初二数学 分式的基本性质教案
《分式的基本性质》教案
《分式的基本性质》教案6知能演练提升一、能力提升1.在分式4y+3x4x ,x2-1x4-1,x2-xy+y2x+y,a2+2abab-2b2中,最简分式有()A.1个B.2个C.3个D.4个2.当x=6,y=-2时,式子x2-y2(x-y)2的值为()A.2B.43C.1 D.123.不改变分式2-3x 2+x-5x 2+2x -3的值,使分子、分母的最高次项的系数为正数的结果是( )A.3x 2+x+25x 2+2x -3 B.3x 2-x+25x 2+2x -3 C.3x 2+x -25x 2-2x+3D.3x 2-x -25x 2-2x+34.下列各题中,所求的最简公分母错误的是( ) A.13x 与a6x 2的最简公分母是6x 2 B.13a 2b 3与13a 2b 3c 的最简公分母是3a 2b 3cC.1m+n 与1m -n 的最简公分母是m 2-n 2D.1a (x -y )与1b (y -x )的最简公分母是ab (x-y )(y-x )5.等式-m m -n =-mnmn -n 2,从左到右的变形中需加的条件是 . 6.将分式的分子与分母中各项系数化为整数,则0.2x -12y14x+23y = .7.已知4x=y (y ≠0),则分式4x 2-y 2xy的值是 .8.化简求值:(1)a+3ba 2-9b 2,其中a=4,b=1; (2)b 3-9a 2bb 3+9a 2b -6ab 2,其中a=2,b=12.二、创新应用★9.从三个式子:①a 2-2ab+b 2,②3a-3b ,③a 2-b 2中任意选择两个构造成分式,然后进行化简,并求当a=6,b=3时该分式的值.知能演练·提升一、能力提升1.C 本题考查最简分式的概念.x 2-1x 4-1=1x 2+1,其余三个分式的分子、分母都不能再约分,故选C .2.D3.D2-3x 2+x-5x 2+2x -3=-(3x 2-x -2)-(5x 2-2x+3)=3x 2-x -25x 2-2x+3.4.D 本题考查分式最简公分母的确定.b (y-x )可化为-b (x-y ),与a (x-y )中有公因式(x-y ),取所有因式的积-ab (x-y ),即为最简公分母,D 错误,故选D .5.n ≠06.12x -30y15x+40y 原式=(0.2x -12y)×60(14x+23y)×60=12x -30y15x+40y .7.-3 原式=4x 2-(4x )2x ·4x=-12x 24x 2=-3.8.解 (1)原式=a+3b(a+3b )(a -3b )=1a -3b . 当a=4,b=1时,原式=14-3×1=1. (2)原式=b (b 2-9a 2)b (b 2+9a 2-6ab )=b (b+3a )(b -3a )b (b -3a )2=b+3a b -3a.当a=2,b=12时,原式=12+3×212-3×2=-1311.二、创新应用9.解 共有六种计算方法和结果,分别是: (1)a 2-2ab+b 23a -3b=a -b 3=1.(2)交换(1)中分式的分子和分母的位置,结果也为1. (3)a 2-b 23a -3b =a+b 3=3.(4)交换(3)中分式的分子和分母的位置,结果为13. (5)a 2-2ab+b 2a 2-b 2=a -b a+b =13.(6)交换(5)中分式的分子和分母的位置,结果为3. (任选其一作答即可)。
初中数学分式教案【优秀4篇】
初中数学分式教案【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!初中数学分式教案【优秀4篇】作为一名教师,时常要开展教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。
八年级数学上册《分式的基本性质》教案、教学设计
6.课后拓展:布置具有挑战性的拓展题,鼓励学生进行深度思考,提高学生的数学思维能力。
-设计意图:培养学生的创新意识,提高学生的数学素养。
7.教学评价:结合课堂表现、练习成绩和课后拓展成果,全面评价学生的学习效果。
-设计意图:关注学生的全面发展,激发学生的学习积极性,提高教学质量。
-设计意图:从生活实例出发,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.问题驱动:提出问题“分数可以表示什么?分式与分数有什么联系和区别?”让学生思考并回答,为新课的学习做好铺垫。
(二)讲授新知
1.分式的定义:讲解分式的概念,强调分式的三个要素:分子、分母和分数线。通过具体实例,解释分式的意义和表示方法。
-题目2:(x^3 - 2x^2 + x) / (x^2 - 1) × (x^2 + 1) / (x - 1)
-设计意图:通过拓展挑战题,锻炼学生的运算能力,提高学生的数学思维。
4.小组合作题:分组讨论并完成以下问题:
-问题:已知一个分数的分子和分母分别是两个连续的整数,且它们的和为17,求这个分数。
八年级数学上册《分式的基本性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解分式的定义,掌握分式的表示方法,能够正确书写分式。
2.掌握分式的基本性质,如约分、通分、乘除法则等,并能够灵活运用这些性质解决相关问题。
3.能够运用分式进行简单的代数运算,解决实际问题,提高学生的运算能力和解决问题的能力。
-分式的基本性质有哪些?
-分式的运算方法有哪些?
-如何运用和评价。
-设计意图:通过小组讨论,培养学生的合作精神和交流能力,提高学生对分式知识的理解。
人教版八年级上册15.1.2分式的基本性质(教案)
在今天的课堂中,我们探讨了分式的基本性质,我发现学生们对这些性质的理解程度参差不齐。有的学生能够迅速掌握并运用到实际问题中,但也有一些学生在符号变换和乘方运算上遇到了困难。这让我意识到,在教学中需要更加细致和耐心。
我注意到,当解释分式的符号变换时,一些学生显得有些迷惑。在课后,我反思是否可以通过更多的实际例题来帮助学生理解这一概念。也许,通过比较正负数的乘除规则与分式的符号变换规则,能够让学生更好地把握这一点。
在教学过程中,教师应针对上述重点和难点内容,通过举例、练习和讲解,帮助学生深入理解分式的基本性质,并能够灵活运用到实际问题中。通过针对性的教学活动,确保学生能够克服难点,掌握核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式的基本性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要简化分数或解决分数运算的问题?”比如,在烹饪时按照比例配料,或者在购物时计算折扣。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式性质的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式性质在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“分式性质还能用在哪些地方?”
课后,我还会继续跟进学生的学习情况,通过作业和课后辅导,了解他们是否真正掌握了分式的基本性质。对于那些仍然感到困惑的学生,我计划提供额外的辅导和练习,确保他们能够跟上课程的进度。
初中数学精品教案《分式的基本性质》
初中数学精品教案《分式的基本性质》一、教学内容本节课选自人教版初中数学教材八年级下册第十一章第一节,主要内容包括分式的概念、分式的基本性质以及分式的约分。
二、教学目标1. 理解分式的概念,掌握分式的基本性质,能够运用这些性质简化分式。
2. 学会分式的约分方法,能够正确约分。
3. 能够解决实际问题中涉及分式的计算问题。
三、教学难点与重点教学难点:分式的基本性质及其应用。
教学重点:分式的概念、约分方法。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:练习本、草稿纸、计算器。
五、教学过程1. 实践情景引入小明和小华一起做数学题,题目是:计算下列分数的值:(1)3/4(2)5/10引导学生思考:这些分数有什么共同特点?如何简化分数?2. 例题讲解(1)分式的概念分式是指形如a/b(a、b是整数,且b不为0)的表达式。
(2)分式的基本性质性质1:分子分母同时乘以或除以同一个不为0的数,分式的值不变。
性质2:分式的分子和分母同时乘以或除以同一个分式,分式的值不变。
(3)分式的约分约分原则:将分子和分母同时除以它们的最大公因数。
3. 随堂练习(1)6/9(2)12/18(3)20/254. 讲解与示范针对练习中的题目,讲解约分的方法和步骤。
5. 巩固练习(1)计算下列分式的值:1/2 + 3/42/3 1/6(2)已知分式3/4,将其简化为最简分式。
六、板书设计1. 分式的概念2. 分式的基本性质3. 分式的约分方法4. 例题及解答七、作业设计1. 作业题目(1)计算下列分式的值:1/3 + 2/54/7 1/14(2)将分式8/12简化为最简分式。
2. 答案(1)7/15(2)9/14(3)2/3八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解分式的概念和基本性质,通过讲解和练习,使学生掌握分式的约分方法。
课后,教师应关注学生的作业完成情况,了解他们对知识的掌握程度,并对学生在学习中遇到的问题进行解答和指导。
2024年初中数学精品教案《分式的基本性质》
2024年初中数学精品教案《分式的基本性质》一、教学内容本节课选自人教版初中数学教材八年级下册第十一章《分式》的第一节《分式的基本性质》。
详细内容包括分式的定义、分式的分子分母同乘(除)一个不等于0的整式,分式的值不变、分式的约分、分式的乘除运算。
二、教学目标1. 理解并掌握分式的定义及基本性质,能够运用基本性质进行分式的简化。
2. 学会分式的乘除运算,并能够熟练地进行计算。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点重点:分式的定义及基本性质,分式的乘除运算。
难点:分式的乘除运算中,如何确定最简分式。
四、教具与学具准备1. 教具:PPT、黑板、粉笔。
2. 学具:学生用书、练习本、计算器。
五、教学过程1. 实践情景引入通过PPT展示一个实际情景:小明和小红相约去公园玩,他们带了一些水果分着吃,如何表示他们每个人吃到的水果比例?2. 新课导入引导学生通过实际情景,理解分式的概念,进而引入新课。
3. 例题讲解讲解分式的定义、基本性质以及分式的乘除运算。
4. 随堂练习让学生进行随堂练习,巩固所学知识。
六、板书设计1. 分式的定义2. 分式的基本性质3. 分式的乘除运算4. 最简分式的确定七、作业设计1. 作业题目(1)已知分式,求的值。
答案:(1) 6(2)① ②2. 作业要求(1)完成作业题目,要求书写工整,步骤清晰。
(2)家长签字,确保作业质量。
八、课后反思及拓展延伸1. 反思本节课通过实践情景引入,让学生理解分式的概念,有助于激发学生的学习兴趣。
讲解过程中,注重引导学生发现分式的基本性质,提高学生的逻辑思维能力。
2. 拓展延伸引导学生思考:分式的乘除运算中,如何确定最简分式?为下节课学习分式的约分和通分打下基础。
重点和难点解析:1. 分式的定义及基本性质的理解。
2. 分式的乘除运算,特别是确定最简分式的方法。
3. 实践情景引入的教学设计,以增强学生的兴趣和实际应用能力。
详细补充和说明:一、分式的定义及基本性质的理解分式的定义是分母不为零的整式之比,这是分式学习的基础。
初二 数学 分式的基本性质与运算教案
分式的基本性质和运算【知识归纳】1、 分式概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式. 注意:(1)分母中应含有字母;(2)分母的值不能为零.(分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当0≠B 时,分式B A 才有意义;当B=0时,分式BA无意义) 【例】:1.式子①x 2 ②5y x + ③a -21 ④1-πx中,是分式的有( )A 、①②B 、③④C 、①③D 、①②③④ 2.当x 取什么值时,下列分式有意义. (1)54+x x , (2)422+x x .【练习】: 1. 若分式1-x x无意义,则x 的值是( ) A 、0 B 、 1 C 、-1 D 、1± 2.如果分式x 211-的值为负数,则的x 取值范围是( ) A 、21≤x B 、21<x C 、21≥x D 、21>x2、 要分式的值为零,需要同时满足两项条件:(1)分式的分母的值不等于零;(2)分子的值等于零.【练习】: 1.分式13-+x ax 中,当a x -=时,下列结论正确的是( ) A 、分式的值为零 B 、分式无意义C 、若31-≠a 时,分式的值为零 D 、若31≠a 时,分式的值为零 2.(1)当_______时,分式534-+x x 的值为1.(2)当______时,分式51+-x 的值为正.3.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)有意义? (3)值为零?3、 分式的基本性质分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变.用式子表示是:CB CA B A ⋅⋅=CB CA B A ÷÷=(0≠C ) 【例】约分:(1)db a cb a 42342135-, (2)23)(4)(2x y y y x x -- , (3)2222)()(z y x z y x -+--.【练习】: 1.对于分式11-x ,永远成立的是( ) A 、1211+=-x x B 、11112-+=-x x x C 、2)1(111--=-x x x D 、3111--=-x x 2.下列各分式正确的是( )A 、22a b a b =B 、b a b a b a +=++22C 、a a a a -=-+-11122D 、x x xy y x 2168432=-- 3.若)0(54≠=y y x ,则222y y x -的值等于________.4.化简分式xx ---112的结果是________.5.将分式的分子与分母中各项系数化为整数,则b a ba 213231++=__________.6.把下列各式约分:(1)432304ab b a , (2)22112mm m -+- , (3)42)()(a b b a --.7.已知:分式xyyx -+1的值是m ,如果分式中y x ,用它们的相反数代入,那么所得的值为n 则n m ,的关系是什么?【例】通分:方法:①最简公分母的系数,取各分母系数的最小公倍数;②最简公分母的字母,取各分母所有字母的最高次幂的积。
《分式的基本性质》教学设计五篇范文
《分式的基本性质》教学设计五篇范文第一篇:《分式的基本性质》教学设计《分式的基本性质》教学设计黄大恩教材与目标1、教材的地位及作用分式的基本性质是分式本章的重点内容之一,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。
2、学情分析本节课是在学生学习了分数的基本性质的基础上进行的,学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定归纳总结的能力。
3、教学目标(1)了解分式的基本性质。
灵活运用“性质”进行分式的变形。
(2)通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。
(3)通过探索分式的基本性质,积累数学活动经验。
(4)通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。
4、教学重难点分析重点:理解并掌握分式的基本性质。
难点:灵活运用分式的基本性质,进行分式化简、变形。
二、教法与学法1、教学方法基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。
学法指导本节课采用学生自主探索,讨论交流,观察发现,师生互动的学习方式。
学生通过自主探究-自主总结-自主提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。
同时强化了学生以旧知识类比得出新知识的能力。
三.教学过程(一)情景引入观察、对比各图形(课件展示)中的阴影部分面积,你能发现什么结论?(直观得出结论)问题:(1)若图中大正方形的面积为1,则上面三幅图的面积分别表示为?(师生共同完成)(设计意图:通过复习分数的的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。
2024年初中数学精品教案《分式的基本性质》
2024年初中数学精品教案《分式的基本性质》一、教学内容本节课选自人教版初中数学教材八年级下册第十一章第一节《分式的基本性质》。
内容包括分式的概念、分式的分子与分母的关系、分式的基本性质及其应用。
二、教学目标1. 理解分式的概念,掌握分式的分子与分母的关系。
2. 掌握分式的基本性质,并能够运用这些性质进行分式的化简和运算。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点教学难点:分式的基本性质的理解和应用。
教学重点:分式的概念及其分子与分母的关系。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入通过一个实际情景,让学生了解分式的概念。
例题:小明和小红相约去公园玩,他们共带了80元的零花钱。
如果小明花去一半,小红花去三分之一,那么他们各自还剩下多少钱?引导学生列出分式,并解释分式的分子与分母的含义。
2. 例题讲解讲解分式的基本性质,如分子分母同乘(除)一个数,分式的值不变等。
3. 随堂练习(1)化简分式:2/4、5/10、12/18(2)计算:3/4 + 2/3、5/6 1/2、4/5 × 2/3、6/7 ÷ 3/45. 课堂小结六、板书设计1. 分式的概念2. 分子的含义与分母的含义3. 分式的基本性质① 分子分母同乘(除)一个数,分式的值不变② 分式的分子与分母同时乘以(或除以)同一个数,分式的值不变③ 分式的乘法、除法、加法、减法法则七、作业设计1. 作业题目(1)化简分式:4/6、9/12、15/20(2)计算:2/3 + 1/4、5/8 3/4、7/8 × 6/7、4/5 ÷ 2/32. 答案(1)2/3、3/4、3/4(2)11/12、1/8、3/4、6/5八、课后反思及拓展延伸1. 反思本节课通过实践情景引入,让学生了解分式的概念,讲解分式的基本性质,并通过随堂练习巩固所学知识。
数学八年级上册《分式的基本性质》教案
初中20 -20 学年度第一学期教学设计 动、学生活动)一、复习回顾:(3分钟) 1、当x 时,分式 211x x -+无意义;当x 时,分式的值为零。
2、分数的性质如果分数的分子和分母都乘(或除以)一个 的数,那么分数的值 。
二.类比运算(12分钟)阅读教材129-131页的内容,并填空。
(一)、理解分式的基本性质:1、分数约分的方法是什么?2163=的依据是什么?431612=呢? 2、类比分数的基本性质,你认为分式a a 2与21相等吗?mn 与mnn 2呢? 类比分数的基本性质,你能想出分式有什么性质吗【归纳】:分式的基本性质:分式的分子与分母同乘以(或除以)一个 的整式,分式的值不变。
可用式子表示为:3.例题讲解P5 例2解题技巧小结:1、看分子如何变化,2、看分母如何变化, 练习:(1)aby a xy = ( 2)z y z y z y x +=++2)(3)(6 (二)、会用分式的基本性质将分式约分【归纳】 分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的 约去。
(2)分式的分子和分母都是多项式,将分子和分母分别 ,再将公因式约去。
三.巩固练习:(10分钟)1、不改变分式的值,使下列分式的分子与分母都不含“—”号:(1)=--b a 32 (2)=-yx 23 (3)—=-a x 22 2、填空: (1) = (2) = 3、若把分式yx xy -中的x 、y 都扩大3倍,那么分式的值是 。
四、课时小结:五、当堂检测(5分钟)约分:(1) (2) 32386b b a ()33a c a b ++1()cn an +c ab b a 2263532164xyz yz x -xy y x --3)(2。
人教版八年级数学上册教案-15.1.2分式的基本性质
-对于分式的乘方运算,难点在于理解和应用指数法则。可以通过以下例子进行解释:$\left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2}$,$\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$,$\left(\frac{a}{b}\right)^{\frac{1}{2}} = \sqrt{\frac{a}{b}}$。重点讲解指数法则在分式中的应用,并强调指数对分子和分母的影响。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式的基本性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配或比较不同数量的事物的情况?”(例如:如何将一块披萨平均分给几个朋友)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式的奥秘。
-分式的乘方运算:了解分式的乘方运算,并能正确进行计算。
举例解释:
-重点强调分式性质中的“不等于0”的条件,避免学生在运算时忽略这一点。
-通过典型例题,讲解分式乘除法的运算步骤,使学生明确乘除法的核心是找出公因式并进行约分。
-通过实际例题,展示分式乘方运算的规律,使学生掌握乘方运算的基本方法。
2.教学难点
c.分式的分子与分母互为相反数时,分式的值为-1。
3.分式的乘除法:掌握分式乘法与除法的运算规律,能熟练进行运算。
八年级上册数学教案《分式的基本性质》
八年级上册数学教案《分式的基本性质》学情分析分式的基本性质是在学习了整式,因式分解,分式的概念的基础上学习的,是进行分式变形的依据,是分式通分、约分的基础,是掌握分式四则运算的关键,也是学生进一步学习分式方程、反比例函数的基础。
学生能否在后续的学习中正确的进行分式的运算,关键在于是否能掌握通分和约分的方法。
而掌握分式通分和约分的方法,除了应熟练的掌握多项式的因式分解和整式运算外,主要就是能够灵活运用本节课所学的分式的基本性质。
教学目的1、理解分式的基本性质。
2、能运用分式的基本性质,进行分式的值的恒等变形。
3、经历探索分式基本性质的过程,体会类比和模型的思想。
教学重点理解分式的基本性质。
教学难点会运用分式的基本性质约分和通分。
教学方法讲授法、谈话法、启发式教学法、讨论法、练习法、教学过程一、情境导入1、思考下列分数的值是否相等?2/3 4/6 8/12 16/24 32/482、这些分数相等的依据是什么?分数的分子与分母同时乘(或除以)一个不等于0的数,分数的值不变。
二、学习新知1、分式的基本性质类比分数的基本性质,你能猜想分式有什么性质吗?分式的基本性质:分数的分子与分母同时乘(或除以)一个不等于0的数,分数的值不变。
上述性质可以用符号语言表示为:A/B = A·C / B·C A/B = A÷C / B÷C(C≠0)其中,A,B,C是整式。
2、填空(1)x3/xy =(x2)/ y 3x2 + 3xy / 6x2 = x+y / (2x)(2)1/ab = (a)/ a2b 2a-b / a2 = (2ab-b2)/ a2b(b≠0)3、分式的约分根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
分式约分的关键是要找分式的分子与分母的最简公分母。
例如,把3x2 + 3xy / 6x2 的分子和分母同时约去公因式3x,化为 x+y / 2x。
分式的基本性质教案
分式的基本性质教案分式的基本性质教案分式的基本性质教案1一、教材分析1、教材的地位及作用“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。
2、教学重点、难点分析:教学重点:理解并掌握分式的基本性质教学难点:灵活运用分式的基本性质进行分式化简、变形3、教材的处理学习是学生主动构建知识的过程。
学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。
学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。
本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。
让学生自我构建新知识。
通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用.最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。
二、目标分析:数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。
教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。
为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:1、知识技能:1)了解分式的基本性质2)能灵活运用分式的`基本性质进行分式变形2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。
3、解决问题:通过探索分数的基本性质,积累数学活动的经验。
4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。
三、教法分析1、教学方法数学是一门培养人的思维,发展人的思维的重要学科。
初中数学《分式的基本性质》精品教案
初中数学《分式的基本性质》精品教案一、教学内容本节课选自人教版初中数学教材八年级上册第十四章《分式》,详细内容包括:分式的定义、分式的基本性质、分式的约分与通分、分式的乘除法及分式的乘方。
二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质对分式进行简化。
2. 能够运用约分与通分的方法对分式进行运算。
3. 学会分式的乘除法及乘方运算,并能够灵活运用解决实际问题。
三、教学难点与重点重点:分式的基本性质、约分与通分、分式的乘除法及乘方运算。
难点:分式的简化,尤其是含有绝对值的分式简化;分式的乘除法及乘方运算在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:教材、练习本、计算器。
五、教学过程1. 实践情景引入:通过一个关于速度、时间和路程的实际问题,让学生列出分式表达式,引导学生思考如何简化分式。
2. 知识讲解:(1)回顾分式的定义,引导学生掌握分式的结构。
(2)讲解分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变。
(3)通过例题讲解,演示如何运用基本性质简化分式。
3. 随堂练习:设计一些关于分式简化、约分与通分的练习题,让学生当堂完成,巩固所学知识。
4. 例题讲解:(1)分式的乘除法运算。
(2)分式的乘方运算。
(3)含有绝对值的分式简化。
5. 课堂小结:六、板书设计1. 分式的定义与结构。
2. 分式的基本性质。
3. 分式的约分与通分。
4. 分式的乘除法及乘方运算。
5. 例题及解题步骤。
七、作业设计1. 作业题目:(1)简化分式:2/(4x8)。
(2)计算分式的乘除:3x/(x+2) ÷ 2x/(x2)。
(3)计算分式的乘方:(x^24)/(x+2)^2。
2. 答案:(1)1/(2x4)。
(2)3x(x2)/(2(x+2)(x2))。
(3)(x2)^2/(x+2)^2。
八、课后反思及拓展延伸1. 反思:本节课学生对分式的基本性质、约分与通分掌握较好,但在解决实际问题中运用分式的乘除法及乘方运算时,部分学生还存在困难,需要在今后的教学中加强练习。
初中数学精品教案《分式的基本性质》
初中数学精品教案《分式的基本性质》教案:《分式的基本性质》一、教学内容1. 分式的概念:分式是形如a/b的表达式,其中a和b是整式,且b不为0。
2. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
3. 分式的约分和通分:根据分式的基本性质,可以将分式约分或通分。
二、教学目标1. 理解分式的概念,掌握分式的基本性质。
2. 学会运用分式的基本性质对分式进行约分和通分。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点1. 教学难点:分式的基本性质的理解和运用。
2. 教学重点:分式的基本性质的运用,包括约分和通分。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:练习本、尺子、圆规。
五、教学过程1. 实践情景引入:情景:小红购买了一本书,原价是24元,现在打8折,问小红实际支付了多少钱?解答:原价24元,打8折后的价格是240.8=19.2元,小红实际支付了19.2元。
2. 例题讲解:例题1:计算分式2/3+4/5。
解答:找到分母3和5的最小公倍数是15,然后将两个分式的分母都变为15,得到25/35+43/53=10/15+12/15=22/15。
例题2:计算分式6/83/4。
解答:找到分母8和4的最小公倍数是8,然后将两个分式的分母都变为8,得到6/832/42=6//8=0。
3. 随堂练习:练习1:计算分式3/5+2/7。
练习2:计算分式4/91/3。
4. 分式的基本性质:引导学生发现,在例题1和例题2中,我们可以将分式的分子和分母同时乘以(或除以)同一个不为0的整式,使得分式的值不变。
这就是分式的基本性质。
5. 分式的约分和通分:根据分式的基本性质,我们可以将分式约分或通分。
六、板书设计1. 分式的概念:a/b,其中a和b是整式,且b不为0。
2. 分式的基本性质:分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
八年级数学下册《分式的基本性质》教案、教学设计
3.鼓励学生在完成作业过程中,积极思考、提问,培养自主学习能力;
4.教师应及时批改作业,给予反馈,帮助学生发现问题、改进学习方法。
(3)教师进行解答,并对本节课的重点知识进行强调。
(4)布置课后作业,要求学生课后巩固所学知识,为下一节课的学习打下基础。
五、作业布置
为了巩固学生对分式基本性质的理解与应用,以及提高学生的实际操作能力,特布置以下作业:
1.请学生完成课本后的练习题,包括:
-约分和通分的练习题,以巩固对分式简化方法的理解;
3.分式在实际问题中的应用:将分式知识应用于实际问题,是学生需要掌握的一项重要技能。
教学设想:选取与学生生活密切相关的实际问题,引导学生运用分式知识进行分析、解决。通过实际操作,培养学生的应用能力和解决实际问题的能力。
(二)教学设想
1.采用启发式教学,引导学生主动探究:在教学过程中,教师应充分运用提问、讨论等方式,激发学生的思维,引导学生主动探究分式的性质和运用。
2.学生在运算能力上的差异:约分、通分等运算对学生来说可能存在一定难度,教师应针对不同学生的运算能力,进行有针对性的指导,提高学生的运算技巧。
3.学生在解决问题上的策略选择:学生在解决分式相关问题时,可能不知道如何运用分式的基本性质。教师应引导学生掌握解决问题的策略,培养学生灵活运用知识的能力。
4.学生学习兴趣的激发:教师要通过生动有趣的教学方式,激发学生对分式学习的兴趣,提高学生的学习积极性。
二、学情分析
八年级的学生已经具备了一定的数学基础,对分数的概念和性质有了一定的了解。在此基础上,学习分式的基本性质,对学生来说是知识的拓展和深化。然而,由于分式的抽象性和复杂性,学生在理解和应用上可能会遇到困难。因此,在教学过程中,教师需关注以下几点:
分式的基本性质第1课时教案
分式的基本性质第1课时教案一、教学内容本节课我们将探讨《数学》八年级上册第三章“分式”中的第一部分“分式的基本性质”。
具体内容包括:分式的定义、分式的分子分母的概念、分式的相等条件、分式的约分和通分等。
二、教学目标1. 理解并掌握分式的定义,能够准确地识别分子和分母。
2. 学会运用分式的基本性质进行分式的约分和通分。
3. 能够运用分式的相等条件解决实际问题。
三、教学难点与重点教学难点:分式的约分和通分的运用。
教学重点:分式的定义、分子和分母的识别、分式的基本性质。
四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。
2. 学具:学生用书、练习本、计算器。
五、教学过程1. 实践情景引入:以实际生活中的分配问题为例,引导学生理解分式的概念。
2. 知识讲解:(1)分式的定义:介绍分式的组成,讲解分子和分母的概念。
(2)分式的基本性质:讲解分式的相等条件、约分和通分的原理。
3. 例题讲解:(1)识别分子和分母。
(2)运用分式的基本性质进行约分和通分。
(3)应用分式的相等条件解决实际问题。
4. 随堂练习:(3)应用分式的相等条件解决实际问题。
六、板书设计1. 分式的定义:分子、分母。
2. 分式的基本性质:相等条件、约分、通分。
3. 例题及解答过程。
七、作业设计1. 作业题目:(3)应用分式的相等条件解决实际问题。
2. 答案:在课后作业中提供详细解答。
八、课后反思及拓展延伸1. 反思:对课堂教学效果进行自我评价,分析学生的掌握情况,为下一节课做好准备。
2. 拓展延伸:引导学生了解分式在其他数学领域中的应用,如代数方程、不等式等,提高学生的数学素养。
重点和难点解析1. 分式的定义及分子分母的识别。
2. 分式的基本性质,尤其是约分和通分的原理及应用。
3. 教学过程中的例题讲解和随堂练习设计。
4. 作业设计及其答案的详细解释。
5. 课后反思与拓展延伸的深度和广度。
详细补充和说明:一、分式的定义及分子分母的识别分式是数学表达式中的一种形式,由分子和分母组成,分子与分母之间用横线(分数线)隔开。
分式的基本性质教案人教版八年级数学上册
15.【教学目标】1.了解分式的基本性质,体会类比的思想方法;掌握分式的约分,了解最简分式的概念.2.经历对分式基本性质及符号法则的探究过程,通过分式的恒等变形提高学生的运算能力,渗透类比转化的数学思想方法.3.在探究中获得一些探索性质的初步经验,感受成功的快乐,体验解决数学问题的过程,有克服困难的勇气,具备学好数学的信心.【教学重难点】重点:使学生理解并掌握分式的基本性质;难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形.【教学方法】类比、情境教学.【教学过程】新课导入:问题:1.下列分数是否相等?2.这些分数相等的依据是什么?3.它们如何实现相互转化?.下列两式成立吗?为什么?(1)33(0)44ccc=≠;(2)55(0)66ccc=≠可以,式子变形符合分数的基本性质.分数的基本性质:一个分数的分子、分母乘(或除以)同一个不为0的数,分数的值不变.即对于任意一个分数ab有:()()00a a c a a c=c=cb bc b b c⋅÷≠≠⋅÷;.分数的约分:约去分子与分母的最大公约数,化为最简分数.分数的通分:先找分子与分母的最简公分母,再使分子与分母同乘最简公分母,计算即可.新课讲授:(一)分式的基本性质答:相等.类比分数的基本性质,你能得到分式的基本性质吗?说说看! 分式的基本性质分式的分子与分母乘(或除以)同一个不为0的整式,分式的值不变.A A CB BC ⋅=⋅,A A CB B C÷=÷ (C ≠0),其中A ,B ,C 是整式. 数学探究:下列等式成立吗?右边是怎样从左边得到的? 解: (1)成立.因为m ≠0,所以;222b b m bma a m am⋅==⋅ (2) 成立.因为n ≠0,所以.an an n a bn bn n b÷==÷ 例1:填空.解:32223316x x x xy x y xy y x x ()(),;(2)++==观察比较区分分子、分母的变化,归纳利用分式的基本性质的注意事项. (1)“都”;(2)“同一个”; (3)“不为0”.课堂练习: 1.把分式2()a b ab+中的a 和b 都扩大5倍,那么分式的值( C ) A.扩大为原来的5倍 B.扩大为原来的2倍C.缩小为原来的15D.不变2.下列运算正确的是( C ) A.y y x y x y =--- B.2233x y x y +=+C.221y x x y x y-=--+ D.22x y x y x y +=++例2:不改变分式的值,使下列分子与分母都不含“”号 5(1)6b a --;(2)3x y -;3(3)b a -;2(4).mn--解:55(1)66b ba a-=-;(2)33x x y y =--; 33(3)b b a a -=-;22(4)m mn n--=. 根据体验观察归纳分式的符号法则:分式的分子、分母与分式本身这三处的正负号,同时改变两处,分式的值不变.用式子表示为:A -A A -A --B B -B -B ===;或A -A A -A--B B -B -B===.课堂练习:不改变分式的值,把下列各式的分子与分母的各项系数都化为整数.()0.01510.30.04x x -+;()50.63220.75a ba b--. 解:(1)原式=(0.015)100500(0.30.04)100304x x x x -⨯-==+⨯+; (2)原式=5(0.6)301850322112(0.7)305a b a b a b a b -⨯-==--⨯. (二)分式的约分 想一想:联想分数的约分,由例1你能想出如何对分式进行约分吗?分数的约分:把一个分数的分子、分母同时除以公因数,分数的值保持不变,这个过程叫做分数的约分.类比得分式的约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分. 分子与分母没有公因式的分式,叫做最简分式. 因此,约分的关键是确定分子分母的公因式. 例3:约分:(1) 2322515-a bc ab c ; (2) 22-969x x x ++ ; (3) 22612633x -xy y x-y + .解:(1)232222555515533-a bc abc ac ac --ab c abc b b ⋅==⋅; (2)22293336933x -(x )(x-)x-x x (x )x +==++++; (3)()()()222661262333x-y x -xy y x-y x-y x-y +==.小结:分式的约分的一般方法:(1)若分式的分子、分母都是单项式,就直接约去分子、分母的公因式,即分子、分母系数的最大公约数和分子、分母中的相同字母的最低次幂的乘积;(2)若分式的分子或分母含有多项式,应先分解因式,再确定公因式并约去. 课堂练习:给下列分式约分:(1)22812ab c a b --;(2)22444a a a ++-+. 解:(1)原式=4(2)4(3)ab bc ab a -⨯=-⨯23bc a;(2)原式=22(2)(4)a a +=--2(2)(2)(2)a a a +-=+-22a a +--. 在化简分式2520xyx y时,小颖和小明的做法出现了分歧:小颖:22552020xy xx y x=;小明:255120454xy xy x y x xy x ==⋅. 你对他们俩的解法有何看法?说说看!分析:小明解法正确.一般约分要彻底,使分子、分母没有公因式. 根据练习归纳: 分式约分的注意事项: (1)约分前后分式的值要相等.(2)约分的关键是确定分式的分子和分母的公因式.(3)约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式.(4)约分要彻底. (三)分式的通分 思考:1.通分:12和13;23和34. 追问1:分数通分的依据是什么?追问2:如何确定异分母分数的最小公分母?分数的通分:把分母不同的分数化成分母相同的分数,这个过程叫做分数的通分. 类比分数的通分,概括分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.通分时,一般取各分母的所有因式的最高次幂的积作公分母,这样的分母叫做最简公分母.在确定几个分式的最简公分母时,不要遗漏只在一个分式的分母中出现的字母及其指数.例4:通分:(1)232a b 与2a-b ab c; (2)25x x-与35x x +.解:(1)最简公分母是222a b c ,2222333222bc bc a b a b bc a b c ⋅==⋅;22222()22222a-b a-b a a -abab c ab c aa b c ⋅==⋅. (2)最简公分母是(x 5)(x +5).2222(5)2105(5)(5)25x x x x x x-x-x x -++==+;2233(-5)3-155(5)(-5)-25x x x x xx x x x ==++. 小结:确定最简公分母的一般方法:(1)若各分母是单项式,最简公分母是各分母系数的最小公倍数、相同字母的最高次幂和所有不同字母及其指数的乘积;(2)若各分母中有多项式,一般要先分解因式,再按照分母都是单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面确定最简公分母.约分和通分的联系与区别课堂练习: 1.填空.2.把下列各式通分.解:222224166b aa b a b ,();---()()()()2222222222x x x x x x x ,();+--+-+ 3. 222448x y x xy--x =12,y =1.解:()()()222224244842x y x y x y x yxx xyx x y +--+==--,将x =12,y =1代入原式=121521442.+⨯=⨯课堂小结:说一说本节课都有哪些收获.学习分式的概念,理解并掌握分式有意义、值为0和值为正的条件; 能利用分式的基本性质解题. 作业布置: 完成本节配套习题. 【板书设计】 分式的基本性质:分式的分子与分母乘(或除以)同一个不为0的整式,分式的值不变.A A CB BC ⋅=⋅,A A CB B C÷=÷ (C ≠0),其中A ,B ,C 是整式. 分式的约分与通分的练习与区别:【课后反思】先探究分式的基本性质,然后顺势探究分式变号法则. 在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习,一步一步的来完成既定目标;学习分式的性质注重提高在验证、交流环节中学生的参与率,注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.。
人教版八年级数学上册教案-15.1.2分式的基本性质分式通分
在本次教学活动中,我注意到学生在学习分式的基本性质与通分这一章节时,存在一些理解和掌握上的难点。首先,我发现学生在理解分式基本性质时,对于为何乘除同一个数(除数不为0)不会改变分式的值这一点上存在困惑。在今后的教学中,我需要更加形象、具体地解释这一性质的数学原理,以便学生能够更好地理解。
3.重点难点解析:在讲授过程中,我会特别强调分式基本性质和通分方法这两个重点。对于难点部分,如选取公倍数和分解因式,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式通分相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示分式通分的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式通分的基本概念。通分是指将分母不相同的分式通过乘以适当的整式,使分母相同,以便进行加减运算。它是分式运算中的重要环节,帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何将$\frac{1}{x}$和$\frac{2}{x+1}$通分,以及通分在简化分式运算中的作用。
在授课过程中,我也注意到学生在解决实际问题时构建分式模型的能力较弱。为了提高学生的这一能力,我将在下一节课中增加一些关于建模的讲解和练习,帮助学生学会如何从实际问题中抽象出分式模型。
此外,教学流程的设计方面,导入新课环节的问题设置可能还不够吸引学生的兴趣,今后我需要在这个环节下更多功夫,设计更具趣味性和启发性的问题,激发学生的学习兴趣和好奇心。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式的基本性质与通分》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将不同单位的量进行换算的情况?”比如,将米和厘米的长度进行加减。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式通分的奥秘。
初中数学《分式的基本性质》教案
初中数学《分式的基本性质》教案一、教学内容本节课我们将学习人教版初中数学教材八年级上册第十二章《分式》第一节“分式的基本性质”。
具体内容包括分式的概念、分式的基本性质以及分式的约分。
二、教学目标1. 理解并掌握分式的概念,能够正确书写分式。
2. 掌握分式的基本性质,能够运用这些性质进行分式的简化。
3. 学会分式的约分方法,能够熟练地进行分式的约分。
三、教学难点与重点教学难点:分式的基本性质以及运用这些性质进行分式的简化。
教学重点:分式的概念、分式的约分。
四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。
2. 学具:练习本、铅笔。
五、教学过程1. 实践情景引入:通过实际生活中的例子,如分数表示的巧克力分享问题,引出分式的概念。
2. 教学新课:(1)讲解分式的定义,让学生理解分式的意义。
(2)通过例题讲解分式的基本性质,如分子分母同乘(除)一个不等于0的整式,分式的值不变。
(3)进行随堂练习,让学生运用分式的基本性质进行分式的简化。
3. 知识巩固:讲解分式的约分方法,让学生通过练习掌握约分技巧。
六、板书设计1. 分式的定义2. 分式的基本性质3. 分式的简化方法4. 分式的约分方法七、作业设计1. 作业题目:(1)化简分式:$\frac{3x^2}{6x}$。
(2)已知分式$\frac{2x4}{3x6}$的值与分式$\frac{x2}{x3}$的值相等,求$x$的值。
2. 答案:(1)$\frac{x}{2}$(2)$x=1$八、课后反思及拓展延伸1. 反思:本节课学生对分式的概念和基本性质掌握情况良好,但对分式的约分方法掌握不够熟练,需要在课后加强练习。
2. 拓展延伸:研究分式的乘除运算,为下一节课的学习打下基础。
重点和难点解析需要重点关注的细节包括:1. 分式基本性质的理解与应用2. 分式约分方法的掌握3. 实践情景引入的有效性4. 作业设计的针对性与难度一、分式基本性质的理解与应用1. 分式的分子和分母同乘(除)一个不等于0的整式,分式的值不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的基本性质
一、教学目标
1.使学生理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形.
2.通过分式的恒等变形提高学生的运算能力.
3.渗透类比转化的数学思想方法.
二、教学重点和难点
1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.
2.难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形.
三、教学方法
分组讨论.
四、教学手段
幻灯片.
五、教学过程
(一)复习提问
1.分式的定义?
2.分数的基本性质?有什么用途?
(二)新课
1.类比分数的基本性质,由学生小结出分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,
分式的值不变,即:
2.加深对分式基本性质的理解:
例1 下列等式的右边是怎样从左边得到的?
由学生口述分析,并反问:为什么c≠0?
解:∵c≠0,
学生口答,教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.)
解:∵x≠0,
学生口答.
解:∵z≠0,
例2 填空:
把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.
练习1:
化简下列分式(约分)
(1)2a bc ab (2) (3)
教师给出定义:
把分式分子、分母的公因式约去,这种变形叫分式的约分. 问:分式约分的依据是什么? 分式的基本性质 在化简分式 时,小颖和小明的做法出现了分歧:
小颖: 小明:
你对他们俩的解法有何看法?说说看!
d b a 24c b a 323223-()()b a 25b a 152
+-+-y
x 20xy
5222x
20x 5y x 20xy 5=x 41xy 5x 4xy 5y x 20xy 52=⋅=
教师指出:一般约分要彻底, 使分子、分母没有公因式.
彻底约分后的分式叫最简分式.
练习2(通分): 把各分式化成相同分母的分式叫做分式的通分.
(1) 与 (2) 与
解:(1)最简公分母是 (2)最简公分母是(x-5)(x+5)
2222(5)2105(5)(5)25
x x x x x x x x x ++==--+- 2233(5)3155(5)(5)25
x x x x x x x x x --==+-+- (三)课堂小结 1.分式的基本性质.
2.性质中的m 可代表任何非零整式.
3.注意挖掘题目中的隐含条件.
4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数化繁为简的策略,并为分式作进一步处理提供了便利条件. b 23a 2c a b
a b 2-5x x 2-5x x 3+c
2b a 22c 2bc 3bc b 2bc
3b 23
b a a a 2222=••=
c 2ab
22a 2c a a 2)b a (c a b a b a a b b 2
2222-=••-=-。