圆锥印刷四臂螺旋天线的分析与设计

合集下载

宽带小型化四臂螺旋天线的研究

宽带小型化四臂螺旋天线的研究

宽带小型化四臂螺旋天线的研究随着无线通信技术的快速发展,天线作为通信系统的重要组件,其性能和尺寸成为了关键的研究课题。

其中,宽带小型化四臂螺旋天线由于其独特的性能和紧凑的结构,受到了广泛。

本文将深入研究宽带小型化四臂螺旋天线的特点、应用前景和未来发展方向。

传统的四臂螺旋天线具有较好的方向性和增益,但尺寸较大,难以满足现代通信系统对紧凑型天线的要求。

近年来,研究者们在小型化四臂螺旋天线方面取得了显著成果,但仍存在宽带性能不足、辐射效率低等问题。

针对这些问题,本文提出了一种新型的宽带小型化四臂螺旋天线,旨在提高天线的性能和减小其尺寸。

本文从理论研究和仿真分析出发,采用等角螺旋线来设计四臂螺旋天线的臂线,通过调整螺旋线的匝数和半径,实现天线的小型化和宽带性能。

同时,采用有限元法对天线进行仿真分析,优化天线的结构和性能。

通过仿真分析和实验验证,本文所提出的宽带小型化四臂螺旋天线在保持紧凑型的同时,具有优良的宽带性能。

天线的输入输出特性表现出良好的匹配,阻抗带宽覆盖了多个频段,辐射效率也得到了显著提高。

与传统的四臂螺旋天线相比,所提出的天线在尺寸减小、带宽增加以及辐射效率提高等方面具有明显优势。

宽带小型化四臂螺旋天线具有广泛的应用前景。

在手持设备领域,如智能手机、平板电脑等,该天线可用于实现多频段通信,提高设备的通信性能。

在无线路由器领域,该天线可以扩展无线网络的覆盖范围,提高数据传输速率。

在物联网领域,该天线可作为传感器节点的一部分,实现无线传感网络的智能化和多功能化。

宽带小型化四臂螺旋天线的未来发展将涉及以下几个方面:理论研究:进一步深入研究天线的物理机制和设计理论,如探索新的天线拓扑结构、材料和工艺,以提高天线的性能和功能。

技术开发:针对不同应用场景,开发适用于各种频段和通信协议的天线,以满足不断发展的无线通信需求。

产业应用:推动宽带小型化四臂螺旋天线的产业化发展,促进天线技术与各领域的深度融合,为无线通信产业的繁荣做出贡献。

船载海事卫星通信印刷四臂螺旋天线设计

船载海事卫星通信印刷四臂螺旋天线设计

船载海事卫星通信印刷四臂螺旋天线设计提纲:第一章:绪论1.1 研究背景和意义1.2 国内外研究现状分析1.3 研究目的和内容1.4 研究方法和技术路线第二章:船载海事卫星通信系统概述2.1 船载通信系统的基本要求2.2 海事卫星通信系统的特点和应用2.3 国内外主要设备的技术特点第三章:四臂螺旋天线设计3.1 螺旋天线的基本原理3.2 四臂螺旋天线的结构设计3.3 四臂螺旋天线的性能分析3.4 四臂螺旋天线的制作工艺第四章:四臂螺旋天线性能测试4.1 性能测试系统的设计4.2 天线增益和辐射图的测试结果4.3 天线带宽和极化性能的测试结果第五章:结论和展望5.1 研究成果总结5.2 研究存在的问题和不足5.3 研究的展望和未来发展方向参考文献第一章:绪论1.1 研究背景和意义随着航运市场的不断发展,航运业面临越来越多的挑战,其中之一是如何建立可靠的船舶通信系统,以便进行全球范围内的通信、导航和监控等工作。

在过去的几十年里,卫星通信技术越来越成为海上通信的主要形式。

现代化的船载海事卫星通信系统大大提高了船舶的安全性和工作效率,增强了船员与船方之间、船舶与地面之间的联系,降低了工作风险,提高了航行效率。

然而,由于船舶的特殊性质,船载卫星通信系统需要具备一系列的技术要求,并面临着一系列的技术难题,如如何提高信号接收的稳定性、如何降低信号干扰等。

因此,对于船载海事卫星通信系统的研究和开发具有重要意义。

1.2 国内外研究现状分析目前,在海事卫星通信领域,国内外都取得了一定的进展。

国际海事组织和国内相关机构出台了一系列卫星通信标准和要求,为相关企业和机构提供了技术指导和规范。

船舶卫星通信市场呈现出不断扩大的趋势,相关企业的研究和开发也在不断推进。

在技术上,卫星通信系统的形式也日益丰富多样,如全球星计划、中高轨卫星通信系统、L波段通信等。

对于天线技术来说,四臂螺旋天线作为一种广泛应用于船舶卫星通信系统中的天线形式,具有较好的性能和广阔的应用前景。

(完整word版)四臂螺旋天线简介

(完整word版)四臂螺旋天线简介

四臂螺旋式天线四臂螺旋式天线(Quadrifilar Helix Antenna )一般由四条按特定规则弯曲的金属线条镶于圆柱形基材上,无需任何接地。

它具备有Zapper天线的特性,也具备有垂直天线的特性。

此种巧妙的结构,使天线任何方向都有3dB的增益,方向图特性良好。

四臂螺旋式天线拥有全面向360度的接收能力,因此在与pda结合时,无论PDA的摆放位置如何,四臂螺旋式天线皆能接收,有别于使用平板GPS天线需要平放才能较好的接收的限制.使用此种天线,当卫星出现于地平面上10度时,即可收到卫星所传送的讯号.四臂螺旋天线是美国约翰普金斯大学应用物理实验室博士Kilgus于1968年提出的,之后人们对其进入了深入的研究。

该天线具有心型方向图、良好的前后比及优异的圆极化特性,因此被广泛应用于卫星通信系统,尤其被认为是理想的全球定位系统GPS和卫星手机接收天线,但体积大是其缺点。

早期四臂螺旋天线的辐射单元一般采用金属管或金属线,通过弯曲成型或缠绕在绝缘柱上,这样必然需要在馈电网络中加入复杂的平衡转换器和阻抗匹配网络,螺旋结构也需要机械支撑,因此天线体积较大,难于批量生产。

2001年Leisten提出了陶瓷介质加载四臂螺旋天线。

该天线采用陶瓷填充,天线体积缩小大10.00×17.8mm(底面直径×高),为未加载的1\6.相对于应用于GPS系统的介质加载微带贴片天线,DQHA还具有优良的前后比和广角圆极化特性,且电磁场被束缚在陶瓷核内,近场很小,天线受手机、人体等周围环境影响很小。

陶瓷天线虽然在性能方面表现已经较好,但需要十多种不可缺少工艺,才制成产品。

流程长的代价是产品巨贵,且体积不大不小的,在手机中用,体积需要进一步减小。

为此国内研究左手材料及天线的专家在2011年联合推出了一款自主研发的新型多频四臂螺旋天线,即微航牌四臂螺旋天线。

相比于陶瓷天线,微航牌天线在相同的体积增益高、相同的增益体积小,并有圆柱型(直径6.0mmX12mm)、条形(6.0mmX6.0mmX13mm)等多种款式,可用于手机GPS中。

四臂螺旋天线设计与实现研究

四臂螺旋天线设计与实现研究
长为: = ( D) 十
( 1 )
( 2 )
轴 向尺 、 长度日为: H= n X a = 0 。 时, 可 简 化为 线 型 天线 。
( 3 )
( a ) 终端 开路结 构
( b ) 终端 短路结 构
当X = 0 , a = 0 。 时, 螺 线 天 线可 简化 为环 形 天线 ; 当D = 0 ,
4 2
时, 辐 射 模 式 为轴 向 模 , 此 时 螺 旋 天 线最 火辐 射 方 向 与轴 线
本 文设 计的一 种小 型化 四 臂螺 旋 天线 , 谐 振 频 率为
作者简介: 樊 际洲 ( 1 9 7 7 一 ) , 男, 陕 西渭南 , 硕士, 高级天线设计师; 研究方向: 宽带天线
第l 4 期 2 0 1 7 年7 J
无 线 互 联 科 技
Internet T eChnol ogY
NO. 1 4 Ul v.2O1 7
四臂螺旋天线设计与实现研究
樊 际洲
( 广州海格通信集团股份有限公司, 广东 广州 5 1 0 6 6 3 )
摘 要 : 文章介绍了四臂螺旋天线的结构特性和几何尺寸、 螺旋模式; 设计了 一种小型四臂螺旋 天线, 采用巴伦平衡结构的自 相移馈电方式馈电, 将螺旋臂印刷在 高介电常数 陶瓷柱上 , 减小了天线的体 积, 通过仿真分析, 该种天线具有良好的宽波束和
图2 终 端 开 路 和终 端 短 路 四臂 螺 旋 天 线 结 构
I 2 中, 为 天线螺距, D为螺旋直径 , 为螺旋轴 长, " 为 螺旋圈数。 天线结构尺 寸计算参考公式 为:
1 . 2螺旋 天线辐射模 式分析
四臂 螺 旋 天 线 辐 射 特 性 受 天 线 结 构 的 影 响较 大 , 螺 旋 直径 波 长 比 D , 直径 D起 到 关 键 作J E } I , 决 定了辐 射 办 式 。 当 商径 D<2 时, 辐 射模 式 为法 向模 , 螺 旋 天 线 最 大辐 射 方 向与

一种小型高精度四臂螺旋天线的设计

一种小型高精度四臂螺旋天线的设计

一种小型高精度四臂螺旋天线的设计张华福;李晓鹏;黄建忠;张照良【摘要】本文通过设计研究以空气作为介质,四轴对称,耦合辐射臂加载底部耦合主辐射臂的四臂螺旋天线,经过计算仿真,结果表明,这种耦合方式在一定程度上扩展了天线的阻抗带宽,使得天线获得了很宽的频带,在L1频段具有150MHz的带宽,使得天线能实现GPS:L1,GLONASS:L1,北斗:B1和Galileo:L1多星座卫星的接收,同时,这种天线有较宽的轴比带宽,实现了天线良好的圆极化性能和较强的抑制多路径效应的能力,并且有较高的增益.这种天线体积小,重量轻,易安装,为高精度无人机行业提供重要的研究价值.【期刊名称】《电子世界》【年(卷),期】2016(000)012【总页数】2页(P101,103)【关键词】四臂螺旋;宽频带;高精度;无人机;轴比;天线【作者】张华福;李晓鹏;黄建忠;张照良【作者单位】广州中海达卫星导航技术股份有限公司;广州中海达卫星导航技术股份有限公司;广州中海达卫星导航技术股份有限公司;广州中海达卫星导航技术股份有限公司【正文语种】中文全球卫星导航系统(Global Navigation Satellite System,GNSS)具有全时空、全天候、高精度、连续实时地提供导航、定位和授时的特点,因此在经济发展、科学研究、灾害防控以及军事领域起着越来越重要的作用[1, 2, 3]。

近年来,高精度无人机和手持高精度移动测量设备发展越来越快,而这些设备需要带宽宽,精度高,搜星能力强的天线来实现高精度测量的功能。

而传统的贴片微带天线由于体积大,质量重,使用安装复杂,很难满足移动高精度测量设备的需求。

然而,螺旋天线具有易加工,性能好的优点,越来越受到关注,kiglgas最先分析了螺旋天线的性能[4]。

但是传统的螺旋天线是由铜线或者其他金属绕制而成的。

加工工艺复杂,带宽很窄,天线的性能不能保证,而且一致性差[5, 6, 7]。

基于上述考虑,本文提出一款新型空气作为介质,四轴对称,耦合辐射臂加载底部耦合主辐射臂的四臂螺旋天线的设计,能满足GPS:L1,GLONASS:L1,北斗:B1和Galileo:L1多星座卫星的接收,并且具有较宽的增益带宽和轴比带宽,有较大的抗多路径能力,为高精度无人机行业和手持高精度移动测量行业的发展具有重大意义。

四臂螺旋天线简介

四臂螺旋天线简介

四臂螺旋式天线四臂螺旋式天线(Quadrifilar Helix Antenna )一般由四条按特定规则弯曲的金属线条镶于圆柱形基材上,无需任何接地。

它具备有Zapper天线的特性,也具备有垂直天线的特性。

此种巧妙的结构,使天线任何方向都有3dB的增益,方向图特性良好。

四臂螺旋式天线拥有全面向360度的接收能力,因此在与pda结合时,无论PDA的摆放位置如何,四臂螺旋式天线皆能接收,有别于使用平板GPS天线需要平放才能较好的接收的限制.使用此种天线,当卫星出现于地平面上10度时,即可收到卫星所传送的讯号.四臂螺旋天线是美国约翰普金斯大学应用物理实验室博士Kilgus于1968年提出的,之后人们对其进入了深入的研究。

该天线具有心型方向图、良好的前后比及优异的圆极化特性,因此被广泛应用于卫星通信系统,尤其被认为是理想的全球定位系统GPS和卫星手机接收天线,但体积大是其缺点。

早期四臂螺旋天线的辐射单元一般采用金属管或金属线,通过弯曲成型或缠绕在绝缘柱上,这样必然需要在馈电网络中加入复杂的平衡转换器和阻抗匹配网络,螺旋结构也需要机械支撑,因此天线体积较大,难于批量生产。

2001年Leisten提出了陶瓷介质加载四臂螺旋天线。

该天线采用陶瓷填充,天线体积缩小大10.00×17.8mm(底面直径×高),为未加载的1\6.相对于应用于GPS系统的介质加载微带贴片天线,DQHA还具有优良的前后比和广角圆极化特性,且电磁场被束缚在陶瓷核内,近场很小,天线受手机、人体等周围环境影响很小。

陶瓷天线虽然在性能方面表现已经较好,但需要十多种不可缺少工艺,才制成产品。

流程长的代价是产品巨贵,且体积不大不小的,在手机中用,体积需要进一步减小。

为此国内研究左手材料及天线的专家在2011年联合推出了一款自主研发的新型多频四臂螺旋天线,即微航牌四臂螺旋天线。

相比于陶瓷天线,微航牌天线在相同的体积增益高、相同的增益体积小,并有圆柱型(直径6.0mmX12mm)、条形(6.0mmX6.0mmX13mm)等多种款式,可用于手机GPS中。

四臂螺旋天线研究与设计

四臂螺旋天线研究与设计
Si c ce e& Te h lg s n n c noo yVi o i
0 月第 1期 02 4 1
四臂螺旋天线研究与设计
程 (. 国 电子 科 技集 团第 二 十研 究所 1中
【 摘
醅 , 李 英杰 7 0 6 ;. 电子 科技大 学 1O 8 2西安 陕西 西安 7 07 ) 10 1
式及行波模式四 。 Klu. . i s C C提 出了一种等效方 法来研究 四臂螺旋 天线 g s I Nc c E E& T cHN。L Y II E 。G V s。N 科技视 界 I6 1
陕西
西安
要 】 文设计 了一种 多频点 角锥形四臂螺旋天线 , 本 并对其各种参数进行 了 化。天线设计工作在 L波段 , 优 各频点驻波
系数小于 2 天线要 求为右旋圆极化 。 用 A sfHF S软件 对天线进行 了仿真分析 , , 利 no S t 结果表 明该天线具有 良好 的增益特性和方
() 示 。 c所
线的 电压驻波 比( S V WR) , 2各频点带宽 1MH 。天线 圆 d于 , 0 z 极化增益 大于 6 B, d 仰角 lo 5 以上 的轴 比小于 6 B 天线天顶 d, 到 9o 0 的增益 落差 大于 1d 。 2B
C C Kl s 16 . . i u 在 9 8年提 出 了谐振 式 四臂 螺旋 结构 天 g 线闭, 典型结构如 图 2所示 。 它 由四根螺旋臂组成 , 每根 的长 度为 四分之一波 长的整
天线。
的应用与发展做 出了重大贡献[ 1 ] 型的螺旋天线一般 为圆 。典 柱形 , 通常 由金属丝缠绕而成 。 其结构如 图 1 所示 。螺旋天线 结构 的空间特征参量有 三个 : 螺旋高度 、 螺距和直径 。

gps宽带四臂螺旋天线研究

gps宽带四臂螺旋天线研究

摘要摘要自1901年马可尼首次成功实现了无线通信,无线产品相继涌现,已然将人们的生活变得越来越便利。

无线通讯技术发展之迅速、应用之广泛是科技进步的体现也是人们生活品质提高的需求。

在无线通信系统中,天线是一个关键的设备,负责辐射和接收电磁波,其性能参数的优劣直接影响了整个系统的运行。

而天线的种类繁多,不同的应用方向上都有相应的天线来配备使用。

其中四臂螺旋天线不仅具有良好的圆极化性能、心脏形方向图,灵敏度也较高,非常适合作为全球定位系统(Global PositioningSystem,GPS)中的接收天线来使用。

众所周知,全球定位系统随着无线通信技术的发展,早已不局限于军事的应用,慢慢融入了社会发展、经济建设等领域。

越来越广泛的应用,往往意味着越来越高的标准,也就需要越来越深入的研究,尤其是对系统的信号接收起决定性作用的天线。

基于此应用领域,本文结合陶瓷加载、LTCC等技术对宽带化的四臂螺旋天线做了相应的研究和设计工作。

首先是对四臂螺旋天线研究背景的充分介绍和理论基础的详细分析。

四臂螺旋天线的四臂结构形式要获得优良的圆极化特性需等幅正交的馈电,天线设计的工程中不只要考虑天线特性,馈电网络也是一个不可忽视的问题。

另一个值得注意的是天线发展过程中与新材料、新工艺等的结合,这是科技进步的新趋势。

其次介绍了本文设计的一种陶瓷柱加载的四臂螺旋天线。

在天线小型化的道路上,高介电常数陶瓷材料的加载无疑是一重要里程碑,在此基础上,本设计又结合了在天线主辐射臂旁附加短路寄生臂的方法来展宽天线带宽。

经过仿真优化,天线整体尺寸仅为直径10mm、高度12mm的柱体大小,半功率波瓣宽度可达120︒以上,带宽可达15%,且实现了很好的右旋圆极化特性。

之后本文又设计了一种方形印刷四臂螺旋天线。

该天线放弃了传统的柱体绕制结构,采用立方体的相邻四面分别印刷天线四个臂的形式,将四臂螺旋天线的宽波束和良好圆极化特性的优势与微带天线易加工生产的优点相结合。

RFID小型圆极化四臂螺旋天线的设计

RFID小型圆极化四臂螺旋天线的设计

RFID小型圆极化四臂螺旋天线的设计近年来射频识别(Radio Frequency of Identificatio,RFID)技术的应用逐渐广泛,同时也倍受重视。

特别是UHF频段的RFID系统,由于其传输距离远、传输速率高,受到了更多地关注。

典型的RFID系统由RFID阅读器和标签两部分组成,RFID无源标签依靠RFID阅读器发射的电磁信号供电,并通过反射调制电磁信号与阅读器通信。

因此,RFID标签天线设计的优劣对其系统工作性能有关键的影响。

常见的射频识别阅读器天线有折合振子天线、分形天线、微带天线以及轴向模螺旋天线。

由于折合振子天线和分形天线一般为线极化天线,难以满足阅读器对各方向电子标签的识别要求,所以在较多场合不适用;而微带天线由于其面积尺寸过大,在小型化的阅读器手持机上的使用受到了限制;轴向模螺旋天线同样因轴向高度过高,在实际使用中也受到了限制。

因此,如何设计出一种小尺寸、低剖面、高性能的圆极化射频识别天线成为了关注的焦点。

(短波天线的制作方法)四臂螺旋天线由于其圆极化性能出色,被广泛应用于GPS领域。

随后经过进一步发展,Wang—lk Son等人将四臂螺旋天线应用至RFID,并利用平面倒F天线代替了传统的单极子天线作为四臂螺旋天线的天线臂,如图1所示,实现了良好的效果。

文中利用该方式,设计了一种在尺寸和性能上更具优势的RFID阅读器天线。

1、小型化四臂螺旋天线的设计1.1、四臂螺旋天线的设计文中设计的倒F四臂螺旋天线的结构如图2所示。

天线由4个完全相同的倒F天线组成,水平部分印制在介电常数为9.6,尺寸为60 mm×60 mm,厚度为1 mm的矩形微波复合介质板上,垂直部分印制在相同的4个厚度为1 mm的FR4小介质板上。

4个天线馈电为等幅馈电,相位按逆时针相位依次滞后90°,形成右手圆极化。

由于螺旋天线的4个臂相距较近,相对两臂之间的距离约为0.18 λ,天线4个臂之间的耦合较强。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档