自动控制原理实验
自控原理实验报告
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
自动控制原理实验
自动控制原理实验
C
输 入
R2 R1 +
输 出 -1
Ui
0
t
Uo Uo 2 1
K=2
Ui=-1V
0
图 1-3 惯性环节实验原理图和输出波形
t
3.积分环节
积分环节实验原理图如图 1-4 所示。
G( S )
Z 2 1CS 1 Z1 R1 TS
, T=R1*C
当输入为单位阶跃信号,即 ui(t)=-1V 时,ui(s)= 所以输出响应为 uo(t)=
-1-
自动控制原理实验
R2
输 入
Ui
R1 +
0
输 出 -1 Uo Uo 2 1 k=2
t
Ui=-1V
0
图 1-2 比例环节实验原理图和输出波形
t
实验步骤: (1)调整示波器: 选择输入通道 CH1 或 CH2。 逆时针调节示波器的时间旋钮“TIME/DIV”到底, 使光标为一点, 并调节上下“位 移”旋钮使光标位于 0 线上。 调整示波器的输入幅度档位选择开关, 选择合适的档位使信号幅度便于观察, 例如 选择档位为 1V 档。 将输入幅度档位选择开关中心的微调旋钮顺时针旋到底。 将信号选择开关打到 DC 档。 (2)顺时针调节实验箱的旋钮,使阶跃信号为负(绿灯亮) 。 ( 3 )阶跃信号接到示波器上,调节实验箱的幅度旋钮。使负跳变幅度为一格(即 Ui=-1V) 。 (4)接好实验线路,按下阶跃信号按钮,观察示波器的波形。 预习思考:输出幅度跳变应为……? 2.惯性环节 惯性环节实验原理图如图 1-3 所示。 其传递函数为: G( S )
-8-
自动控制原理实验
大使稳态误差进一步减小,直到等于零。因此, “比例+积分(PI)”控制器,可以使系统在进 入稳态后无稳态误差。 这是相位滞后校正,滞后校正器的基本特性,是相频曲线具有负相 移(滞后相位角) 。滞后校正器实际是一个低通滤波器,基本原理主要是利用其滞后网络的 高频衰减特性,以降低系统的开环截止频率,从而使已校正系统获得足够的相角裕度。 比例微分(PD)控制:在微分控制中,控制器的输出与输入误差信号的微分(即误差 的变化率) 成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。 其原因是由于存在有较大惯性组件(环节)或有滞后 (delay)组件,具有抑制误差的作用, 其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前” ,即在误差 接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不 够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项” ,它能预测误差 变化的趋势,这样,具有“比例+微分”的控制器,就能够提前使抑制误差的控制作用等于 零, 甚至为负值, 从而避免了被控量的严重超调。 所以对有较大惯性或滞后的被控对象, “比 例+微分(PD)”控制器能改善系统在调节过程中的动态特性,是“超前”校正。超前校正的 原理是利用微分环节的超前调节作用, 实际上是利用了 RC 微分电路的高通特性进行超前校 正的。 “滞后-超前(PID) ”校正包含 PI 和 PD 这两种校正,其对系统性能的影响是上述两种 校正对系统作用的综合, 这种校正方法兼有滞后校正和超前校正的优点, 因此可以取长补短, 比单独使用超前或滞后校正方法能满足更多的性能要求。 “滞后-超前”校正器不仅能提高系 统的稳定性能,还可以减少超调量、加快系统响应速度。合理应用 PID 可以取得更好的校 正效果。
自动控制原理实验(全面)
自动控制原理实验实验一 典型环节的电模拟及其阶跃响应分析一、实验目的⑴ 熟悉典型环节的电模拟方法。
⑵ 掌握参数变化对动态性能的影响。
二、实验设备⑴ CAE2000系统(主要使用模拟机,模/数转换,微机,打印机等)。
⑵ 数字万用表。
三、实验内容1.比例环节的模拟及其阶跃响应微分方程 )()(t Kr t c -= 传递函数 =)(s G )()(s R s C K -= 负号表示比例器的反相作用。
模拟机排题图如图9-1所示,分别求取K=1,K=2时的阶跃响应曲线,并打印曲线。
图9-1 比例环节排题图 图9-2 积分环节排题图 2.积分环节的模拟及其阶跃响应微分方程 )()(t r dtt dc T= 传递函数 sKTs s G ==1)(模拟机排题图如图9-2所示,分别求取K=1,K=0.5时的阶跃响应曲线,并打印曲线。
3.一阶惯性环节的模拟及其阶跃响应微分方程 )()()(t Kr t c dtt dc T=+ 传递函数 1)(+=TS KS G模拟机排题图如图3所示,分别求取K=1, T=1; K=1, T=2; K=2, T=2 时的阶跃响应曲线,并打印曲线。
4.二阶系统的模拟及其阶跃响应微分方程 )()()(2)(222t r t c dt t dc T dt t c d T =++ξ传递函数 121)(22++=Ts s T s G ξ2222nn n s s ωξωω++= 画出二阶环节模拟机排题图,并分别求取打印: ⑴ T=1,ξ=0.1、0.5、1时的阶跃响应曲线。
⑵ T=2,ξ=0.5 时的阶跃响应曲线。
四、实验步骤⑴ 接通电源,用万用表将输入阶跃信号调整为2V 。
⑵ 调整相应系数器;按排题图接线,不用的放大器切勿断开反馈回路(接线时,阶跃开关处于关断状态);将输出信号接至数/模转换通道。
⑶ 检查接线无误后,开启微机、打印机电源;进入CAE2000软件,组态A/D ,运行实时仿真;开启阶跃输入信号开关,显示、打印曲线。
自控原理课程实验报告
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。
3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。
二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。
本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。
2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。
(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。
(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。
(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。
(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。
(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。
2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。
(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
(2)根据仿真结果,优化系统参数,提高系统性能。
四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。
自动控制原理实验
自动控制原理实验报告册实验一典型环节及其阶跃响应一、实验目的1、掌握控制模拟实验的基本原理和一般方法。
2、掌握控制系统时域性能指标的测量方法。
二、实验公式1、比例环节G(S)= -R2/R12、惯性环节G(S)= -K/TS+1 K= R2/R1, T= R2C3、积分环节G(S)= -1/TS T=RC4、微分环节G(S)= -RCS5、比例+微分环节G(S)= -K(TS+1) K= R2/R1, T= R2C6、比例+积分环节G(S)= K(1+1/TS) K= R2/R1, T=R2C三、实验结果1、比例环节阶跃波、速度波、加速度波依次为:2、惯性环节阶跃波、速度波、加速度波依次为:3、积分环节阶跃波、速度波、加速度波依次为:4、微分环节阶跃波、速度波、加速度波依次为:5、比例+微分环节阶跃波、速度波、加速度波依次为:6、比例+积分环节阶跃波、速度波、加速度波依次为:实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比和无阻尼自然频率对系统动态性能的影响。
定量分析和与最大超调量和调节时间之间的关系。
2、进一步学习使用实验系统的使用方法。
3、学会根据系统阶跃响应曲线确定传递函数。
二、实验公式1、超调量:%=(Y MAX-Y OO)/Y OO X100%2、典型二阶系统的闭环传递函数:(S)= (1) (s)=U2(s)/U1(s)=(1/T2)/(S2+(K/T)S+1/T2) (2)式中:T=RC, K=R2/R1由(1)(2)可得: Wn=1/T=1/RCE=K/2=R2/2R1三、实验结果R1=100K、R2=50KR1=100K、R2=100KR1=100K、R2=100KR1=50K、R2=200K实验三控制系统的稳定性分析一、实验目的1、观察系统的不稳定现象。
2、研究系统开环增益和时间常数对系统稳定性的影响。
二、实验公式开环传递函数:G(S)=10K/S(0.1S+1)(TS+1)式中:K1=R3/R2 R2=100K R3=0~500K T=RC R=100K C=1uf或C=0.1uf三.实验结果第一种情况:C=1uf R3=50r3=100kr3=150kr3=200kr3=250kr3=450k第二种情况:C=0.1uf R=50kr=100k200k300k实验四系统频率特性测量一、实验目的1、加深了解系统及元件频率特性的物理概念。
自动控制原理实验3
经典三阶系统旳稳定性 研究
一、试验目旳
1、 熟悉反馈控制系统旳构造和工作原理; 2、了解开环放大系数对系统稳定性旳影 响。
二、试验要求:
观察开环增益对三阶系统稳定性 旳影响。
三、试验仪器:
1.自控系统教学模拟机 XMN-2 1台; 2.TDS1000B-SC 系列数字存储示波 器1台; 3.万用表
由劳斯判据懂得,当:
11.9619.6 19.6k 0
19.6k 0
得到系统稳定范围:0 k 11.96
当:
11.96 19.6 19.6k 0
得到系统临界稳定时:
k 11.96
当:
11.96 19.6 19.6k 0
得到系统不稳定范围:k 11.96
将K=510/R代入(3-6)~(3-8)得: R>42.6KΩ 系统稳定 R=42.6KΩ 系统临界稳定 R<42.6KΩ 系统不稳定
G(S)H (S)
510 / R
S(0.1S 1)(0.51S 1)
系统旳特征方程为:
S 3 11.96S 2 19.6S 19.6K 0
用劳斯判据求出系统稳定、临界稳定、 不稳定时旳开环增益:
S3
1
19.6
S2
11.96
19.6K
11.96 19.6 19.6K
S1
11.96
S0
19.6K
四、试验原理和内容:
利用自控系统教学模拟机来模拟 给定三阶系统。
经典三阶系统原理方块图如下图 所示。
G(S )H (S )
K1K 2
T0S (T1S 1)(T2S 1)
K
S(T1S 1)(T2S 1)
给定三阶系统电模拟图
自动控制原理实验教程及实验报告
实验三 典型环节(或系统)的频率特性测量一、实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。
2.学习根据实验所得频率特性曲线求取传递函数的方法。
二、实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。
2.用实验方法完成典型二阶系统开环频率特性曲线的测试。
3.根据测得的频率特性曲线求取各自的传递函数。
4.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。
三、实验步骤1.利用实验设备完成一阶惯性环节的频率特性曲线测试。
在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。
为了利用上位机提供的虚拟示波器与信号发生器功能,接线方式将不同于上述无上位机情况。
仍以一阶惯性环节为例,此时将Ui 连到实验箱 U3单元的O1(D/A 通道的输出端),将Uo 连到实验箱 U3单元的I1(A/D 通道的输入端),并连好U3单元至上位机的并口通信线。
接线完成,经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。
界面上的操作步骤如下:①按通道接线情况完成“通道设置”:在界面左下方“通道设置”框内,“信号发生通道”选择“通道O1#”,“采样通道X ”选择“通道I1#”,“采样通道Y ”选择“不采集”。
②进行“系统连接”(见界面左下角),如连接正常即可按动态状态框内的提示(在界面正下方)“进入实验模式”;如连接失败,检查并口连线和实验箱电源后再连接,如再失败则请求指导教师帮助。
③进入实验模式后,先对显示进行设置:选择“显示模式”(在主界面左上角)为“Bode”。
④完成实验设置,先选择“实验类别”(在主界面右上角)为“频域”,然后点击“实验参数设置”,在弹出的“频率特性测试频率点设置”框内,确定实验要测试的频率点。
注意设置必须满足ω<30Rad/sec 。
⑤以上设置完成后,按“实验启动”启动实验。
界面中下方的动态提示框将显示实验测试的进展情况,从开始测试直至结束的过程大约需要2分钟。
自动控制原理实验报告
自动控制原理实验报告姓名:学号:班级:实验一 一、二阶系统的电子模拟及时域响应的动态测试一、 实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2. 学习在电子模拟机上建立典型环节系统模型的方法。
3. 学习阶跃响应的测试方法。
二、 实验内容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。
2.建立二阶系统的电子模型,并记录在不同的阻尼比ζ时的阶跃响应曲线,并测定其超调量δ%及过渡过程时间Ts 。
三、 实验原理1.一阶系统系统传递函数为: 模拟运算电路如图1-1所示:图 1-1其中R1=R2,T=R2·C 其中电阻电容的具体取值见表1-12. 二阶系统系统传递函数为: 模拟运算电路如图1-2所示:图1-2其中R2·C1=1,R3·C2=1,R4/R3=ξ21各元器件具体取值如图1-2所示。
222()()()2n n nC s s R s S S ωζωωΦ==++()()()1C s Ks R s TS Φ==+四、实验数据1.一阶系统1)数据表格(取5%误差带,理论上Ts=3T)表1-1T/s 0.25 0.5 1 R2(R1)/Ω250k 500k 1MC/μF 1 1 1Ts实测/s 0.74 1.46 2.99Ts理论/s 0.75 1.5 3 阶跃响应曲线图1-3 图1-4 图1-5 2)响应曲线图1-3 (T=0.25)图1-4 (T=0.5)图1-5 (T=1)2. 二阶系统 1)数据表格表1-2说明:(1)0﹤ζ﹤1,为欠阻尼二阶系统,超调量理论计算公式2/1%100%eπζζσ--=⨯(2)取5%误差带,当ζ值较小(0﹤ζ﹤0.7)采用近似公式 进行估算;当ζ值较大(ζ﹥0.7)采用近似公式 7.145.6-=ξsT 进行估算.2)响应曲线图1-6 (ζ=0.25)ζ0.25 0.5 0.7 1.0 /rad/s 1 1 1 1 R 4/M Ω 2.0 1.0 0.7 0.5 C2/μF 1.0 1.0 1.0 1.0 σ%实测 43.77 16.24 4.00 0.02 σ%理论 44.43 16.30 4.600 Ts 实测/s 13.55 5.47 3.03 4.72 Ts 理论/s 14 7 5 4.75 阶跃响应曲线图1-6图1-7图1-8图1-9ns T ξω5.3=图1-7 (ζ=0.5)图1-8 (ζ=0.7)图1-9 (ζ=1)五、 误差分析1. 对一阶系统阶跃响应实验当T=0.25 时, 1.3%%10075.074.0-75.0=⨯=误差。
2023年自动控制原理实验系统超前校正实验报告
试验五 系统超前校正(4课时)本试验为设计性试验 一、试验目旳1. 理解和观测校正装置对系统稳定性及动态特性旳影响。
2. 学习校正装置旳设计和实现措施。
二、试验原理工程上常用旳校正措施一般是把一种高阶系统近似地简化成低阶系统, 并从中找出少数经典系统作为工程设计旳基础, 一般选用二阶、三阶经典系统作为预期经典系统。
只要掌握经典系统与性能之间旳关系, 根据设计规定, 就可以设计系统参数, 进而把工程实践确认旳参数推荐为“工程最佳参数”, 对应旳性能确定为经典系统旳性能指标。
根据经典系统选择控制器形式和工程最佳参数, 据此进行系统电路参数计算。
在工程设计中, 常常采用二阶经典系统来替代高阶系统(如采用主导极点、偶极子等概念分析问题)其动态构造图如图7-1所示。
同步还常常采用“最优”旳综合校正措施。
图7-1二阶经典系统动态构造图二阶经典系统旳开环传递函数为)2()1()(2n n s s Ts s Ks G ξωω+=+= 闭环传递函数2222)(nn ns s s ωξωω++=Φ 式中 , 或者 二阶系统旳最优模型 (1)最优模型旳条件根据控制理论, 当 时, 其闭环频带最宽, 动态品质最佳。
把 代入 得到, , 这就是进行校正旳条件。
(2)最优模型旳动态指标为%3.4%100%21/=⨯=--ξξπσe,T t ns 3.43≈=ω三、试验仪器及耗材1.EL —AT3自动控制原理试验箱一台; 2.PC 机一台; 3.数字万用表一块 4.配套试验软件一套。
四、试验内容及规定未校正系统旳方框图如图7-2所示, 图7-3是它旳模拟电路。
图7-2未校正系统旳方框图矫正后未调整电路图图7-3未校正系统旳模拟电路设计串联校正装置使系统满足下述性能指标(1) 超调量%σ≤5% (2) 调整时间t s ≤1秒(3) 静态速度误差系数v K ≥20 1/秒 1. 测量未校正系统旳性能指标 (1)按图7-3接线;(2)加入单位阶跃电压, 观测阶跃响应曲线, 并测出超调量 和调整时间ts 。
自动控制原理实验报告
自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。
2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。
5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。
6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。
二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。
自动控制原理实验报告
一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。
2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。
3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。
二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。
实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。
2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。
3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。
三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。
2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。
3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。
六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。
2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。
3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。
自动控制原理实验报告分析
自动控制原理实验报告分析1. 引言自动控制原理是现代工程中非常重要的一门学科。
它研究如何设计和分析能够实现自动化控制的系统,以满足特定的性能要求。
通过实验,我们可以验证控制系统的性能,并深入理解自动控制原理的基本概念和工作原理。
本文将对自动控制原理实验进行详细分析和总结。
2. 实验目的本次实验的目的是研究PID(比例-积分-微分)控制器在温度控制系统中的应用。
通过调节PID控制器的参数,我们可以观察到不同控制参数对系统稳定性、响应速度和超调量等性能指标的影响。
3. 实验步骤本次实验使用了一个温度控制系统。
我们需要调节PID控制器的三个参数(比例增益、积分时间和微分时间)来实现温度的稳定控制。
具体的实验步骤如下:3.1 准备工作在进行实验之前,我们需要确保实验所需的设备和软件已经准备就绪。
这包括温度传感器、温度控制器、计算机等。
3.2 连接系统将温度传感器连接到温度控制器,并将温度控制器连接到计算机。
确保连接正确并稳定。
3.3 设置初始参数在实验开始前,我们需要设置PID控制器的初始参数。
一般情况下,我们可以先将比例增益和积分时间设置为较小的值,微分时间设置为0。
3.4 开始实验启动温度控制系统,并记录温度的变化。
观察温度的稳定性、响应速度和超调量等指标,并记录下来。
3.5 调节参数根据实验结果,我们可以调节PID控制器的参数来改善系统的性能。
通过增大比例增益可以提高系统的响应速度,但可能会导致较大的超调量。
增大积分时间可以减小超调量,但可能会降低系统的稳定性。
调节微分时间可以改善系统的稳定性和响应速度。
3.6 重复实验根据实验结果,我们可以不断调节PID控制器的参数,并进行多次实验,以得到更好的控制效果。
4. 实验结果分析根据实验的记录数据,我们可以对实验结果进行分析。
通过观察温度的变化曲线以及性能指标的大小,我们可以得出如下结论:•较大的比例增益可以提高系统的响应速度,但会导致较大的超调量。
•较大的积分时间可以减小超调量,但会降低系统的稳定性。
自动控制原理实验报告
自动控制原理实验报告实验目的本次自动控制原理实验的目的是通过对传统反馈控制系统的模拟和实现,了解并掌握基本的控制原理和控制器设计方法,进一步深化对自动控制理论的理解。
实验装置本次实验使用的是一台水位控制系统,该系统由电源、电机、计量储水罐、信号检测器、PID控制器、水泵等组成。
电源将电能转换为机械能,通过水泵将水流入到计量储水罐中,信号检测器对储水罐中的水位进行检测并反馈给PID控制器,PID控制器对信号进行处理并控制电机的转速,从而实现对水位的控制。
实验步骤1. 确定实验参数在进行实验之前,首先需要确定实验的一些参数,如PID控制器的比例系数、积分系数以及微分系数等。
这需要根据具体实验情况进行设定,以确保控制系统具有良好的稳定性和响应能力。
2. 实施控制将水泵开启,令水流入计量储水罐中,同时PID控制器对信号进行处理,调节电机的转速以控制水位。
实验过程中需要注意及时进行系统动态的监控和调整,以确保控制系统的稳定性和故障排除。
3. 结束实验并分析结果实验结束后,需要对实验结果进行分析,包括控制系统的响应速度、稳定性以及对参数的灵敏度等。
通过对实验数据的收集和分析,可以进一步提高对自动控制理论的理解和应用能力。
实验结果分析本次实验中,我们实现了对水位的控制,并对PID控制器的参数进行了设定和调整。
实验结果表明,我们所设计的控制系统具有较好的稳定性和响应能力,并且对参数的灵敏度较高。
同时,通过实验数据的分析,我们也发现了一些问题和不足之处,如控制系统的动态响应速度过慢等,这需要我们在实际应用中加以改进和完善。
结论本次自动控制原理实验通过实现对水位的控制,进一步加深了对自动控制理论的理解,掌握了基本的控制原理和控制器设计方法。
同时,通过实验数据的分析和总结,也为今后在自动控制领域的实际应用提供了一定的参考和指导。
自动控制原理实验报告
⾃动控制原理实验报告实验⼀典型环节的模拟研究及阶跃响应分析1、⽐例环节可知⽐例环节的传递函数为⼀个常数:当Kp 分别为0.5,1,2时,输⼊幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。
实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满⾜理论值。
2、积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1µf (0.33µf ),利⽤MATLAB ,模拟阶跃信号输⼊下的输出信号如图: T=0.1 T=0.033与实验测得波形⽐较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满⾜理论条件。
3、惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K=R f /R 1,T=R f C,(1)保持K=R f /R 1=1不变,观测T= 0.1秒,0.01秒(既R 1=100K,C=1µf ,0.1µf )时的输出波形。
利⽤matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较⼤。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。
T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较⼩,所以读数时误差较⼤。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2)保持T=R f C= 0.1s 不变,分别观测K=1,2时的输出波形。
自控实验报告终极版
自动控制原理课程设计实验报告一、 实验目的1、了解自动控制原理的数学和系统稳定验证的方法。
2、了解自动控制系统的放大系数对系统的稳态误差和稳定性的影响。
3、 熟悉MABLAB 系统仿真的应用,加强对MABLAB 软件应用的认识。
二、 实验内容1、设单位反馈控制系统的开环传递函数如下,试用MATLAB 绘制闭环根轨迹图。
33*)2()1()(++=s s K s G2、两个系统的传递函数分别为:)65)(1)(254()144)(3(50)()()1(2232++-++++-=s s s s s s s s s s H s G )1)(2)(6())(133(3)()()2(2222323+++-+++++=s s s s s s s s s s s s H s G 计算上述所给系统在2=ω和20=ω时的幅频特性)(ωA ,对数幅频特性)(ωL 以及相频特性)(ωϕ。
(用MATLAB 验证) 3、设单位反馈的开环传递函数为)15.0)(1()(0++=s s s Ks G要求设计一串联校正网络,使校正后系统的开环增益K=5,相角裕度不低于40°,幅值裕度不小于10dB.(用MATLAB 验证)三、实验步骤及MATLAB 验证仿真1、设单位反馈控制系统的开环传递函数如下,试用MATLAB 绘制闭环根轨迹图。
33*)2()1()(++=s s K s G 解:33*)2()1()(++=s s K s G用MATLAB 绘制闭环根轨迹图如下:程序:num=conv([1 1],conv([1 1],[1 1])); den=conv([1 2],conv([1 2],[1 2])); sys=tf(num,den); rlocus(sys); grid on其闭环根轨迹图如下:2、两个系统的传递函数分别为:)65)(1)(254()144)(3(50)()()1(2232++-++++-=s s s s s s s s s s H s G )1)(2)(6())(133(3)()()2(2222323+++-+++++=s s s s s s s s s s s s H s G(1) 解:)(lg 20)(3462541)14(5094116)25()14(950)()()()3)(2)(1)(425()12)(3(50))H(j ()3)(2)(1)(254()12)(3(50)()(42222222222222222ωωωωωωωωωωωωωωωωωωωωωωωωωωωωωA L j H j G A j j j j j j j j G s s s s s s s s s H s G =+-+++=++++-++==++-+-+-=+--+++-=当ω<5时,o2o2o o 90)2arctan()arctan()254arctan()2arctan(2)32arctan(-)3arctan()2arctan())arctan(180(254arctan90)2arctan(2)3arctan(-180)(--+--+-=---+----++=ωωωωωωωωωωωωωωϕ当ω>5时,o2o2o o 270)2arctan()arctan()254arctan()2arctan(2)32arctan(-)3arctan()2arctan())arctan(180(254arctan90)2arctan(2)3arctan(-180)(--+--+-=---+----++=ωωωωωωωωωωωωωωϕ当ω=2时,87.7904543.6385.2093.15138.6790)22arctan()2arctan()22524arctan()42arctan()322arctan()2(513.999.2lg 20)2lgA(20)2L(99.224346254414214450)2(o o24-=--+-+-=--+-⨯-+-=≈==≈+⨯-+++⨯⨯=ϕ)(A当ω=20时,9. 24027029.8414.8704.1214.17793. 162270)220arctan()20arctan()2025204arctan()402arctan()3202arctan( )20(7.31026.0lg20)20lgA(20)20L(026.0204003462544001400 201400450) 20 (o o2 4-=--+++-=--+-⨯-+-=-≈==≈+⨯-+++⨯⨯=ϕ)(A用MATLAB验证如下:程序:num=conv(50,conv([1 -3],[4 4 1]));den=conv([1 4 25 0],conv([1 -1],[1 5 6]));sys=tf(num,den);margin(sys);grid on其MABLAB验证图如下:由计算值和MATLAB 验证可知,当ω=2时,()()%032.0%100)2()2()2(:16.8251.92L ,87.7)2(513.9)2(99.2)2()2(≈⨯'-=-='='-===L L L L A L δϕϕ故其误差值分别为,,仿真值:,,理论值:%68.3%100)22()2()2(-≈⨯'-=()ϕϕϕδϕ当时20=ω理论值:()(),)(,, 9.240207.3120L 026.020A -=-≈≈ϕ仿真值:()(),, 241207.3120L -='-='ϕ故其误差值分别为:()()()()()()%04.0%1002020200%10020L 20L 20L 2020L -≈⨯'-==⨯'-=ϕϕϕδδϕ)()((2)解:)1)(2)(2)(3()1(3)1)(2)(6())(133(3)()(242222323+++-++=+++-+++++=s s s s s s s s s s s s s s s s s s s H s G )1)(2)(2)(3()1(3)()(24ωωωωωωωωωj j j j j j j H j G +-+-++=422222222222221)4(9)1(3)1(449)1(3|)()(|)(ωωωωωωωωωωωωωωωω+-+++=+-++++==j H j G A )(lg 20)(ωβωA L =()()()()()05.027087.247.8155.34827020120arctan 320arctan 20arctan 42077.908.3lg 2020lg 202008.320201420920120203)20(,2026.162702arctan 4270212arctan 32arctan 2arctan 4)2(18.35275lg 20)2(lg 20)2(44.1221)42(92)12(23)2(,22701arctan3arctan arctan 4)1arctan 180(2arctan )]7arctan(180[3arctan arctan 490)(,1242222242222222-=-+-≈----=≈==≈+-+++⨯⨯==-≈-=----====≈+-+++⨯⨯==----=-+---+--+=>ϕωϕωωωωωωωωωωωωϕωA L A A L A 时当时当时当用MATLAB 验证如下:程序:num=conv(3,conv([1 3 3 1],[1 1 0 0])); den=conv([1 1 -6],conv([1 2 0],[1 1 1])); sys=tf(num,den); margin(sys); grid on其MATLAB 验证图如下:(下一页)由计算值和MATLAB 验证可知; 当时,2=ω理论值:()()() 26.162,18.32,44.12-≈=≈ϕL A 验证值:()() 2.162,17.32-='='ϕL 故其误差值分别为:()%14.3%100)2()2(2)2(≈⨯'-=L L L L δ%37.0%100)2()2()2()2(≈⨯'-=ϕϕϕδϕ当时,20=ω理论值:()()() 05.02077.920L 08.320A -=≈≈ϕ,, 验证值:()() 0512.02041.920L -='='ϕ, 故其误差值分别为:()()()()%68.3%10020L 20L 2020L ≈⨯'-=L δ()()()%4.2%10020202020-=⨯'-=ϕϕϕδϕ)(3、设单位反馈的开环传递函数为)15.0)(1()(0++=s s s Ks G要求设计一串联校正网络,使校正后系统的开环增益K=5,相角裕度不低于40°,幅值裕度不小于10dB.(用MATLAB 验证)解:设校正后c ω截止频率为r c ''",ω为指标求值,通过串联滞后校正,设滞后校正传递函数为()sss G c 71671++=()()())12)(1(1015.01++=++=s s s s s s s s G()()()12110++=ωωωωj j j j G()2110lg2022++=ωωωωL() 902arctanarctan ---=ωωωψ由()()c c c r r ωψω''+''''='' ,且()c c ωψ''取为 14- ,得()() 541440=+=''-''=''''c r c r ωψω由()()c c r ''+=''''ωψω 180得 () 126180540-=-=''x ωψ通过Bode 图得 442.0="c ω程序: num=[10]; den=[1,3,2,0]; G=tf(num,den); margin(G); grid on其MATLAB 伯德图如下:则()1.202442.01442.0442.010log20442.02≈++='=⎪⎭⎫ ⎝⎛"'L L c ω所以有:()()()()()ss s s s s s s s s s G s G s G c 266.30449.45383.1501083.15083.1501083.15115.0152340++++=++⋅++=⋅=程序:num1=[10];den1=[1,3,2,0]; num2=[150.83,10];den2=[150.83,453.49,304.66,2,0]; G1=tf(num1,den1); margin(G1); hold onG2=tf(num2,den2); margin(G2); bode(G1,':'); grid on其MATLAB 验证图如下()sss G T b bTl b c cc 83.1501083.15183.1501.015.010lg 20++=⎩⎨⎧==⎪⎩⎪⎨⎧''==⎪⎭⎫ ⎝⎛"'+得ωω校正前系统阶跃响应如下:程序:num=[10];den=[1,3,2,0];G=tf(num,den);figure(1);step(feedback(G,1,-1));grid on其MATLAB验证图如下校正后系统阶跃响应如下:程序:num=[150.83,10];den=[150.83,453.49,304.66,2,0]; G=tf(num,den);figure(1);step(feedback(G,1,-1));grid on其MATLAB验证图如下校正方法分析:ω附近很窄的频率范围内在此题中,采用相位超前校正是不怎么有效的,此例在c对数幅频和相频特性衰减很快,若采用相位超前校正,虽然校正环节可提供超前相角,ω右移,又将使系统的相位产生较大的滞后量,而使系统的相位裕量不会有但又会使c明显的改善。
自动控制原理实验
自动控制原理实验自动控制原理实验是自动控制原理课程的重要组成部分,通过实验可以加深对自动控制原理的理解,提高实际操作能力。
本文将介绍自动控制原理实验的基本内容和实验步骤。
一、PID控制器实验。
PID控制器是自动控制中常用的一种控制器,它包括比例环节、积分环节和微分环节。
在PID控制器实验中,首先需要搭建一个控制系统模型,然后根据实验要求调节PID参数,观察系统的响应特性。
通过实验可以了解PID参数对系统稳定性和动态性能的影响,为工程实际应用提供参考。
二、系统辨识实验。
系统辨识是自动控制领域的重要内容,通过实验可以获取系统的数学模型,为控制器设计提供依据。
在系统辨识实验中,需要输入一定的信号,观察系统的输出响应,并利用系统辨识方法建立系统的数学模型。
实验过程中需要注意信号的选择和采样频率,以保证实验数据的准确性和可靠性。
三、闭环控制实验。
闭环控制是自动控制中常用的一种控制策略,通过实验可以验证闭环控制系统的性能。
在闭环控制实验中,需要搭建一个闭环控制系统,然后根据实验要求设计控制器参数,并观察系统的稳定性和跟踪性能。
实验过程中需要注意控制器参数的选择和调节,以保证系统的稳定性和性能。
四、数字控制实验。
数字控制是现代控制领域的重要内容,通过实验可以了解数字控制系统的特点和设计方法。
在数字控制实验中,需要搭建一个数字控制系统,然后根据实验要求设计数字控制器,并观察系统的响应特性。
实验过程中需要注意采样周期和数字控制器参数的选择,以保证系统的性能和稳定性。
通过以上实验,可以加深对自动控制原理的理解,提高实际操作能力,为将来的工程实际应用打下基础。
希望同学们能够认真对待自动控制原理实验,不断提高自己的实验能力和动手能力,为将来的工程实践做好准备。
自动控制原理_实验报告
一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。
二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。
三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。
它主要由控制器、被控对象和反馈环节组成。
控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。
1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。
比例环节的响应特性为输出信号与输入信号成线性关系。
(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。
积分环节的响应特性为输出信号随时间逐渐逼近输入信号。
(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。
比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。
2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。
PID控制器可以实现对系统的快速、稳定和精确控制。
四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。
2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。
自动控制原理实验报告
自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。
二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。
2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。
3. 将编写好的代码上传至Arduino UNO开发板。
4.将电源适配器连接至系统,确保实验装置正常供电。
5.启动实验系统并观察电机的转动情况。
6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。
五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。
通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。
2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。
这也是导致实际转动角度与目标角度存在差异的一个重要原因。
3.电源适配器的稳定性对电机的转动精度也有一定的影响。
六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。
同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。
为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。
实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 典型环节的MATLAB 仿真实验内容按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。
① 比例环节1)(1=s G 和2)(1=s G ;② 惯性环节11)(1+=s s G 和15.01)(2+=s s G③ 积分环节ss G 1)(1④ 微分环节s s G )(1⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G⑥ 比例+积分环节(PI )s s G 11)(1+=和ss G 211)(2+=实验总结通过这次接触MATLAB,真正的体会到了它强大的数值计算和符号计算功能,以及强大的数据可视化、人际智能交互能力。
该工具主要处理以传递函数为主要特征的经典控制和以状态空间为主要特征的现代控制中的主要问题,它能够使图形生动形象的展现给我们,使理解更深刻。
实验二线性定常系统的瞬态响应实验内容1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。
1.阶跃响应num=[0 0 1 3 7 ]; den=[1 4 6 4 1]; step(num,den) gridxlabel(‘t/s ’),ylabel(‘c(t)’)title(‘Uint-step Respinse of G(s)=(s^2+3s+7)/(s^4+4s^3+6s^2+4s+1)’)脉冲响应1num=[0 0 1 3 7]; den=[1 4 6 4 1]; impulse(num,den) gridtitle(‘Unit-impulse Response of G(s)= (s^2+3s+7)/(s^4+4s^3+6s^2+4s+1)’)脉冲响应2 num=[0 0 1 3 7]; den=[1 4 6 4 1]; step(num,den) gridtitle(‘Unit-impulse Response of G(s)= (s^2+3s+7)/(s^4+4s^3+6s^2+4s+1)’)斜坡响应num=[0 0 1 3 7];den=[1 4 6 4 1];step(num,den)gridtitle(‘Unit-impulse Response of G(s)= (s^2+3s+7)/(s^4+4s^3+6s^2+4s+1)’)2.对典型二阶系统2222)(nn n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。
num=[ 0 0 4 ]; den1=[1 0 4 ]; den2=[1 1 4 ]; den3=[1 2 4 ]; den4=[1 4 4 ]; den5=[1 8 4]; t=0:0.1:10;step(num,den1,t) gridtext( 4,1.7,’0’) hold step(num,den2,t) text(3.3,1.5,’0.5’) step(num,den3,t) text(3.5,1.2,’0.5 ‘ ) step(num,den4,t) text( 3.3,0.9,’1.0’ ) step(num,den5,t) text(3.3,0.6,’2.0’)title(‘Step-Response Curves for G(s)=1/[s^2+2(zeta)s+1]’)2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。
num1=[0 0 1]; den1=[1 0.5 1]; t=0:0.1:10;step(num1,den1,t); grid; hold on text(3.1,1.4,'wn=1')num2=[0 0 4]; den2=[1 1 4]; step(num2,den2,t); hold on text(1.7,1.4,'wn=2')num3=[0 0 16]; den3=[1 2 16]; step(num3,den3,t);hold on text(0.5,1.4,'wn=3')num4=[0 0 36];den4=[1 3 36]; step(num4,den4,t);hold on text(3.3,1.4,'wn=4')阻尼比Wn 超调量 上升时间 峰值时间 调节时间 0.2510.44 1.9 3.2 10.2 2 0.44 0.94 1.6 5.29 4 0.44 0.95 1.6 5.4 60.440.480.82.7实验总结通过本次试验我熟练掌握step( )函数和impulse( )函数的使用方法,进一步加深了对线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应的变化的印象,并且学会了通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。
实验三 线性系统稳态误差研究三、实验内容1.系统的特征方程式为010532234=++++s s s s ,试用三种判稳方式判别该系统的稳定性。
直接求根判稳roots([2,1,3,5,10])所得结果有实部为正数,故系统不稳定。
实验总结通过本实验我学会了如何高阶系统的稳定性和验证稳定判据的正确性的方法,并且了解系统增益变化对系统稳定性的影响和系统结构和稳态误差之间的关系。
知道了可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。
实验五 线性系统的频域分析实验内容1.典型二阶系统2222)(nn ns s s G ωζωω++=绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。
num=[0 0 36]; den1=[1 1.2 36]; den2=[1 3.6 36]; den3=[1 9 36]; den4=[1 9.6 36]; den5=[1 24 36];w=logspace(-1,2,100); bode(num,den1,w) grid holdbode(num,den2,w) bode(num,den3,w) bode(num,den4,w) bode(num,den5,w) gtext('0.1') gtext('0.3') gtext('0.5') gtext('0.8') gtext('2')Current plot held2.系统的开环传递函数为)5)(15(10)(2+-=s s s s G)106)(15()1(8)(22++++=s s s s s s G )11.0)(105.0)(102.0()13/(4)(++++=s s s s s s G绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。
)5)(15(10)(2+-=s s s s G num=[0 0 0 10]; den=[5 24 -5 0]; [z,p,k]=tf2zp(num,den);pNyquist(num,den))106)(15()1(8)(22++++=s s s s s s G num=[8 8];den=[1 21 100 150 0 0];[z,p,k]=tf2zp(num,den);pNyquist(num,den))11.0)(105.0)(102.0()13/(4)(++++=s s s s s s G num=[4/3 4];den=[0.0001 0.008 0.17 1 0];[z,p,k]=tf2zp(num,den);pNyquist(num,den)3.已知系统的开环传递函数为)11.0(1)(2++=s s s s G 。
求系统的开环截止频率、穿越频率、幅值裕度和相位裕度。
应用频率稳定判据判定系统的稳定性。
num=[0 0 1 1];den=[0.1 1 0 0];w=logspace(-2,3,100);[mag,phase,w]=bode(num,den,w);subplot(2,1,1);semilogx(w,20*log10(mag));grid onxlabel(‘w/s^-1’);ylabel(‘L(w)/dB’);title(‘Bode Diagram of G(s)=30(1+0.2s)/[s(s^2+16s+100)]’);subplot(2,1,2);semilogx(w,phase0;grid onxlabel(‘w/s^-1’);ylabel(‘φ(°)’);num=[1 1];den=[0.1 1 0 0];[gm,pm,wcg,wcp]=margin(num,den);gm,pm,wcg,wcpgm = Infpm = 44.4594wcg = Infwcp = 1.2647系统稳定实验总结通过这次实验,我掌握了各种图形的matlab 绘制方法并且通过绘制系统的Nyquist 曲线、Bode 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证,加深了对课本上各种稳定性判别方法的理解,学会了用软件作图判定系统稳定性,进一步了解了各种系统参数对系统性能的影响。
实验六 线性系统串联校正实验内容1.某单位负反馈控制系统的开环传递函数为)1(4)(+=s s s G ,试设计一超前校正装置,使校正后系统的静态速度误差系数120-=s K v ,相位裕量050=γ,增益裕量dB K g 10lg 20=。
num0=20; den0=[1,1,0]; w=0.1:1000;[gm1,pm1,wcg1,wcp1]=margin(num0,den0);[mag1,phase1]=bode(num0,den0,w);[gm1,pm1,wcg1,wcp1]margin(num0,den0)gridr=12.7580 Wc=4.4165 不满足指标要求num0=20; den0=[1,1,0];[gm1,pm1,wcg1,wcp1]=margin(num0,den0);[mag1,phase1]=bode(num0,den0,w);[gm1,pm1,wcg1,wcp1]margin(num0,den0)grid;e=7.758; r=50; r0=pm1;phic=(r-r0+e)*pi/180;alpha=(1+sin(phic))/(1-sin(phic));[il,ii]=min(abs(mag1-1/sqrt(alpha)));wc=w( ii); T=1/(wc*sqrt(alpha));numc=[alpha*T,1]; denc=[T,1];[num,den]=series(num0,den0,numc,denc);[gm,pm,wcg,wcp]=margin(num,den);printsys(numc,denc)disp('校正之后的系统开环传递函数为:');printsys(num,den)[mag2,phase2]=bode(numc,denc,w);[mag,phase]=bode(num,den,w);subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.');grid; ylabel('幅值(db)'); title('--Go,-Gc,GoGc');subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':');grid; ylabel('相位(0)'); xlabel('频率(rad/sec)');title(['校正前:相位裕量=',num2str(pm1),'0''校正后:相位裕量=',num2str(pm),'0']);实验总结通过这次实验我熟练掌握用MATLAB语句绘制频域曲线掌握控制系统频域范围内的分析校正方法,并在老师的帮助下掌握用频率特性法进行串联校正设计的思路和步骤,会学会了对这类问题的分析。