实验6 数字滤波器设计

合集下载

6无限脉冲响应数字滤波器的设计

6无限脉冲响应数字滤波器的设计
解:(1) 设计模拟滤波器的指标为
p=2fp=104(rad/s), α p=2dB
s=2fs=2.4×104(rad/s), α s=30dB
(2Nk) ss确pp 定22滤l11gll00g波g0ff00ps...101k器aa2pssspp4的k2N2=s.s11pp4阶数022l.N11g000l20fgf004ps...10212aa2.ps4422k.N114sspp40.2.220l511g2,00l40fgf002ps...取1021Naa2.ps4N422为.1145540.2.052, 42N 5
N
4.25, N 5
lg 2.4
(3) 求极点
j 3 j 3
s0 sP00e5e ,5 ,
p e s s e e , , j 12k1 20 20N
j 3j 3 55
k
sP11
j 4
s1e5e
j 45s2Ps22
eje,j
,
s1 s1
j 4j 4
e e5 5
s2
e j ,
j 6j 6
FIR滤波器设计方法 (1)采用的是窗函数设计法和频率采样法, (2)用计算机辅助的切比雪夫最佳一致逼近法设计。
6.2 模拟滤波器的设计
理论和设计方法相当成熟,有若干典型的模拟滤波器可以选
择。如:巴特沃斯(Butterworth)滤波器、切比雪夫(Chebyshev)滤
波器、椭圆(Kllipse)滤波器、贝塞尔(Bessel)滤波器等,这些滤波 器都有严格的设计公式、现成的曲线Ha和H(jΩa (图)jΩ)表供设计人HH员aa (j使ΩΩ)) 用。
j 1 2 k1
p e 归一化极点 k
2 2N

有限冲激响应数字滤波器设计实验报告

有限冲激响应数字滤波器设计实验报告

实验6 有限冲激响应数字滤波器设计一、实验目的:1、加深对数字滤波器的常用指标理解。

2、学习数字滤波器的设计方法。

二、实验原理:低通滤波器的常用指标:(1)通带边缘频率;(2)阻带边缘频率;(3)通带起伏;(4)通带峰值起伏,(5)阻带起伏,最小阻带衰减。

三、实验内容:利用MATLAB编程,用窗函数法设计FIR数字滤波器,指标要求如下:通带边缘频率:,通带峰值起伏:。

阻带边缘频率:,最小阻带衰减:。

采用汉宁窗函数法的程序:wp1=0.45*pi;wp2=0.65*pi;ws1=0.3*pi;ws2=0.75*pi;width1=wp1-ws1;width2=ws2-wp2;width=min(width1,width2)N1=ceil(8*pi/width)b1=fir1(N1,[0.45 0.65],hanning(N1+1));[h1,f]=freqz(b1,1,512);plot(f/pi,20*log10(abs(h1)),'-')grid;图形:采用切比雪夫窗函数法德程序:wp1=0.45*pi;wp2=0.65*pi;ws1=0.3*pi;ws2=0.75*pi;width1=wp1-ws1;width2=ws2-wp2;width=min(width1,width2)N1=ceil(8*pi/width)b1=fir1(N1,[0.45 0.65],chebwin(N1+1,20));[h1,f]=freqz(b1,1,512);plot(f/pi,20*log10(abs(h1)),'-')grid;图形:四.小结FIR和IIR滤波器各自的特点:①结构上看,IIR滤波器必须采用递归结构,极点位置必须在单位圆内,否则系统将不稳定,IIR滤波器脱离不了模拟滤波器的格局,FIR滤波器更灵活,尤其能使适应某些特殊的应用。

设计选择:在对相位要求不敏感的场合,用IIR较为适合,而对图像处理等对线性要求较高,采用FIR滤波器较好。

实验六用窗函数法设计FIR滤波器分析解析

实验六用窗函数法设计FIR滤波器分析解析

实验六用窗函数法设计FIR滤波器分析解析一、引言数字滤波器是数字信号处理中的重要组成部分。

滤波器可以用于去除噪声、调整频率响应以及提取感兴趣的信号。

有许多方法可以设计数字滤波器,包括窗函数法、频域法和优化法等。

本实验将重点介绍窗函数法设计FIR滤波器的原理和过程。

二、窗函数法设计FIR滤波器窗函数法是设计FIR滤波器的一种常用方法。

其基本原理是将滤波器的频率响应与理想滤波器的频率响应进行乘积。

理想滤波器的频率响应通常为矩形函数,而窗函数则用于提取有限长度的理想滤波器的频率响应。

窗函数的选择在FIR滤波器的设计中起着重要的作用。

常用的窗函数包括矩形窗、汉宁窗、汉明窗、布莱克曼窗等。

对于每种窗函数,都有不同的特性和性能指标,如主瓣宽度、副瓣抑制比等。

根据不同的应用需求,可以选择合适的窗函数。

窗函数法设计FIR滤波器的具体步骤如下:1.确定滤波器的阶数N。

阶数N决定了滤波器的复杂度,一般情况下,阶数越低,滤波器的简单度越高,但频率响应的近似程度也会降低。

2.确定滤波器的截止频率。

根据应用需求,确定滤波器的截止频率,并选择合适的窗函数。

3.根据窗函数长度和截止频率计算理想滤波器的频率响应。

根据所选窗函数的特性,计算理想滤波器的频率响应。

4.根据理想滤波器的频率响应和窗函数的频率响应,得到所需的FIR滤波器的频率响应。

将理想滤波器的频率响应与窗函数的频率响应进行乘积,即可得到所需滤波器的频率响应。

5.对所得到的频率响应进行逆傅里叶变换,得到时域的滤波器系数。

6.实现滤波器。

利用所得到的滤波器系数,可以通过卷积运算实现滤波器。

三、实验结果与分析本实验以Matlab软件为平台,利用窗函数法设计了一个低通滤波器。

滤波器的阶数为16,截止频率为500Hz,采样频率为1000Hz,选择了汉宁窗。

根据上述步骤,计算得到了所需的滤波器的频率响应和时域的滤波器系数。

利用这些系数,通过卷积运算,实现了滤波器。

为了验证滤波器的性能,将滤波器应用于输入信号,观察输出信号的变化。

FIR数字滤波器设计实验_完整版

FIR数字滤波器设计实验_完整版

FIR数字滤波器设计实验_完整版本实验旨在设计一种FIR数字滤波器,以滤除信号中的特定频率成分。

下面是完整的实验步骤:材料:-MATLAB或其他支持数字信号处理的软件-计算机-采集到的信号数据实验步骤:1.收集或生成需要滤波的信号数据。

可以使用外部传感器采集数据,或者在MATLAB中生成一个示波器信号。

2. 在MATLAB中打开一个新的脚本文件,并导入信号数据。

如果你是使用外部传感器采集数据,请将数据以.mat文件的形式保存,并将其导入到MATLAB中。

3.对信号进行预处理。

根据需要,你可以对信号进行滤波、降噪或其他预处理操作。

这可以确保信号数据在输入FIR滤波器之前处于最佳状态。

4.确定滤波器的设计规范。

根据信号的特性和要滤除的频率成分,确定FIR滤波器的设计规范,包括滤波器的阶数、截止频率等。

你可以使用MATLAB中的函数来帮助你计算滤波器参数。

5. 设计FIR滤波器。

使用MATLAB中的fir1函数或其他与你所使用的软件相对应的函数来设计满足你的规范条件的FIR滤波器。

你可以选择不同的窗函数(如矩形窗、汉宁窗等)来平衡滤波器的频域和时域性能。

6. 对信号进行滤波。

将设计好的FIR滤波器应用到信号上,以滤除特定的频率成分。

你可以使用MATLAB中的conv函数或其他相应函数来实现滤波操作。

7.分析滤波效果。

将滤波后的信号与原始信号进行比较,评估滤波效果。

你可以绘制时域图、频域图或其他特征图来分析滤波效果。

8.优化滤波器设计。

如果滤波效果不理想,你可以调整滤波器设计参数,重新设计滤波器,并重新对信号进行滤波。

这个过程可能需要多次迭代,直到达到最佳的滤波效果。

9.总结实验结果。

根据实验数据和分析结果,总结FIR滤波器设计的优点和缺点,以及可能的改进方向。

通过完成以上实验步骤,你将能够设计并应用FIR数字滤波器来滤除信号中的特定频率成分。

这对于许多信号处理应用都是非常重要的,如音频处理、图像处理和通信系统等。

数字滤波器设计实验报告

数字滤波器设计实验报告

数字滤波器设计实验报告实验目的:1.掌握数字滤波器的基本理论知识。

2.学习数字滤波器设计方法。

3.实现数字滤波器的设计与模拟。

实验原理:FIR滤波器的特点是稳定性好、相位响应线性和易于设计。

FIR滤波器的设计方法主要有窗函数法、频率采样法和最小最大化法等。

IIR滤波器的特点是具有较窄的通频带宽率、相位响应非线性和较高的处理效率。

IIR滤波器的设计方法主要有双线性变换法、脉冲响应不变法和双正交变换法等。

实验步骤:1.根据实验要求和给定的参数,选择适合的滤波器类型(FIR或IIR)。

2.根据滤波器的设计方法,计算滤波器的系数。

3.使用MATLAB或其他工具进行滤波器的设计和仿真。

4.分析仿真结果,评估滤波器的性能。

5.根据实际需求,进行滤波器参数的优化和调整。

6.进行实验数据的滤波处理,并比较滤波前后的信号质量。

7.总结实验结果,写出实验报告。

实验结果:根据实验要求,我们选择了FIR滤波器进行设计。

通过使用窗函数法和最小最大化法,计算得到了滤波器的系数。

将滤波器的设计结果导入MATLAB进行仿真,得到了滤波器的频率响应和时域波形。

通过分析仿真结果,发现滤波器的设计基本满足了要求,但仍存在一些性能方面的改进空间。

根据实验需求和实际情况,我们对滤波器的参数进行了优化和调整。

经过多次迭代和调试,最终得到了满意的结果。

将优化后的滤波器应用于实验数据的滤波处理,可以看到滤波效果明显,信号质量得到了显著提升。

实验结论:通过本次实验,我们学习并掌握了数字滤波器的基本理论知识和设计方法。

通过实际操作和实验仿真,对数字滤波器的设计和应用有了更深入的了解。

实验结果表明,数字滤波器可以有效地对信号进行滤波处理,提高信号质量和准确度。

数字信号处理实验报告五--数字滤波器设计与仿真

数字信号处理实验报告五--数字滤波器设计与仿真

实验五 数字滤波器设计及仿真实验一、实验目的(1)熟悉用数字滤波器滤波器设计的原理与方法;(2)学会调用MATLAB 信号处理工具箱中滤波器设计函数(或滤波器设计分析工具FDATOOL )设计各种IIR 数字滤波器,学会根据滤波需求确定滤波器指标参数。

(3)掌握数字滤波器的MATLAB 实现方法。

(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。

二、实验原理与方法 三、实验内容及步骤(1)调用信号产生函数mstg 产生由三路抑制载波调幅信号相加构成的复合信号st ,该函数还会自动绘图显示st 的时域波形和幅频特性曲线,如图10.4.1所示。

由图可见,三路信号时域混叠无法在时域分离。

但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。

图10.4.1三路调幅信号st 的时域波形和幅频特性曲线(2)要求将st 中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分0.0020.0040.0060.0080.010.0120.0140.0160.0180.02-10123t/ss (t )(a) s(t)的波形(b) s(t)的频谱f/Hz幅度离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。

要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB 。

提示:抑制载波单频调幅信号的数学表示式为0001()cos(2)cos(2)[cos(2())cos(2())]2c c c s t f t f t f f t f f t ππππ==-++其中,cos(2)c f t π称为载波,f c 为载波频率,0cos(2)f t π称为单频调制信号,f 0为调制正弦波信号频率,且满足0c f f >。

由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频0c f f +和差频0c f f -,这2个频率成分关于载波频率f c 对称。

实验六用窗函数设计FIR滤波器

实验六用窗函数设计FIR滤波器

实验六用窗函数设计FIR滤波器一、引言数字滤波器是用于处理数字信号的重要工具,而FIR(Finite Impulse Response)滤波器是其中一类常见的滤波器。

在FIR滤波器中,输出信号的每个样本值仅依赖于输入信号在过去固定时间窗口内的样本值。

窗函数则是用于设计FIR滤波器的一种常见方法。

本实验将介绍如何用窗函数设计FIR滤波器,并通过一系列实验验证其性能。

二、实验目的1.了解FIR滤波器的原理和窗函数设计方法。

2.利用MATLAB工具进行FIR滤波器设计与性能评估。

3.分析不同窗函数对FIR滤波器的影响。

三、窗函数设计方法在设计FIR滤波器时,可以通过选择不同的窗函数来实现不同的频率响应。

常见的窗函数有矩形窗、汉宁窗、汉明窗、布莱克曼窗等。

在本实验中,我们将以汉宁窗为例进行讲解。

1.首先确定滤波器的截止频率和通带误差。

2.根据通带误差和滤波器的截止频率计算阶数。

3.根据阶数选择合适大小的窗口长度。

4.选择合适的窗函数,如汉宁窗。

5.计算窗函数的系数,并与理想滤波器的冲击响应相乘得到最终的滤波器系数。

四、实验步骤1.确定滤波器参数:截止频率、通带误差等。

2.根据通带误差和截止频率计算滤波器的阶数。

3.选择合适大小的窗口长度,通常选择大于滤波器阶数的2倍。

4.选择窗函数,如汉宁窗,计算窗函数的系数。

5.根据窗函数系数和截止频率计算滤波器的系数。

6.绘制滤波器的频率响应曲线。

7.利用设计好的FIR滤波器对输入信号进行滤波,并观察滤波效果。

五、实验结果与分析在本实验中,我们选择了截止频率为1kHz的低通滤波器。

首先计算滤波器的阶数,假设通带误差为0.01,根据公式可得N=3.32/((截止频率*通带误差)/采样频率)≈60。

我们选择窗口长度为120,即滤波器的阶数的两倍。

接下来选择汉宁窗作为窗函数,并计算其系数。

最后通过窗函数系数和截止频率计算得到滤波器的系数。

实验采用不同窗函数设计的FIR滤波器进行滤波,观察不同窗函数对滤波器性能的影响。

试验六用窗函数法设计FIR数字滤波器

试验六用窗函数法设计FIR数字滤波器

实验六 用窗函数法设计FIR 数字滤波器一. 实验目的(1)掌握用窗函数法设计FIR 数字滤波器的原理与方法。

(2)熟悉线性相位FIR 数字滤波器的特性。

(3)了解各种窗函数对滤波特性的影响。

二. 实验内容和要求(1) 复习用窗函数法设计FIR 数字滤波器一节内容,阅读本实验原理,掌握设计步骤。

(2) 用升余弦窗设计一线性相位低通FIR 数字滤波器,截止频率rad c 4πω=。

窗口长度N =15,33。

要求在两种窗口长度情况下,分别求出()n h ,打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和20dB 带宽。

总结窗口长度N 对滤波器特性的影响。

设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数()ωj e H ,即()⎪⎩⎪⎨⎧≤<≤=-πωωωωωαωc c j jd ,,e e H 0 其中21-=N α ()()()[]()a n a n d e e d e eH n h c j j j j d d cc--===⎰⎰---πωωπωπωαωωωαωππωsin 2121(3) 33=N ,4πω=c ,用四种窗函数设计线性相位低通滤波器,绘制相应的幅频特性曲线,观察3dB 带宽和20dB 带宽以及阻带最小衰减,比较四种窗函数对滤波器特性的影响。

三. 实验方法、步骤及结果测试如果所希望的滤波器的理想的频率响应函数为()ωj d e H ,则其对应的单位脉冲响应为()()ωπωωππd e e H n h j j d d ⎰-=21 (4.1)窗函数设计法的基本原理是用有限长单位脉冲响应序列()n h 逼近()n h d 。

由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到:()()()n n h n h d ω=(4.2)()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数()ωj e H 为()()nj N n j en h eH ωω∑-==1(4.3)式中,N 为所选窗函数()n ω的长度。

测试信号实验——模拟滤波及数字滤波报告

测试信号实验——模拟滤波及数字滤波报告

信号的调理与滤波器设计实验报告一、实验目的掌握模拟滤波器的设计方法和实现过程;掌握数字滤波器的设计方法和实现过程。

二、实验原理在信号传感和传输过程中,由于热噪声、漏电流和电源干扰等因素的影响,不可避免地会有干扰信号叠加到有用信号上,当这种干扰信号非常强时,将严重影响有用信号的识别和利用,因而,通常都有必要对这些干扰信号进行滤波处理。

干扰信号按照频谱分布可分为低频、中频和高频信号,因而,滤波器也相应设计成高通、带通、低通和带阻等形式,具体的滤波器原理和设计方法可参考模拟电子技术和其它相关资料。

在本实验中,要求在对干扰信号频谱分析的基础上,确定滤波器的形式,设计滤波器的截止频率和具体的RC参数,实现对干扰信号的抑制,通过对滤波后信号的时频域分析,评估滤波效果。

三、实验仪器1、电子称1台2、万用表1个3、采集卡1块4、面包板1块5、计算机1台6、信号发生器1台7、Labview软件1套8、运算放大器若干片9、电阻、电容等若干四、实验内容和步骤1、数字滤波器设计:①将电子称、电源、万用表、噪声发生器、采集卡和计算机连接,构成一个完整的测试系统;②利用Labview软件对采集到的信号进行频谱分析,判断干扰信号的频谱分布特征;③根据干扰信号的频谱分布特征进行滤波器的设计,并在面包板上实现;④利用Labview软件对加入滤波器的采集信号进行频谱分析,判断滤波后的干扰信号被抑制的情况,并评价滤波器的功效,如果滤波效果不好,分析具体原因,进一步改进滤波器,直至滤波效果达到预期要求;⑤改变干扰噪声的频率,比较滤波效果,并重新设计滤波器,重复2~4步骤。

2、模拟滤波器设计:①将信号发生器的噪声信号叠加到表示电子称输出的信号上;②将叠加了噪声的信号连接到数据采集卡的接口板上;③利用labview将信号采集到计算机中;④分析信号的频谱,得到信号的幅度谱;⑤根据信号特点提出滤波器设计参数、截止频率;⑥设计出滤波器的传递函数;⑦根据滤波器传递函数设计电路,完成电路的搭接;⑧将滤波器的输出送到采集卡,用计算机程序求出重物重量。

数字滤波器的设计方法

数字滤波器的设计方法

数字滤波器的设计方法数字滤波器是一种用于信号处理的重要工具,可以从输入信号中提取出特定的频率成分或者对信号进行去噪。

数字滤波器的设计方法包括滤波器类型选择、频率响应设计和滤波器参数计算等。

选择合适的滤波器类型是数字滤波器设计的第一步。

常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

根据信号处理的需求,选择适合的滤波器类型可以有效地提取或者去除特定的频率成分。

接下来,设计滤波器的频率响应是数字滤波器设计的关键。

频率响应描述了滤波器在不同频率下的增益特性。

常见的频率响应形状包括理想频率响应、巴特沃斯频率响应和切比雪夫频率响应等。

根据信号处理的要求,选择合适的频率响应形状可以满足滤波器的性能要求。

在设计滤波器的过程中,需要确定滤波器的参数。

这些参数包括截止频率、通带最大衰减、阻带最小衰减等。

通过选择合适的参数,可以调整滤波器的性能以满足信号处理的要求。

在实际的数字滤波器设计中,可以使用各种工具和方法来辅助设计过程。

其中,数字滤波器设计软件是一种常用的工具,可以根据输入的设计要求自动生成滤波器的参数和频率响应。

此外,还可以使用模拟滤波器的设计方法来设计数字滤波器,例如使用模拟滤波器的频率转换方法将模拟滤波器转换为数字滤波器。

需要注意的是,在数字滤波器设计中,经常会遇到一些问题和挑战。

例如,滤波器的设计目标可能会与实际应用中的信号相冲突,需要在设计过程中进行权衡。

此外,数字滤波器的设计也需要考虑计算量和存储量等资源的限制,以保证设计的可实现性。

数字滤波器的设计方法涉及滤波器类型选择、频率响应设计和滤波器参数计算等步骤。

通过选择合适的滤波器类型、设计合理的频率响应和确定适当的滤波器参数,可以设计出满足信号处理要求的数字滤波器。

在设计过程中,可以借助各种工具和方法来辅助设计,同时需要考虑实际应用中的问题和挑战,以确保设计的可行性和有效性。

实验6FIR滤波器设计

实验6FIR滤波器设计

实验6FIR滤波器设计FIR (Finite Impulse Response)滤波器是一种数字滤波器,其输出信号仅取决于振荡器的输入以前的有限个值。

FIR滤波器设计的目的是通过调整滤波器的系数以实现所需的频率响应。

在FIR滤波器设计中,首先确定滤波器的类型和频率响应的规格。

常见的滤波器类型有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

频率响应的规格由滤波器的截止频率、通带增益和阻带衰减等参数决定。

FIR滤波器的设计步骤如下:1.确定滤波器的类型和频率响应规格。

根据应用的需求,选择适当的滤波器类型和定义频率响应的参数。

2.确定滤波器的阶数。

阶数决定了滤波器的复杂度和性能。

一般而言,阶数越高,滤波器的性能越好,但计算复杂度也越高。

3.根据频率响应规格和系统设计的约束,选择一种滤波器设计方法。

常见的设计方法有窗函数法、频率采样法、最小均方误差法等。

4.设计滤波器的理想频率响应。

根据所选的设计方法,确定滤波器的理想频率响应。

这通常是一个分段线性函数,其中包括通带增益和阻带衰减。

5.将理想频率响应转换为时域的冲激响应。

这可以通过将理想频率响应进行反傅里叶变换来实现。

6.通过选择合适的窗函数,对冲激响应进行窗函数变换。

窗函数的选择是设计滤波器性能的重要因素。

7.通过窗函数变换得到滤波器的系数。

通过将窗函数变换应用于冲激响应,可以得到设计滤波器的系数。

这些系数确定了滤波器的时间响应和频率响应。

8.可选地,通过优化算法对滤波器的系数进行优化。

优化算法可以用来进一步改善滤波器的性能。

常用的优化算法包括加权最小二乘方法、梯度下降法等。

9.实现滤波器。

将设计好的滤波器系数应用于输入信号,得到滤波器输出。

可以使用编程语言或滤波器设计工具来实现滤波器。

10.验证滤波器的性能。

通过将滤波器应用于不同的输入信号,检验滤波器输出是否符合设计要求。

可以使用频谱分析工具和滤波器性能评估指标来评估滤波器的性能。

FIR滤波器设计是数字信号处理中重要的课题之一、设计一个性能良好的FIR滤波器需要对滤波器原理和设计方法有深入的了解,以及熟练的使用滤波器设计工具和编程工具。

实验6FIR滤波器设计

实验6FIR滤波器设计

实验6FIR滤波器设计FIR(Finite Impulse Response)滤波器是一种数字滤波器,它的输出只取决于输入序列和固定的系数,没有反馈回路。

FIR滤波器在很多领域中都有广泛的应用,比如音频信号处理、图像处理等。

本实验中我们将设计一个FIR滤波器,主要包括滤波器的设计、滤波器的实现以及滤波器的性能评估。

首先,我们需要选择一个滤波器的类型和规格。

常用的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

在本实验中,我们选择设计一个低通FIR滤波器。

接下来,我们需要确定滤波器的规格,包括截止频率、滤波器阶数和滤波器的类型等。

根据实际需求,我们选择截止频率为2kHz、滤波器阶数为64阶,滤波器类型为汉宁窗设计。

然后,我们需要确定滤波器的系数。

在本实验中,我们使用频率采样法设计滤波器。

首先,确定归一化截止频率:将实际截止频率除以采样频率,即2kHz/1MHz=0.002、然后,根据阶数和归一化截止频率计算出滤波器的系数。

在设计完成后,我们需要将滤波器转化为差分方程。

差分方程的形式为:y[n]=b0*x[n]+b1*x[n-1]+b2*x[n-2]+...+bN*x[n-N]其中y[n]是输出序列,x[n]是输入序列,b0,b1,b2,...,bN是滤波器的系数。

接下来,我们需要实现设计好的滤波器。

可以使用现有的FIR滤波器实现库,比如MATLAB中的“fir1”函数。

将输入序列输入滤波器,即可得到滤波后的输出序列。

最后,我们需要评估滤波器的性能。

常用的评估指标有幅频响应、相频响应和滤波器的群延迟等。

可以利用这些指标来评估滤波器的性能是否达到设计要求。

比如,可以绘制滤波器的幅频响应曲线来观察滤波器在不同频率下的增益情况。

综上所述,本实验主要介绍了FIR滤波器的设计、实现以及性能评估。

通过掌握FIR滤波器的设计方法和实现步骤,可以更好地应用FIR滤波器进行信号处理和滤波。

数字滤波器的设计实验

数字滤波器的设计实验

实验二IIR数字滤波器的设计实验内容及步骤:数字滤波器的性能指标:通带临界频率fp、阻带临界频率fr;通带内的最大衰减Ap;阻带内的最小衰减Ar;采样周期T;(1)、fp=0.3KHz,Ap=0.8dB, fr=0.2KHz,Ar=20dB,T=1ms;设计一Chebyshev高通滤波器;观察其通带损耗和阻带衰减是否满足要求。

程序如下:fp=300; fr=200;Ap=0.8; Ar=20;T=0.001;fs=1/T;wp=2*pi*fp*T;wr=2*pi*fr*T;Wp=2/T*tan(wp/2);Wr=2/T*tan(wr/2);[N,Wn]=cheb1ord(Wp,Wr,Ap,Ar,'s');[B,A] = cheby1(N,Ap,Wn,'high','s');[num,den]=bilinear(B,A,1/T);[h,w]=freqz(num,den);plot(w*fs/(2*pi),20*log10(abs(h))); %衰减及频率都用归一化的1为单位显示axis([0,500,-30,0]);title('Chebyshev高通滤波器');xlabel('频率');ylabel('衰减');grid on;根据下图知道通带损耗与阻带衰减满足要求(2)、fp=0.2KHz,Ap=1dB, fr=0.3KHz,Ar=25dB,T=1ms;分别用脉冲响应不变法及双线性变换法设计一Butterworth数字低通滤波器,观察所设计数字滤波器的幅频特性曲线,记录带宽和衰减量,检查是否满足要求。

比较这两种方法的优缺点。

程序如下:fp=200; fr=300;Ap=1;Ar=25;T=0.001;fs=1/T;wp=2*pi*fp*T;wr=2*pi*fr*T;Wp=2/T*tan(wp/2);Wr=2/T*tan(wr/2);[N,Wn]=buttord(Wp,Wr,Ap,Ar,'s');[B,A] = butter(N,Wn,'s');[num1,den1]=impinvar(B,A,1/T); %脉冲响应不变法得出设计的传递函数[num2,den2]=bilinear(B,A,1/T); %双线性变换法得出设计的传递函数[h1,w]=freqz(num1,den1);plot(w*fs/(2*pi),20*log10(abs(h2)),w*fs/(2*pi),20*log10(abs(h1)), 'r.');grid on; %衰减及频率都用归一化的1为单位显示axis([0,500,-30,0]);title('Butterworth低通滤波器(红线—脉冲响应不变法蓝线—双线性变换法)');xlabel('ƵÂÊ');ylabel('Ë¥¼õ');grid on;优缺点:采用脉冲响应不变法优点:1.h(n)完全模仿模拟滤波器的单位抽样响应时域逼近良好2线性相位模拟滤波器转变为线性相位数字滤波器缺点:1.对时域的采样会造成频域的“混叠效应”,故有可能使所设计数字滤波器的频率响应与原来模拟滤波器的频率响应相差很大2不能用来设计高通和带阻滤波器。

数字滤波器设计及应用综合实验

数字滤波器设计及应用综合实验

数字信号处理实验实验四、数字滤波器设计及应用综合实验学院:信息工程学院班级:电子101班姓名:学号:一、实验目的1.熟悉IIR数字滤波器的设计原理及方法。

2.熟悉FIR数字滤波器的设计原理及方法。

3. 掌握利用Matlab实现数字滤波器的方法4. 掌握利用数字滤波器进行信号处理的方法。

5. 了解基于Simulink的动态仿真实现信号滤波的基本方法。

二、实验内容及要求实验内容:综合运用数字滤波器设计的相关知识,根据给定设计方法要求,用脉冲响应不变法和双线性变换法设计IIR数字滤波器;利用窗函数设计法设计FIR数字滤波器。

根据实际信号的频谱特性,分析、确定滤波器设计技术指标,实现对信号的滤波。

1.IIR数字滤波器设计(1)用脉冲响应不变法设计巴特沃斯数字滤波器。

该实验所需M文件如下:①、butterworth低通滤波器原型设计函数:function [b,a]=afd_butt(Wp,Ws,Rp,As)N=ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(Wp/Ws)))fprintf('\n Butterworth Filter Order=%2.0f\n',N)OmegaC=Wp/((10^(Rp/10)-1)^(1/(2*N)))[b,a]=u_buttap(N,OmegaC)②、非归一化Butterworth模拟低通滤波器设计函数:function [b,a]=u_buttap(N,Omegac);[z,p,k]=buttap(N);p=p*Omegac;k=k*Omegac^N;B=real(poly(z));b=k*B;a=real(poly(p));③、利用脉冲响应不变法从模拟到数字滤波器变换函数:function [b,a]=imp_invr(c,d,T)[R,p,k]=residue(c,d);p=exp(p*T);[b,a]=residuez(R,p,k);b=real(b');a=real(a');④、频率响应函数freqz的修正:function [db,mag,pha,w]=freqz_m(b,a);[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);本实验程序如下:wp=0.2*pi;ws=0.3*pi;Rp=1;As=15;T=1;OmegaP=wp/T;OmegaS=ws/T;[cs,ds]=afd_butt(OmegaP,OmegaS,Rp,As);[b,a]=imp_invr(cs,ds,T)[db,mag,pha,w]=freqz_m(b,a);subplot(2,1,1);plot(w/pi,mag);title('digital filter Magnitude Response')axis([0,1,0,1.1])subplot(2,1,2);plot(w/pi,db);title('digital filter Magnitude in DB')axis([0,1,-40,5]);结果:N1 =5.8858N =6Butterworth Filter Order= 6OmegaC =0.7032b =0.0000 0.0006 0.0101 0.0161 0.0041 0.0001a =1.0000 -3.3635 5.0684 -4.27592.1066 -0.5706 0.0661 本实验波形图如下:(2)用双线性变换法设计切比雪夫数字滤波器。

数字滤波器的设计及实现 实验报告

数字滤波器的设计及实现 实验报告

数字滤波器的设计及实现实验报告1.数字滤波器是一种用于信号处理的重要工具,通过去除或衰减信号中的噪声、干扰或无用信息,从而实现信号的滤波和提取。

本实验旨在学习数字滤波器的设计原理和实现方法,并通过实验验证其滤波效果。

2. 实验目的•理解数字滤波器的基本原理和设计方法;•掌握数字滤波器的实现步骤和工具;•利用实验进行数字滤波器的设计与仿真;•分析和评估数字滤波器的性能指标。

3. 实验器材•计算机•MATLAB或其他数学软件4. 实验流程1.理解数字滤波器的基本原理和设计方法;2.根据所需的滤波特性选择滤波器类型(低通、高通、带通、带阻);3.设计滤波器的参数,如截止频率、阶数、窗函数等;4.使用MATLAB或其他数学软件进行滤波器的设计与仿真;5.评估滤波器的性能指标,如频率响应、幅度响应、相位响应等;6.分析实验结果,数字滤波器设计与实现的经验与教训。

5. 实验内容5.1 数字滤波器原理数字滤波器是通过数字信号处理算法来实现滤波功能的滤波器。

它可以通过对信号进行采样、变换、运算等处理来实现对信号频率成分的选择性衰减或增强。

数字滤波器通常包含两种主要类型:无限脉冲响应(IIR)滤波器和有限脉冲响应(FIR)滤波器。

IIR滤波器具有时间域响应的无限长度,而FIR滤波器具有有限长度的时间域响应。

5.2 数字滤波器设计步骤•确定滤波器类型:根据滤波要求选择低通、高通、带通或带阻滤波器;•设计滤波器参数:包括截止频率、阶数、窗函数等;•进行滤波器设计:利用MATLAB等数学软件进行滤波器设计,滤波器系数;•进行滤波器仿真:通过信号输入滤波器进行仿真,评估滤波效果;•优化和调整:根据实际需要,对滤波器参数进行优化和调整,以获得更好的滤波效果。

5.3 实验结果与分析经过实验设计和仿真,我们得到了一个具有良好滤波效果的数字滤波器。

在设计过程中,我们选择了一个5阶的Butterworth低通滤波器,截止频率为1000Hz。

数字滤波器实验报告

数字滤波器实验报告

数字滤波器实验报告数字滤波器实验报告引言:数字滤波器是一种通过对数字信号进行处理来滤除噪声或者改变信号频率特性的工具。

在信号处理领域,数字滤波器被广泛应用于音频处理、图像处理、通信系统等方面。

本实验旨在通过设计和实现数字滤波器,探索其在信号处理中的应用,并验证其性能和效果。

一、实验目的本实验的主要目的是:1. 了解数字滤波器的原理和基本概念;2. 学习数字滤波器设计的方法和技巧;3. 实现数字滤波器,并进行性能测试和分析。

二、实验原理数字滤波器是一种通过对离散时间信号进行加权和求和的方式来改变信号频率特性的工具。

它可以分为两大类:有限长冲激响应(FIR)滤波器和无限长冲激响应(IIR)滤波器。

FIR滤波器的特点是稳定性好、易于设计,而IIR滤波器则具有更高的效率和更窄的通带。

在数字滤波器设计中,常用的方法有窗函数法、频率抽样法、脉冲响应法等。

窗函数法是一种常见的FIR滤波器设计方法,它通过在频域上对滤波器的频率响应进行加窗来实现滤波效果。

频率抽样法则是一种用于设计IIR滤波器的方法,它通过将模拟滤波器的频率响应进行抽样来得到数字滤波器。

三、实验步骤1. 确定滤波器类型和性能指标:根据实际需求,选择合适的滤波器类型(FIR或IIR)和性能指标(通带增益、截止频率等)。

2. 设计滤波器:根据选择的滤波器类型和性能指标,采用相应的设计方法进行滤波器设计。

3. 实现滤波器:根据设计结果,使用编程语言(如MATLAB或Python)编写代码实现滤波器。

4. 信号处理:将待处理的信号输入滤波器,进行滤波处理。

5. 性能测试与分析:对滤波后的信号进行性能测试和分析,评估滤波器的效果和性能。

四、实验结果与分析在本次实验中,我们选择了FIR滤波器,并采用窗函数法进行设计。

根据要求,我们设计了一个低通滤波器,截止频率为1kHz,通带增益为1,阻带增益为-60dB。

经过实验测试,我们得到了滤波后的信号,并进行了频谱分析。

数字信号处理实验六IIR数字滤波器的设计实验报告

数字信号处理实验六IIR数字滤波器的设计实验报告

数字信号处理实验六IIR数字滤波器的设计实验报告一、实验目的1.学习理解数字滤波器的概念和基本原理;2.掌握IIR数字滤波器的设计方法;3.了解数字滤波器的时域和频域特性。

二、实验原理1.数字滤波器的概念和基本原理数字滤波器是一种将输入信号转换为输出信号的设备,通过在时域或频域对信号进行处理来过滤或改变信号的特性。

数字滤波器可以分为无限脉冲响应(IIR)和有限脉冲响应(FIR)两种类型。

在IIR数字滤波器中,输出信号的当前值与过去的输出值和输入值之间存在关联,即存在反馈回路。

IIR数字滤波器可以实现较窄的带通和带阻滤波,且具有较高的效率。

2.IIR数字滤波器的设计方法IIR数字滤波器的设计需要选择合适的滤波器类型,确定滤波器的阶数和截止频率等参数。

常用的IIR数字滤波器设计方法有:(1) Butterworth滤波器设计:通过选择滤波器阶数和截止频率来实现对输入信号的平滑处理。

(2) Chebyshev滤波器设计:通过选择滤波器阶数、截止频率和最大纹波来实现对输入信号的均衡增益或陡峭截止。

3.数字滤波器的时域和频域特性时域特性是指数字滤波器的输出与输入之间的时域关系。

常见的时域特性包括单位脉冲响应(IMPULSE)和单位阶跃响应(STEP)。

频域特性是指数字滤波器对不同频率的输入信号的响应程度。

常见的频域特性包括幅频特性(Amplitude-frequency Characteristics)和相频特性(Phase-frequency Characteristics)。

三、实验步骤1. 根据实验要求选择合适的IIR数字滤波器类型,比如Butterworth滤波器。

2.根据实验要求确定滤波器的阶数和截止频率等参数。

3.使用MATLAB等软件进行滤波器设计,得到滤波器的传输函数。

4.将传输函数转化为巴特沃斯模拟滤波器的传输函数形式。

5.根据传输函数的分母和分子系数,使用巴特沃斯滤波器原型的模拟滤波器电路设计方法,确定滤波器的电路结构。

信号系统实验数字滤波器实验(有数据)

信号系统实验数字滤波器实验(有数据)

实验:数字滤波器一、实验目的1.了解数字滤波器的作用与原理;2.了解数字滤波器的设计实现过程。

二、实验原理说明当我们仅对信号的某些分量感兴趣时,可以利用选频滤波器,提取其中有用的部分,而将其它滤去,滤波器的一项基本任务即对信号进行分解与提取。

三、实验设备1.双踪示波器 1台2.信号系统实验箱 1台四、实验步骤1.连接P04 和P101;2.调节信号源,使P04输出f=4KHz的正弦波,调节W701使信号幅度为4V;3.按下SW101按钮,使程序指示灯D3D2DlD0=0010,指示灯对应数字滤波;4.观察TP801输出的信号;5.试着将P04输出信号频率调节到5K, 6K, 7K……观察TP801输出信号的变化;6.测量不同频率下信号输出幅度的变化,画出滤波器的相应曲线;7.将正弦波改变成方波信号,调节频率从1K-8K,观察TP801信号的变化。

五、数据处理与分析输出信号频率图像f=4kHzCH2:信号源CH1:滤波器输出f=5kHzCH2:信号源CH1:滤波器输出f=6kHzCH2:信号源CH1:滤波器输出f=7kHzCH2:信号源CH1:滤波器输出输出信号频率图像f=4kHzCH2:信号源CH1:滤波器输出f=5kHzCH2:信号源CH1:滤波器输出f=6kHzCH2:信号源CH1:滤波器输出f=7kHzCH2:信号源CH1:滤波器输出六、实验总结1.原始信号频率不同时,相应的输出信号频率和幅度发生改变。

2.对比原始信号,输出信号发生了相应的相移,且当增大原始信号的频率,相移变化更大。

3.有一定的滤波作用,但不是理想的。

数字滤波器设计

数字滤波器设计
xlabel('\omega /\pi');
ylabel('Phase in radians');
pause
plot(w1/pi,unwrap(gd));grid
title('Delay Characteristic')
xlabel('\omega /\pi');
ylabel('Group Delay');
% Design the Filter
[num,den] = cheby1(N1,Rp,Wn1,'stop');
% Display the transfer function
disp('Numerator Coefficients are ');disp(num);
disp('Denominator Coefficients are ');disp(den);
Q7.20使用函数firl,设计一个线性相位有限冲激响应低通滤波器,使其满足习题Q7.23给出的指标,并画出其增益和相位响应。使用习题Q7.13中用凯泽公式估计出的阶数。用表格形式显示滤波器的系数。你的设计满足指标吗?若不满足,调整滤波器阶数直到设计满足指标。满足指标的滤波器阶数是多少?
Q7.23用凯泽窗设计一个有限冲激响应低通滤波器。滤波器的指标是:Wp=0.31,Ws=0.41,As=50dB。注意,函数kaiser需要参数 及阶数N的值,它们必须先用式(7.36)和式(7.37)分别算出。你的设计满足指标吗?
Q7.25用fir2设计一个95阶有限冲激响应滤波器,它具有三个不同的常数幅度级:在频率范围0到0.25中为0.4,在频率范围0.3到0.45中为1.0,在频率范围0.5到1.0中为0.8.画出所设计的滤波器的幅度响应。你的设计满足指标吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验6 数字滤波器设计
设计传输函数G (z ),使其频率响应)(jw e G 逼近于给定的频率响应指标,这个过程称为数字滤波器的设计。

在得到G (z )之后,就以一种适当的滤波器结构的形式实现它。

在前面的实验练习中,已经考虑过了有限冲激响应和无限冲激响应传输函数的实现。

在这个实验练习中,我们将学会设计满足某个给定幅度或增益响应的无限冲激响应或有限冲激响应数字滤波器。

1. 无限冲激响应滤波器设计
最常用于设计无限冲激响应滤波器的方法是基于原型模拟传输函数的双线性变换。

模拟传输函数通常是下列类型之一:巴特沃斯型,切比雪夫I ,切比雪夫II 和椭圆传输函数。

这些滤波器类型之间的差别可通过考虑模拟低通滤波器来说明。

(1)无限冲激响应滤波器的阶数的估计
滤波器设计过程中的第一步是,选择接近所使用的滤波器的类型,然后由滤波器指标来估计 传输函数的阶数。

用来估计巴特沃斯型滤波器的阶数的MATLAB 命令是: [N,Wn]=buttord(Wp,Ws,Rp,Rs)
其中输入参数是归一化通带边界频率wp,归一化阻带频率ws 、单位为Db 的通带波纹RP 和单位为Db 的J 最小阻带衰减纹RS 。

由于抽样频率被假定为2HZ ,WP 和WS 均必须是0和1之间的一个数。

输出数据是满足指标的最低阶数N 和归一化截止频率Wn 。

若RP=3(Db ),则WN=WP 。

Buttord 也可用于估计高通,带通和带阻的巴特沃斯型滤波器的阶数。

(2)无限冲激响应滤波器设计
在选择了滤波器类型并估计了其阶数后,下一步是确定滤波器的传输函数,为此,MATLAB 对所有的四种类型都提供了函数。

(实验指导书,92) [num,den]=butter(N,Wn)
其中输入参数N 和Wn 可以使用函数buttord 确定,输出是向量num 和den ,它们分别是以z -1的升幂排列的传输函数的分子和分母多项式的系数。

若Wn 是一个标量,butter 返回一个N 阶的低通传输函数,基Wn 是一个双元素向量,它返回一个2N 阶的带通传输函数。

设计N 阶巴特沃斯型数字高通滤波器的MATLAB 命令是:
[num,den]=butter(N,Wn,’high ’)
然而,若Wn 是一个双元素向量,命令
[num,den]=butter(N,Wn,’stop ’)
返回一个2N 阶巴特沃斯型带阻滤波器的传输函数。

程序6.1 说明巴特沃斯型带阻滤波器的设计 %巴特沃斯型带阻滤波器的设计
Ws=[0.4 0.6];Wp=[0.3 0.7];Rp=0.4;Rs=50; %估计滤波器阶数
[N1,Wn1]=buttord(Wp,Ws,Rp,Rs); %设计滤波器
[num,den]=butter(N1,Wn1,'stop'); %显示传输函数
disp('分子系数是');disp(num);
disp('分母系数是');disp(den);
分子系数是
Columns 1 through 8
0.0330 0.0000 0.2972 0.0000 1.1889 0.0000 2.7741 0.0000 Columns 9 through 16
4.1611 0.0001 4.1611 0.0000 2.7741 0.0000 1.1889 0.0000 Columns 17 through 19
0.2972 0.0000 0.0330
分母系数是
Columns 1 through 8
1.0000 0.0000
2.6621 0.0000 4.1451 0.0001 4.1273 0.0001 Columns 9 through 16
2.8977 0.0000 1.4381 0.0000 0.5027 0.0000 0.1178 0.0000 Columns 17 through 19
0.0167 0.0000 0.0011
低通巴特沃斯模拟滤波器设计
要求指标
通带截止频率:fp=3400hz,通带最大衰减:Rp=3Db;
阻带截止频率:fs=4000hz,阻带最大衰减:Rs=40db.
Matlab程序如下
fp=3400;fs=4000;Rp=3;Rs=40;%输入滤波器的指标
[N,fc]=buttord(fp,fs,Rp,Rs,'s');%计算阶数N和3DB截止频率fc
[B,A]=butter(N,fc,'s');%设计低通巴特沃斯模拟滤波器/传输函数的系数
[hf,f]=freqs(B,A,1024); %计算模拟滤波器的频率响应
plot(f,20*log(abs(hf)/abs(hf(1))));
xlabel('f/hz');ylabel('H(db)');
axis([0,4000,-40,5]);
line([0,4000],[-3,-3]);%点坐标,
line([3400,3400],[-90,5]);
这个29阶的滤波器频率特性如图所示:图中幅频曲线在3400HZ处为-3DB,4000处的衰减-40DB,满足设计指标。

line 创建线对象
line([0,4000],[-3,-3]);
line([3400,3400],[-90,5])
>>
>>
2. 有限冲激响应滤波器设计
有限冲激响应滤波器设计的最简单的方法是,对期望的理想频率响应进行离散时间傅里叶逆变换,得到无限长冲激响应,对所得的双无限系数最单地截尾为有限系数。

然而,简单截尾得到的有限冲激响应滤波器的幅度响应中会有一个振荡行为,它通常称为吉布斯现象。

吉布斯现象可用一个合适的有限长窗口函数对无限长冲激响应系数加窗来减小。

MA TLAB 函数fir1和fir2可以用来设计加窗的有限冲激响应数字滤波器。

两个函数均可以产生一 个线性相位设计。

函数fir1可用于设计常规的低通、高通、带通和带阻线性相位有限冲激响应滤波器,对于抽样频率为2HZ 的情况,
命令b=fir1(N,Wn) 在向量b 中返回以z -1的升幂排列的N 阶低通或带通滤波器的冲激响应系数。

详细说明参见实验教程95页。

对于低通设计,归一化截止频率由标量Wn 给定,它是在0和1之间的一个数,对于带通的设计,Wn 是包含指定通带边界的一个双元素向量[Wn1,Wn2],
其中0<Wn1<Wn2<1。

命令b=fir1(N, Wn,’high ’) , 其中N 为一个偶数,用于设计高通滤波器。

命令b=fir1(N, Wn,’stop ’) , 其中Wn 是一个双元素向量,用于设计带阻有限冲激响应滤波器,若没有指定,用海明窗作为默认值。

命令b=fir1(N, Wn,taper) ,使用在向量taper 中给定的长度为N+1的窗系数。

然而,窗函数必须事先用一个适当的MATLAB 函数来产生,如blackman, hamming, hanning, chebwin 或kaiser.
用到的命令为
taper=blackman(N) taper= hamming (N) taper= hanning (N) taper= chebwin (N) taper= kaiser (N,beta).
最简单元的窗函数是矩形窗,从阻带衰减的观点来看也是性能最差的一种,设计一个线性相位FIR 低通滤波器。

要求通带截止频率rad w c 4/π=,
单位冲激响应h(n)的长度N=21。

MATLAB 程序如下
>> N=21; wc=pi/4;
n=0:N-1;r=(N-1)/2;
hdn=sin(wc*(n-r))/pi./(n-r);%计算理想低通单位冲激响应hdn,具体参见教材P141
subplot(2,1,1);stem(n,hdn);
xlabel('time n');ylabel('hd(n)');title('impulse response');
if rem(N,2)~=0 hdn(r+1)=wc/pi;end %rem()求余数
wn=boxcar(N);%矩形窗
hn=hdn.*wn'; %加窗
hw=fft(hn,512); %幅频特性
w=2*[0:511]/512;
subplot(2,1,2);plot(w,20*log10(abs(hw)));
xlabel('w/pi');ylabel('manitude(db)');
title('frequency response');
程序运行的图像如下:
作业:
设计一个线性相位FIR低通滤波器。

要求通带截止频率wc=pi/7,单位冲激响应h(n)的长度N=29,分别使用海明窗及汉明窗进行设计。

相关文档
最新文档