绝对值的加减课件
七年级数学竞赛《绝对值》教学课件
c b0 a x 图1-1
例 3 、已知x<-3,化简: |3+|2-|1+x|||.
• 解: 因为 abc≠0,所以 a≠0,b≠0,c≠0.
• (1)当 a,b,c 均大于零时,原式=3;
• (2)当 a,b,c 均小于零时,原式=-3;
• (3)当 a,b,c 中有两个大于零,一个小于零时,
• 原式=1;
• (4)当 a,b,c 中有两个小于零,一个大于零时,
• 原式=-1a. b c • 所以 | a | | b | | c | 的所有可能值是±3, ±1 • 说明本例的解法是采取把 a,b,c 中大于零与小于零的
• 例如,化简|3x+1|,只要考虑 3x+1 的正负,即
可去掉绝对值符号.这里我们是分 x 1 与x 1
•
两种情况加以讨论的,此时 x
类似地,对于|2x-1|而言,x
1 2
13是一个分3 界点3, 是一个分界点,为
同时去掉两个绝对值符号,我们把两个分界点
• 所 化示13简和)了即12 。标x 在13,数13轴x上12,, x 把,12 数这轴样分我为们三就部可份以(分如类图1讨-论2
• 2x-5x+3x=0 一种情况.因此必须有
• |4-5x|=4-5x 且|1-3x|=3x-1.
• 故 x 应满足的条件是 4 5x 0
1
• 解之得:3
有理数的加减混合运算(第1课时)(课件)-七年级数学上册同步精品课件(北师大版)
新课讲解
(20) (3) (5) (7).
运算过程也可简单写为: 原式=(-20)+(+3)+(+5)+(-7)
= 20 3 5 7 减法转化为加法(可省略)
= 20 7 3 5 写成省略加号的和的形式
= 27 8
有理数加法的交换律
减法转化成加法 =[(-2)+(-27)]+[(+30)+(+15)]
=(-29)+(+45) =16.
新课讲解
方法二:(去括号法)
解:原式=-2+30+15-27 省略括号
=-2-27+30+15
=-2+(-27)+45 =-29+45 =-(29-45) =16
运用加法交换律使同号两 数分别相加
= 19.
有理数加法的结合律
新课讲解
典例分析
例1.计算:
(1)-53 +15 -45 ;
解:原式= 2 4 55
=
2 5
4 5
= 6. 5
(2)(-5)--21 +7-73 .
解:原式=( 5) 1 7 7 23
=57 பைடு நூலகம் 7 23
=2 11 6
=1. 6
新课讲解
典例分析
例2.计算:(-2)+(+30)-(-15)-(+27); 方法一:减法变加法 解:原式=(-2)+(+30)+(+15)+(-27)
小彬抽到的4张卡片依次为:
3
1
22
4
-5
他抽到的卡片的计算结果是多少? 他抽到的卡片的计算结果是多少?
获胜的是谁?
绝对值课件
06
总结与回顾
重点知识回顾
绝对值的定义
绝对值是一个数到原点的距离, 正数的绝对值是它本身,负数的 绝对值是它的相反数,0的绝对值
是0。
绝对值的性质
绝对值具有非负性,即|a| ≥ 0;正 数的绝对值是它本身,负数的绝对 值是它的相反数,0的绝对值是0。
绝对值的运算
两个正数的绝对值相等,两个负数 的绝对值也相等,但正数的绝对值 大于负数的绝对值。
04
绝对值的拓展知识
绝对值不等式
绝对值不等式的定义
如果用字母表示两个数,那么当$a \geq 0$时,$|a|=a$;当 $a<0$时,$|a|=-a$。
绝对值不等式的性质
绝对值不等式的性质包括对称性、传递性、加法单调性、乘法单调 性等。
绝对值不等式的解法
解绝对值不等式需要先去掉绝对值符号,将其转化为一般的不等式 ,然后求解。
绝对值的性质
任何数的绝对值都是非负数。例 如,|x|≥0,且|x|=0当且仅当 x=0。
互为相反数的两个数的绝对值相 等。例如,|-3|=|3|。
绝对值等于同一个正数的数有两 个,它们互为相反数。例如, |5|=5,|-5|=5。
绝对值的几何意义
从数轴上来看,一个数的绝对值就是 表示该数的点到原点的距离。例如, |-3|表示-3这个点到原点的距离,|5| 表示5这个点到原点的距离。
绝对值相反数有理数加减法_精品小班(2)
爱都(edu capital)教育个性化辅导教案教师学生授课时间授课层次授课课题课型教学目标教学重点和难点参考书籍教案内容:相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。
0的相反数对应原点;原点表示0的相反数。
说明:在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。
化简得-5a-b);⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)5.相反数的表示方法⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。
当a>0时,-a<0(正数的相反数是负数)当a<0时,-a>0(负数的相反数是正数)当a=0时,-a=0,(0的相反数是0)6.多重符号的化简多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
绝对值⒈绝对值的几何定义一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.可用字母表示为:①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。
绝对值ppt课件
contents
目录
• 绝对值的概念 • 绝对值的运算 • 绝对值的应用 • 绝对值的拓展知识 • 总结与回顾
01
绝对值的概念
绝对值的定义
01
绝对值是一个数到原点的距离, 用数学符号表示为:a的绝对值( a ≧ 0)和│a│(a < 0)。
02
一个正数的绝对值是它本身;一 个负数的绝对值是它的相反数;0 的绝对值是0。
绝对值在数学中的应用
在数学中,绝对值是一个非常重 要的概念,它可以用来表示实数
的距离。
绝对值的性质包括:非负性、传 递性、三角不等式等。
绝对值的应用还包括比较大小、 解方程等。
绝对值在物理中的应用
在物理学中,绝对值的概念可 以用来描述粒子的位置、速度 等物理量。
绝对值的性质可以用来计算物 理量的大小和方向。
绝对值的除法
|a| / |b| = |a/b|,即绝对值的 除法等于两数绝对值的商。
应用案例分享
案例一
在数轴上,点A和点B分别表示-5 和2,求A和B之间的距离。利用 绝对值的加法,可以计算出AB之 间的距离为7。
案例二
在数轴上,点C表示-3,点D表示 5,求C和D之间的距离。利用绝 对值的减法,可以计算出CD之间 的距离为8。
绝对值与不等式的关系
通过绝对值,我们可以将不等式转化为等式,从而可以更容易地解 决不等式问题。
应用
在数学中,绝对值被广泛应用于解不等式和方程的问题。
05
总结与回顾
主要概念总结
绝对值的定义
绝对值是一个数到原点的 距离,用符号“|”表示。
绝对值的性质
正数的绝对值是它本身, 负数的绝对值是它的相反 数,0的绝对值是0。
(2024秋新版本)北师大版七年级数学上册 《 有理数的加减运算》PPT课件
4
5
4
2
3
思考:有没有简便的方法?
探究新知
(1)解:原式=(31+69)+[(-28)+28](加法交换律和结合律)
=100+0 (一个数同0相加,仍得这个数)
=100;
(2) 解:原式=[(-64)+(-23)]+(17+68)
(加法交换律和结合律)
=(-87)+85 (异号相加法则)
=-2.
加法的结合律: (a+b)+c=a+(b+c).
探究新知
知识点
有理数加法的运算律
计算并比较每组的两个算式的结果:
(1)(-8)+(-9)= -17
(-9)+(-8)= -17
(2) 4 +(-7)= -3
(-7) + 4 = -3
(3) [2+(-3)]+(-8)= -9
2+[(-3)+(-8)]= -9
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对
值较大的数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
探究新知
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
↓
↓
同号两数相加
取相同符号
通过绝对值化归
不合格
径18mm,该零件____________
(填“合格”或“不合格”)。
课堂检测
基 础 巩 固 题
5.小虫从某点O出发在一条直线上来回爬行,假定向右为正方
绝对值不等式【公开课教学PPT课件】
由图可知,当且仅当10≤x≤20时, |x-10|+|x-20|的最小
值为10.
|x -10| |x-20|
10
x 20
x
变式训练2:若关于x的不等式|x+5|-|3-x|≤a解
集为R,则实数a的取值范围是 [8,+∞) .
解析:由公式得|x+5|-|3-x|≤|(x+5)+(3-x)|=8(当且仅 当-5≤x≤3时等号成立),
a
∴|a-b|≤|a-c|+|c-b|
CA c a
B b x
BC b c x
B
b
x
情境引两个地点分别位于公路路牌的10km和20km处.现要在公路沿线建两 个施工队的共同临时生活区,每个施工队每天在生活区和施工地点之间 往返一次.要使两个施工队每天往返的路程之和最小,生活区应该建于何 处?
猜想:|a+b|≤|Aa|+|b|
0
B
几何
x法
a |a+b| -b
(1)当a(-b)<0即 ab>0时,|AB|=|OA|+|OB| (2)当a=0或b=0时,|AB|=|OA|+|OB|
(3)当a(-b)>0即 ab<0时,|AB|<|OA|+|OB| 提示:绝对值
于是,得到|A|aB+|b≤|≤|O|aA|+|+|b|O| (B当| 且等仅号当成a立b的的0几时条何,件等意?号义成立)
当|x+5|-|3-x|≤a解集为R时,即|x+5|-|3-x|≤a恒成立,
所以a8
课堂小结
定理内容
绝对值不等式: ||a|-|b||≤|a±b||a|+|b|
有理数的绝对值及加减法(详细题型)之欧阳文创编
三人行教育陈老师教案——绝对值及有理数加减运算:请同学们认真答题,每一道题都经过精选3绝对值(满分100分)知识要点:1.绝对值的概念:在数轴上表示数a的点与原点的叫做数a的绝对值,记作.2.绝对值的求法:由绝对值的意义可以知道:(1)一个正数的绝对值是;(2)零的绝对值是;(3)一个负数的绝对值是.即()()()⎪⎩⎪⎨⎧<=> =aaaa3.绝对值的非负性:数轴上表示数a的点与原点的距离零,所以,任意有理数a的绝对值总是一个,即a0.4.有理数大小的比较:一个有理数的绝对值越大,在数轴上表示这个数的点就离原点越,所以,两个负数比较大小,绝对值大的;正数都零;负数都;正数一切负数.5.绝对值等于()0>a a的有理数有两个,它们.(基础知识填空20分,每错一空扣2分)同步练习A组(共40分)一、填空题(每空1分) 1.(1)=-2; (2)=+7; (3)=--323; (4)()=--6. 2. 212- 的绝对值是,绝对值等于5的数是和.3.绝对值最小的数是;绝对值小于2.5的整数是;绝对值小于3的自然数有;绝对值大于3且小于6的负整数有.4.如果a a =,那么a 是,如果a a -=,那么a 是.5.若a ≤0,则=a ;若a ≥0,则=+1a .二、选择题(每题3分)6.下列说法中,正确的是()A. 绝对值相等的数相等 B.不相等两数的绝对值不等C. 任何数的绝对值都是非负数D. 绝对值大的数反而小7. 下列说法中,错误的是( )A. 绝对值小于2的数有无穷多个B. 绝对值小于2的整数有无穷多个C. 绝对值大于2的数有无穷多个 (D) 绝对值大于2的整数有无穷多个8.有理数的绝对值一定是( )A. 正数 B. 整数C. 正数或零D. 非正数9.如果m 是一个有理数,那么下面结论正确的是( )A. m -一定是负数B. m 一定是正数C. m -一定是负数 D. m 不是负数10.如果甲数的绝对值大于乙数,那么( )A. 甲数大于乙数B. 甲数小于乙数C. 甲、乙两数符号相反 D. 甲、乙两数的大小不能确定11.设1--=a ,1-=b ,c 是1的相反数,则c b a ,,的大小关系是( )A. c b a ==B. c b a <<C. c b a <=D.c b a >>三、解答题(每题2分)12.比较下列各数的大小(要有解答过程):(1)85,2413-- (2)2117,76,65---13.(3分))若一个数a 的绝对值是3,且a 在数轴上的位置如图所示,试求a 的相反数.B 组(40分)一、填空题(每题3分)14.5--的相反数是;4的相反数的绝对值是;的相反数是它本身.15.若2-<a ,给出下面4个结论:①a a >;②a a ->;③a a <1;④a a >1.其中不正确的有(填序号).16.若11-=-m m ,则m 1;若11->-m m ,则m 1; a若4-=x ,则=x ;若21-=-x ,则=x .17.最小的自然数与绝对值最小的整数的和是.18.若a a -=,则数a 在数轴上对应的点的位置在.二、解答题(5分)19.分别写出a 为何值时,下列各式成立?(1)a a -=; (2)a a -=;(3)1=a a; (4)1-=a a20.已知3c ,2b ,2===a ,且有理数c b a , ,在数轴上的位置如图所示,计算c b a ++的值.(6分) 21.已知5=x ,3=y ,且y x y x -=-,求y x +的值.(6分)C 组22.已知甲数的绝对值是乙数的绝对值的3倍,且在数轴上表示这两个数的点位于原点的两侧,两点之间的距离是8,求这两个数。
第2讲 绝对值与有理数加减运算(教师版)
知识引入知识导航经典例题1写出下列各数的绝对值:2绝对值大于3已知4已知有理数1已知2如果有理数3已知知识引入知识导航经典例题1计算:2计算下列各题:知识导航经典例题经典例题1已知2出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作课后作业123下列各式中,等号不成立的是(B.D.已知有理数41已知2已知1计算:2计算:3计算4计算:学霸笔记我的改错本榜样的力量完美过程,让我们的思维更加严谨说说心里话欲事之无繁,则必劳于始而逸于终.——(宋)苏轼《决壅蔽》第二天,go on~你的姓名:_______________________________________________________________第二节课的感觉:①so easy②perfect③a little difficult这节课有没有哪个知识点没听明白:______________________________________例题有没有没听懂的:_____________________________________________________本讲作业用时:_______________________________________________________________作业有没有不会的:_________________________________________________________想对老师说的话(悄悄告诉老师(⊙o⊙)属于我们的小秘密):【可以把本页撕下来悄悄交给老师哦,让老师陪你度过初中的美好时光】。
绝对值PPT教学课件
绝对值不等式
若a和b为实数,则有|a||b|≤|a+b|≤|a|+|b|成立。
绝对值的几何意义
数轴上的绝对值
在数轴上,一个数到原点的距离等于该点与原点之间的距离。例如,点A表 示的数为-3,则点A到原点的距离为3,即|-3|=3。
绝对值的几何解释
绝对值还可以理解为在数轴上,一个点到任意一个点之间的距离。例如,点B 表示的数为x,点C表示的数为y,则|x-y|表示点B到点C的距离。
对于形如“|x| > a”或“|x| < a”的 不等式,可以通过去掉绝对值符号, 将不等式转化为若干个不等式组来解 决。
要点三
绝对值不等式的应用
绝对值不等式可以用来解决一些实际 问题,例如在物理、化学、生物等领 域中,常常需要使用绝对值不等式来 解决一些限制条件或优化问题。
在函数中的应用
绝对值函数的定义
3. 根据以上两点,进行 化简求值。
习题二:绝对值的比较大小
详细描述
2. 比较两个负数的绝对值大小: 先取它们的相反数,再比较大小 。
总结词:掌握比较两个数的绝对 值大小的方法,能够根据两个数 的绝对值判断它们的大小关系。
1. 比较两个正数的绝对值大小: 直接比较它们的绝对值即可。
3. 比较两个数的绝对值大小:先 分别求出它们的绝对值,再比较 大小。
3
绝对值的定义也可以理解为:一个数a的绝对值 就是a和0之间的距离。
绝对值的意义
01
绝对值的意义在于它反映了数在数轴上的位置离原点的远近程 度。
02
对于任何有理数a,它都有一个对应的绝对值|a|,这个绝对值
表示了a离原点的距离。
通过比较两个数的绝对值大小,我们可以知道它们在数轴上的
2绝对值与有理数的加减
专题二 绝对值与有理数的加减【知识梳理】一、绝对值的概念1.绝对值的几何意义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a .2.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.可用字母a 表示如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a二、绝对值的非负性:0a ≥1.绝对值具有非负性,绝对值的结果总是正数或0.2.如果若干个非负数的和为0,那么这若干个非负数都必为0.三、绝对值比较大小数学中规定:在数轴上表示的有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.一般地,(1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.【例题精讲】【例1】求下列各数的绝对值。
(1)132-= 4.2+= 0= (2)到原点距离为5的点表示的数是 ,绝对值大于2而小于5的负整数是 . (3)若a <0,则a = ;a -= .(4)若a =7,则a = .【例2】(1)下列说法中正确的是( )A.一个数的绝对值等于它本身,则这个数是正数B.一个数的绝对值等于它的相反数,则这个数是负数C.一个数的绝对值不可能等于零D.一个数的绝对值不可能为负数(2)绝对值最小的数是( )A.正数中最小的数B.有理数中最小的数C.整数中最小的数D.自然数中最小的数【例3】已知x=4,|y|=5且x >y ,则2x -y 的值为( )A.13B.3C.13 或3D.-13或-3在数轴上的对应点如图所示,化简:【例5】绝对值不大于100的所有整数的和是 ,积是 .【例6】已知|a|=3,|b|=2且|a -b|=b -a ,求a+b 的值.【例7】已知890x y -+-=,则x y +的值为 。
变式1 如果6a -与3b -互为相反数,则式子1ab 的倒数为 。
变式2 如果69m m -=--,则式子m n +的值为 。
2.3.1绝对值与相反数:绝对值(课件)七年级数学上册(苏科版2024)
3
4
5
02
知识精讲
绝对值的运算
由于任意一个有理数的绝对值都是非负数,所以两个有理数的绝
对值可以进行小学里学过的各种运算,如:|3|+|-2|=3+2=5。
“绝对值”运算优先于“加减乘除”运算。
02
知识精讲
尝试——计算:
(1)|-1000|-|-197|;
(2)|32|×|-2.5|。
解:(1)原式=1000-197
知识精讲
讨论——1. 的绝对值是____,- 的绝对值是____,0的绝对值是
____;
0
-4
-3
-2
-1
0
1
2
3
4
02
知识精讲
2.绝对值等于5的数是____,绝对值小于5的整数有____个,
±5
9
其中绝对值最小的整数是____。
0
5
-6
-5
-4
-3
5
-2
-1
0
1
2
④m=1,n=4,m-n=-3,
②m=-1,n=4,m+n=3,
∵5>3>-3>-5,
综上,m+n的值±3;
∴m-n的最大值为5。
03
典例精析
例3、我们知道|x|=2,则x=±2。
请你那么运用“类比”的数学思想尝试着解决下面两个问题:
-5或-1
(1)|x+3|=2,则x=________;
看作整体
(2)|- |×|33|+66×|-25%|+0.25。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a b 3 a b
b
0
a
2.有理数a,b,c在数轴上的位置如图所示,化简:
ba bc ac
a b 0 c
3.有理数a,b,c在数轴上的位置如图所示,化简:
a ab c bc
b c 0 a
作业:
1.有理数a,b在数轴上的位置如图所示,化简:
ac 4 ac
c
0
a
3. a>b a=b a<b
a-b>0 a-b=0 a-b<0
二、相反数
1 1. -2 的相反数是 3
1 2 3
;2.数a的相反数是
-a
;
3.-x+2y的相反数是
x-2y
3.14-π ;4. 3.14-π 的相反数是
--x+2y+3z 5. x-2y-3z的相反数是 ;6. 2a-b的相反数是-2a+b
2.有理数a,b,c在数轴上的位置如图所示,化简:
2 a b b c 2a c
c
3.若
b
0
a
2.已知:a<0,b>0,且 a > b ,化简 b 1 a b 3.已知x、y、z满足x<y,x+y=0,xyz>0, y > z ,化简
x z y z
拓展练习
1.有理数a,b,c在数轴上的位置如图所示,化简: c
a
0
b
a c c 2b a c a b
绝对值的加减
一、探究规律 1.计算 ⑴ 9-6= 3 ⑵ 3-(-3)= 6 ⑶ (-2)-(-7)= 5
⑷ 7-7= 0 ⑸ (-9)-(-9)= 0
⑹ 2-5= -3 ⑺ -1-7= -8 ⑻ -10.5-(-6)= -4.5
2.根据以上计算,试填空: ⑴ 若a>b,则a-b > 0 ⑵ 若a=b, 则a-b 0 = < ⑶ 若a<b,则a-b 0
三、绝对值
1.
1 2 3
1 2 = 3
; 2. a
-5 =
5
;Байду номын сангаас
3.
0 = 0
-a
4.当a≥0时, a=
;当a<0时, a =
5. 3.14 π = 3.14-π
6. 当a-2b<0时, a 2b = -a+2b
a 3 a 4
6. 若3<a<4时,化简
典例剖析
1.有理数a,b在数轴上的位置如图所示,化简: