函数信号发生器设计.
函数信号发生器的设计
函数信号发生器的设计函数信号发生器是一种电子测试仪器,用于产生各种波形信号,如正弦波、方波、三角波、锯齿波等。
它广泛应用于电子、通信、计算机、自动控制等领域的科研、教学和生产中。
本文将介绍函数信号发生器的设计原理和实现方法。
一、设计原理函数信号发生器的设计原理基于信号发生器的基本原理,即利用振荡电路产生一定频率和幅度的电信号。
振荡电路是由放大器、反馈电路和滤波电路组成的。
其中,放大器负责放大电信号,反馈电路将一部分输出信号反馈到输入端,形成正反馈,使电路产生自激振荡,滤波电路则用于滤除杂波和谐波,保证输出信号的纯度和稳定性。
函数信号发生器的特点是可以产生多种波形信号,这是通过改变振荡电路的参数来实现的。
例如,正弦波信号的频率和幅度可以通过改变电容和电阻的值来调节,方波信号的占空比可以通过改变开关电路的工作方式来实现,三角波信号和锯齿波信号则可以通过改变电容和电阻的值以及反馈电路的参数来实现。
二、实现方法函数信号发生器的实现方法有多种,其中比较常见的是基于集成电路的设计和基于模拟电路的设计。
下面分别介绍这两种方法的实现步骤和注意事项。
1. 基于集成电路的设计基于集成电路的函数信号发生器设计比较简单,只需要选用合适的集成电路,如NE555、CD4046等,然后按照电路图连接即可。
具体步骤如下:(1)选择合适的集成电路。
NE555是一种常用的定时器集成电路,可以产生正弦波、方波和三角波等信号;CD4046是一种锁相环集成电路,可以产生锯齿波信号。
(2)按照电路图连接。
根据所选集成电路的电路图,连接电容、电阻、电感等元器件,形成振荡电路。
同时,根据需要添加反馈电路和滤波电路,以保证输出信号的稳定性和纯度。
(3)调节参数。
根据需要调节电容、电阻等参数,以改变输出信号的频率和幅度。
同时,根据需要调节反馈电路和滤波电路的参数,以改变输出信号的波形和稳定性。
(4)测试验证。
连接示波器或万用表,对输出信号进行测试和验证,以确保输出信号符合要求。
简易函数信号发生器设计报告
简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。
它可以产生不同的信号波形,用于测试和调试电子设备。
本设计报告将介绍一个简易的函数信号发生器的设计方案。
二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。
同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。
三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。
在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。
2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。
通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。
3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。
通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。
四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。
2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。
3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。
五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。
在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。
七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。
《模拟电子技术》简易函数信号发生器的设计与制作
《模拟电子技术》简易函数信号发生器的设计与制作1 整机设计1.1 设计任务及要求结合所学的模拟电子技在此处键入公式。
术知识,运用AD软件设计并制作一简易函数信号发生器,要求能产生方波和三角波信号,且频率可调,并自行设计电路所需电源1.2 整机实现的基本原理及框图1.电源电路组成由变压器—整流电路—滤波电路—滤波电路—稳压电路组成。
变压器将220V 电源降压至双15V,经整流电路变换成单方向脉冲直流电压,此电源使用四个整流二极管组成全波整流桥电源变压器的作用是将电网220V 的交流电压变成整流电路所需要的电压u1。
因此,u1=nu i(n 为变压器的变比)。
整流电路的作用是将交流电压山变换成单方向脉动的直流U2。
整流电路主要有半波整流、全波整流方式。
以单相桥式整流电路为例,U2=0.9u1。
每只二极管所承受的最大反向电压u RN= √2u1,平均电流I D(A V),=12I R=0.45U1R对于RC 滤波电路,C的选择应适应下式,即RC放电时间常数应该满足:RC= (3~5)T/2,T 为50Hz 交流电压的周期,即20ms。
此电源使用大电容滤波,稳压电路,正电压部分由三端稳压器7812输出固定的正12V电压,负电压部分由三端稳压器7912输出固定-12V电压。
并联两颗LED灯分别指示正负电压。
2.该函数发生器由运放构成电压比较器出方波信号,方波信号经过积分器变为三角波输出。
2 硬件电路设计硬件电路设计使用Altium Designer 8.3设计PCB,画好NE5532P,7812及7912的原理图和封装后,按照电路图画好原理图后生成PCB图。
合理摆放好各器件后设置规则:各焊盘大小按实际情况设置为了更容易的进行打孔操作,设置偏大一些,正负12V电源线路宽度首选尺寸1.2mm,最小宽度1mm,最大宽度1.2mm,GND线路宽度首选尺寸1mm,最小宽度1mm,最大宽度1.5mm,其他线路首选尺寸0.6mm,最小宽度1mm,最大宽度1.2mm。
函数信号发生器设计方案
函数信号发生器设计方案函数信号发生器是一种能够产生各种类型的电信号的测试设备。
它广泛应用于电子和通信领域的研发和生产过程中,用于测试电路的各种性能参数。
为了设计一个高性能、高精度的函数信号发生器,我们可以采取以下方案。
首先,选择合适的信号发生器芯片。
常用的信号发生器芯片有DDS(直接数字合成)芯片和信号调制芯片。
DDS芯片具有数字处理能力强、干扰小的优点,可以产生高精度、宽频带的各种信号波形。
信号调制芯片则可以实现各种调制方式,如AM、FM、PM等。
根据需要,我们可以选择适合的芯片。
其次,设计合理的电路结构。
函数信号发生器的电路结构一般包括时钟发生电路、数字信号处理电路和模拟输出电路。
时钟发生电路用于产生高精度的时钟信号,为后续的数字信号处理提供基准。
数字信号处理电路利用DDS芯片或信号调制芯片产生各种类型的信号波形,并对波形进行加工、调制等。
模拟输出电路将数字信号转换为模拟信号,用于输出到被测设备。
接下来,需要设计合适的控制界面。
函数信号发生器通常配备有操作面板和显示屏,用于用户对信号发生器进行设置和监控。
操作面板需要设计合理的按键和旋钮,方便用户操作。
显示屏可以显示当前的设置参数和输出波形,保证用户对信号的监测。
此外,为了提高信号发生器的性能,我们可以考虑增加一些附加功能。
例如,可以增加RS232、USB等接口,实现信号发生器与计算机之间的数据交互,方便用户对信号发生器进行远程控制和数据采集。
还可以增加自动测试功能,根据用户设定的测试要求,自动产生相应的信号波形并进行测试。
最后,需要进行严格的测试和调试。
在设计完成后,需要对整个信号发生器进行严格的测试和调试,确保各个模块之间正常工作,信号的输出符合要求。
可以利用示波器、频谱仪等测试仪器对信号进行检测和分析,校准信号发生器的性能参数。
综上所述,设计一个高性能、高精度的函数信号发生器,需要选择合适的芯片、设计合理的电路结构和控制界面、增加附加功能,并进行严格的测试和调试。
函数信号发生器设计方案
函数信号发生器设计方案设计一个函数信号发生器需要考虑的主要方面包括信号的类型、频率范围、精度、输出接口等等。
下面是一个关于函数信号发生器的设计方案,包括硬件和软件两个方面的考虑。
硬件设计方案:1.信号类型:确定需要的信号类型,如正弦波、方波、三角波、锯齿波等等。
可以根据需求选择合适的集成电路或FPGA来实现不同类型的信号生成。
2.频率范围:确定信号的频率范围,例如从几Hz到几十MHz不等。
根据频率范围选择合适的振荡器、计数器等电路元件。
3.精度:考虑信号的精度要求,如频率精度、相位精度等。
可以通过使用高精度的时钟源和自动频率校准电路来提高精度。
4.波形质量:确定信号的波形质量要求,如波形畸变、谐波失真等。
可以使用滤波电路、反馈电路等技术来改善波形质量。
5.输出接口:确定信号的输出接口,如BNC接口、USB接口等,并考虑电平范围和阻抗匹配等因素。
软件设计方案:1.控制界面:设计一个易于操作的控制界面,可以使用按钮、旋钮、触摸屏等各种方式来实现用户与信号发生器的交互。
2.参数设置:提供参数设置功能,用户可以设置信号的频率、幅度、相位等参数。
可以通过编程方式实现参数设置,并通过显示屏或LED等方式来显示当前参数值。
3.波形生成算法:根据用户设置的参数,设计相应的波形生成算法。
对于简单的波形如正弦波可以使用数学函数来计算,对于复杂的波形如任意波形可以使用插值算法生成。
4.存储功能:可以提供存储和读取波形的功能,这样用户可以保存和加载自定义的波形。
存储可以通过内置存储器或外部存储设备实现,如SD卡、U盘等。
5.触发功能:提供触发功能,可以触发信号的起始和停止,以实现更精确的信号控制。
总结:函数信号发生器是现代电子测量和实验中常用的仪器,可以产生各种不同的信号类型,提供灵活的信号控制和生成能力。
在设计过程中,需要综合考虑信号类型、频率范围、精度、波形质量、输出接口等硬件方面的因素,以及控制界面、参数设置、波形生成、存储和触发等软件方面的功能。
函数信号发生器实验教学设计与实践
函数信号发生器实验教学设计与实践一、实验目的:1.了解函数信号发生器的基本原理和工作过程;2.掌握函数信号发生器的使用方法;3.熟练掌握函数信号发生器的参数设置及调节技巧;4.学会利用函数信号发生器产生不同类型的信号,如正弦波、方波、三角波等;5.了解函数信号的性质及其在电路实验中的应用。
二、实验原理:函数信号发生器是一种能够产生各种不同波形的信号源设备,常用于电子实验中的信号源和频率标准。
它可以产生正弦波、方波、三角波等不同类型的波形,并且可以通过调节幅度、频率、相位等参数来得到需要的信号输出。
函数信号发生器一般由振荡器、波形调制电路、幅度调节电路和频率调节电路等部分组成。
三、实验内容及步骤:1.实验仪器与材料:函数信号发生器、示波器、万用表、串联电阻、电容等元器件。
2.实验步骤:(1)连接实验电路:将函数信号发生器的输出端与示波器的输入端相连,然后通过示波器显示出信号波形。
(2)调节幅度参数:设置函数信号发生器的幅度参数,观察示波器上波形的变化。
(3)调节频率参数:设置函数信号发生器的频率参数,观察波形在示波器上的变化。
(4)产生不同波形:尝试产生不同类型的波形,如正弦波、方波、三角波等,并观察其在示波器上的输出情况。
(5)测量输出信号的频率、幅度等参数,掌握功能信号发生器的参数调节技巧。
四、实验结果与分析:1.实验通过连线和参数设置,成功连接函数信号发生器和示波器,并在示波器上显示出所需的信号波形。
2.通过调节幅度和频率参数,能够观察到输出信号的变化,并且通过示波器可以准确测量信号的频率、幅度等参数。
3.产生正弦波、方波、三角波等不同类型的波形,并观察其在示波器上的输出情况,验证函数信号发生器的功能。
五、实验总结:通过本次实验,我们深入了解了函数信号发生器的原理和工作过程,掌握了函数信号发生器的使用方法及参数调节技巧。
实验中,我们通过实际操作产生了不同类型的信号波形,并成功利用示波器观察和测量了输出信号的频率、幅度等参数。
【精品】函数信号发生器课程设计报告
【精品】函数信号发生器课程设计报告函数信号发生器课程设计报告摘要:本课程设计主要是设计一台函数信号发生器,它在从低频(如Sine)到较高频(如Square)常用波形之间能够进行切换,常用于电子仪器和测量检测中,用来给装置注入一定形态的信号,以辅助检测装置的有效性,稳定性,精度等特性。
该设备采用STM32F030F4P6单片机,使用1602液晶屏显示函数状态,用HD74HC4040电路分频输出指定期望频率,使用R-2R电路控制EPWM波形从正弦波到脉冲波,满足多种测试状况下的需求。
本系统实现调整频率的功能,使用户可以设置函数发生器的频率,因此满足用户的不同要求。
关键词: STM32F030F4P6; 1602液晶屏; HD74HC4040 电路; R-2R 电路; PWM 波形一、简介函数信号发生器是一种常用的信号发生器,可以产生多种类型的波形。
包括正弦波、三角波、方波、脉冲波和梯形波等等,其应用广泛,比如在检测仪表中,可以用来观察测量仪表的工作状态,以便于分析测量仪表的特性,进而排除故障。
此外,函数信号发生器通常也可以用在动态信号检测中,对电机、变压器和泵等,进行性能检测和控制应用,也可用来做为一种测试应用,来控制和验证电子设备性能,在现在的电子技术发展中,函数信号发生器扮演重要的作用。
二、设计实现设计本次函数信号发生器主要任务是实现指定期望频率信号的输出,并对多种波形满足需求。
主要设备相关技术如下:(一)STM32F030F4P6单片机STM32F030F4P6单片机,采用ARM 32位内核设计,使用Cortex-M0指令集,配备有SYSTICK时钟,PWM波形输出,I2C接口,满足调整函数信号发生器指定频率和波形的要求。
(二)1602液晶屏它的主要功能是显示函数发生器的状态,如频率,波形,用户可以通过屏幕上的提示,清楚的了解函数发生器当前的实时状态,使用比较简单。
(三) HD74HC4040 电路使用 HD74HC4040 电路进行分频输出,可以实时调整输出信号的频率。
函数信号发生器的设计
沈阳航空航天大学课程设计任务书课程名称电子线路课程设计课程设计题目函数信号发生器的设计课程设计的内容及要求:一、设计说明与技术指标1.设计能产生正弦波等波形的函数信号发生器,2.信号频率范围:1Hz∽100kHz;3.输出波形要求①正弦波谐波失真度≤2%;②方波上升沿和下降沿时间不得超过200nS,占空比在48%∽50%之间;4.输出信号幅度范围:0∽20V;二、设计要求1.在选择器件时,应考虑成本。
2.根据技术指标,通过分析计算确定电路和元器件参数。
3.画出电路原理图(元器件标准化,电路图规范化)。
三、实验要求1.根据技术指标制定实验方案;验证所设计的电路,用multisim软件仿真。
2.进行实验数据处理和分析。
四、推荐参考资料1. 童诗白,华成英主编.模拟电子技术基础.[M]北京:高等教育出版社,2006年2. 阎石,数字电子技术(第五版).[M]北京:高等教育出版社,2005.3. 陈孝彬《555集成电路实用电路集》高等教育出版社2002-84. 王刚《TTL集成电路应用》机械工业出版社2000-10五、按照要求撰写课程设计报告成绩评定表:序号评定项目评分成绩1 设计方案正确,具有可行性,创新性(15分)2 设计结果可信(例如:系统分析、仿真结果)(15分)3 态度认真,遵守纪律(15分)4 设计报告的规范化、参考文献充分(不少于5篇)(25分)5 答辩(30分)总分最终评定成绩(以优、良、中、及格、不及格评定)指导教师签字:年月日一、概述函数信号发生器在生活中很常见,在许多领域都要用到。
按照频率范围分类可以分为:超低频信号发生器、低频信号发生器、中频信号发生器、高频波形发生器和超高频信号发生器。
按照输出波形分类可以分为:正弦信号发生器和非正弦信号发生器,非正弦信号发生器又包括:脉冲信号发生器,函数信号发生器、扫频信号发生器、数字序列波形发生器、图形信号发生器、噪声信号发生器等。
按照信号发生器性能指标可以分为一般信号发生器和标准信号发生器。
函数信号发生器设计方案
函数信号发生器设计方案函数信号发生器的设计与制作目录一.设计任务概述二.方案论证与比较三.系统工作原理与分析四.函数信号发生器各组成部分的工作原理五.元器件清单六.总结七.参考文献函数信号发生器的设计与制一.设计任务概述(1)该发生器能自动产生正弦波、三角波、方波。
(2)函数发生器以集成运放和晶体管为核心进行设计(3)指标:输出波形:正弦波、三角波、方波频率范围:1Hz~10Hz,10Hz~100Hz输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V;二、方案论证与比较2.1·系统功能分析本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。
在设计的过程中,我们综合考虑了以下三种实现方案:2.2·方案论证方案一∶采用传统的直接频率合成器。
这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。
但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。
方案二∶采用锁相环式频率合成器。
利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。
这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。
但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。
而且,由模拟方法合成的正弦波的参数,如幅度、频率相信都很难控制。
方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。
改变8038的调制电压,可以实现数控调节,其振荡范围为0.001Hz~300K 方案四:采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于1-10Hz的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。
函数信号发生器课程设计
函数信号发生器课程设计一、课程目标知识目标:1. 学生能理解函数信号发生器的基本原理,掌握其工作流程及各部分功能。
2. 学生能描述函数信号发生器产生的常见信号类型,如正弦波、方波、三角波等。
3. 学生能运用数学知识分析函数信号发生器产生的信号特点及其应用场景。
技能目标:1. 学生能正确操作函数信号发生器,进行信号生成、频率调节、幅度调节等基本操作。
2. 学生能运用函数信号发生器进行简单的信号实验,如叠加、调制等。
3. 学生能通过实验观察和分析信号波形,提高实验操作能力和问题解决能力。
情感态度价值观目标:1. 学生培养对电子技术及信号处理领域的兴趣,激发学习热情。
2. 学生通过合作实验,培养团队协作能力和沟通能力。
3. 学生在学习过程中,树立正确的科学态度,认识到科学技术对社会发展的作用。
课程性质:本课程为电子技术实践课程,注重理论与实践相结合,提高学生的实际操作能力。
学生特点:高二年级学生,已具备一定的电子技术基础知识和实验操作技能。
教学要求:结合学生特点,采用启发式教学,引导学生主动探究,提高学生的实践能力和创新能力。
在教学过程中,注重培养学生的安全意识和实验素养。
通过课程学习,使学生能够将所学知识应用于实际电子电路设计和实验中。
二、教学内容1. 函数信号发生器原理介绍:包括振荡器、放大器、波形发生器等组成部分及其工作原理。
- 教材章节:第二章第三节“函数信号发生器的组成与原理”2. 常见信号类型及其特点:正弦波、方波、三角波、脉冲波等信号的数学描述和实际应用。
- 教材章节:第二章第四节“函数信号发生器的波形及其应用”3. 函数信号发生器操作与使用:基本操作方法、功能键的使用、频率和幅度的调节。
- 教材章节:第三章第一节“函数信号发生器的操作与使用”4. 实验教学:利用函数信号发生器进行信号叠加、调制等实验操作。
- 教材章节:第三章第二节“函数信号发生器实验”5. 信号分析与应用:分析实验中产生的信号波形,探讨其在电子技术领域的应用。
函数信号发生器的设计
函数信号发生器的设计
函数信号发生器是一种用于产生各种常用电信号和波形的多功能信号产生器。
它也可
以产生各种频率、幅度范围可调的宽带或窄带信号。
在科学研究,工程设计和信号测量领
域中,函数信号发生器发挥着重要作用。
函数信号发生器的设计一般包括信号控制模块、信号发生模块和信号监控模块三部分。
信号控制模块用于控制信号的产生以及信号的参数,如波形、频率、幅度等。
它根据
外部控制信号的指令,通过把信号控制参数转换成相应的电气量并输出至发生模块。
常用
的参数控制方法有时序逻辑控制、数字逻辑控制和模拟控制,各司其职。
信号发生模块经过控制模块传来控制信号后,将其转换成相应的电信号或波形及参数,完成发生功能,输出至信号检测模块。
信号发生模块的选择取决于所要求的发生的信号的
频率、波幅和类型等参数,如果只是产生低频、幅度小的信号,可以使用简单的开关电路;对于需要产生宽带信号和高频信号,则可采用电声变换器、振荡器、综合器或调制器等元
件辅以专用外围电路实现。
信号监控模块起到信号检测、监测和放大作用,其主要功能是通过增益放大信号,而
其增益可以由控制模块实现调节,具体实现方案取决于信号的类型,对于数字信号可以采
用数字信号处理技术,而对于模拟信号可以采用模拟信号放大器。
函数信号发生器的设计实际上是信号生成、控制、测量和监测的一整套系统,是通过
控制仪表发送信号,然后把发出的信号放大,然后利用函数信号发生器产生恒定频率和恒
定幅度的信号,以及根据外部控制指令动态调整频率、幅度等信号参数,从而实现测量结
果的视觉化和长期信号测量自动化等功能。
函数信号发生器设计
函数信号发生器设计函数信号发生器是一种可以输出各种形式的信号的电子设备,如正弦波、方波、脉冲等。
它通常用于科学研究、电子工程实验、教学以及通信系统的测试和调试等领域。
本文将介绍函数信号发生器的设计原理、关键模块以及一些常见的应用。
一、设计原理1.参考振荡器:参考振荡器是整个函数信号发生器的核心部分,它负责产生一个稳定的基准频率,通常采用石英晶体振荡器作为参考源。
2.频率调节电路:频率调节电路通过改变参考振荡器的频率来控制信号发生器输出的信号频率。
通常采用电压控制振荡器(VCO)或者数字频率合成技术来实现。
3.振幅调节电路:振幅调节电路用于调节信号发生器输出信号的幅值,通常采用放大电路或者可变增益放大器来实现。
4.波形调节电路:波形调节电路用于调节信号发生器输出信号的波形,可以实现正弦波、方波、脉冲等不同形式的信号输出。
二、关键模块设计在函数信号发生器的设计中,有几个关键模块需要特别注意。
1.参考振荡器设计:参考振荡器的设计要求具有高稳定性和低噪声,可以选择石英晶体振荡器或者TCXO(温度补偿石英晶振)作为参考源。
2.频率调节电路设计:频率调节电路的设计要求具有较大的频率范围和较高的分辨率。
可以采用电压控制振荡器(VCO)和锁相环(PLL)等技术来实现。
3.振幅调节电路设计:振幅调节电路的设计要求具有较大的增益范围和较低的失真。
可以选择可变增益放大器和反馈控制技术来实现。
4.波形调节电路设计:波形调节电路的设计要求具有较高的波形质量和波形稳定性。
可以选择滤波电路、比较器和数字信号处理器等技术来实现。
三、常见应用1.信号测试与调试:函数信号发生器可以用于测试和调试各种电子设备和电路,如滤波器、放大器、通信系统等。
通过调节信号的频率、幅值和波形等参数,可以对电路性能进行评估和优化。
2.教学和实验:函数信号发生器可以用于电子教学实验室和科研实验室的教学和研究。
通过实际操作和观测信号的变化,学生和研究人员可以更好地理解和掌握信号处理和调制技术。
基于单片机的函数信号发生器设计
基于单片机的函数信号发生器设计引言:函数信号发生器是一种能够产生各种不同波形的仪器,广泛应用于电子实验、仪器仪表测试等领域。
传统的函数信号发生器通常由模拟电路实现,但使用单片机来设计函数信号发生器具有灵活性高、可编程性强的优点。
本文将介绍一种基于单片机的函数信号发生器的设计。
一、设计原理单片机函数信号发生器的设计基于数字信号处理技术,通过使用单片机的计时器和IO口来产生各种不同形状和频率的波形。
其主要步骤如下:1.选择适当的单片机选择一款拥有足够IO口和计时器功能的单片机作为控制核心。
可以使用常见的单片机如ATmega16、STM32等。
2.设计时钟电路通过外部晶振或者内部时钟源,提供稳定的时钟信号。
3.波形生成算法选择合适的波形生成算法,根据算法设计相应的程序来生成正弦、方波、三角波等不同波形。
4.输出接口设计设计输出接口,可以使用模拟输出电路将数字信号转化为模拟信号输出到外部设备,也可以使用DAC芯片来实现模拟输出。
二、硬件设计1.单片机选型在选择单片机时,需要考虑到所需的IO口数量、计时器数量和存储器容量等因素。
对于初学者来说,可以选择ATmega16单片机,它拥有足够的IO口和计时器资源。
2.时钟电路设计为了使单片机能够稳定工作,需要提供合适的时钟信号。
可以使用外部晶振电路或者内部时钟源。
同时,还需要添加滤波电路来排除干扰。
3.输入电路设计如果需要通过键盘或者旋钮来调节频率和幅度等参数,可以设计相应的输入电路。
可以使用AD转换器来将模拟信号转化为数字信号输入到单片机。
4.输出电路设计为了将数字信号转化为模拟信号输出到外部设备,可以使用RC电路或者声音音箱等输出装置。
三、软件设计1.程序框架设计设计程序框架,包括初始化配置、波形生成循环、参数调整等部分。
2.波形生成算法编写根据所选的波形生成算法,编写相应的程序代码。
可以使用数学函数来生成正弦波、三角波等形状,也可以采用查表法。
3.输入参数处理根据设计要求,编写处理输入参数的程序代码,实现参数调整、频率设置等功能。
函数信号发生器的设计
函数信号发生器的设计首先,函数信号发生器的设计目的是输出一定的频率范围内的连续可变信号,并且可以调整信号的振幅、频率、相位等参数。
为了实现这一目标,函数信号发生器通常由以下几个主要部分组成:1.振荡电路:振荡电路是函数信号发生器的核心部分,它通常采用电容和电感构成的谐振电路,实现正弦波、方波等不同形状的振荡信号。
振荡电路的频率可以通过调整电容或电感的参数来实现。
2.控制电路:控制电路是用于控制振荡电路参数的一部分电路,它通常由微处理器或可编程逻辑器件实现。
通过控制电路,用户可以通过面板上的按钮或旋钮来设置信号的振幅、频率、相位等参数。
3.输出电路:输出电路将振荡电路产生的信号放大并输出到外部设备或电路中。
输出电路通常由放大电路和阻抗匹配电路组成,以确保信号能够正确地传输到外部设备。
4.显示与控制界面:函数信号发生器通常配备有显示屏和控制按钮,用于显示当前设置的信号参数和控制信号的生成。
通过显示界面,用户可以方便地调整信号的频率、振幅等参数。
了解了函数信号发生器的主要组成部分,接下来我们来了解一下其运行原理。
当函数信号发生器接通电源后,控制电路会读取用户设置的参数并进行处理。
然后,控制电路会通过控制振荡电路的参数,从而产生相应的频率、振幅和相位等信号。
振荡信号经过放大电路放大后,通过输出电路输出到外部设备。
总结起来,函数信号发生器是一种常用的仪器设备,用于产生可变的信号波形,通常用于电子设计和实验室测试中。
它由振荡电路、控制电路、输出电路和显示与控制界面等部分组成,并通过控制电路的设置来产生相应的信号。
函数信号发生器不仅可以产生正弦波、方波等常见形式的信号,还可以通过附加功能实现信号的调频、调相等特殊操作。
函数信号发生器的设计
函数信号发生器的设计一、设计原理函数信号发生器的设计原理是通过数字信号处理(DSP)技术将数字信号转换为模拟信号输出。
首先,将需要的信号波形用数字补偿(D/A)转换为模拟信号,然后通过滤波电路去除混叠频率,最后通过放大电路输出到外界。
二、主要组成部分1.数字信号处理(DSP)模块:负责将数字信号转换为模拟信号输出。
DSP模块通常由高性能的数字信号处理器(DSP芯片)和相应的存储器组成,用于实现各种信号处理算法和波形生成。
2.数字补偿(D/A)模块:负责将数字信号转换为模拟信号输出。
D/A模块通常由高精度的数字到模拟转换器(D/A芯片)和相应的放大电路组成,用于将数字信号转换为模拟电压输出。
3.滤波电路:负责去除混叠频率。
滤波电路可以使用各种类型的滤波器,如低通滤波器、带通滤波器等,根据需求选用适当的滤波器进行设计。
4.放大电路:负责将输出信号放大到适当的幅度。
放大电路通常由放大器和电源电路组成,用于放大信号并提供稳定的电源供电。
三、关键技术1.数字信号处理技术:函数信号发生器的核心技术是数字信号处理技术。
需要使用高性能的DSP芯片和相应的算法实现各种信号处理功能,如频率合成、相位调制、幅度调制等。
2.数字到模拟转换技术:数字信号转换为模拟信号的关键是使用高精度的D/A转换器。
需要选择合适的D/A芯片,具备高分辨率、低失真、高速度等特点。
3.滤波技术:信号在数字到模拟转换过程中会产生一定的混叠频率,需要通过滤波电路去除混叠频率。
滤波电路的设计需要考虑滤波器的类型选择、通带和阻带的频率范围、滤波器的阶数等因素。
4.放大技术:输出信号需要经过放大电路放大到适当的幅度。
放大电路的设计需要考虑功率放大器的选择、电源电路的设计以及稳定性等因素。
综上所述,函数信号发生器的设计原理是通过数字信号处理技术将数字信号转换为模拟信号输出。
其主要组成部分包括DSP模块、D/A模块、滤波电路和放大电路。
关键技术包括数字信号处理技术、数字到模拟转换技术、滤波技术和放大技术。
北邮模电实验报告 函数信号发生器的设计
北京邮电大学电子电路综合设计实验报告课题名称:函数信号发生器的设计学院:班级:姓名:学号:班内序号:课题名称:函数信号发生器的设计摘要:采用运算放大器组成的积分电路产生比较理想的方波-三角波,根据所需振荡频率和对方波前后沿陡度、方波和三角波幅度的要求,选择运放、稳压管、限流电阻和电容。
三角波-正弦波转换电路利用差分放大器传输特性曲线的非线性实现,选取合适的滑动变阻器来调节三角波的幅度和电路的对称性,同时利用隔直电容、滤波电容来改善输出正弦波的波形。
关键词:方波三角波正弦波一、设计任务要求1.基本要求:设计制作一个函数信号发生器电路,该电路能够输出频率可调的正弦波、三角波和方波信号。
(1) 输出频率能在1-10KHz范围内连续可调,无明显失真。
(2) 方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us。
(3) 三角波Uopp=8V(误差小于20%)。
(4) 正弦波Uopp1V,无明显失真。
2.提高要求:(1) 输出方波占空比可调范围30%-70%。
(2) 三种输出波形的峰峰值Uopp均可在1V-10V内连续可调。
二、设计思路和总体结构框图总体结构框图:设计思路:由运放构成的比较器和反相积分器组成方波-三角波发生电路,三角波输入差分放大电路,利用其传输特性曲线的非线性实现三角波-正弦波的转换,从而电路可在三个输出端分别输出方波、三角波和正弦波,达到信号发生器实验的基本要求。
将输出端与地之间接入大阻值电位器,电位器的抽头处作为新的输出端,实现输出信号幅度的连续调节。
利用二极管的单向导通性,将方波-三角波中间的电阻改为两个反向二极管一端相连,另一端接入电位器,抽头处输出的结构,实现占空比连续可调,达到信号发生器实验的提高要求。
三、分块电路和总体电路的设计过程1.方波-三角波产生电路电路图:设计过程:①根据所需振荡频率的高低和对方波前后沿陡度的要求,选择电压转换速率S R合适的运算放大器。
函数信号发生器仿真设计
函数信号发生器仿真设计
1.功能要求
(1)在给定的+12v、-12v直流电源电压条件下,使用运算放大器设计并制作一个函数信号发生器。
(2)函数信号发生器包括方波、三角波、正弦波产生电路,且频率和幅度可调。
(3)信号频率:1Hz-1kHz。
(4)输出电压为:方波V P-P<=24v
三角波V P-P<=8v
正弦波V P-P》4v
2.总体设计方案
产生正弦波、方波、三角波的方案有多种,可以首先产生正弦波,然后通过整形电路将正弦波变换成方波,再有积分电路将方波变成三角波;也可以首先产生三角波-方波,再将三角波变成正弦波或将方波变成正弦波等。
本实例采用先产生方波-三角波,再将三角波变换成正弦波的电路设计方法,其电路组成框图如图1所示:
正弦波V03
图1
图1中,比较器输出的方波经由积分器后输出三角波;三角波经由差分放大器变换为正弦波输出。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力强等优点。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
3. 单元电路设计。
函数信号发生器设计报告
函数信号发生器设计报告
以下是一份函数信号发生器设计报告的范本,供参考:
设计报告:函数信号发生器
一、概述
函数信号发生器是一种能够产生各种波形(如正弦波、方波、三角波等)的电子设备。
本设计报告将介绍如何设计一个简易的函数信号发生器。
二、设计原理
函数信号发生器的核心是波形生成电路。
本设计采用基于555定时器的波形生成电路,通过调节电阻和电容的值,可以生成不同频率和幅值的波形。
三、电路设计
1.电源电路:采用7805稳压芯片,为整个电路提供稳定的5V电源。
2.波形生成电路:基于555定时器,通过调节R1、R2和C1的值,可以生成不
同频率和幅值的波形。
3.输出电路:采用OP07运算放大器,将波形信号放大后输出。
四、测试结果
经过测试,本设计的函数信号发生器能够产生正弦波、方波和三角波三种波形,频率范围为1Hz~10kHz,幅值范围为0~5V。
在测试过程中,未发现明显的失真现象。
五、结论
本设计报告成功地介绍了一种简易的函数信号发生器的设计和制作过程。
测试结果表明,该函数信号发生器能够产生高质量的波形,具有较宽的频率和幅值调节范围。
在实际应用中,可以根据需要调节波形、频率和幅值,以满足不同的
需求。
基于FPGA的函数信号发生器设计
基于FPGA的函数信号发生器设计函数信号发生器是一种能够产生不同类型信号的测试设备,通常在电子电路实验中使用。
基于FPGA的函数信号发生器设计利用可编程逻辑器件FPGA,可以实现更高的灵活性和可定制性,同时减少了硬件开发成本。
本文将详细介绍基于FPGA的函数信号发生器的设计原理、主要模块和实现方法。
一、设计原理二、主要模块1.时钟生成器模块:时钟信号是产生各种信号波形的基础,因此需要设计一个时钟生成器模块来产生稳定的时钟信号。
可以使用FPGA内部的锁相环(PLL)或计数器来实现。
2.波形选择模块:为了产生不同类型的信号波形,需要设计一个波形选择模块。
通过该模块,用户可以选择所需的信号波形,如正弦波、方波、三角波等。
3. 波形生成模块:根据用户的选择,使用FPGA内部的逻辑门电路来实现不同类型的信号波形的生成。
可以利用查找表(Look-Up Table,简称LUT)来存储不同波形的采样点数据,并通过控制逻辑将这些数据输出为相应的信号波形。
4.频率控制模块:通过频率控制模块,可以对信号波形的频率进行控制。
可以根据用户的输入,通过改变时钟信号的频率或改变波形采样点的间隔来实现频率的调节。
5.幅值控制模块:通过幅值控制模块,可以对信号波形的幅值进行控制。
可以通过改变逻辑门的阈值电压或者改变DAC(数字模拟转换器)的输出电平来实现幅值的调节。
三、实现方法2.硬件设计:根据设计需求,选择合适的FPGA芯片、外部时钟源、AD/DA转换器等外部器件。
根据电路原理图,进行相应的电路布局和连线。
在确认电路无误后,进行焊接和组装工作。
在软件和硬件设计完成后,可以通过控制板上的按钮、旋钮等输入设备来调节信号波形的频率、幅值等参数,从而实现不同类型的信号波形的生成。
总结:基于FPGA的函数信号发生器设计利用FPGA的可编程特性,可以实现信号波形的灵活生成和控制。
通过设计合适的模块,可以产生多种类型的信号波形,并对其频率、幅值等参数进行调节。
函数信号发生器设计实验报告
函数信号发生器的设计实验报告院系:电子工程学院班级:2012211209**:***班内序号:学号:实验目的:设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。
1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us(误差<20%);3,三角波Uopp = 8V(误差<20%);4,正弦波Uopp≥1V。
设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。
电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。
根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。
本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。
单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。
差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。
传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。
Ⅰ、方波—三角波产生电路设计方波输出幅度由稳压管的稳压值决定,即限制在(Uz+UD)之间。
方波经积分得到三角波,幅度为Uo2m=±(Uz+UD)方波和三角波的震荡频率相同,为f=1/T=āRf/4R1R2C,式中ā为电位器RW 的滑动比(即滑动头对地电阻与电位器总电阻之比)。
即调节RW可改变振荡频率。
根据两个运放的转换速率的比较,在产生方波的时候选用转换速率快的LM318,这样保证生成的方波上下长短一致,用LM741则会不均匀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、设计的任务和要求 (2)二、设计的方案选择与论证 (3)三、函数发生器的具体方案 (5)1 总的原理框图及总方案 (5)2 各组成部分工作原理 (6)3总电路图 (10)四、电路的参数选择与仿真 (11)五、实验结果分析 (15)六、实验总结 (16)七、参考文献 (17)附录:元器件列表 (18)一.设计的任务和要求1.设计任务设计方波—三角波—正弦波函数信号发生器2.设计目的(1)巩固和加深对电子电路基本知识的理解,提高综合运用本课程所学知识的能力。
(2)培养根据课题需要选学参考书籍,查阅手册、图表和文献资料的自学能力。
通过独立思考,深入钻研有关问题,学会自己分析并解决问题的方法。
(3)通过电路方案的分析、论证和比较,设计计算和选取元器件;初步掌握简单实用电路的分析方法和工程设计方法。
(4)了解与课题有关的电子电路以及元器件的工程技术规范,能按设计任务书的要求,完成设计任务,编写设计说明书,正确地反映设计与实验的成果,正确地绘制电路图等。
(5)培养严肃、认真的工作作风和科学态度。
3. 性能指标要求(1)输出波形:正弦波、方波、三角波等;(2)频率范围:1~10Hz、10~100Hz;(3)输出电压:方波Up-p=24V,三角波Up-p=6V,正弦波U>1V;(4)波形特征:方波tr<10s(1kHz,最大输出时),三角波失真系数THD<2%,正弦波失真系数THD<5%。
二、设计的方案选择与论证函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。
1. 方案一采用分立器件实现电路组成,主要的部件有双运放uA741运算放大器、电压比较器、积分运算电路、差分放大电路、选择开关、电位器和一些电容、电阻组成。
该方案由三级单元电路组成的,第一级单元可以产生方波,第二级可以产生三角波,第三极可以产生正弦波,通过第二级的选择开关可以实现频率波段的转换,通过对差分放大电路部分元器件的调节来改善正弦波产生的波形。
2. 方案二采用集成电路实现,主要部件有高速运算放大器LM318、单片函数发生器模块5G8038、选择开关、电位器和一些电容、电阻组成。
该方案通过调节不同电位器可调节函数发生器输出振荡频率大小、占空比、正弦波信号的失真,可产生精度较高的方波、三角波、正弦波,且具有较高的温度稳定性和频率稳定性。
3 方案比较与选择方案二采用芯片虽然精度较高,温度稳定性和频率稳定性比较好,而它们只能产生300kHz以下的中低频正弦波、矩形波和三角波,且频率与占空比不能单独调节,从而给使用带来很大不便,也无法满足高频精密信号源的要求。
uA741是美国仙童公司较为早期的产品,由于其性能完善,如差模电压范围和共模电压范围宽,增益高,不需外加补偿,功耗低,负载能力强,有输出保护等,因此具有较广泛的应用。
uA741这类单片硅集成电路器件提供输出短路保护和闭锁自由运作,可以方便的输出精度较高的方波、三角波、正弦波,且可以通过调节差分放大电路的各个参数调节正弦波的失真。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器时,可以有效地抑制零点漂移,可将频率很低的三角波变换成正弦波。
综上所述,本课题选用方案一。
.三、函数发生器的具体方案1. 总的原理框图及总方案图1 函数信号发生器原理图多波形信号发生器方框图如图1所示。
本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。
并采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法:由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。
设计差分放大器时,传输特性曲线要对称、线性区要窄,输入的三角波的的幅度U m应正好使晶体管接近饱和区或截止区。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
2. 各组成部分的工作原理2.1 方波---三角波转换电路的工作原理图2 方波-三角波转换电路图2为方波-三角波转换电路,其中运算放大器用双运放uA741。
工作原理如下:若a 点断开,运算发大器A 1(左)与R 1、R 2及R 3、RP 1组成电压比较器,C 1为加速电容,可加速比较器的翻转。
运放A 2(右)与R 4、RP 2、C 2及R 5组成反相积分器,其输入信号为方波Uo 1,则积分器的输出电压Uo 2为 214221()O O U U dt R RP C -=+⎰当1O CC U V =+时,2422422()()()CC CC O V V U t t R RP C R RP C -+-==++ 当1O EE U V =-时,2422422()()()CC EE O V V U t t R RP C R RP C --==++由此可见积分器在输入为方波时,输出是一个上升速度与下降速度相等的三角波,其波形关系如下图3所示图3 方波--三角波波形关系若a 点闭合,即比较器与积分器首尾相连,形成闭环电路,则自动产生方波-三角波。
三角波的幅度为:2231O m CC R U V R RP =+ 方波-三角波的频率f 为: 3124224()R RP f R R RP C +=+ 由以上两式可以得到以下结论:1. 电位器RP 2在调整方波-三角波的输出频率时,不会影响输出波形的幅度。
若要求输出频率的范围较宽,可用C 2改变频率的范围,PR 2实现频率微调。
2. 方波的输出幅度应等于电源电压+Vcc 。
三角波的输出幅度应不超过电源电压+Vcc 。
电位器RP 1可实现幅度微调,但会影响方波-三角波的频率。
2.2 三角波—正弦波转换电路工作原理图4 三角波—正弦波转换电路图(4)为实现三角波—正弦波变换的电路。
其中Rp3调节三角波的幅度,Rp4调整电路的对称性,其并联电阻RE2用来减小差分放大器的线性区。
电容C3,C4,C5为隔直电容,C6为滤波电容,以滤除谐波分量,改善输出波形。
三角波-正弦波的变换电路主要由差分放大电路来完成。
差分放大器采用单入单出方式。
三角波-正弦波波形变换的原理是利用差分放大器传输特性曲线的非线性。
差分放大器传输特性曲线的非线性及三角波-正弦波变换原理如下图:图5 三角波-正弦波变换原理分析表明,传输特性曲线的表达式为:022/1id T C E U U aI I aI e ==+ 011/1id T C E U U aI I aI e -==+ 上式中:/1C E a I I =≈;0I —差分放大器的恒定电流; T U —温度的电压当量,当室温为25℃时,U T ≈26mV 。
如果U id 为三角波,设表达式为44434m id m U T t T U U T t T ⎧⎛⎫- ⎪⎪⎪⎝⎭=⎨-⎛⎫⎪- ⎪⎪⎝⎭⎩ 022T t T t T ⎛⎫≤≤ ⎪⎝⎭⎛⎫≤≤ ⎪⎝⎭式中:Um —三角波的幅度;T —三角波的周期。
为使输出波形更接近正弦波,由图5可知:(1) 传输特性曲线越对称,线性区越窄越好;(2) 三角波的幅度Um 应正好使晶体管接近饱和区或截止区。
3.总电路图整个设计电路如图6所示。
图6 方波—三角波—正弦波函数信号发生器四、电路的参数选择与电路仿真本课题采用Multisim 10.1作为仿真软件。
Multisim是Interactive Image Technologies (Electronics Workbench)公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。
它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。
NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。
Multisim 10.1通过直观的电路图捕捉环境, 轻松设计电路;通过交互式SPICE仿真, 迅速了解电路行为;借助高级电路分析, 理解基本设计特征;本课题使用Multisim交互式地搭建电路原理图,并对电路行为进行仿真。
1.方波--三角波部分参数选择:在电容C1、C2处放置了选择开关,可以满足课设要求的两个频率范围1~10Hz、10~100Hz:当需要1~10Hz时,开关选择C2=10μF,取45.1R k=Ω,RP2为100Ω电位器;当需要10~100Hz时,取C2=1μF,以实现频率波段的转换,R4及RP2的取值不变。
平衡电阻510R k=Ω。
方波-三角波电路的仿真:在Multisim 10.1中按方波-三角波转换电路图(图2)接线。
调节Rp1和Rp2到设定值,检查无误后,在正确位置接上示波器观察输出波形,即可得到如图7所示的波形:图7(a)方波图7(b)三角波图8为双踪示波器显示的方波三角波波形图图8 方波-三角波微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。
2.三角波--正弦波部分参数选择:隔直电容C 3、C 4、C 5要取得较大,因为输出频率很低,取345470C C C F μ===,滤波电容6C 视输出的波形而定,若含高次斜波成分较多,6C 可取得较小,6C 一般为几十皮法至0.1微法。
RE 2=100欧与RP 4=100欧姆相并联,以减小差分放大器的线性区。
差分放大器的静态工作点可通过观测传输特性曲线,调整RP 4及电阻R 7确定。
三角波--正弦波电路的仿真:在Multisim 10.1中按方波-三角波转换电路图(图4)接线。
保证参数正确,检查无误后,在正确位置接上示波器观察输出波形,调整R 7和C 6的大小即可得到如图9所示的波形:图9 正弦波五、实验结果分析比较器与积分器组成正反馈闭环电路,方波、三角波同时输出。
电位器Rp1与Rp2要事先调整到设定值,否则电路可能会不起振。
只要接线正确,接通电源后便可输出方波、三角波。
微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。
调整RP4及电阻R7,可以使传输特性曲线对称。
调节Rp3使三角波的输出幅度经Rp3输出等于U idm值,这时输出波形应接近正弦波,调节C6的大小可改善波形。
因为运放输出级由PNP型与NPN型两种晶体管组成复合互补对称电路,输出方波时,两管轮流截止与饱和导通,导通时受输出电阻的影响,使方波输出值小于电源电压值,故方波输出电压Up-p≤2Vcc。