温度应力分析
高速铁路用钢轨的温度应力分析
高速铁路用钢轨的温度应力分析引言:高速铁路是一种高速运行的铁路交通方式,由于高速列车的高速运行和巨大的载荷,对于钢轨的材质以及结构设计有着很高的要求。
钢轨的温度应力是影响钢轨线路安全和寿命的重要因素之一。
本文将对高速铁路用钢轨的温度应力进行分析,并提出相应的解决方案。
1. 高速铁路温度应力的产生原因:高速铁路的巨大运行载荷和高速运行速度会引发钢轨的温度变化,导致温度应力的产生。
主要原因包括:1.1 温度变化引起的钢轨长度变化:温度变化会引起钢轨的膨胀和收缩,从而导致钢轨长度的变化,进而产生应力。
1.2 钢轨的不均匀热膨胀:钢轨在高速列车通过时会受到瞬时加热,由于钢轨自身材料的差异,热膨胀不均匀,导致温度应力的产生。
1.3 环境温度和日夜温差:高速列车运行环境中的温度波动较大,尤其是日夜温差较大的地区,会引发钢轨的温度变化,从而产生应力。
2. 高速铁路温度应力的影响:高速铁路钢轨的温度应力会对线路的安全性和使用寿命产生重要影响。
2.1 引发钢轨的变形和损坏:温度应力过大会导致钢轨的变形,包括弯曲和扭曲,严重时可能引发断裂。
这种变形和损坏会影响列车的正常运行,并且会对线路的安全性产生威胁。
2.2 加速钢轨的疲劳磨损:温度应力会加速钢轨的疲劳磨损,导致钢轨寿命的缩短。
3. 高速铁路温度应力的解决方案:为了减少高速铁路钢轨的温度应力,可以采取以下解决方案:3.1 使用合适的材料:选择合适的材料制造钢轨,以提高钢轨的抗温度应力能力。
航天航空领域的先进材料可以应用于钢轨制造,提高其抗温度应力和耐磨性能。
3.2 改善钢轨的结构设计:优化钢轨的截面形状和断面尺寸,增加钢轨的刚度和强度,提高其对温度应力的承受能力。
3.3 加强维护与保养:定期对钢轨进行检查,及时发现和修复温度应力引起的损伤和变形问题,有效延长钢轨的使用寿命。
4. 高速铁路温度应力的数值模拟分析:为了更准确地了解高速铁路钢轨的温度应力情况,可以采用数值模拟方法进行分析。
混凝土结构温度应力分析技术规程
混凝土结构温度应力分析技术规程一、前言混凝土结构温度应力是混凝土结构在温度变化过程中产生的应力。
对于大型混凝土结构如桥梁、水利工程、高层建筑等,温度应力的影响不容忽视。
因此,对混凝土结构的温度应力进行分析,可以为混凝土结构设计、施工、维护提供重要的参考依据。
本文将介绍混凝土结构温度应力分析的具体技术规程。
二、混凝土结构温度应力的产生原因混凝土结构在温度变化过程中,会因为混凝土的热膨胀系数大于钢材的热膨胀系数,导致混凝土结构产生温度应力。
同时,混凝土结构的形状和约束条件也会影响温度应力的大小。
温度应力的大小取决于混凝土结构的材料性质、几何形状、约束条件以及温度变化范围等因素。
三、混凝土结构温度应力分析的步骤1. 确定混凝土结构的材料性质首先,需要确定混凝土结构所使用的混凝土的材料性质,包括混凝土的弹性模量、泊松比、线膨胀系数、热膨胀系数等。
这些参数可以通过实验或者参考相关文献得到。
2. 确定混凝土结构的几何形状和约束条件其次,需要确定混凝土结构的几何形状和约束条件。
混凝土结构的几何形状包括截面形状、长度、宽度等参数;约束条件包括支座类型、支座刚度、约束方式等参数。
这些参数可以通过实测或者参考相关文献得到。
3. 确定混凝土结构的温度变化范围在确定混凝土结构的材料性质、几何形状和约束条件后,需要确定混凝土结构的温度变化范围。
温度变化范围一般包括最高温度和最低温度,可以通过气象数据或者实测数据得到。
4. 进行温度应力计算在确定了混凝土结构的材料性质、几何形状、约束条件和温度变化范围后,可以进行温度应力计算。
具体的计算方法可以采用有限元方法、弹性理论方法等。
5. 分析温度应力的影响最后,需要分析温度应力对混凝土结构的影响。
温度应力对混凝土结构的影响包括结构的变形、裂缝的产生、构件的承载能力等。
根据温度应力的大小和混凝土结构的特点,可以采取相应的措施,如增加混凝土结构的支座、增加混凝土结构的截面尺寸等。
四、混凝土结构温度应力分析中需要注意的问题1. 温度应力分析需要考虑混凝土结构的实际情况,如约束条件、温度变化范围等。
混凝土温度应力分析与控制
混凝土温度应力分析与控制一、引言在混凝土结构的设计和施工中,混凝土的温度应力是一个重要的问题。
混凝土的温度应力会对混凝土结构的安全性和耐久性产生重大影响。
因此,混凝土温度应力的分析和控制是混凝土结构设计和施工中必须重视的问题。
本文将对混凝土温度应力的分析和控制进行详细的介绍。
二、混凝土温度应力的形成原因混凝土温度应力的形成原因主要有以下几点:1. 混凝土收缩变形:混凝土在硬化过程中会发生收缩变形。
混凝土收缩变形会导致混凝土内部产生内应力,进而引起温度应力的产生。
2. 温度变化:混凝土在受到温度变化的影响时会发生温度应力。
当混凝土受到热力作用时,混凝土内部会产生热胀冷缩变形,从而产生温度应力。
3. 混凝土结构约束:混凝土结构的约束条件会对混凝土的温度应力产生影响。
当混凝土约束条件较强时,混凝土的温度应力也会较大。
三、混凝土温度应力的分析方法混凝土温度应力的分析方法主要有以下几种:1. 热应力分析法:热应力分析法是通过计算混凝土内部的温度、应力分布来分析混凝土的温度应力。
热应力分析法需要考虑混凝土的热传导、热膨胀系数等因素。
2. 数值模拟方法:数值模拟方法是通过数值模拟软件对混凝土的温度应力进行分析。
数值模拟方法可以对混凝土的温度应力进行更加准确的计算。
3. 经验公式法:经验公式法是通过经验公式计算混凝土的温度应力。
经验公式法计算简便,但精度较低。
四、混凝土温度应力的控制方法混凝土温度应力的控制方法主要有以下几种:1. 控制混凝土的温度变化:在混凝土浇筑过程中,可以通过控制混凝土的温度变化来减小混凝土的温度应力。
可以通过增加混凝土的冷却水量、控制混凝土浇筑时间等方式来实现。
2. 采用预应力混凝土结构:预应力混凝土结构可以通过预应力钢筋的作用来减小混凝土的温度应力。
3. 采用伸缩缝:在混凝土结构中设置伸缩缝可以减小混凝土的温度应力,避免混凝土结构的破坏。
4. 采用防裂措施:在混凝土结构中设置防裂措施可以减小混凝土的温度应力,避免混凝土结构的破坏。
混凝土温度应力分析原理
混凝土温度应力分析原理一、引言混凝土温度应力是混凝土结构设计和施工中需要考虑的一个重要问题。
混凝土在施工和使用过程中,由于温度变化而产生的体积变化会导致混凝土内部产生应力,若这些应力超过混凝土的强度极限,就会导致混凝土结构的破坏。
因此,分析混凝土的温度应力是保证混凝土结构安全的重要前提。
本文将从混凝土温度应力的形成机理、影响因素、分析方法等方面进行详细介绍,以期为混凝土结构设计和施工提供参考。
二、混凝土温度应力的形成机理混凝土温度应力的形成机理可以归纳为以下两个方面:1、混凝土自身的热膨胀和收缩混凝土在硬化过程中会释放热量,这些热量会导致混凝土温度升高。
当混凝土温度升高时,混凝土会发生体积膨胀,产生内部应力。
相反,当混凝土温度降低时,混凝土会发生体积收缩,产生内部应力。
因此,混凝土自身的热膨胀和收缩是混凝土温度应力的主要形成机理之一。
2、混凝土与环境的热膨胀和收缩混凝土与环境之间存在温度差异时,混凝土会受到环境温度的影响而产生热膨胀和收缩。
例如,在夏季高温时,混凝土表面会受到阳光的直接照射,导致表面温度升高,而内部温度相对较低,这就会导致混凝土表面产生膨胀,而内部产生收缩,从而产生内部应力。
因此,混凝土与环境的热膨胀和收缩也是混凝土温度应力的形成机理之一。
三、影响混凝土温度应力的因素混凝土温度应力受到很多因素的影响,下面将重点介绍以下几个方面:1、混凝土配合比混凝土配合比是影响混凝土温度应力的重要因素之一。
配合比中水灰比的大小直接关系到混凝土内部的孔隙度,孔隙度越大,混凝土温度应力越小。
此外,混凝土中的骨料种类、粒径和含水率等也会影响混凝土温度应力。
2、混凝土浇筑温度混凝土浇筑温度是影响混凝土温度应力的另一个重要因素。
当混凝土浇筑温度较高时,混凝土内部的温度升高速度也会加快,从而导致混凝土产生更大的温度应力。
3、环境温度环境温度是影响混凝土温度应力的另一个重要因素。
当环境温度较高时,混凝土表面受到阳光直接照射会产生较高的温度,而内部温度相对较低,从而导致混凝土内部产生应力。
混凝土结构温度应力分析技术规程
混凝土结构温度应力分析技术规程一、前言混凝土结构在使用过程中会受到温度变化的影响,因此需要进行温度应力分析,以保证结构的安全性和稳定性。
本文将详细介绍混凝土结构温度应力分析的技术规程。
二、温度应力分析的基本原理温度应力分析是根据混凝土材料的热膨胀系数和温度变化计算混凝土结构在温度变化下所受到的应力。
具体步骤如下:1. 确定结构的温度变化范围和时间段;2. 计算混凝土材料的热膨胀系数;3. 根据温度变化和热膨胀系数计算混凝土结构所受到的应力。
三、温度应力分析的具体步骤1. 确定结构的温度变化范围和时间段在进行温度应力分析之前,首先需要确定混凝土结构的温度变化范围和时间段。
一般来说,温度变化范围为-20℃~40℃,时间段为24小时。
如果结构受到更大的温度变化,需要根据实际情况进行调整。
2. 计算混凝土材料的热膨胀系数混凝土材料的热膨胀系数是进行温度应力分析的关键参数。
其计算公式为:α = (l2-l1)/(l1*t)其中,α为混凝土材料的热膨胀系数,l1为混凝土结构在温度为t1时的长度,l2为混凝土结构在温度为t2时的长度,t为温度变化量。
3. 根据温度变化和热膨胀系数计算混凝土结构所受到的应力根据温度变化和热膨胀系数,可以计算出混凝土结构所受到的应力。
其计算公式为:σ = EαΔt其中,σ为混凝土结构所受到的应力,E为混凝土的弹性模量,Δt为温度变化量。
四、温度应力分析的注意事项1. 在进行温度应力分析之前,需要进行混凝土结构的力学性能测试,以确定混凝土的弹性模量等参数。
2. 温度应力分析需要考虑混凝土结构的几何形状和支撑条件等因素。
3. 在进行温度应力分析时,需要考虑混凝土结构的变形和应力分布情况,以确定结构的安全性和稳定性。
五、结论温度应力分析是保证混凝土结构安全性和稳定性的重要技术手段。
本文通过介绍温度应力分析的基本原理、具体步骤和注意事项,为混凝土结构温度应力分析提供了详细的技术规程。
混凝土温度应力分析原理
混凝土温度应力分析原理一、引言混凝土作为一种常见的建筑材料,在建筑领域中使用非常广泛。
然而,在混凝土的施工和使用过程中,温度的变化会导致混凝土产生应力,从而影响其性能和使用寿命。
因此,混凝土温度应力分析是混凝土工程中的一个重要问题。
二、混凝土温度应力的产生原因混凝土温度应力的产生原因主要是由于混凝土在温度变化时的体积变化引起的。
混凝土在温度升高时,由于热膨胀,会导致混凝土体积增大,从而产生张应力;而在温度降低时,则会由于收缩而产生压应力。
这种应力的大小取决于混凝土的材料性质、温度变化范围、温度变化速率等因素。
三、混凝土温度应力的计算方法混凝土温度应力的计算方法主要有两种,一种是基于线性膨胀系数的方法,另一种是基于热应力的方法。
1. 基于线性膨胀系数的方法基于线性膨胀系数的方法是将混凝土看作一个线弹性材料,根据线性膨胀系数计算混凝土在温度变化时的体积变化量,从而得到混凝土产生应力的大小。
该方法的计算公式为:$$\sigma_T = \alpha_T E (T-T_0)$$其中,$\sigma_T$为混凝土在温度变化时产生的应力,$\alpha_T$为混凝土的线性膨胀系数,$E$为混凝土的弹性模量,$T$为混凝土的温度,$T_0$为混凝土的参考温度。
2. 基于热应力的方法基于热应力的方法是将混凝土看作一个非线弹性材料,考虑了混凝土在温度变化时的弹性变形和塑性变形,通过计算混凝土的热应力来确定混凝土的温度应力大小。
该方法的计算公式为:$$\sigma_T = \frac{\alpha_T E}{1-\nu} \Delta T + \frac{\alpha_T E \Delta T}{1-\nu}\frac{\Delta L}{L}$$其中,$\Delta T$为混凝土的温度变化量,$\Delta L/L$为混凝土的长度变化量,$\nu$为混凝土的泊松比。
四、混凝土温度应力的影响因素混凝土温度应力的大小取决于许多因素,主要包括以下几个方面:1. 混凝土的材料性质混凝土的材料性质对温度应力的大小有很大的影响。
混凝土中的温度应力分析
混凝土中的温度应力分析一、引言混凝土结构在使用过程中,由于温度变化而产生应力,严重影响其使用寿命和安全性。
因此,对混凝土中的温度应力进行分析和研究具有重要意义。
本文将从混凝土的性质、温度应力的形成机理、计算方法及其影响等方面进行详细介绍。
二、混凝土的性质混凝土是一种多孔材料,由水泥、骨料、细集料和掺合料等原料经过混合、浇筑、养护等工艺制成。
混凝土具有良好的耐久性、耐久性和可塑性等特点,但其强度和刚度随温度的变化而变化,进而产生温度应力。
三、温度应力的形成机理混凝土在温度变化时,由于其热膨胀系数较大,会产生热应变。
当混凝土的温度变化时,其体积也会随之发生改变,从而导致混凝土内部产生应力。
这种应力称为温度应力。
四、温度应力的计算方法温度应力的计算方法主要有两种:一种是静力学方法,即将混凝土看作弹性体,在温度变化时,根据线膨胀系数和杨氏模量计算应力;另一种是热力学方法,即考虑混凝土的温度变化和热传递,根据混凝土的热膨胀系数和热导率计算应力。
其中,静力学方法适用于低温、小变形和小应力情况,热力学方法适用于高温、大变形和大应力情况。
五、温度应力的影响温度应力的产生会严重影响混凝土结构的使用寿命和安全性。
具体表现为以下几个方面:(一)裂缝的产生温度应力的作用下,混凝土内部会产生应力集中,从而导致混凝土表面裂缝的产生。
这些裂缝会加速混凝土的老化和损坏。
(二)强度和刚度的降低温度应力的作用下,混凝土内部会发生变形,从而导致其强度和刚度的降低。
这会严重影响混凝土结构的承载能力和抗震能力。
(三)钢筋的锈蚀混凝土结构中的钢筋会随着混凝土的老化而发生锈蚀,从而降低其强度和刚度。
而温度应力的产生会加速混凝土的老化,从而加速钢筋的锈蚀。
(四)波动荷载的作用温度应力的存在会影响混凝土结构的刚度和强度,从而使其对波动荷载的响应产生变化。
这会影响混凝土结构的可靠性和安全性。
六、结论混凝土结构中的温度应力是一项重要的研究内容,其产生会严重影响混凝土结构的使用寿命和安全性。
混凝土结构温度应力分析
混凝土结构温度应力分析一、背景介绍混凝土结构是建筑工程中常见的结构类型,其具有高强度、耐久性好等特点。
然而,在使用过程中,混凝土结构受到温度变化的影响,会产生应力,从而影响其性能和安全性。
因此,混凝土结构温度应力分析是建筑工程中必不可少的一项工作。
二、混凝土结构温度应力的形成原因混凝土结构温度应力主要是由于混凝土受到温度变化的影响,导致结构发生体积变化而产生的应力。
温度变化主要有以下几种情况:1.环境温度变化环境温度变化是指空气温度的变化,这种变化会对混凝土结构产生直接的影响。
当环境温度升高时,混凝土结构会膨胀,产生压应力;当环境温度降低时,混凝土结构会收缩,产生拉应力。
2.日夜温差变化日夜温差变化是指白天和晚上温度的变化,这种变化对混凝土结构的影响较大。
在白天高温时,混凝土结构表面会因为受热而膨胀,而混凝土结构内部由于温度变化慢,膨胀较小,因此产生了表面和内部的温差,从而产生了应力。
3.季节温度变化季节温度变化是指春夏秋冬四季的温度变化,这种变化对混凝土结构的影响最为显著。
由于季节的变化,混凝土结构被不同的温度影响,从而导致结构产生应力。
三、混凝土结构温度应力分析方法混凝土结构温度应力分析方法主要有以下几种:1.传统方法传统方法是指根据混凝土结构的热学参数(如热膨胀系数、热导率等)和温度变化数据,通过计算得出混凝土结构的温度应力。
这种方法简单快捷,但是精度较低,难以考虑到混凝土结构内部的复杂应力分布情况。
2.有限元方法有限元方法是指将混凝土结构分割成若干小单元,通过计算每个小单元的温度应力,最终得出整个混凝土结构的温度应力分布情况。
这种方法精度高,能够考虑到混凝土结构内部的复杂应力分布情况,但是计算量大,需要专业的有限元软件支持。
3.试验方法试验方法是指通过对混凝土结构进行温度应力试验,得出其温度应力分布情况。
这种方法能够直接得到混凝土结构的实际温度应力情况,但是试验成本高,且受试验条件的限制较大。
钢筋混凝土构件的温度应力分析及其控制技术研究
钢筋混凝土构件的温度应力分析及其控制技术研究一、引言钢筋混凝土结构在工程中应用广泛,但在实际使用过程中,温度变化会对结构产生较大影响,产生温度应力。
因此,钢筋混凝土构件的温度应力分析及其控制技术成为研究热点。
二、钢筋混凝土构件的温度应力分析1.温度应力的定义温度应力是指结构受到温度变化作用后所产生的内力,其大小与结构材料、温度变化幅度、结构形状等因素有关。
2.温度应力产生的原因钢筋混凝土构件在温度变化过程中,由于受到热胀冷缩的影响,从而产生温度应力。
这种应力一般分为两类:一是由于混凝土与钢筋由于不同的热胀系数而产生的温度差应力;二是由于混凝土和钢筋之间的黏结力而产生的温度差应力。
3.温度应力计算方法钢筋混凝土构件的温度应力计算方法一般包括两种:一是基于物理力学方法,即根据结构的几何形状和材料的物理力学性质,推导出其内部应力场的解析公式;二是基于数值分析方法,即通过有限元分析等方法,将结构划分为若干个小单元,在每个小单元内求解温度应力。
4.温度应力的影响因素温度应力的大小与许多因素有关,主要包括结构材料的性质、温度变化幅度、结构的几何形状、结构的支承条件等因素。
其中,温度变化幅度是影响温度应力大小的主要因素。
三、钢筋混凝土构件的温度应力控制技术1.材料选择为了降低温度应力的大小,可以选择具有较小热胀系数的材料,如纤维增强复合材料等。
2.结构设计在结构设计过程中,可以通过合理的结构几何形状设计和支承条件设置,减小温度应力的大小。
例如,通过增加构件的截面尺寸和设置足够的支承,可以有效降低温度应力。
3.施工措施在施工过程中,可以通过控制混凝土的龄期和加强构件的湿度管理,降低温度应力的大小。
此外,还可以采用预应力钢筋等技术,增加结构的刚度和抗弯强度,从而降低温度应力。
4.温度应力监测技术为了及时了解结构内部温度应力的变化情况,可以采用温度应力监测技术。
目前常用的温度应力监测技术主要包括应变测量、温度测量和位移测量等方法。
混凝土板温度应力分析及控制方法研究
混凝土板温度应力分析及控制方法研究一、研究背景混凝土是建筑工程中最重要的材料之一,其具有高强度、耐久性和可塑性等优点,因此在建筑、道路、桥梁等领域得到广泛应用。
然而,混凝土构件在施工和使用过程中会受到各种力的作用,从而导致温度应力的产生,严重的温度应力会导致混凝土的开裂和损坏。
因此,混凝土板温度应力的分析及控制方法研究具有重要意义。
二、混凝土板温度应力的产生机理混凝土板在施工和使用过程中会受到温度的影响,当混凝土板的温度发生变化时,其体积也会发生变化,从而产生温度应力。
混凝土板的温度应力主要由以下两个方面产生:1.温度梯度引起的应力当混凝土板的表面和内部温度不同时,就会产生温度梯度,从而引起温度应力。
这种应力主要由混凝土板的热膨胀系数和温度梯度决定。
2.约束引起的应力混凝土板的约束条件也会引起温度应力。
例如,混凝土板与支座之间的约束就会引起温度应力。
由于混凝土的热膨胀系数较大,当混凝土板的温度变化时,其长度也会发生变化,从而产生约束应力。
三、混凝土板温度应力的分析方法为了准确预测混凝土板温度应力的大小和分布情况,需要进行混凝土板温度应力的分析。
目前,常用的混凝土板温度应力分析方法主要包括以下几种:1.经验公式法经验公式法是根据经验公式计算混凝土板温度应力的大小和分布情况。
这种方法简单易行,但其适用范围较小,只适用于一些简单的混凝土板结构。
2.有限元法有限元法是一种计算机模拟方法,可以较为精确地计算混凝土板温度应力的大小和分布情况。
这种方法需要进行大量的计算,计算量较大,但其适用范围广,可用于各种混凝土板结构的分析。
3.解析法解析法是一种基于数学分析的方法,通过对混凝土板温度应力的基本方程进行求解,得到混凝土板温度应力的大小和分布情况。
这种方法计算量较小,但其适用范围较窄,只适用于一些简单的混凝土板结构。
四、混凝土板温度应力的控制方法为了控制混凝土板温度应力的大小和分布情况,需要采取一些措施。
目前,常用的混凝土板温度应力控制方法主要包括以下几种:1.降低混凝土板的温度变化率降低混凝土板的温度变化率可以有效地控制混凝土板温度应力的大小和分布情况。
混凝土超长结构温度应力分析全精通
混凝土超长结构温度应力分析全精通
一、分析原理
1.热应力原理:根据材料的线膨胀系数及温度差,可以计算出温度应力。
当结构受到温度变化的影响时,混凝土会产生相应的应力。
2.纵横向温度应力不平衡原理:由于混凝土超长结构的尺寸很大,在温度变化作用下,结构的不同部位会有不同的温度变形,从而引起不平衡的应力分布。
3.材料特性:混凝土作为一种复合材料,其特性会受到温度的影响。
根据材料的热学性能参数,可以计算出具体的温度应力。
二、分析工具
混凝土超长结构温度应力分析通常使用有限元分析方法进行求解。
有限元分析是一种针对复杂结构的数值计算方法,可以较为准确地模拟结构的温度变化,并计算出相应的应力分布。
常用的有限元分析软件包有ANSYS、ABAQUS等,这些软件具有强大的计算能力和可视化效果,可以对混凝土超长结构进行全面的温度应力分析。
三、分析方法
1.平衡温度法:假设混凝土超长结构处于其中一温度状态下的平衡。
通过对结构进行瞬态热传导和力学分析,可以计算出结构在温度变化时的应力分布。
2.数值分析法:通过数值计算的方法,将混凝土超长结构划分为若干网格单元,根据其热传导和力学特性,计算出结构在不同温度下的应力变化。
3.经验公式法:根据混凝土的力学特性和温度变化规律,通过经验公式的方法来估计结构的温度应力分布。
这种方法相对简单,适用于一些简单结构和初步设计。
总结起来,混凝土超长结构温度应力分析对于工程设计来说是非常重要的一项工作。
通过深入了解分析原理、使用分析工具和熟练掌握分析方法,可以准确地评估结构的稳定性和安全性,为工程的设计和施工提供科学依据。
混凝土温度应力分析方法
混凝土温度应力分析方法一、前言混凝土结构在使用过程中,由于环境温度的变化而产生的温度变化,会引起混凝土结构内部的应力变化,从而影响混凝土结构的使用性能和强度。
因此,了解混凝土温度应力的分析方法,对混凝土结构的设计、施工和维护具有重要的指导意义。
二、混凝土温度应力的概念混凝土温度应力是由于混凝土结构在温度变化的作用下,产生的内部应力变化。
混凝土温度应力的大小与混凝土的热膨胀系数、温度变化范围以及混凝土的约束状态等因素有关。
三、混凝土温度应力的计算方法混凝土温度应力的计算方法有多种,下面介绍几种常用的方法。
1. 热应力法热应力法是通过计算混凝土结构在温度变化作用下的热膨胀系数和温度变化范围,进而计算出混凝土的温度应力大小的方法。
具体步骤如下:(1)计算混凝土的热膨胀系数;(2)计算混凝土结构的温度变化范围;(3)根据混凝土的热膨胀系数和温度变化范围,计算混凝土的温度应力大小。
2. 有限元法有限元法是一种数值计算方法,通过对混凝土结构进行离散化,将其分解为若干个小单元,然后采用数值计算方法,求解每个小单元的温度应力大小,最后将结果汇总得出混凝土结构的温度应力大小。
具体步骤如下:(1)建立混凝土结构的有限元模型;(2)定义混凝土的材料参数;(3)定义混凝土结构的温度变化范围;(4)采用数值计算方法,求解每个小单元的温度应力大小;(5)汇总每个小单元的温度应力大小,得到混凝土结构的温度应力大小。
3. 静力学法静力学法是一种基于静力平衡原理,通过计算混凝土结构内部受力平衡条件,推导出混凝土结构的温度应力大小的方法。
具体步骤如下:(1)建立混凝土结构的静力学模型;(2)定义混凝土的材料参数;(3)定义混凝土结构的温度变化范围;(4)根据静力平衡原理,推导出混凝土结构的温度应力大小。
四、注意事项在进行混凝土温度应力分析时,需要注意以下几点:1. 温度应力计算中需要考虑混凝土的材料参数,如热膨胀系数等;2. 温度应力计算中需要考虑混凝土结构的约束状态,如自由膨胀、受限膨胀等;3. 温度应力计算中需要考虑混凝土结构的温度变化范围,如温度梯度、温度变化速率等;4. 在进行有限元法计算时,需要注意离散化的单元大小和单元数量的选择,以保证计算准确性和计算效率。
混凝土结构的温度应力分析方法
混凝土结构的温度应力分析方法一、概述混凝土结构在使用过程中会受到温度的影响,温度变化会引起混凝土内部的应力变化,进而影响结构的稳定性和安全性。
因此,在混凝土结构的设计和施工中,需要考虑温度应力的影响。
本文将介绍混凝土结构的温度应力分析方法。
二、温度应力产生原因温度变化会引起混凝土内部的温度变化,从而引起混凝土内部的体积变化。
当混凝土受到约束时,体积变化会引起内部应力的变化,从而产生温度应力。
温度应力的大小与混凝土的线膨胀系数、温度变化量、混凝土的约束程度等因素有关。
三、温度应力分析方法1. 温度应力计算公式根据基本力学原理,可以得到混凝土结构的温度应力计算公式:σ = αΔT E其中,σ为温度应力,α为混凝土的线膨胀系数,ΔT为温度变化量,E为混凝土的弹性模量。
2. 温度应力分析步骤(1)确定温度变化量在进行温度应力分析前,首先需要确定温度变化量。
通常情况下,可以根据气象资料和历史数据来确定设计温度范围。
(2)确定混凝土的线膨胀系数混凝土的线膨胀系数是影响温度应力大小的关键因素之一。
一般情况下,可以根据混凝土的配比和试验数据来确定混凝土的线膨胀系数。
(3)确定混凝土的约束程度混凝土的约束程度也是影响温度应力大小的关键因素之一。
混凝土的约束程度越大,温度应力就越大。
一般情况下,可以根据混凝土的结构形式和施工方式来确定混凝土的约束程度。
(4)计算温度应力根据上述公式和确定的参数,可以计算出混凝土结构在温度变化下的应力分布情况。
四、温度应力分析案例以下是一个混凝土结构的温度应力分析案例:假设某混凝土结构的线膨胀系数为1.2×10^-5/℃,设计温度范围为-10℃~30℃,混凝土的约束程度为中等程度。
根据上述参数,可以计算出该混凝土结构在温度变化下的应力分布情况。
(1)确定温度变化量根据设计温度范围,温度变化量为40℃。
(2)确定混凝土的线膨胀系数已知混凝土的线膨胀系数为1.2×10^-5/℃。
混凝土构件的温度应力分析研究
混凝土构件的温度应力分析研究一、前言随着现代建筑技术的发展,混凝土构件在建筑领域中应用越来越广泛。
然而,由于气候和环境条件的变化,混凝土构件的温度应力问题成为了工程师们需要重视的问题。
本文将对混凝土构件的温度应力进行分析研究。
二、混凝土构件的温度应力原理在混凝土构件中,当温度发生变化时,由于混凝土的膨胀系数与钢筋的膨胀系数不同,混凝土与钢筋之间会产生温度差异引起的应力。
这些应力称为温度应力。
在温度变化过程中,温度应力的大小取决于混凝土的材料特性、构件尺寸和温度变化幅度等因素。
三、混凝土构件的温度应力分析方法1.计算方法混凝土构件的温度应力可以使用以下公式进行计算:σ = αEΔT其中,α为混凝土的线膨胀系数,E为混凝土的弹性模量,ΔT为温度变化量,σ为混凝土构件的温度应力。
2.数值模拟方法数值模拟方法是一种计算混凝土构件温度应力的有效方法。
通过使用有限元分析软件,可以模拟混凝土构件在不同温度下的变形和应力情况。
数值模拟方法可以更准确地预测混凝土构件在不同温度下的应力变化情况。
四、影响混凝土构件温度应力的因素1.温度变化幅度混凝土构件的温度应力与温度变化幅度成正比。
温度变化幅度越大,混凝土构件的温度应力就越大。
2.混凝土的线膨胀系数混凝土的线膨胀系数是影响温度应力的重要因素。
不同类型的混凝土具有不同的膨胀系数,因此在进行混凝土构件设计时需要考虑混凝土的材料特性。
3.构件尺寸构件尺寸也是影响混凝土构件温度应力的重要因素。
较大的构件尺寸会导致温度应力的增加。
五、混凝土构件的温度应力控制方法1.控制温度变化幅度控制混凝土构件温度变化幅度是减少温度应力的一种有效方法。
可以通过对混凝土构件进行保温、遮阳等措施来控制温度变化幅度。
2.合理设计构件尺寸合理设计混凝土构件尺寸也是减少温度应力的一种有效方法。
通过减少构件尺寸可以降低温度应力的大小。
3.使用预应力混凝土预应力混凝土可以减少混凝土构件的温度应力。
在预应力混凝土中,钢筋在混凝土灌注前就已经施加了预应力,可以减少温度变化对混凝土构件的影响。
水泥混凝土路面温度应力的计算与分析
水泥混凝土路面温度应力的计算与分析水泥混凝土路面的温度应力是路面施工和使用过程中需要考虑的一个重要问题,它对路面的稳定性和耐久性有着直接的影响。
在本篇文章中,我将详细介绍水泥混凝土路面温度应力的计算与分析方法,并分享我的观点和理解。
一、温度应力的原因与表现水泥混凝土路面温度应力主要由两个原因引起:温度变化和限制条件。
当路面受到温度变化的作用时,水泥混凝土路面会产生热胀冷缩效应,从而产生内部的温度应力。
路面的几何限制条件(如交通荷载、边界约束等)也会导致温度应力的产生。
这些温度应力在路面表面的表现形式是裂缝和变形。
由于水泥混凝土的有限的抗拉强度,温度引起的应力超过其抗拉强度时,路面就会产生裂缝。
由于温度应力的作用,路面可能会出现变形现象,如变形、凸起等。
二、温度应力的计算与分析方法下面我将介绍两种常用的水泥混凝土路面温度应力的计算与分析方法。
1. 数值模拟方法数值模拟方法是目前常用的一种计算水泥混凝土路面温度应力的方法。
它基于有限元原理,通过将路面划分为小的单元,对每个单元进行温度场和应力场的计算,最后通过求解大量单元的方程组得到整体的温度应力分布。
数值模拟方法的优点在于能够考虑复杂的边界条件和材料性能,并且计算结果准确可靠。
然而,该方法需要较为复杂的数值计算技术,对计算机硬件和软件要求较高,而且计算过程较为繁琐。
2. 经验公式方法经验公式方法是另一种计算水泥混凝土路面温度应力的方法。
该方法基于已有的实测数据和经验公式,通过简化计算过程,得到大致的温度应力估计值。
这种方法的优点是简单易行,不需要复杂的计算过程和专业的数值模拟技术。
然而,由于经验公式方法忽略了一些影响因素和细节,因此计算结果可能不够精确。
该方法更适用于一般性的工程设计和初步评估。
三、个人观点与理解在我看来,水泥混凝土路面温度应力的计算与分析是确保路面稳定性和耐久性的重要环节。
准确地计算和分析温度应力,不仅可以指导工程设计和施工过程,还可以为路面维护和养护提供依据。
混凝土结构施工中的温度应力分析
混凝土结构施工中的温度应力分析一、背景与概述混凝土是建筑结构中常用的材料之一,其施工中需要考虑到温度变化对其的影响。
由于混凝土的热膨胀系数较大,施工过程中易受温度影响而产生应力。
因此,在混凝土结构的设计和施工过程中,需要进行温度应力分析,以保证结构的安全性和稳定性。
二、混凝土的热膨胀系数及温度影响混凝土的热膨胀系数通常在10×10^-6/℃左右,比一般的金属材料要大得多。
在混凝土施工过程中,由于温度变化,混凝土会发生热膨胀或收缩,从而产生应力。
当混凝土的温度升高时,其体积会增大,从而产生膨胀应力,反之则会产生收缩应力。
由于混凝土是一种非均质材料,其内部的温度变化可能会导致不同部位的应力不同,从而产生裂缝或变形。
三、混凝土结构施工中的温度应力分析方法1. 热应力计算法热应力计算法是一种常用的分析混凝土温度应力的方法。
该方法需要考虑混凝土的热膨胀系数、温度变化、结构的约束程度等因素,通过计算得出混凝土内部的应力分布情况。
在计算过程中,需要进行多次迭代计算,并考虑到混凝土的非线性特性,以得出较为准确的结果。
2. 数值模拟法数值模拟法是一种基于有限元分析的方法,通过建立混凝土结构的有限元模型,考虑到温度变化对混凝土的影响,得出混凝土的应力分布情况。
该方法需要考虑到混凝土的材料特性、约束条件、温度变化等因素,并进行多次迭代计算,以得出较为准确的结果。
3. 监测法监测法是一种实验性的方法,通过在混凝土结构中安装应力计等传感器,监测其内部的应力变化情况。
该方法需要在施工前进行计划,安装监测设备,并在施工过程中进行实时监测。
通过监测数据的分析,可以得出混凝土结构内部的应力变化情况,以及其与温度变化的关系。
四、混凝土结构施工中的温度应力控制措施1. 控制混凝土的温度控制混凝土的温度是控制混凝土结构温度应力的有效措施之一。
在混凝土浇筑过程中,可以通过控制混凝土的温度,减少其温度变化对结构的影响。
具体措施包括: 控制混凝土的配合比,减少其水泥用量,控制混凝土的浇筑时间等。
混凝土结构温度应力分析技术规程
混凝土结构温度应力分析技术规程一、前言混凝土结构在使用过程中,由于受到外界环境因素的影响,如温度变化等,会产生相应的应力,如果不采取有效措施,会对结构的安全性产生影响。
本文旨在介绍混凝土结构温度应力分析技术规程,以便工程师在实际工作中能够更好地掌握这一技术。
二、温度应力的定义和影响因素温度应力是指混凝土结构在温度变化时所受到的内部应力。
影响温度应力的因素主要包括混凝土结构的材料性质、结构形状、环境温度变化等。
三、温度应力的计算方法温度应力的计算方法主要有两种:一是按材料力学原理进行计算,即应力=模量×温度差;二是按混凝土的线膨胀系数进行计算,即应力=线膨胀系数×温度差×单位长度。
四、温度应力分析的步骤温度应力分析的步骤包括以下几个方面:1、确定结构模型;2、确定材料参数;3、确定温度变化范围;4、进行温度应力计算;5、分析温度应力的结果,并进行安全评估。
五、温度应力分析的注意事项在进行温度应力分析时,需要注意以下几个方面:1、要对结构进行精确的建模,包括几何形状、材料参数等;2、要考虑温度变化的不确定性,包括环境温度变化等;3、要对不同部位的温度应力进行分析,以便进行针对性的加固措施;4、要对分析结果进行多次验证,以提高分析结果的可信度。
六、温度应力分析的实例以某混凝土桥梁为例,进行温度应力分析。
该桥梁主跨长42米,宽12米,高3.5米,采用C50混凝土。
环境温度变化范围为-10℃~40℃,桥梁结构的线膨胀系数为12×10-6/℃,计算得到温度应力为270kPa,根据安全系数要求,需要对桥梁进行加固。
七、温度应力分析的加固措施针对以上实例,可以采取以下几种加固措施:1、采用高强度混凝土或预应力混凝土;2、增加桥梁的横向支撑;3、采用隔热层等措施减少温度变化的影响。
八、总结温度应力分析是混凝土结构设计和施工中必不可少的一项工作。
通过对温度应力的分析,可以更好地掌握结构的安全性,并采取相应的加固措施,以保证结构的安全和可靠性。
pkpm温度应力
PKPM温度应力1. 简介PKPM温度应力是指在PKPM(Peking University Program for Material)计算软件中进行的温度应力分析。
该分析主要用于预测材料在不同温度下的应力分布,从而评估材料的热稳定性和使用寿命。
温度应力分析在工程领域中具有重要的应用价值,可以帮助工程师更好地设计和选择材料,以满足特定工况下的要求。
2. 温度应力分析原理温度应力分析基于热力学和力学原理,通过数值模拟的方法计算材料在不同温度下的应力分布。
具体步骤如下:1.定义模型:根据实际需求,选择适当的材料和几何形状,并建立模型。
模型可以是二维或三维的,包括材料的几何形状、边界条件和加载方式等。
2.网格划分:将模型划分为离散的小单元,即网格。
网格的划分需要考虑到模型的几何形状和计算效率的平衡。
3.定义材料属性:根据实际材料的性质,定义材料的热物性参数和力学参数。
这些参数将用于计算材料在热载荷下的应力响应。
4.定义边界条件:根据实际情况,定义模型的边界条件。
边界条件包括温度边界条件和力边界条件。
温度边界条件可以是固定温度或温度梯度,力边界条件可以是固定位移或施加力。
5.求解方程:根据热传导和力学平衡方程,建立数学模型。
通过数值方法求解模型,得到材料在不同温度下的应力分布。
6.结果分析:根据计算结果,分析温度应力的分布规律和影响因素。
可以通过对比不同模型和参数的结果,优化设计和选择材料。
3. PKPM温度应力的应用领域PKPM温度应力分析在以下领域具有广泛的应用:1.建筑工程:在建筑结构设计中,温度应力分析可以评估材料在不同温度下的变形和应力分布,从而优化结构设计和材料选择。
2.航空航天工程:航空航天器在高速飞行过程中会受到高温和低温的影响,温度应力分析可以预测材料的热稳定性和疲劳寿命,提高航空航天器的安全性和可靠性。
3.汽车工程:汽车发动机在工作过程中会产生高温,温度应力分析可以评估发动机部件的热稳定性和疲劳寿命,优化发动机设计和材料选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T ( x) T0 x e cx x
式中: 0 y T —箱梁顶、底的温差(一般取值约为15℃,
仅计算竖向温差时取约20℃);
§6.2.2 温度应力分析
T0 x—箱梁两外侧腹板的温差(一般取值约为15℃);
c x 、 —指数系数(一般取7,仅考虑竖向温差时 y c yc
取5,x、y以米计)。
(2)横向温差应力
箱型桥墩横向约束应力的计算同箱梁一样,即分为 箱壁板非线性温差的自约束应力和横向框架约束应 力: 第一部分自约束应力计算方法同上部结构
第二部分横向框架约束应力也可用结构力学方法
或有限单元法计算
§6.2.2 温度应力分析
4、关于桥墩温差荷载效应的讨论 在采用固定支座传递的柔性墩体系中,简支墩的日照 温差应力数值,一般超过号混凝土的容许拉应力,而 接近20号混凝土的极限拉应力;且拉应力的分布区域 很宽,达到整个截面厚度的。
cy y
式中 T0 y—朝阳面箱壁温差,(约为15℃,仅计算单向 温差时约20℃);
c y—指数系数(一般取,以米计)。
x方向横截面温差分布规律和系数取值同上。
§6.2.2 温度应力分析
由寒流、降温产生 的温差分布同箱梁。
箱型墩截面的温差与应变分布
§6.2.2 温度应力分析
3、桥墩温差应力 桥墩温差应力计算所作的假定条件同桥梁上部结构。 温差荷载在桥墩中产生的应力可分为与支承条件无关 的自约束应力和与支承条件有关的外约束应力。在此 主要讨论与支承条件无关的自约束应力的问题。
单室箱梁温差分布 (a)沿梁高温差分布 (b)沿梁宽温差分布
§6.2.2 温度应力分析
因受寒流降温影响,箱梁各板壁厚度方向的温差分布 可按下式计算:
T ( y) T 0e
式中
cy
c —指数系数(一般
取12,y以米计);
T 0 —箱梁壁板的负温 差(一般可取
-10℃)。
单室箱梁降温温差分布
§6.2.2 温度应力分析
0
与
§6.2.2 温度应力分析
2)纵向外约束应力 截面自约束作用,桥梁构件将发生变形 当结构为超静定时,多余约束将引起内力及应力
(2)横向温差应力
T型与Π型梁一般不考虑横向温差应力问题
箱梁横向温差应力计算有两个方面:
与日照温差荷载对应的温差应力;
与寒流降温温差荷载对应的温差应力。
§6.2.2 温度应力分析
§6.2.3 温度效应分析示例
箱内、外温差 10~0º 时的横向应力(t/m2=1/100MPa) C
§6.2.3 温度效应分析示例
箱内、外温差 10~0º 时的横向应力(t/m2=1/100MPa) C
§6.2.3 温度效应分析示例
箱内、外温差 10~0º 时的横向应力(t/m2=1/100MPa) C
§6.2.3 温度效应分析示例
顶板降温 0~10º 时的横向应力(t/m2=1/100MPa) C
§6.2.3 温度效应分析示例
顶板降温 0~10º 时的横向应力(t/m2=1/100MPa) C
§6.2.3 温度效应分析示例
顶板降ห้องสมุดไป่ตู้ 0~10º 时的横向应力(t/m2=1/100MPa) C
4、关于桥墩温差荷载效应的讨论 温差荷载在箱型墩横向产生温差约束应力,其影响往 往超过活载效应,尤其在角隅附近因实际结构应力集
中的影响,可能会发生温度裂缝。
在箱型桥墩的设计中,应充分考虑温差应力的影响, 并在构造处理上减少不必要自约束作用。
§6.2.2 温度应力分析
从温差应力角度考虑,即使墩顶设置活动支座也总
(2)多室箱梁的温差荷载 多室箱梁的竖向温差分布规律与单室箱梁基本一致, 唯中腹板的温度变化较小,竖向温差分布略有差别。
根据实测资料比较分析,可用单室箱梁的温差分布图
式来分析双室与多室箱梁。 双室与多室箱梁横向的温差分布规律和数值,均与单 室箱梁类同。这也是由对实测温差荷载资料进行分析 后得出的。
§6.2.2 温度应力分析
§6.2.3 温度效应分析示例
顶板升温 0~10º 时的腹板应力(t/m2=1/100MPa) C
§6.2.3 温度效应分析示例
顶板降温 0~10º 时的顶板应力(t/m2=1/100MPa) C
§6.2.3 温度效应分析示例
顶板降温 0~10º 时的腹板应力(t/m2=1/100MPa) C
§6.2.3 温度效应分析示例
箱外、内温差 10~0º 时的横向应力(t/m2=1/100MPa) C
§6.2.3 温度效应分析示例
箱外、内温差 10~0º 时的横向应力(t/m2=1/100MPa) C
§6.2.3 温度效应分析示例
箱外、内温差 10~0º 时的横向应力(t/m2=1/100MPa) C
梁顶板混凝土开裂。
§6.2.2 温度应力分析
6.2.2.2 桥梁墩柱的温差荷载与温差应力 1、壁板式柔性墩温差荷载 因日辐射和气温变化作用而产生的温差应力,往往成 为设计的控制因素。 因日辐射和气温变化作用产生的温差荷载,有这样三 种情况:
§6.2.2 温度应力分析
6.2.2.2 桥梁墩柱的温差荷载与温差应力 1、壁板式柔性墩温差荷载 因年温变化,上部结构发生伸缩变形,在柔性墩上 产生的温度荷载; 因日辐射温度变化,在墩身产生的温差荷载;
§6.2.2 温度应力分析
以上应变差产生的自约束应变为:
( y) T ( y) ( y) T ( y) ( 0 y)
自约束应力为:
( y) E ( y) ET ( y) ( 0 y)
截面自约束应力处于自平衡状态 利用 N 0 , M 0 可解得
§6.2.2 温度应力分析
4、温差应力 假定沿梁长方向温度分布均匀,断面局部变化引起的 微小温差分布的差别可略去;
假定混凝土均质、各向同性,开裂之前符合弹性变形
规律;平截面假定仍然适用; 可采用叠加原理组合多向温差荷载状态下的温差应力。 (1)桥梁纵向温差应力
以沿梁高方向温差荷载为例进行温差应力分析。
c0 —指数系数(一般取,y以米计)。
寒流、降温引起的温差分布也同样可以表示成指数函数 形式。
2、箱型桥墩温差荷载
箱型桥墩的温差荷载主要是日照温差荷载与寒流、降温
温差荷载。
§6.2.2 温度应力分析
在日照温差荷载的计算时,当斜太阳晒时可采用两个 方向的温差 T0 x 、 T0 y ,分别按正晒情况计算,然后再 叠加起来。
§6.2.3 温度效应分析示例
2、连续箱梁横向温度效应分析
§6.2.3 温度效应分析示例
顶板升温 0~10º 时的横向应力(t/m2=1/100MPa) C
§6.2.3 温度效应分析示例
顶板升温 0~10º 时的横向应力(t/m2=1/100MPa) C
§6.2.3 温度效应分析示例
顶板升温 0~10º 时的横向应力(t/m2=1/100MPa) C
§6.2.2 温度应力分析
4、关于桥墩温差荷载效应的讨论 简支墩的日照温差应力,在柔性墩的计算中是一项重 要的因素,同时,在与其它不利荷载组合之后将决定 设计的经济性与安全性。
箱型桥墩的温差应力是一个重要的问题。
实测资料表明,沿箱壁厚度方向的非线性温度分布较 严重,温差15℃以上。
§6.2.2 温度应力分析
§6.2.2 温度应力分析
e
d
- Co y
ey
y
e
T型与Π型桥梁的温差分布与应变
6- 5
§6.2.2 温度应力分析
2、箱型桥梁温差荷载 (1)单室箱梁的温差荷载 在日照升温、降温等因素作用下,单室箱梁沿桥长方 向的温度分布可认为一致,沿梁高与沿梁宽的温差分 布可简化为:
cy y
T ( y ) T0 y e
§6.2.2 温度应力分析
6.2.2.1 桥梁上部结构的温差荷载与温差应力 1、T型与Π型桥梁的温差荷载 在日照作用下,T型与Π型梁底部的很小温差分布和肋
板水平方向的温差一般被略去,温差分布近似地简化
为一支单向温差分布曲线
式中:
—梁顶、底的温差(一般取值约20℃);
—指数系数(一般取为5,以米计)。
§6.2.2 温度应力分析
2)箱梁横向框架约束应力 框架约束应力计算方法与纵向外约束应力计算方法相似
横向框架计算简图
横向温差应力由横向自约束应力和框架应力叠加而成。
§6.2.2 温度应力分析
5、关于桥梁上部结构温差荷载效应的讨论 1)温差荷载分析与构件组成相联系 钢梁—混凝土桥面板结合梁、钢管混凝土拱肋等 2)温差荷载效应分析与结构体系特性相联系 传统拱桥、梁拱组合体系桥、斜拉桥等,都有特殊的
§6.2.2 温度应力分析
(1)纵向温差应力 日照温差引起的截面自约束应力的计算原理同上部结 构,根据平截面假定条件及截面自约束应力的平衡条
件,可得到自约束应力。
太阳斜晒时,采用叠加原理,先计算两个方向的应力, 然后再叠加。 纵向外约束应力,可按结构力学方法或有限元分析法 求解。
§6.2.2 温度应力分析
在日照作用下,沿横截面高度方向的温差分布,根据
钢筋混凝土结构的热传导特性分析和现场实测资料, 符合按指数函数规律变化。 略去两侧壁板内外表面温度的很小差别和沿墩高方向 的微小温差,沿横截面温差分布规律(以y方向为例)
如下:
§6.2.2 温度应力分析
T ( y ) T0 y e
T0 y t1 t 2
是存在来自梁体的约束,并非绝对活动,墩身因不 均匀温度变化引起的墩顶位移可能完全被梁体约束 掉,所需的约束力一般都小于墩顶支座摩阻力。
在桥墩温差应力计算中均应按上端有水平约束的情 况来考虑。
§6.2.3 温度效应分析示例