时间序列分析-第二章-时间序列的预处理

合集下载

Eviews应用时间序列分析实验手册

Eviews应用时间序列分析实验手册

应用时间序列分析实验手册目录目录 (2)第二章时间序列的预处理 (3)一、平稳性检验 (3)二、纯随机性检验 (9)第三章平稳时间序列建模实验教程 (10)一、模型识别 (10)二、模型参数估计(如何判断拟合的模型以及结果写法) (14)三、模型的显著性检验 (17)四、模型优化 (18)第四章非平稳时间序列的确定性分析 (19)一、趋势分析 (19)二、季节效应分析 (34)三、综合分析 (38)第五章非平稳序列的随机分析 (44)一、差分法提取确定性信息 (44)二、ARIMA模型 (57)三、季节模型 (62)第二章时间序列的预处理一、平稳性检验时序图检验和自相关图检验(一)时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征例2.1检验1964年——1999年中国纱年产量序列的平稳性1.在Eviews软件中打开案例数据图1:打开外来数据图2:打开数据文件夹中案例数据文件夹中数据文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入图3:打开过程中给序列命名图4:打开数据2.绘制时序图可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等图1:绘制散点图图2:年份和产出的散点图图3:年份和产出的散点图(二)自相关图检验 例2.3导入数据,方式同上;在Quick 菜单下选择自相关图,对Qiwen 原列进行分析;可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。

图1:序列的相关分析图2:输入序列名称图2:选择相关分析的对象图3:序列的相关分析结果:1. 可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值都>5%的显著性水平,所以接受原假设,即序列是纯随机序列,即白噪声序列(因为序列值之间彼此之间没有任何关联,所以说过去的行为对将来的发展没有丝毫影响,因此为纯随机序列,即白噪声序列.) 有的题目平稳性描述可以模仿书本33页最后一段.(三)平稳性检验还可以用:单位根检验:ADF,PP检验等;非参数检验:游程检验图1:序列的单位根检验表示不包含截距项图2:单位根检验的方法选择图3:ADF检验的结果:如图,单位根统计量ADF=-0.016384都大于EVIEWS给出的显著性水平1%-10%的ADF临界值,所以接受原假设,该序列是非平稳的。

《时间序列分析》课程教学大纲

《时间序列分析》课程教学大纲

《时间序列分析》课程教学大纲一、课程基本信息二、课程教学目标本课程的目的是使学生掌握时间序列分析的基本理论和方法,让学生借助计算机的存储功能和计算功能来抽象掉其深奥的数学理论和复杂的运算,通过建模练习来掌握时间序列分析的基本思路和方法。

第一,通过这门课程的学习,培养学生对分析方法的理解,使学生初步掌握分析随机数据序列的基本思路和方法。

第二,通过这门课程的学习,使得学生能够运用时间序列分析知识和理论去分析、解决实际问题。

第三,通过这门课程的学习,提高学生利用时间序列的基本思想来处理实际问题,为后续学习打下方法论基础。

三、教学学时分配《时间序列分析》课程理论教学学时分配表《时间序列分析》课程实验内容设置与教学要求一览表四、教学内容和教学要求第一章时间序列分析简介(学时4)(一)教学要求通过本章内容的学习,了解时间序列的定义,理解时间序列的常用分析方法,掌握随机过程、平稳随机过程、非平稳随机过程、自相关基本概念。

(二)教学重点与难点教学重点:时间序列的相关概念。

教学难点:随机过程、系统自相关性。

(三)教学内容第一节引言第二节时间序列的定义(拟采用慕课或翻转课堂)第三节时间序列分析方法1.描述性时序分析2.统计时序分析第四节时间序列分析软件第五节上机指导1.创建时间序列数据集2.时间序列数据集的处理本章习题要点:1、基本概念和特征;2、软件基本操作。

第二章时间序列的预处理(学时6)(拟采用慕课或翻转课堂)(一)教学要求通过本章内容的学习,了解平稳时间序列的定义,理解平稳性和随机性检验的原理,掌握平稳性和随机性检验的方法。

(二)教学重点与难点教学重点:平稳时间序列的定义及统计性质。

教学难点:时间序列的相关统计量。

(三)教学内容第一节平稳性检验1.特征统计量2.平稳时间序列的定义3.平稳时间序列的统计性质4.平稳时间序列的意义5.平稳性的检验第二节纯随机性检验1.纯随机序列的定义2.白噪声序列的性质3.纯随机性的检验第二节上机指导1.绘制时序图2.平稳性与纯随机性检验本章习题要点:1、绘制给定时间序列的相关图;2、计算给定时间序列的相关统计量;3、检验序列的平稳性及纯随机性。

时间序列的预处理培训

时间序列的预处理培训

时间序列的预处理培训时间序列预处理是时间序列分析的重要步骤之一。

预处理的目的是消除时间序列中的噪声,提取有用的信息,并使时间序列具备可分析性。

本文将介绍时间序列预处理的基本步骤和常用方法。

时间序列预处理的基本步骤如下:1. 数据收集:首先需要收集时间序列数据。

数据可以是连续的,例如每天、每小时或每分钟的数据,也可以是离散的,例如每周、每月或每年的数据。

2. 数据清洗:在进行预处理之前,需要对数据进行清洗。

这包括处理缺失值、异常值和噪声。

缺失值可以通过插值或删除处理。

异常值可以通过统计分析和可视化方法进行识别和处理。

噪声可以通过平滑或滤波等技术进行消除。

3. 数据转换:某些情况下,时间序列数据可能不符合预测模型的基本假设,需要进行数据转换。

常见的数据转换方法包括对数变换、差分、平移等。

4. 平稳性检验:平稳性是时间序列分析的重要前提。

平稳性意味着时间序列的统计特性不随时间变化而改变。

平稳性检验可以通过观察时间序列的均值、方差和自相关函数来进行。

5. 数据平滑:时间序列数据通常包含随机波动和季节性变动。

为了减少这些变动对预测模型的影响,可以采用平滑方法来消除季节性和长期趋势。

常见的平滑方法包括移动平均法和指数平滑法。

6. 季节性调整:如果时间序列数据存在季节性变动,需要进行季节性调整。

季节性调整可以通过季节性分解或季节性指标来实现。

7. 数据标准化:在进行比较和分析时,不同时间序列数据的量纲和幅度可能不同。

为了消除这种差异,可以对数据进行标准化处理,将其转换为相对数或百分比。

以上是时间序列预处理的基本步骤。

根据具体情况,还可以结合其他预处理方法,如去除趋势、去除周期等。

预处理的目标是获取可靠、准确的数据,为时间序列分析提供可靠的基础。

时间序列预处理是时间序列分析的重要步骤之一,它对于时间序列数据的准确性和可靠性具有重要的影响。

本文将继续探讨时间序列预处理中的一些相关内容。

1. 缺失值处理:时间序列数据中常常会存在缺失值,这可能是由于采集错误、设备故障等原因所致。

时间序列的预处理教材

时间序列的预处理教材

时间序列的预处理教材时间序列的预处理是在进行时间序列分析之前的必要步骤。

它包括数据收集、数据清洗、数据转换和缺失值处理等过程,以确保时间序列数据的准确性和一致性。

本文将逐步介绍时间序列预处理的重要步骤。

1. 数据收集:在时间序列预处理的第一步,需要确定数据来源和收集数据。

数据可以从各种渠道获取,如公共数据库、传感器设备或实时数据流等。

确保数据的质量和完整性非常重要,因此应该选择可靠的数据源。

2. 数据清洗:数据清洗是时间序列预处理的关键步骤,旨在处理异常值、噪声和重复数据等问题。

首先,检查数据集中是否存在缺失值、异常值或错误值。

可以使用统计方法、可视化工具或专门的算法来检测这些问题。

一旦发现异常值,可以删除、替换或修正它们。

3. 数据转换:在某些情况下,时间序列可能会显示出非常不规则的波动,这会对后续的分析造成困扰。

数据转换可以通过应用平滑技术(如移动平均法或指数平滑法)或差分操作来减少数据波动。

这些转换操作可以使数据变得更加稳定,更容易分析。

4. 缺失值处理:在时间序列中,经常会遇到缺失值的情况。

这些缺失值可能会对分析结果产生不良影响,因此需要采取适当的处理方法来填补这些缺失值。

常见的方法包括用平均值、中值或插值等方法来填补缺失值。

但在填补缺失值之前,需要对缺失数据进行详细的分析,了解缺失的原因和模式。

5. 数据标准化:标准化是时间序列预处理的另一个重要步骤。

通过标准化,可以将不同尺度的数据转换为具有相似分布的数据。

这样可以确保不同时间序列的比较是可靠的。

一种常见的标准化方法是Z得分标准化,通过减去均值并除以标准差,将数据转换为标准正态分布。

总之,时间序列预处理是进行时间序列分析的必要步骤。

通过数据清洗、转换和标准化等处理,可以确保时间序列数据的准确性和稳定性。

在进行时间序列预处理之后,可以继续进行各种分析方法,如趋势分析、周期性分析和季节性分析等。

6. 噪声去除:在时间序列预处理中,噪声是造成数据不准确和干扰分析结果的主要因素之一。

《时间序列分析》课程教学大纲

《时间序列分析》课程教学大纲

《时间序列分析》课程教学大纲课程编号:33330775课程名称:时间序列分析课程基本情况:1.学分:3 学时:51学时(课内学时:45 课内实验:6)2.课程性质:专业必修课3.适用专业:统计学适用对象:本科4.先修课程:概率论、数理统计、随机过程5.首选教材:王燕:《应用时间序列分析》,中国人民大学出版社,2008出版。

备选教材:王振龙等编著:《时间序列分析》,中国统计出版社,2000年。

6.考核形式:闭卷考试7.教学环境:多媒体教室及实验室一、教学目的与要求本课程是数理统计学的一个重要分支,先期需完成的课程有概率论、随机过程。

通过本课程的学习,使学生掌握时间序列数据的分析方法,包括时间序列简介、平稳时间序列分析、时间序列分解、非平稳序列的随机分析、多元时间序列分析。

利用Eviews软件进行本课程的实验教学。

二、教学内容及学时分配课程内容及学时分配表三、教学内容安排第一章时间序列分析简介【教学目的】1、了解时间序列的定义及常用分析方法;2、掌握时间序列的几个基本概念:随机过程、平稳随机过程、非平稳随机过程、自相关、记忆性。

【教学重点】时间序列的相关概念。

【教学难点】随机过程、系统自相关性。

【教学方法】课堂讲授【教学内容】第一节时间序列的定义第二节时间序列分析方法第三节时间序列分析软件EVIEWS简介第二章时间序列的预处理【教学目的】1、掌握平稳性检验的原理和方法;2、掌握纯随机性检验的原理和方法。

【教学重点】平稳时间序列的定义及统计性质。

【教学难点】时间序列的相关统计量。

【教学方法】课堂讲授【教学内容】第一节平稳性检验一、特征统计量二、平稳时间序列的定义三、平稳时间序列的统计性质四、平稳时间序列的意义五、平稳时间序列的检验第二节纯随机性检验一、纯随机序列的定义二、白噪声序列的定义三、纯随机性检验第三章平稳时间序列序列分析【教学目的】1、理解ARMA模型的定义及性质。

2、掌握平稳序列建模方法。

3、掌握平稳时间序列的预测【教学重点】平稳时间序列建模【教学难点】模型识别,参数估计,序列预测【教学方法】课堂讲授与上机实验【教学内容】第一节方法性工具一、差分运算二、延迟算子三、线性差分方程第二节 ARMA模型的性质一、AR模型二、MA模型三、ARMA模型第三节平稳序列建模一、建模步骤二、样本自相关系数与偏相关系数三、模型识别四、参数估计五、模型检验六、模型优化第四节序列预测一、线性预测函数二、预测方差最小原则三、线性最小方差预测的性质四、修正预测第四章非平稳序列的确定性分析【教学目的】1、理解时间序列的分解原理。

时间序列分析讲义

时间序列分析讲义
• 推荐软件——SAS
– 在SAS系统中有一个专门进行计量经济与时间序列分析 的模块:SAS/ETS。SAS/ETS编程语言简洁,输出功能强 大,分析结果精确,是进行时间序列分析与预测的理 想的软件
– 由于SAS系统具有全球一流的数据仓库功能,因此在进 行海量数据的时间序列分析时它具有其它统计软件无 可比拟的优势
例2.3自相关图
时间序列分析讲义
例2.4时序图
时间序列分析讲义
例2.4 自相关图
时间序列分析讲义
例2.5时序图
时间序列分析讲义
例2.5自相关图
时间序列分析讲义
• 例2.3时序为非平稳的,有趋势; • 例2.4时序非平稳性,有趋势 • 例2.5时序是一个平稳的
时间序列分析讲义
非平稳性序列的平稳化
时间序列分析讲义
2020/11/16
时间序列分析讲义
第一章 时间序列分析基本概 念
时间序列分析讲义
第一章 时间序列分析基本概念
1.1 时间序列的定义
• 随机序列:按时间顺序排列的一组随机变量
• 观察值序列:随机序列的 个有序观察值,称之为 序列长度为 的观察值序列
• 随机序列和观察值序列的关系
– 观察值序列是随机序列的一个实现 – 我们研究的目的是想揭示随机时序的性质 – 实现的手段都是通过观察值序列的性质进行推断
满足下列条件的随机序列称为白噪声序列,也称 为纯随机序列:
注1:白噪声序列也是平稳时间序列中的特例. 注2:由于白噪声序列不同时刻的值相互独立,那么 这样的序列数值不能对于将来进行推断与预测,所以 白噪声是不能建立模型的。 时序图1.3符合白噪声序列特征
时间序列分析讲义
若满足时间序列满足: 称该时间序列是周期为T的时间序列.

第二章时间序列的预处理

第二章时间序列的预处理

),,(),,(21,,21,,2121m t t t m t t t x x x F x x x F m m τττ+++=第二章 时间序列的预处理 2.1 平稳性检验 2.1.1 特征统计量 一、概率分布对时间序列},{T t X t ∈,,,,,21T t t t N m m ∈∀∈∀ 联合概率分布记为),,(21,,21m t t t x x x F m,由这些有限维分布函数构成的全体记为:},,,),,2,1(),,,({2121,,21T t t t m m x x x F m m t t t m ∈∀∈∀成为序列}{t X 的概率分布族二、特征统计量对时间序列},{T t X t ∈,取T s t ∈∀, 1、均值t t EX =μ为}{t X 在t 时刻的均值函数,},{T t t ∈μ反映},{T t X t ∈每时每刻的平均水平 2、方差2)(t t t X E DX μ-=3、自协方差函数(autocovariance function)和自相关函数(autocorrelatioi function) 定义 ),(s t γ为}{t X 的协方差函数:))((),(s s t t X X E s t μμγ--= 定义),(s t ρ为}{t X 的自相关系数,ACF. st DXDX s t s t ⋅=),(),(γρ2.1.2 平稳时间序列的定义 一、严平稳只有当序列所有的统计性质都不会随着时间的推移而发生变化时,该序列才能被认为是严平稳的。

定义 2.1 设}{t X 为一时间序列,对任意正整数m ,任取T t t t m ∈ ,,21,对任意整数τ 有则称时间序列}{t X 为严平稳时间序列。

二、宽平稳定义 2.2 如果}{t X 满足如下三个条件: (1)任取∞∈ 2,tEX T t 有;(2)任取μμ,,=∈tEXT t 有为常数;(3)任取),(),(T,t -s k T,k s,t,t s k k s t -+=∈+∈γγ有且; 则称}{t X 为宽平稳时间序列。

时间序列分析课程设计

时间序列分析课程设计

时间序列分析课程设计一、课程目标知识目标:1. 让学生理解时间序列分析的基本概念,掌握时间序列数据的结构特征和常见的时间序列模型。

2. 使学生掌握时间序列平稳性检验和自相关函数、偏自相关函数的绘制与分析方法。

3. 帮助学生了解时间序列预测的常用算法,如ARIMA模型、指数平滑等,并掌握其应用场景。

技能目标:1. 培养学生运用时间序列分析方法处理实际问题的能力,学会运用统计软件进行时间序列数据的分析、建模和预测。

2. 提高学生运用所学知识解决实际问题时的时间序列模型选择和参数估计能力。

情感态度价值观目标:1. 培养学生对时间序列分析的兴趣,激发学生主动探索和研究的精神。

2. 引导学生认识到时间序列分析在实际问题中的应用价值,提高学生的数据分析和解决实际问题的能力。

3. 培养学生的团队合作意识,提高学生在团队中沟通、协作的能力。

课程性质分析:本课程为数据分析方向的专业课程,旨在帮助学生掌握时间序列分析的基本理论和方法,培养学生运用时间序列分析解决实际问题的能力。

学生特点分析:学生为高年级本科生,已具备一定的数学基础和统计分析能力,对时间序列分析有一定的了解,但尚需深化理论知识,提高实际操作能力。

教学要求:1. 结合实际案例,注重理论与实践相结合,提高学生的实际操作能力。

2. 采取启发式教学,引导学生主动参与课堂讨论,培养学生的创新思维。

3. 强化课堂互动,关注学生的个体差异,提高教学效果。

二、教学内容1. 时间序列分析基本概念:时间序列的定义、时间序列数据的组成、时间序列的分类及性质。

教材章节:第一章 时间序列分析概述2. 时间序列数据的预处理:数据清洗、数据变换、平稳性检验。

教材章节:第二章 时间序列数据的预处理3. 时间序列模型:自回归模型(AR)、移动平均模型(MA)、自回归移动平均模型(ARMA)、自回归积分滑动平均模型(ARIMA)。

教材章节:第三章 时间序列模型4. 时间序列预测方法:指数平滑法、季节性模型、周期性模型。

《时间序列分析》第二章 时间序列预处理习题解答

《时间序列分析》第二章 时间序列预处理习题解答

《时间序列分析》习题解答�0�2习题2.3�0�21考虑时间序列12345…201判断该时间序列是否平稳2计算该序列的样本自相关系数kρ∧k12… 6 3绘制该样本自相关图并解释该图形. �0�2解1根据时序图可以看出该时间序列有明显的递增趋势所以它一定不是平稳序列�0�2即可判断该时间序是非平稳序列其时序图程序见后。

�0�2 时间序描述程序data example1 input number timeintnxyear01jan1980d _n_-1 format time date. cards 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 proc gplot dataexample1 plot numbertime1 symbol1 cblack vstar ijoin run�0�2�0�2�0�22当延迟期数即k本题取值1 2 3 4 5 6远小于样本容量n本题为20时自相关系数kρ∧计算公式为number1234567891011121314151617181920time01JAN8001J AN8101JAN8201JAN8301JAN8401JAN8501JAN8601JAN870 1JAN8801JAN8901JAN9001JAN9101JAN9201JAN9301JAN9 401JAN9501JAN9601JAN9701JAN9801JAN99121nkttktknttX XXXXXρ�6�1∧�6�1�6�1≈�6�1∑∑ 0kn4.9895�0�2注20.05125.226χ接受原假设认为该序列为纯随机序列。

�0�2解法三、Q统计量法计算Q统计量即12214.57kkQnρ∑�0�2�0�2�0�2�0�2�0�2�0�2�0�2�0�2�0�2�0�2查表得210.051221.0261χ�6�1由于Q统计量值4.57Q小于查表临界值即可认为接受原假设即该序列可视为纯随机序列为白噪声序列 5表2——9数据是某公司在2000——2003年期间每月的销售量。

时间序列的预处理与分析

时间序列的预处理与分析

时间序列的预处理与分析时间序列预处理是时间序列分析的第一步,其目的是将原始时间序列数据转换为适合进行进一步分析的形式。

在进行时间序列预处理时,常常需要解决的问题包括数据缺失、异常值处理和平稳性检验。

数据缺失是指在时间序列数据中出现了缺失的数据点。

对于数据缺失问题,常见的处理方法包括插值法和删除法。

插值法是利用已有的数据点对缺失的数据点进行估计。

常见的插值方法包括线性插值、多项式插值和样条插值等。

删除法是直接删除缺失的数据点,将问题简化为无缺失数据的时间序列分析。

数据缺失处理的目标是保留尽可能多的有用信息,同时减小插值或删除对数据的影响。

异常值是指在时间序列中存在明显偏离其他值的数据点。

异常值的存在可能对进一步分析造成干扰,因此需要对其进行处理。

在处理异常值时,一种方法是通过定义阈值进行判断和排除。

例如,可以根据极差、标准差等统计量确定异常值的上下限,并将超过范围的数据点视为异常值进行处理。

另一种方法是利用异常值检测算法来识别和排除异常值,常见的算法包括离群点检测法和异常值分析法等。

平稳性是时间序列分析的重要前提条件,它指的是时间序列的均值和方差不随时间变化。

平稳性检验的目的是确定时间序列是否平稳,以决定是否需要进行平稳性转换。

常见的平稳性检验方法包括统计量检验和图形检验。

统计量检验是通过计算时间序列数据的平均数、方差等统计量,并利用假设检验方法来判断是否满足平稳性条件。

典型的统计量检验方法包括ADF检验和KPSS检验等。

图形检验是通过绘制时间序列的折线图、自相关图和偏自相关图等来观察数据的波动性和相关性是否存在明显的趋势和周期性。

除了预处理之外,时间序列的分析也包括模型选择、参数估计和模型检验等步骤。

模型选择是根据时间序列的特征和目标进行合适模型的选择,常见的时间序列模型包括ARIMA模型、GARCH模型和VAR模型等。

参数估计是通过最大似然估计等方法对模型的参数进行估计。

模型检验是通过残差分析和模型评价准则等来检验模型的拟合好坏和预测精度。

第二章 时间序列的预处理

第二章 时间序列的预处理

纯随机性检验

检验原理 假设条件 检验统计量 判别原则
Barlett定理

如果一个时间序列是纯随机的,得到一 个观察期数为n 的观察序列,那么该序列 的延迟非零期的样本自相关系数将近似 服从均值为零,方差为序列观察期数倒 数的正态分布
1 ˆ ( 0 , ) N k~ n , k 0

宽平稳

平稳时间序列的统计定义

满足如下条件的序列称为严平稳序列
正整数 m , t , t , , t T , 正整数 , 有 1 2 m

F ( x , x , , x ) F ( x , x , , x ) t , t t 1 2 m t , t t 1 2 m 1 2 m 1 2 m

LB统计量
LB n ( n 2 ) k k 1n
m 2 ˆ 2 ( k) ~ ( m )
判别原则

拒绝原假设

当检验统计量大于 12 ( m )分位点,或该统计 量的P值小于 时,则可以以 1 的置信水 平拒绝原假设,认为该序列为非白噪声序列
2 当检验统计量小于 1 ( m )分位点,或该统计
2 ,t s (2 ) (t,s) , t,s T ,t s 0
标准正态白噪声序列时序图
白噪声序列的性质

纯随机性

(k) 0 , k 0
各序列值之间没有任何相关关系,即为 “没有记 忆”的序列
2 DX ( 0 ) t

方差齐性

根据马尔可夫定理,只有方差齐性假定成立时,用 最小二乘法得到的未知参数估计值才是准确的、有 效的

时间序列的预处理与分析

时间序列的预处理与分析

时间序列的预处理与分析一、时间序列的预处理步骤1. 数据清洗:首先,我们需要对时间序列数据进行清洗,去除可能存在的异常值、缺失值和异常数据。

异常值可以通过异常检测方法识别和处理,缺失值可以通过插值方法填补。

2. 数据转换:有时候,时间序列数据在原始尺度上的波动很大,难以进行分析。

这时,我们需要进行数据转换,常见的方法有对数变换、差分变换和平滑变换等,以使数据更平稳或更趋于正态分布。

3. 数据平滑:平滑是一种常用的数据预处理方法,可以消除噪声和随机波动,揭示时间序列的长期趋势。

常用的平滑方法包括移动平均法和指数平滑法。

4. 季节性调整:如果时间序列数据存在季节性变化,那么我们需要进行季节性调整。

常见的方法有季节差分法、季节指数法和回归模型法等,以便更好地分析和预测数据。

5. 数据分解:有时候,时间序列数据可能包含趋势、季节性和残差三个成分,我们需要将其分解出来,分别进行分析和建模。

分解方法有经典分解法和小波分解法等。

二、时间序列的分析方法1. 描述统计分析:描述统计分析是时间序列分析的基础,可以通过计算均值、方差、相关系数和自相关系数等指标,揭示数据的基本特征和变化规律。

2. 自相关分析:自相关分析是一种常用的时间序列分析方法,可以识别和度量数据内部存在的自相关关系。

自相关系数图和自相关函数图可以帮助我们判断数据是否存在自相关性,并确定合适的滞后阶数。

3. 谱分析:谱分析是一种用于分析时间序列数据频率特征的方法,可以揭示时间序列数据随时间变化的周期和频率成分。

常见的谱分析方法有周期图、功率谱图和谱密度图等。

4. ARIMA模型:ARIMA模型是一种常用的时间序列建模方法,包括自回归(AR)、差分(I)和移动平均(MA)三个部分。

通过对时间序列数据进行模型识别、参数估计和模型检验,可以进行预测和预测误差分析。

5. 指数平滑模型:指数平滑模型是一种简单且有效的时间序列预测方法,常用于对平稳或趋势性变化的数据进行预测。

第2章时间序列的预处理PPT课件

第2章时间序列的预处理PPT课件
(2) (Xi X)2/n依概率收敛:P li(m (X iX )2/n )Q n
第(1)条是OLS估计的需要 第(2)条是为了满足统计推断中大样本下的“一致
性”特性:
Plim(ˆ) n
▲如果X是非平稳数据(如表现出向上的趋势), 则(2)不成立,回归估计量不满足“一致性”, 基于大样本的统计推断也就遇到麻烦。
nk t1
(xt
x)(xtk
x),0kn
n1ktkn1(xt x)(xtk x),0kn
或 ˆ*(k)1 nn t 1 k(xtx)(xtkx),0kn
可以证明
E[ˆ(k)](k)O(1)
n
E[ˆ*(k)](1k)(k)(1k)O(1)
n
nn
所以,ˆ ( k ) 是 ( k ) 的渐近无偏估计,而 ˆ * ( k ) 是 ( k )
第二章 时间序列的预处理
一、问题的引出:非平稳变量与经典回归模型
⒈常见的数据类型
到目前为止,经典计量经济模型常用到的数据有: 时间序列数据(time-series data) 截面数据(cross-sectional data) 平行/面板数据(panel data/time-series cross-section
自协方差 (t,s ) E (X tt)X (ss)
自相关系数 (t,s) (t,s)
DXt DXs
2.平稳时间序列的定义
(1)严平稳
严平稳是一种条件比较苛刻的平稳性定义,它认为 只有当序列所有的统计性质都不会随着时间的推移 而发生变化时,该序列才能被认为平稳。
(2)宽平稳
宽平稳是使用序列的特征统计量来定义的一种平稳 性。它认为序列的统计性质主要由它的低阶矩决定, 所以只要保证序列低阶矩平稳(二阶),就能保证 序列的主要性质近似稳定。

《时间序列分析》第二章 时间序列预处理习题解答[1]

《时间序列分析》第二章 时间序列预处理习题解答[1]

97.0 105.4
proc print data=example2_3; proc arima data=example2_3; identify var=rain; run;
分析: (1) 如上图所示: (2) 根据样本时序图和样本自相关图可知,该序列平稳 (3) 根据白噪声检验,P 值都较大,可以判断该序列为白噪声序列,即该序列具有纯随 机性。
析: 分析 自相关图显示序列自 自相关系数 数长期位于零 零轴的一边 边, 这是具有 有单调趋势序 序列 的典 典型特征。
由下图可知 知,自相关系 系数长期位于 于零轴的一边 边,且自相关 关系数递减到 到零的速度较慢, 在 5 个延期中,自相关系数 数一直为正,说明这是一个 个有典型单调 调趋势的非平 平稳序列。
data example2; input ppm@@; time=intnx('month','01jan1975'd, _n_-1); format year year4.; cards; 330.45 331.90 331.63 333.05 332.81 334.65 334.66 336.25 335.89 337.41 337.81 339.25 330.97 330.05 332.46 330.87 333.23 332.41 335.07 334.39 336.44 335.71 338.16 337.19 331.64 328.58 333.36 329.24 334.55 331.32 336.33 332.44 337.63 333.68 339.88 335.49 332.87 328.31 334.45 328.87 335.82 330.73 337.39 332.25 338.54 333.69

时间序列分析——基于R答案

时间序列分析——基于R答案

时间序列分析——基于R 王燕答案第一章时间序列分析简介略第二章时间序列的预处理#========================================## 2.5习题-1##========================================library(tseries)par(mfrow=c(1,2))x=rep(1:20)temp=ts(x)plot(temp)#不是平稳序列as.vector(acf(temp)$acf[1:6])#序列的自相关系数递减到零的速度相当缓慢,#在很长的延迟时期里,自相关系数一直为正,#而后又一直为负,在自相关图上显示出明显的#三角对称性,这是具有单调趋势的非平稳序列#的一种典型的自相关图形式。

这和该序列时序#图显示的显著的单调递增性是一致的。

#======================================== ## 2.5习题-2##======================================== library(tseries)par(mfrow=c(1,2))volcano.co2=read.table('习题2.2数据.txt',sep='\t',header=F) data=ts(as.vector(t(as.matrix(volcano.co2))),start=c(1975,1)) plot(data)#不是平稳序列as.vector(acf(data,lag.max=23)$acf)#序列自相关系数长期位于零轴的一边。

这是#具有单调趋势序列的典型特征,同时自相关#图呈现出明显的正弦波动规律,这是具有周#期变化规律的非平稳序列的典型特征。

自相#关图显示出来的这两个性质和该序列时序图#显示出的带长期递增趋势的周期性质是非常#吻合的。

#========================================## 2.5习题-3##======================================== library(tseries)par(mfrow=c(1,2))rain=read.table('习题2.3数据.txt',sep='\t',header=F) data=ts(as.vector(t(as.matrix(rain))),start=c(1945,1)) plot(data)#该序列为平稳序列as.vector(acf(data,lag.max = 23)$acf)#该序列的自相关系数一直都比较小,#基本控制在2倍的标准差范闹以内,#可以认为该序列自始至终都在零轴附#近波动,这是随机性非常强的平稳时#间序列通常具有的自相关图特征。

时间序列预处理

时间序列预处理

时间序列预处理
时间序列预处理是指对时间序列数据进行清洗、转换和归一化等操作,以提高数据质量和特征的提取效果。

常见的时间序列预处理方法包括以下几种:
1. 数据清洗:对异常值和缺失值进行处理。

可以使用插值或者对缺失值进行填充。

对于异常值,可以通过检测和修正或者删除来处理。

2. 平滑处理:对时间序列数据进行平滑处理,以减少噪声的影响,常见的方法有移动平均、加权移动平均和指数平滑等。

3. 数据转换:对时间序列数据进行转换,以满足模型的假设。

常见的转换方法包括对数变换、差分变换和尺度变换等。

4. 归一化:将时间序列数据进行归一化,可以使得不同时间序列之间的数值大小相近,便于比较和分析。

常见的归一化方法包括最小-最大归一化和标准化等。

5. 特征提取:从时间序列数据中提取有用的特征,用于建立模型或进行分类和预测。

常见的特征提取方法包括统计特征、频域特征和时域特征等。

以上是常见的时间序列预处理方法,具体应用时需要根据数据的特点和实际问题进行选择。

同时,为了保证预处理的效果,建议在预处理之前先对原始数据进行可视化和探索性分析,以了解数据的分布和特点。

时间序列分析——基于R(王燕)第二章

时间序列分析——基于R(王燕)第二章

习题2:时间序列的预处理题目一:1. 运行程序:最下方。

2. 分析:3. 题型分析:(1)该序列不平稳,因为该图的时序图有明显的递增趋势,同时序列自相关系数图中的自相关系数都是大于0,同时呈递减的形式。

(2)该序列的样本自相关系数如上。

(3)该序列序列自相关系数图具有明显的周期变化的趋势,同时呈递减的形式。

题目二:1. 运行程序:最下方。

2. 分析:Times e q u e n c e51015205101523.题型分析:(1)通过该数据的时序图,我们可以看出时序图呈周期变化的趋势,所以该序列是非平稳序列。

(2)通过计算结果可以计算出该序列的样本自相关系数。

(3)从该样本自相关图呈周期变化趋势,同时该自相关系数偶尔超过二倍标准差范围以外,因此也可以看出该序列是不平稳序列。

题目三:1.运行程序:见下方。

2.分析:3.题目分析:(1)通过计算结果可以计算出该序列的样本自相关系数。

(2)通过时序图可以看出该序列无周期性,同时无明显的单调变化趋势,通过自相关系数图可以发现很多自相关系数很多落于两倍标准差里面,则该序列是平稳序列。

(3)通过白噪声分析,我们可以看出p值大于0.05,则该序列接受原假设,我们可以以很大的把握断定降雨量数据是白噪声序列。

题目四:1. 运行程序:见下方。

2. 分析:3. 题目分析:通过程序计算,算出Q 统计量为4.57,通过卡方分位数表可以查到()20.9512=5.226X ,由于Q 统计量小于5.226,所以以95%的把握接受原假设,认为该序列是白噪声序列,即认为该序列是纯随机序列。

题目五:1. 运行程序:见下方。

2. 分析:3. 题目分析:(1)该序列时序图和样本自相关图如上。

(2)该序列的时序图呈现周期变化的趋势,同时该模型的样本自相关图也呈周期变化的趋势,也超过2倍标准差,则该序列是非平稳序列。

(3)观察到序列的p 值是小于0.05,所以拒绝原假设,所以该序列是非白噪声序列,该序列不含有纯随机波动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列分析-第二章-时间序列的预处理
两时间序列重叠显示时序图
2.4.2 平稳性与纯随机性检验
1、平稳性检验
为了判断序列是否平稳,除了需要考虑时序图的性质,还需要对自相关图进行检验。

SAS系统ARIMA 过程中的IDENTIFY语句可以提供非常醒目的自相关图。

data example2_2;
input freq@@;
year=intnx ('year','1jan1970'd,_n_-1); format year year4.;
cards;
97 154 137.7 149 164 157 188 204 179 210
202 218 209
204 211 206 214 217 210 217 219 211 233 316 221 239
215 228 219 239 224 234 227 298 332 245 357 301 389
;
proc arima data=example2_2;
identify var=freq;
run;
语句说明:
(1)“proc arima data=example2_2;”是告诉系统,下面要对临时数据集example2_2中的数据进行ARIMA程序分析。

(2)“identify var=freq;”是对指令变量freq 的某些重要性质进行识别。

执行本例程序,IDENTIFY语句输出的描述性信息如下:
这部分给出了分析变量的名称、序列均值、标准差和观察值个数。

IDENTIFY语句输出结果的第二部分分为自相关图,本例获得的样本自相关见下图。

序列FREQ样本自相关图
其中:
Lag——延迟阶数。

Covariance——延迟阶数给定后的自协方差函数。

Correlation——自相关系数的标准差。

“.”——2倍标准差范围。

2、纯随机性检验
为了判断序列是否有分析价值,我们必须对序列进行纯随机性检验,即白噪声检验。

在IDENTIFY输出结果的最后一部分信息就是白噪声检验结果。

本例中白噪声检验输出结果如下:
其中:
To Lag ——延迟阶数。

检验结果显示,在6阶延迟下LB 检验统计量的P 值非常小(<0.0001),所以我们可以以很大的把握(置信水平>99.999%)断定该序列属于非白噪声序列。

二、课后习题
2.1975-1980年夏威夷岛莫那罗亚火山(Mauna loa )每月释放的2
co 数据如下(单位:ppm ),见表2-7.
330.45
330.97
331.64
332.87
333.61
333.55
331.9
330.05 328.58 328.31 329.41 330.6
3 331.63 332.46 333.36 334.45 334.82 334.32 333.05 330.87 329.2
4 328.87 330.1
8 331.5
332.81
333.23
334.55
335.82
336.44
335.9
9
330.45 330.97 331.64 332.87 333.61 333.55
331.90 330.05 328.58 328.31 329.41 330.63
331.63 332.46 333.36 334.45 334.82 334.32
333.05 330.87 329.24 328.87 330.18 331.50
332.81 333.23 334.55 335.82 336.44 335.99
334.65 332.41 331.32 330.73 332.05 333.53
334.66 335.07 336.33 337.39 337.65 337.57
336.25 334.39 332.44 332.25 333.59 334.76
335.89 336.44 337.63 338.54 339.06 338.95
337.41 335.71 333.68 333.69 335.05 336.53
337.81 338.16 339.88 340.57 341.19
340.87
339.25 337.19 335.49 336.63 337.74 338.36
;
proc gplot data=example2_1;
plot ppm*time=1;
symbol1c=black v=star i=join;
run;
实验结果:
实验分析体会:
时序图给我们的提供的信息非常明确,夏威夷岛莫那罗亚火山(Mauna loa)每月释放的
co时间序列图
2
有明显的递增趋势,所以它不是平稳序列。

(2)计算该序列的样本自相关系数ˆ(1,2,,24)k
k ρ=L 。

实验程序:
data example2_1;
input ppm@@;
time=intnx('month','01jan1975'd ,_n_-1); format time date.;
cards ;
330.45 330.97 331.64 332.87 333.61
333.55
331.90 330.05 328.58 328.31 329.41
330.63
331.63 332.46 333.36 334.45 334.82
334.32
333.05 330.87 329.24 328.87 330.18
331.50
332.81 333.23 334.55 335.82 336.44
335.99
334.65 332.41 331.32 330.73 332.05
333.53
334.66 335.07 336.33 337.39 337.65
自相关图显示序列子相关系数长期位于零轴的一边,这是具有单调趋势序列的典型特征,同时自相关图呈现出明显的正弦波动规律,这是具有周期变化规律的非平稳序列的典型特征。

自相关图显示出来的这两个性质和该序列时序图显示的带长期递增趋势的周期性质是非常吻合的。

3.1945-1950年费城月度降雨量数据如下(单位:mm)
85.3 67.3 112.8 59.4
;
proc arima data =example2_3;
identify var =freq;
run ;
自相关图:
(1)计算该序列的样本自相关系数ˆ(1,2,,24)k
k ρ=L 。

从上面的自相关图可以看出样本的自相关系数为
Correlati
on
0.06005
-0.04326
-0.09752
根据序列图可以知道,图上可以看出该序列在一个常值附近上下波动,且不具有周期性,判断该序列为平稳序列。

(3)判断该序列的纯随机性。

本序列的检验结果如下:
由于P值显著大于显著性水平0.05,所以该序列
不能拒绝纯随机的原假设。

因而可以认为费城月度降雨量的变动属于纯随机波动。

5.表2-9数据是某公司在2000-2003年期间每月的销售量。

(1)绘制该序列时序图及样本自相关图。

实验程序:
data example2_3;
input number@@;
time=intnx('month','1jan2000'd,_n_-1); format time yymmdd10.;
cards;
自相关图:
(2)判断该序列的平稳性
答:从(1)的时序图可以看出,该序列在一个常值附近上下波动,但据周期性,因此判定该序列为不平稳序列。

(3)判断该序列的纯随机性。

本例检验输出结果如下:
检验结果显示,在各阶延迟下LB检验统计量的P 值非常小(<0.0001),所以我们可以以很大的把握(置信水平>99.999%)断定该序列属于非白噪声序列。

因而认为该公司在2000-2003年期间每月的销售量的变动不属于随机波动。

相关文档
最新文档