进黄瓜x千克,则土豆(40﹣x)千克,根据题意得:2.4x+3(40﹣x)=114,解得:x=10则土豆为40﹣10=30(千克);答:他当天购进黄瓜10千克,土豆30千克;(2)根据题意得:(4﹣2.4)×10+(5﹣3)×30=16+60=76(元).答:黄瓜和土豆全部卖完,他能赚76元.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.用到的知识点是:单价×数量=总价.25.列方程或方程组解应用题:为保证学生有足够的睡眠,政协委员于今年两会向大会提出一个议案,即“推迟中小学生早晨上课时间”,这个议案当即得到不少人大代表的支持.根据北京市教委的要求,学生小强所在学校将学生到校时间推迟半小时.小强原来7点从家出发乘坐公共汽车,7点20分到校;现在小强若由父母开车送其上学,7点45分出发,7点50分就到学校了.已知小强乘自家车比乘公交车平均每小时快36千米,求从小强家到学校的路程是多少千米?考点:一元一次方程的应用.专题:应用题;行程问题.分析:小强原来7点从家出发乘坐公共汽车,7点20分到校;即:乘公共汽车20分钟即小时到校;小强若由父母开车送其上学,7点45分出发,7点50分就到学校了即:开车到校的时间是:小时.若设小强乘公交车的平均速度是每小时x千米,则小强乘自家车的平均速度是每小时(x+36)千米.则从家到学校的距离是:=,这样就得到方程.解答:解:设小强乘公交车的平均速度是每小时x千米,则小强乘自家车的平均速度是每小时(x+36)千米.依题意得:.解得:x=12.∴.答:从小强家到学校的路程是4千米.点评:列方程解应用题的关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.26.将一箱苹果分给一群小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则最后有一个小朋友只分到2个苹果.求这群小朋友的人数.考点:一元一次方程的应用.分析:根据每位小朋友分5个苹果,则还剩12个苹果,即:设有x人,则苹果有(5x+12)个;再利用若每位小朋友分8个苹果,则最后有一个小朋友只分到2个苹果,得出等式方程求出即可.解答:解:设这群小朋友有x人,则苹果为(5x+12)个,(1分)依题意得:8(x﹣1)+2=5x+12,…(3分),解得:x=6,答:这群小朋友的人数是6人…(4分).点评:此题主要考查了一元一次方程的应用,将现实生活中的事件与数学思想联系起来,根据表示苹果的总数得出等量关系是解题关键.。
专题05 一元一次方程与二元一次方程组-三年(2019-2021)中考真题数学分项汇编(解析版)
专题05.一元一次方程与二元一次方程组一、单选题1.(2021·湖南株洲市·中考真题)方程122x-=的解是( ) A .2x = B .3x =C .5x =D .6x =【答案】D【分析】通过移项、合并同类项、系数化为1三个步骤即可完成求解. 【详解】解:122x -=,32x=,6x =;故选:D . 【点睛】本题考查了解一元一次方程,解决本题的关键是牢记解一元一次方程的基本步骤,即“去分母、去括号、移项、合并同类项、系数化为1”,并能灵活运用;本题较基础,考查了学生的基本功.2.(2021·浙江杭州市·中考真题)某景点今年四月接待游客25万人次,五月接待游客60.5万人次,设该景点今年四月到五月接待游客人次的增长率为x (0x >),则( )A .()60.5125x -=B .()25160.5x -=C .()60.5125x +=D .()25160.5x += 【答案】D【分析】根据题意可直接列出方程进行排除选项即可. 【详解】解:由题意得:()25160.5x +=;故选D .【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键. 3.(2021·浙江温州市·中考真题)解方程()221x x -+=,以下去括号正确的是( ) A .41x x -+=- B .42x x -+=-C .41x x --=D .42x x --=【答案】D【分析】去括号得法则:括号前面是正因数,去掉括号和正号,括号里的每一项都不变号;括号前面是负因数,去掉括号和负号,括号里的每一项都变号. 【详解】解:()221x x -+=,42x x --=,故选:D .【点睛】此题主要考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.去括号注意几点:①不要漏乘括号里的每一项;②括号前面是负因数,去掉括号和负号,括号里的每一项一定都变号.4.(2021·安徽中考真题)设a ,b ,c 为互不相等的实数,且4155b ac =+,则下列结论正确的是( )A .a b c >>B .c b a >>C .4()a b b c -=-D .5()a c a b -=-【答案】D【分析】举反例可判断A 和B ,将式子整理可判断C 和D . 【详解】解:A .当5a =,10c =,41655b ac =+=时,c b a >>,故A 错误; B .当10a =,5c =,41955b ac =+=时,a b c >>,故B 错误; C .4()a b b c -=-整理可得1455b ac =-,故C 错误;D .5()a c a b -=-整理可得4155b ac =+,故D 正确;故选:D . 【点睛】本题考查等式的性质,掌握等式的性质是解题的关键.5.(2021·湖北武汉市·中考真题)我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( ) A .()()8374x x -=+ B .8374x x +=- C .3487y y -+= D .3487y y +-=【答案】D【分析】设共有x 人,根据物价不变列方程;设物价是y 钱,根据人数不变即可列出一元一次方程;由此即可确定正确答案【详解】解:设共有x 人,则有8x -3=7x +4 设物价是y 钱,则根据可得:3487y y +-=故选D . 【点睛】本题主要考查了列一元一次方程,正确审题、发现隐藏的等量关系成为解答本题的关键. 6.(2021·湖南株洲市·中考真题)《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十……”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米……”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得粝米为( ) A .1.8升 B .16升C .18升D .50升【答案】C【分析】先进行单位换算,再利用50单位的粟,可换得30单位的粝米的关系,建立方程,求解即可. 【详解】解:由题可知,3斗的粟即为30升的粟, 设其可以换得粝米为x 升,则303050x =,∴18x =,∴可以换得粝米为18升;故选:C .【点睛】本题考查了一元一次方程的应用,解决本题的关键是找到相等关系,即“50单位的粟,可换得30单位的粝米……”,要求学生能将题干的文字内容转化为数学符号的形式,能正确理解题意,找到相等关系,列出方程.7.(2021·湖南中考真题)已知二元一次方程组2521x y x y -=⎧⎨-=⎩,则x y -的值为( )A .2B .6C .2-D .6-【答案】A【分析】把两个方程相加得3x -3y =6,进而即可求解.【详解】解:2521x y x y -=⎧⎨-=⎩①②,①+②得:3x -3y =6,∴x -y =2,故选A .【点睛】本题主要考查代数式的值,掌握解二元一次方程组的加减消元法,是解题的关键.8.(2021·新疆中考真题)某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是( )A .26216x y x y +=⎧⎨+=⎩B .26216x y x y +=⎧⎨+=⎩C .16226x y x y +=⎧⎨+=⎩D .16226x y x y +=⎧⎨+=⎩【答案】D【分析】总共有16场比赛,则16x y +=,得分为26分,则226x y +=,由此判断即可. 【详解】由题意可得:16226x y x y +=⎧⎨+=⎩,故选:D .【点睛】本题考查列二元一次方程组,理解题意,理清数量关系是解题关键.9.(2021·湖北宜昌市·中考真题)我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x 人,物价为y 钱,下列方程组正确的是( )A .8374y x y x =-⎧⎨=+⎩B .8374y x y x =+⎧⎨=+⎩C .8374y x y x =-⎧⎨=-⎩D .8374y x y x =+⎧⎨=-⎩【答案】A【分析】根据题设人数为x人,物价为y钱,抓住等量关系每人出八钱8x 剩三钱;每人出七钱7x 少4钱,列方程组即可.【详解】解:由题设人数为x人,物价为y钱, 由每人出八钱,会多三钱;总钱数y =8x -3, 每人出七钱,又差四钱:总钱数y =7x +4, ∴联立方程组为8374y x y x =-⎧⎨=+⎩.故选择A .【点睛】本题考查列二元一次方程组解应用题,掌握列二元一次方程组解应用题的方法与步骤,抓住等量关系:每人出八钱8x 剩三钱;每人出七钱7x 少4钱列方程组是解题关键.10.(2021·江苏苏州市·中考真题)某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x 架,乙种型号无人机y 架.根据题意可列出的方程组是( )A .()()111,3122x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩B .()()111.3122x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩C .()()111,2123x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩D .()()111,2123x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩【答案】D【分析】分析题意,找到两个等量关系,分别列出方程,联立即可. 【详解】设甲种型号无人机x 架,乙种型号无人机y 架∵甲种型号无人机架数比总架数的一半多11架,∴()1112x x y =++ ∵乙种型号无人机架数比总架数的三分之一少2架∴()123y x y =+-联立可得:()()1112123x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩故选:D .【点睛】本题考查实际问题与二元一次方程组.关键在于找到题中所对应的等量关系式. 11.(2021·天津中考真题)方程组234x y x y +=⎧⎨+=⎩的解是( )A .02x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .22x y =⎧⎨=-⎩D .33x y =⎧⎨=-⎩【答案】B【分析】直接利用加减消元法解该二元一次方程组即可. 【详解】234x y x y +=⎧⎨+=⎩①②,②-①得:32x y x y +--=,即22x =,∴1x =. 将1x =代入①得:12y +=,∴1y =.故原二元一次方程组的解为11x y =⎧⎨=⎩.故选B . 【点睛】本题考查解二元一次方程组.掌握解二元一次方程组的方法和步骤是解答本题的关键.12.(2021·浙江宁波市·中考真题)我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( )A .510330x y x y +=⎧⎨+=⎩B .531030x y x y +=⎧⎨+=⎩C .305103x y x y+=⎧⎪⎨+=⎪⎩ D .305310x y x y+=⎧⎪⎨+=⎪⎩ 【答案】A【分析】根据“现在拿30斗谷子,共换了5斗酒”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】解:依题意,得:510330x y x y +=⎧⎨+=⎩.故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组和数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.13.(2020·湖南益阳市·中考真题)同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( ) A .45x y =⎧⎨=-⎩B .45x y =-⎧⎨=⎩C .23x y =-⎧⎨=⎩D .36x y =⎧⎨=-⎩【答案】A【分析】联立9x y -=和431x y +=解二元一次方程组即可. 【详解】解:有题意得:9431x y x y -=⎧⎨+=⎩①② 由①得x=9+y ③将③代入②得:36+4y+3y=1,解得y=-5则x=9+(-5)=4所以x=4,y=-5.故选:A .【点睛】本题考查了二元一次方程组的应用及解法,掌握二元一次方程组的解法是解答本题的关键.14.(2020·辽宁铁岭市·)我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米,根据题意,所列方程组正确的是( ) A .223400x y x y =-⎧⎨+=⎩ B .223()40050x y x x y =-⎧⎨++=-⎩C .22340050x y x y =+⎧⎨+=-⎩ D .223()40050x y x x y =+⎧⎨++=-⎩【答案】D【分析】根据“甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程”和“甲工程队每天比乙工程队多施工2米”可分别列出方程,联立即可.【详解】解:依据题意:“甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程”可列方程23()40050x x y ++=-,“甲工程队每天比乙工程队多施工2米”可列方程2x y =+,故可列方程组:223()40050x y x x y =+⎧⎨++=-⎩,故选:D .【点睛】本题考查列二元一次方程组.能仔细读题,找出描述等量关系的语句是解题关键.15.(2020·黑龙江齐齐哈尔市·中考真题)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有( ) A .3种 B .4种C .5种D .6种【答案】B【分析】设可以购买x 支康乃馨,y 支百合,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出小明有4种购买方案.【详解】解:设可以购买x 支康乃馨,y 支百合,依题意,得:2x +3y =30,∴y =10﹣23x . ∵x ,y 均为正整数,∴38x y =⎧⎨=⎩,66x y =⎧⎨=⎩,94x y =⎧⎨=⎩,122x y =⎧⎨=⎩,∴小明有4种购买方案.故选:B . 【点睛】本题考查了二元一次方程应用中的整数解问题,找准等量关系,正确列出二元一次方程是解题的关键.16.(2020·黑龙江牡丹江市·朝鲜族学校中考真题)若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x+2y 的算术平方根为( ) A .3 B .3,-3CD【答案】C 【分析】将21a b =⎧⎨=⎩代入二元一次方程组中解出x 和y 的值,再计算x +2y 的算术平方根即可.【详解】解:将21a b =⎧⎨=⎩代入二元一次方程3522ax by ax by ⎧+=⎪⎨⎪-=⎩中,得到:3522+=⎧⎨-=⎩x y x y ,解这个关于x 和y 的二元一次方程组,两式相加,解75x =得,将75x =回代方程中,解得45y =, ∴7415223555+=+⨯==x y ,∴x +2yC . 【点睛】本题考查了二元一次方程组的解法,算术平方根的概念等,熟练掌握二元一次方程组的解法是解决本题的关键.17.(2020·天津中考真题)方程组241x y x y +=⎧⎨-=-⎩的解是( )A .12x y =⎧⎨=⎩B .32x y =-⎧⎨=-⎩C .2x y =⎧⎨=⎩D .31x y =⎧⎨=-⎩【答案】A【分析】利用加减消元法解出,x y 的值即可. 【详解】解:241x y x y +=⎧⎨-=-⎩①②①+②得:33x =,解得:1x =,把1x =代入②中得:11y -=-,解得:2y =, ∴方程组的解为:12x y =⎧⎨=⎩;故选:A . 【点睛】本题考查了二元一次方程组的解法——加减消元法和代入消元法,根据具体的方程组选取合适的方法是解决本类题目的关键.18.(2020·浙江绍兴市·中考真题)同型号的甲、乙两辆车加满气体燃料后均可行驶210km .它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km【答案】B【分析】设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,然后画出图形、确定等量关系、列出关于x和y的二元一次方程组并求解即可.【详解】解:设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:设AB=xkm,AC=ykm,根据题意得:222102210x yx y x+=⨯⎧⎨-+=⎩,解得:14070xy=⎧⎨=⎩.∴乙在C地时加注行驶70km的燃料,则AB的最大长度是140km.故答案为B.【点睛】本题考查了二元一次方程组在行程问题中的应用,弄清题意、确定等量关系、列出方程组是解答本题的关键.19.(2020·浙江嘉兴市·中考真题)用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【分析】根据各选项分别计算,即可解答.【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.【点睛】本题考查了加减消元法解二元一次方程组,只有当两个二元一次方程未知数的系数相同或相反时才可以用加减法消元,系数相同相减消元,系数相反相加消元.20.(2020·贵州毕节市·中考真题)由于换季,超市准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元;而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.300元B.270元C.250元D.230元【答案】A【分析】七五折售价+亏损25元=九折售价-盈利的20元,根据此成本不变等量关系列出方程,求出方程的解即可得到结果.【详解】解:设该商品的原售价为x 元,根据题意得:75%x+25=90%x -20,解得:x=300, 则该商品的原售价为300元.故选:A .【点睛】此题考查了一元一次方程的应用,弄清题中的等量关系是解本题的关键.21.(2020·广西玉林市·中考真题)观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…;若最后三个数之和是3000,则n 等于( ) A .499 B .500C .501D .1002【答案】C【分析】根据题意列出方程求出最后一个数,除去一半即为n 的值. 【详解】设最后三位数为x -4,x -2,x .由题意得: x -4+x -2+x =3000, 解得x =1002.n =1002÷2=501.故选C .【点睛】本题考查找规律的题型,关键在于列出方程简化步骤.22.(2020·湖北恩施土家族苗族自治州·中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ). A .1- B .1C .0D .2【答案】C【分析】根据题目中给出的新定义运算规则进行运算即可求解. 【详解】解:由题意知:2211☆=+-=+x x x , 又21x =☆,∴11x +=,∴0x =.故选:C .【点睛】本题考查了实数的计算,一元一次方程的解法,本题的关键是能看明白题目意思,根据新定义的运算规则求解即可.23.(2020·江苏盐城市·中考真题)把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )A .1B .3C .4D .6【答案】A【分析】根据题意求出“九宫格”中的y ,再求出x 即可求解. 【详解】如图,依题意可得2+5+8=2+7+y 解得y=6 ∴8+x+6=2+5+8解得x=1故选A .【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意得到方程求解. 24.(2020·青海中考真题)根据图中给出的信息,可得正确的方程是( )A .2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭B .2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯- ⎪ ⎪⎝⎭⎝⎭C .2286(5)x x ππ⨯=⨯⨯+D .22865x ππ⨯=⨯⨯【答案】A【分析】根据题意可得相等关系的量为“水的体积”,然后利用圆柱体积公式列出方程即可. 【详解】解:大量筒中的水的体积为:282x π⎛⎫⨯ ⎪⎝⎭,小量筒中的水的体积为:26(5)2x π⎛⎫⨯⨯+ ⎪⎝⎭, 则可列方程为:2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭.故选A. 【点睛】本题主要考查列方程,解此题的关键在于准确找到题中相等关系的量,然后利用圆柱的体积公式列出方程即可.25.(2019·内蒙古赤峰市·中考真题)如图,小聪用一张面积为1的正方形纸片,按如下方式操作: ①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉; ②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为( ).A .20192B .201812C .201912D .202012【答案】C 【分析】根据正方形的面积公式,即可推出操作次数与余下面积的关系式.【详解】解:正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开, 第一次:余下面积112S =,第二次:余下面积2212S =,第三次:余下面积3312S =, 当完成第2019次操作时,余下纸片的面积为201920191S 2=,故选C . 【点睛】本题考查数字问题,熟练掌握计算法则是解题关键.26.(2019·四川南充市·中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9B .8C .5D .4【答案】C【分析】根据一元一次方程的概念和其解的概念解答即可.【详解】解:因为关于x 的一元一次方程2x a -2+m=4的解为x=1,可得:a -2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选C .【点睛】此题考查一元一次方程的定义,关键是根据一元一次方程的概念和其解的概念解答.27.(2019·辽宁朝阳市·中考真题)关于x ,y 的二元一次方程组2mx y n x ny m +=⎧⎨-=⎩的解是02x y =⎧⎨=⎩,则m n +的值为( )A .4B .2C .1D .0 【答案】D【分析】根据二元一次方程组的解的概念,把02x y =⎧⎨=⎩代入方程组中即可求出m 、n 的值,进一步即得答案. 【详解】解:把02x y =⎧⎨=⎩代入得:222n n m =⎧⎨-=⎩,解得:22m n =-⎧⎨=⎩,∴0m n +=,故选D . 【点睛】本题考查的二元一次方程组的解及其解法,熟练掌握二元一次方程组的解的概念是求解的关键. 28.(2019·广西柳州市·中考真题)阅读(资料),完成下面小题.(资料):如图,这是根据公开资料整理绘制而成的2004﹣2018年中美两国国内生产总值(GDP )的直方图及发展趋势线.(注:趋势线由Excel 系统根据数据自动生成,趋势线中的y 表示GDP ,x 表示年数)依据(资料)中所提供的信息,可以推算出中国的GDP 要超过美国,至少要到( )A .2052年B .2038年C .2037年D .2034年【答案】B【分析】联立两个一次函数解析式,求解即可.【详解】解:由图表信息,联立中美GDP 趋势线解析式得0.860.4680.5311.778y x y x =+⎧⎨=+⎩解得33411x = ∴332018341520371111⎛⎫+-= ⎪⎝⎭故选B . 【点睛】本题是由图表结合一次函数,利用二元一次方程组求解实际问题的,读懂信息是解题的关键. 29.(2019·江苏南通市·中考真题)已知a 、b 满足方程组324236a b a b +=⎧⎨+=⎩,则a+b 的值为( ) A .2B .4C .-2D .-4【答案】A【分析】观察可知将两个方程相加得5510a b +=,化简即可求得答案. 【详解】324236a b a b +=⎧⎨+=⎩①②,①+②,得5a+5b=10,所以a+b=2,故选A. 【点睛】本题考查了二元一次方程组的特殊解法,根据二元一次方程组的特点灵活选用恰当的方法是解题的关键.30.(2019·广西贺州市·中考真题)已知方程组2325x y x y +=⎧⎨-=⎩,则26x y +的值是( )A .﹣2B .2C .﹣4D .4【答案】C 【分析】两式相减,得32x y +=﹣,所以234x y +()=﹣,即264x y +=﹣ . 【详解】解:两式相减,得32x y +=﹣,∴234x y +()=﹣ ,即264x y +=﹣,故选C . 【点睛】本题考查了二元一次方程组,对原方程组进行变形是解题的关键31.(2019·湖南永州市·中考真题)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a :b :c :d :e =2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为( )A.甲B.乙C.丙D.丁【答案】A【分析】设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨,设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米,设运输的运费每吨为z元/千米,①设在甲处建总仓库,则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库,则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库,则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库,则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;进行比较运费最少的即可.【详解】∵甲、乙、丙、丁各基地的产量之比等于4:5:4:2,设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨,∵各基地之间的距离之比a:b:c:d:e=2:3:4:3:3,设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米,设运输的运费每吨为z元/千米,①设在甲处建总仓库,则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库,∵a+d=5y,b+c=7y,∴a+d<b+c,则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库,则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库,则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;由以上可得建在甲处最合适,故选A.【点睛】本题考查了三元一次方程的应用;设出未知数,求出各个运费是解题的关键.32.(2019·湖北荆门市·)已知实数,x y满足方程组3212x yx y-=⎧⎨+=⎩,则222x y-的值为()A.1-B.1C.3D.3-【答案】A【分析】首先解方程组,求出,x y 的值,然后代入所求代数式即可.【详解】3212x y x y -=⎧⎨+=⎩①②,2⨯①+②,得55x =,解得1x=,把1x=代入②得,12y +=,解得y=1,22222121121x y ∴-=-⨯=-=-.故选A .【点睛】此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.正确解关于x 、y 的方程组是关键.33.(2019·山东菏泽市·中考真题)已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( ) A .﹣1B .1C .﹣5D .5【答案】A 【分析】把32x y =⎧⎨=-⎩代入方程组,可得关于a 、b 的方程组,继而根据二元一次方程组的解法即可求出答案. 【详解】将32x y =⎧⎨=-⎩代入23ax by bx ay +=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-,故选A . 【点睛】本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法.二、填空题34.(2021·湖南邵阳市·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱.【答案】53【分析】设人数为x ,再根据两种付费的总钱数一样即可求解.【详解】解:设一共有x 人由题意得:8374x x -=+解得:7x =所以价值为:78353⨯-=(钱)故答案是:53.【点睛】本题考察一元一次方程的应用,难度不大,属于基础题型.解题的关键是找准等量关系并准确表示.35.(2021·江苏扬州市·中考真题)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.【答案】20【分析】设良马行x 日追上驽马,根据路程=速度×时间结合两马的路程相等,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设快马行x 天追上慢马,则此时慢马行了(x +12)日,依题意,得:240x =150(x +12),解得:x =20,∴快马20天追上慢马,故答案为:20.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 36.(2021·重庆中考真题)若关于x 的方程442x a -+=的解是2x =,则a 的值为__________. 【答案】3【分析】将x =2代入已知方程列出关于a 的方程,通过解该方程来求a 的值即可. 【详解】解:根据题意,知4242a -+=,解得a =3.故答案是:3. 【点睛】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.37.(2021·重庆中考真题)盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A ,B ,C 三种盲盒各一个,其中A 盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B 盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C 盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A 盒的成本为145元,B 盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C 盒的成本为__________元.【答案】155【分析】设B 盒中蓝牙耳机3a 个,迷你音箱2a 个,列方程求出B 盒中各种设备的数量,再设蓝牙耳机、多接口优盘、迷你音箱的成本分别为x 、y 、z 元,根据题意列出方程组,再整体求出32x y z ++的值即可.【详解】解:根据题意,设B 盒中蓝牙耳机3a 个,迷你音箱2a 个,优盘的数量为3a+2a=5 a 个,则23132513222a a a ++++++++=,解得,a=1;设蓝牙耳机、多接口优盘、迷你音箱的成本分别为x 、y 、z 元,根据题意列方程组得,23145352245x y z x y z ++=⎧⎨++=⎩①② ②-①得,2100x y z ++=③,③×3-①得,32155x y z ++=,故答案为:155.【点睛】本题考查了三元一次方程组和一元一次方程的应用,解题关键是找准题目中的等量关系列出方程(组),熟练运用等式的性质进行方程变形,整体求值.38.(2021·重庆中考真题)方程2(3)6x -=的解是__________.【答案】6x =【分析】按照解一元一次方程的方法和步骤解方程即可.【详解】解:2(3)6x -=,去括号得,266x -=,移项得,212x =,系数化为1得,6x =,故答案为:6x =.【点睛】本题考查了一元一次方程的解法,解题关键是熟练运用一元一次方程的解法解方程.39.(2021·四川广安市·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______. 【答案】-6【分析】根据方程组中x +2y 和x -2y 的值,将代数式利用平方差公式分解,再代入计算即可.【详解】解:∵x -2y =-2,x +2y =3,∴x 2-4y 2=(x +2y )(x -2y )=3×(-2)=-6,故答案为:-6.【点睛】本题主要考查方程组的解及代数式的求值,观察待求代数式的特点与方程组中两方程的联系是解题关键.40.(2021·浙江金华市·中考真题)已知2x y m =⎧⎨=⎩是方程3210x y +=的一个解,则m 的值是____________. 【答案】2【分析】把解代入方程,得6+2m =10,转化为关于m 的一元一次方程,求解即可.【详解】∵2x y m =⎧⎨=⎩是方程3210x y +=的一个解,∴6+2m =10,解得m =2,故答案为:2. 【点睛】本题考查了二元一次方程的解,一元一次方程的解法,灵活运用方程的解的定义,转化为一元一次方程求解是解题的关键.41.(2021·四川凉山彝族自治州·中考真题)已知13x y =⎧⎨=⎩是方程2ax y +=的解,则a 的值为______________.【答案】-1【分析】根据方程解的定义,将x =1,y =3代入方程2ax y +=,即可求得a 的值.【详解】解:根据题意,将x =1,y =3代入方程2ax y +=,得:32a +=,解得:a =-1,故答案为:-1.【点睛】本题考查了二元一次方程的解,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.42.(2021·浙江嘉兴市·中考真题)已知二元一次方程314+=x y ,请写出该方程的一组整数解__________________.【答案】24x y =⎧⎨=⎩(答案不唯一) 【分析】根据题意确定出方程的整数解即可.【详解】解:方程314+=x y 的一组整数解为24x y =⎧⎨=⎩故答案为:24x y =⎧⎨=⎩(答案不唯一) 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.43.(2021·四川遂宁市·中考真题)已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a的取值范围是____.【答案】1a >.【分析】根据题目中方程组的的特点,将两个方程作差,即可用含a 的代数式表示出x y -,再根据0x y ->,即可求得a 的取值范围,本题得以解决.【详解】解:235423x y a x y a +=⎧⎨+=+⎩①②①-②,得33x y a -=-∵0x y ->∴330a ->,解得1a >,故答案为:1a >.【点睛】本题考查解一元一次不等式,二元一次方程组的解,熟悉相关性质是解答本题的关键. 44.(2021·山东泰安市·中考真题)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己23的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱数为x ,乙持钱数为y ,可列方程组为________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
价,乙种手机加价 40%作为标价.
从 A,B 两种中任选一题作答:
A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利 1570 元.
求甲,乙两种手机每部的进价.
B:经销商采购甲种手机的数量是乙种手机数量的乙种手机很快售完,接着甲种手机的最后 10 部按标价的八折全部售完.在
2.如图,已知点 A 在数轴上对应的数为 a,点 B 对应的数为 b,且 a、b 满足|a+3|+(b﹣ 2)2=0.
(1)求 A、B 两点的对应的数 a、b;
(2)点 C 在数轴上对应的数为 x,且 x 是方程 2x+1= x﹣8 的解. ①求线段 BC 的长; ②在数轴上是否存在点 P,使 PA+PB=BC?求出点 P 对应的数;若不存在,说明理由. 【答案】 (1)解:∵ |a+3|+(b﹣2)2=0, ∴ a+3=0,b﹣2=0, 解得,a=﹣3,b=2, 即点 A 表示的数是﹣3,点 B 表示的数是 2 。
(2)解:15 秒时 OC 平分∠ MON,理由如下: ∵ ∠ AON+∠ BOM=90°,∠ CON=∠ COM, ∵ ∠ MON=90°,
∴ ∠ CON=∠ COM=45°, ∵ 三角板绕点 O 以每秒 3°的速度,射线 OC 也绕 O 点以每秒 6°的速度旋转, 设∠ AON 为 3t,∠ AOC 为 30°+6t, ∵ ∠ AOC﹣∠ AON=45°, 可得:6t﹣3t=15°, 解得:t=5 秒
B:乙种手机:
部,甲种手机
部,
设每部甲种手机的进价为 元,每部乙种手机的进价
元,
根据题意,得
解得:
答:求甲,乙两种手机每部的进价分别为:2000 元,3000 元. 【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列 出,然后解方程得到结果。(2)A 根据进价加利润等于甲和乙的售价,列出方程 B 先求出甲 乙的部数,表示出甲乙的标价,列出关系式,50 部甲×甲的标价+10 部甲×甲标价的八折 +40 部乙×乙的标价=利润率乘以成本,即可解出结果。
可得:180°﹣(30°+6t)= 解得:t=23.3 秒; 如图:
(90°﹣3t),
【 解 析 】 【 分 析 】 ( 1 ) ① 根 据 ∠ AON+∠ BOM=90°, ∠ COM=∠ MOB , 及 平 角 的 定 义 ∠ BOC=2∠ COM=150°,故∠ COM=75°,根据角的和差得出∠ CON=15°从而得到 AON=∠ AOC ﹣∠ CON=30°﹣15°=15° ,根据旋转的速度,就可以算出 t 的值了;②根据∠ CON=15°, ∠ AON=15°,即可得出 ON 平分∠ AOC ; (2)15 秒时 OC 平分∠ MON,理由如下:∠ AON+∠ BOM=90°,∠ CON=∠ COM,从而得出 ∠ CON=∠ COM=45°,又三角板绕点 O 以每秒 3°的速度,射线 OC 也绕 O 点以每秒 6°的速度 旋转,设∠ AON 为 3t,∠ AOC 为 30°+6t,根据∠ AOC﹣∠ AON=45°得出含 t 的方程,求解得 出 t 的值 ; ( 3)根据∠ AON+∠ BOM=90°,∠ BOC=∠ COM,及三角板绕点 O 以每秒 3°的速度,射线 OC 也绕 O 点以每秒 6°的速度旋转,故设∠ AON 为 3t,∠ AOC 为 30°+6t,从而得到∠ COM
一、初一数学一元一次方程解答题压轴题精选(难)
1.某手机经销商购进甲,乙两种品牌手机共 100 部.
(1)已知甲种手机每部进价 1500 元,售价 2000 元;乙种手机每部进价 3500 元,售价
4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少
元?
(2)已经购进甲,乙两种手机各一部共用了 5000 元,经销商把甲种手机加价 50%作为标
零从而得出
解方程组得出 a,b 的值,从而得出 A,B 两点表示的数 ;
(2)①解方程 2x+1= x﹣8 ,得出 x 的值,从而得到 C 点的坐标,根据两点间的距离得 出 BC 的长度;②存在点 P,使 PA+PB=BC 理由如下:设点 P 的表示的数为 m,根据两点间 的距 离公式列出方 程 |m﹣( ﹣3)|+|m﹣2|=8,然后 分类讨论: 当 m>2 时,解 得 m=3.5,当﹣3<m<2 时,无解 ,当 x<﹣3 时,解得 m=﹣4.5,即点 P 对应的数是 3.5 或 ﹣4.5 。
3.如图 1,O 为直线 AB 上一点,过点 O 作射线 OC,∠ AOC=30°,将一直角三角板 (∠ M=30°)的直角顶点放在点 O 处,一边 ON 在射线 OA 上,另一边 OM 与 OC 都在直线 AB 的上方.
(1)将图 1 中的三角板绕点 O 以每秒 3°的速度沿顺时针方向旋转一周.如图 2,经过 t 秒 后,OM 恰好平分∠ BOC.①求 t 的值;②此时 ON 是否平分∠ AOC?请说明理由;
(2)在(1)问的基础上,若三角板在转动的同时,射线 OC 也绕 O 点以每秒 6°的速度沿 顺时针方向旋转一周,如图 3,那么经过多长时间 OC 平分∠ MON?请说明理由; (3)在(2)问的基础上,经过多长时间 OC 平分∠ MOB?请画图并说明理由. 【答案】 (1)解:①∵ ∠ AON+∠ BOM=90°,∠ COM=∠ MOB, ∵ ∠ AOC=30°, ∴ ∠ BOC=2∠ COM=150°, ∴ ∠ COM=75°, ∴ ∠ CON=15°, ∴ ∠ AON=∠ AOC﹣∠ CON=30°﹣15°=15°, 解得:t=15°÷3°=5 秒; ②是,理由如下: ∵ ∠ CON=15°,∠ AON=15°, ∴ ON 平分∠ AOC
(3)解:OC 平分∠ MOB ∵ ∠ AON+∠ BOM=90°,∠ BOC=∠ COM, ∵ 三角板绕点 O 以每秒 3°的速度,射线 OC 也绕 O 点以每秒 6°的速度旋转, 设∠ AON 为 3t,∠ AOC 为 30°+6t,
∴ ∠ COM 为 (90°﹣3t), ∵ ∠ BOM+∠ AON=90°,
(2)解:①2x+1= x﹣8 解得 x=﹣6, ∴ BC=2﹣(﹣6)=8 即线段 BC 的长为 8; ②存在点 P,使 PA+PB=BC 理由如下: 设点 P 的表示的数为 m, 则|m﹣(﹣3)|+|m﹣2|=8, ∴ |m+3|+|m﹣2|=8, 当 m>2 时,解得 m=3.5, 当﹣3<m<2 时,无解 当 x<﹣3 时,解得 m=﹣4.5, 即点 P 对应的数是 3.5 或﹣4.5 【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为
这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.
【答案】 (1)解:设购进甲种手机 部,乙种手机
部,
根据题意,得 解得:
元.
答:销商共获利
元.
(2)解:A: 设每部甲种手机的进价为 元,每部乙种手机的进价 根据题意,得
元,
解得:
答:求甲,乙两种手机每部的进价分别为:3000 元,2000 元.