湖南大学《机械原理》复习重点笔记(高等教育出版社)

合集下载

《机械原理》复习要点

《机械原理》复习要点

《机械原理》复习要点(2022-6-17)一、重要知识点(一)填空题(15%~20%)机器(由哪四大部分组成)。

自由度的定义,作平面运动的自由构件的自由度数目。

运动副如何区分高副和低副。

引入高副、低副分别会引入多少个约束。

在铰链四杆机构中,以不同的杆为机架时四杆机构的名称。

曲柄滑块机构的传动角。

四杆机构的行程速比系数K与极位夹角θ的关系。

曲柄摇杆机构以曲柄主动时最小传动角发生在什么位置。

当四杆机构的压力角α=90°时传动角的值及位置。

凸轮机构按从动件端部形式可分哪几种。

凸轮机构按凸轮形状分可为哪几种。

凸轮基圆半径、压力角的变化对机构工作情况的影响。

渐开线标准直齿圆柱齿轮传动的正确啮合条件。

斜齿轮的模数和压力角怎么取标准值。

轮系分为哪几种。

周转轮系的转化机构的含义。

瞬心的含义。

静平衡和动平衡的径宽比要求。

(二)选择题(15%~20%)机构具有确定运动的条件。

虚约束、局部自由度、复合铰链的含义。

平面四杆机构压力角α与传动角γ的关系。

平面四杆机构无急回特性时,压力角、传动角、极位夹角的情况。

以曲柄为原动件时,对心曲柄滑块机构的传动角。

为提高曲柄摇杆机构的传力性能,应该怎样做。

凸轮的从动件作等加速等减速运动时所产生的影响。

凸轮机构从动件在什么条件下时会出现刚性冲击。

减小凸轮基圆半径对凸轮压力角的影响。

对于齿数相同的齿轮,模数越大时的影响。

当两渐开线齿轮的中心距略有改变时对齿轮传动的影响。

一对渐开线齿轮连续传动的条件。

什么情况下会发生根切现象。

用范成法切制齿轮时,什么条件下可用同一把滚刀。

加工两只正常齿制渐开线直齿圆柱外齿轮时对刀具的要求。

平行轴斜齿圆柱齿轮机构与直齿圆柱具齿轮机构相比的优点。

当圆销所在拨盘作单向连续运动时槽轮的运动。

周转轮系与定轴轮系的根本区别。

惰轮的含义与在图中的识别。

绝对瞬心、相对瞬心的含义。

静平衡的方法有哪些。

(三)判断题(15%~20%)零件的含义。

平面四杆机构的传动角。

机械原理笔记

机械原理笔记

机械原理自我总结及之前笔记遗漏的知识点第一章绪论学什么:研究对象是机械(机器和机构的总称),重点研究对象是机构。

为何学:学习设计机构,巧妙地应用机构。

现代机械与机械原理内容密不可分。

如何学:具有理论系统性,注重理论联系实际,逐步建立工程观念。

具有全面考虑问题的习惯。

第二章机构的结构分析机器运动的观点:任何机器都是由若干个构件组合而成的。

机架也是一个构件。

运动副中的自由度f和约束度s的关系:f=6-s 点接触或线接触为高副,面接触为低副。

类似于螺旋副的运动副,转动和移动运动不是相互独立的,而是通过螺旋引入约束,所以不是Ⅳ级副,而是Ⅴ级副。

具有固定构件的运动链就变成了机构。

同一运动链当取不同构件为机架的时候可以获得不同的机构的类型。

机械原理课程体系就是从工作原理入手,然后研究性能和设计问题。

运动简图绘制时,有些齿轮和曲轴是同一构件,需要用焊接号把它们连接起来,这样才能表达成同一构件。

阻力最小定律:机构优先沿阻力最小的方向运动。

转动副的摩擦一般小于移动副的摩擦。

此定律可以增加机构的灵巧性和运动的自适应性。

计算运动副数目的时候,要特别注意是否是复合铰链,注意是否是同一运动副(转动副轴线重合,移动副移动方向平行,平面高副接触点公法线重合),注意是否是复合高副。

计算自由度时,要除去局部自由度、虚约束。

常发生虚约束的情况:轨迹重合、距离恒定不变、结构重复。

平面机构组成时,不能将同一杆组的各个外接运动副接于同一构件上,否则起不到增加杆组的作用。

第三章平面机构的运动分析较常用图解分析,要求方法方便、快捷、直观。

对于简单的机构,用速度瞬心法作其速度图解分析十分方便快捷。

结构复杂的机构的话,就采用综合法。

采用速度瞬心法时,待求的瞬心位置在两条下脚标中去掉公共号剩下的两个数字组合恰好和速度瞬心相同的延长线上的交点。

就比如说,速度瞬心P13在线段P12P23的延长线与线段P14P34的延长线的交点处。

利用瞬心法求解时,相对瞬心P24在两绝对瞬心P12、P14的延长线上时,与同向相对瞬心P24在两绝对瞬心P12、P14之间时,与向。

(完整版)机械原理笔记

(完整版)机械原理笔记

(完整版)机械原理笔记第⼀章平⾯机构的结构分析1.1 研究机构的⽬的⽬的:1、探讨机构运动的可能性及具有确定运动的条件2、对机构进⾏运动分析和动⼒分析3、正确绘制机构运动简图1.2 运动副、运动链和机构1、运动副:两构件直接接触形成的可动联接(参与接触⽽构成运动副的点、线、⾯称为运动副元素)低副:⾯接触的运动副(转动副、移动副),⾼副:点接触或线接触的运动副注:低副具有两个约束,⾼副具有⼀个约束2、⾃由度:构件具有的独⽴运动的数⽬(或确定构件位置的独⽴参变量的数⽬)3、运动链:两个以上的构件以运动副联接⽽成的系统。

其中闭链:每个构件⾄少包含两个运动副元素,因⽽够成封闭系统;开链:有的构件只包含⼀个运动副元素。

4、机构:若运动链中出现机架的构件。

机构包括原动件、从动件、机架。

1.3 平⾯机构运动简图1、机构运动简图:⽤简单的线条和规定的符号来代表构件和运动副并按⼀定的⽐例表⽰各运动副的相对位置。

机构⽰意图:不按精确⽐例绘制。

2、绘图步骤:判断运动副类型,确定位置;合理选择视图,定⽐例µl;绘图(机架、主动件、从动件)1.4 平⾯机构的⾃由度1、机构的⾃由度:机构中各活动构件相对于机架的所能有的独⽴运动的数⽬。

F=3n - 2p L - p H(n指机构中活动构件的数⽬,p L指机构中低副的数⽬,p H指机构中⾼副的数⽬)⾃由度、原动件数⽬与机构运动特性的关系:1):F≤0时,机构蜕化成刚性桁架,构件间不可能产⽣相对运动2):F > 0时,原动件数等于F时,机构具有确定的运动; 原动件数⼩于机构⾃由度时,机构运动不确定; 原动件数⼤于机构⾃由度,机构遭到破坏。

2、计算⾃由度时注意的情况1)复合铰链:m个构件汇成的复合铰链包含m-1个转动副(必须是转动副,不能多个构件汇交在⼀起就构成复合铰链,注意滑块和盘类构件齿轮容易漏掉,另外机架也是构件。

2) 局部⾃由度:指某些构件(如滚⼦)所产⽣的不影响整个机构运动的局部运动的⾃由度。

《机械原理》笔记

《机械原理》笔记

《机械原理》*号内容第一章概论第一节本课程的研究内容什么是机器、机构?构件.概括为四类:(1)刚体导引:当机构的原动件做简单运动时,要求刚体连续地变换其位置。

(2)函数变换:使机构某从动件的运动参数为原动件运动参数的给定函数。

(3)轨迹复演:使连杆上某点的轨迹能近似地与给定曲线复合。

(4)瞬时运动量约束:按构件在某些特定位置时的运动量来设计机构的结构参数。

准点——符合预定条件的几个位置。

只要求几个位置处符合给定条件的机构综合方法称为准点法。

减小结构误差的途径是:合理确定准点的分布。

可按契比谢夫零值公式配置准点。

第三节学习本课的方法1.注意基本理论与基本方法之间的联系2. 用工程观点学习理论高副----运动链1, F>0;2, F=原动件数。

(F?原动件数、F?原动件数时会出现什么情况?)主动件—机构中传入驱动力(矩)的构件。

原动件——运动规律已知的构件。

其余的活动构件统称从动件。

输出构件——输出运动或动力的从动件复合铰链——两个以上的构件构成的同轴线的转动副,其转动副个数等于构件数减1。

局部自由度——与机构整体运动无关的自由度。

虚约束——对运动不起实际限制作用的约束。

第三节机构的组成F=0的不可再拆分的最简单的运动链——基本杆组。

n=2;p ln=4;p ln=4;p l级;3.将高副第一节概述第二节Ⅱ级机构的运动分析运动分析的步骤:建立机构的位置方程式;位置方程式对时间t求导一次、两次得速度方程式、加速度方程。

一、铰链四杆机构的运动分析将坐标逆时针方向旋转求构件的角速度、角加速度二、曲柄滑块机构的运动分析导路平行坐标轴线时不可用坐标旋转法(为什么?)三、导杆机构的运动分析第七节速度瞬心及其位置确定瞬心——作一般平面运动的两构件上的瞬时等速重合点或瞬时相对速度为零的重合点。

绝对瞬心——重合点的绝对速度为零.相对瞬心——重合点的绝对速度不为零。

驱动力平衡力摩擦圆——以?为半径圆。

(??rf)对轴颈的总反力将始终切于摩擦圆。

机械原理复习笔记.docx

机械原理复习笔记.docx

第二章机构的机构分析一、机构的组成二、机构运动简图三、确定运动条件四、自由度计算五、自由度计算注意事项1・1构件:独立运动单元体;零件:独立制造单元体。

1.2运动副:两构件直接接触而构成的可动联接。

121约束数目:I级畐叽II级畐此……V级副。

122接触形式:高副(点、线)、低副(面)。

123相对运动形式:移动、转动.螺旋、球面。

1.3运动链:构件通过运动副的联接而构成的相对可动的系统。

开式、闭式。

1・4机构:具有固定构件的运动链。

1.4.1机架:固定构件;1・4・2原动件:已知运动规律。

143从动件:其余活动构件。

2•机构运动简图:根据机构运动尺寸按一定比例尺定出各运动副位置,采用运动副及常用机构运动简图符号和构件的表示方法,将机构运动传递情况表示出来的简化图形。

(绘制时需注意线的连接问题)2・1绘图步骤:搞清机械构造及运动情况、传递路线,构件数目,运动副类别及位置,选择视图平面,选择比例尺,标上运动副符号,及各构件序号。

3•确定运动条件:原动件数目等于机构自由度数目。

4•自由度计算:F = 3n_(2pi + pj9F=3*6—2*7—3=lA5 •注意事项5.4虚约束pF = 3n_(2p[ + 卩厂 p )-FP139 (考研)第三章平面机构的运动分析任务:根据机构尺寸、原动件运动规律,求从动件上某点轨迹、位移、 速度、加速度,构件的角位移、角速度、加速度。

方法:图解、解析。

1・瞬心:两构件等速重合点。

(相对、绝对瞬心)K=N (N-l ) /2LI1.1瞬心位置确定 1・1・1定义:转动副(较点)、移动副(垂直导路、无穷远)高副(接触点,接触点公法线上)1・1・2三心定理:三构件三瞬心在同一直线上。

例:平面较链四杆机构(第三章PPT 第12页)2•矢量方程图解法做速度、加速度分析两构件构成平面高副,各接触点公法线彼此重合5・3局部自由度F2.1同一构件上两点间的运动矢量关系2.2两构件上重合点间的运动矢量关系3.解析法作机构的运动分析全程导学(P60)第四章平面机构力的分析驱动力:力的方向与速度方向相同或成锐角(做正功)。

机械原理复习重点

机械原理复习重点

标准中心距 a cos acos
第十章 齿轮机构

第十章 齿轮机构
• 七、变位齿轮
• 1、标准齿轮的缺点
• 2、变位的基本原理
• 3、变位齿轮与标准齿轮的齿形比较
• 4、变位齿轮啮合传动

传动类型--优缺点
第十章 齿轮机构
• 八、平行轴斜齿圆柱齿轮传动 • 正确啮合条件、 尺寸计算、优缺点--与直齿轮
pb p cos( )
a
1 2
m( z1
z2
)
5/5/2020
34
第十章 齿轮机构
• 五、渐开线齿轮的啮合
• 1、正确啮合条件

2、标准中心距、啮合角
• 3、齿轮的啮合过程、重合度
• 六、渐开线齿轮的切制
• >>方法
• >>根切现象及危害--不根切的最少齿数

--根切的原因--防止根切的方法
第十章 齿轮机构
5/5/2020
13
第六章 机械的平衡
• 掌握刚性转子平衡设计的方法
– 静平衡、动平衡适用的场合、平衡原理、平衡条件
• 了解平面机构平衡设计的方法
5/5/2020
14
第七章 机械的运转及其速度波动的调节
• 1、真实运动
– 等效动力学模型的建立
• 等效构件的选取 – 常以作回转运动或移动的原动件为等效构件
第九章 凸轮机构

第九章 凸轮机构

• 三、凸轮机构设计 • 反转原理
5/5/2020
28
第九章 凸轮机构
• 四、凸轮设计中的注意事项 • 1、基圆半径和压力角的关系 • 2、滚子实际轮廓的变尖和失真问题 • 3、平底长度的选择

机械原理复习要点

机械原理复习要点

机械原理复习要点第一章:绪论1.机械的分类:从机械原理学科研究的内涵而言,一般认为机械包含机器和机构两个部分。

2.机器的定义:能实现预期运动并完成特定作业任务的机构系统。

特征:(1)机器是一种人造实物组合体,而非自然形成的物体(2)组成机器的各活动部分之间具有确定的相对运动关系(3)机器能够实现不同能量之间的转换或是代替人类完成特定的作业3.机构的定义:能实现预期运动并实现力传递的人为实物组合体。

特征;(1)机构是一种人造实物组合体,而非自然形成的物体(2)组成机构的各活动部分之间具有确定的相对运动关系(3)机构能够把一种运动形式转换成另外一种运动形式或者实现力的传递。

第二章:机构的结构分析1.机构的组成:构件(构成一个独立运动单元的实物组合体);运动副(两个构件直接接触而又能实现相对运动的可动连接);运动链(若干个构件经运动副连接而成的构建系统)2.机构的组成规律:机构是由一个机架与一个或几个原动件,再加上若干个从动件组成而成。

机架:作为参考系的固定构件。

主动件:按预定给定运动规律独立运动的构件。

从动件:除主动件外的活动构件。

3.零件:不能够再分拆的单个实物体4.运动副元素:两构件直接接触的表面5.约束:对运动的限制称为约束。

分类:按运动副产生约束数目可以分为I 级副、II 级副、III 级副等;按接触方式分为低副和高副;按相对运动形式分为移动副和转动副以及空间运动副;按始终保持接触的方式分为几何形状封闭运动副、力封闭运动副等6.运动链分类:如果组成运动链的所有构件依次连接形成首尾封闭的系统则称之为闭式运动链,反之则为开式运动链。

7.机构运动简图:表明机构的组成、运动传递过程以及各构件相对运动特征的简单图形;机动示意图:只需表明机构的组成状况和结构特点而不需要严格按照比例尺绘制的简图。

8.机构自由度:机构维持确定运动所必需的的独立运动参数。

平面机构自由度计算公式:)2(3H L P P n F +⨯-⨯=;其中n:活动构件数,P L :低副约束数,P h :高副约束数;空间机构自由度计算公式:)2345(612345P P P P P n F +⨯+⨯+⨯+⨯-⨯=9.机构具有确定运动的条件:机构的自由度等于原动件的数目第三章:平面连杆机构分析与设计1.平面连杆机构:由若干构件通过低副(转动副、移动副、球面副、球销副、圆柱副及螺栓副等)连接而成,又称为低副机构。

机械原理笔记

机械原理笔记

机械原理笔记机械原理笔记本文主要介绍机械原理相关的笔记,囊括了机械元件、机构和机器等多个方面。

一、机械元件机械元件是机器的基本部件,通常包括螺栓、螺母、轴、轴承、连杆、齿轮、皮带轮、键等。

其中,螺栓和螺母主要用于连接两个零件;轴、轴承、连杆则用于支撑轴的转动和传递力;齿轮、皮带轮则用于传递动力和变换转速和转矩;键则用于固定零件位置和避免转动时的相对移动。

二、机构机构是由多个机械元件组成的复杂部件,根据功能不同可分为转动机构和直线机构。

其中,转动机构通常包括齿轮传动、摆动机构和连杆机构等,而直线机构则通常包括割板机构和弹簧机构等。

齿轮传动是机械设备中最常见的机构之一,通过齿轮相互啮合来传递力和动力,从而实现机器的运转。

齿轮通常根据齿形不同可分为圆柱齿轮、锥齿轮和蜗轮蜗杆等。

其中,圆柱齿轮分为内齿和外齿,内齿轮通常用于传动机构的中心轴转动,而外齿则通常用于连杆机构。

摆动机构主要是指由一些连杆和摇杆组成的机械系统,通常用于矩形折弯机和有切曲功能的机床中。

而连杆机构则是由一些连接杆、滑块和摆臂组成的复杂机构,通常用于线性运动。

根据运动轨迹不同,连杆机构可分为平面连杆机构和空间连杆机构。

三、机器机器是指将动力转换为有用的工作效果的工具。

根据功能和形态的不同,机器可分为物理机器和推测机器。

物理机器通常包括机床、发电机、汽车等,而推测机器则主要指计算机等电器设备。

机床是一种用于加工金属和其他材料的机械设备,通常包括车床、铣床、钻床、磨床等。

机床主要用于制造机械元件和工业品,是工业生产中不可缺少的机械设备之一。

发电机是一种能够将机械能转换为电能的物理机器,主要由转子、定子、电刷和机壳等部件组成。

发电机是电力系统中不可缺少的设备,用于产生电能和稳定电压。

汽车是一种通过发动机驱动轮胎运动的机械设备,主要由发动机、传动系统、制动系统和转向系统等组成。

汽车是现代社会中最普遍的交通工具之一,对人们的生活和生产产生了重要影响。

机械原理笔记

机械原理笔记

机械原理笔记机械原理自我总结及之前笔记遗漏的知识点第一章绪论学什么:研究对象是机械(机器和机构的总称),重点研究对象是机构。

为何学:学习设计机构,巧妙地应用机构。

现代机械与机械原理内容密不可分。

如何学:具有理论系统性,注重理论联系实际,逐步建立工程观念。

具有全面考虑问题的习惯。

第二章机构的结构分析机器运动的观点:任何机器都是由若干个构件组合而成的。

机架也是一个构件。

运动副中的自由度f和约束度s的关系:f=6-s 点接触或线接触为高副,面接触为低副。

类似于螺旋副的运动副,转动和移动运动不是相互独立的,而是通过螺旋引入约束,所以不是Ⅳ级副,而是Ⅴ级副。

具有固定构件的运动链就变成了机构。

同一运动链当取不同构件为机架的时候可以获得不同的机构的类型。

机械原理课程体系就是从工作原理入手,然后研究性能和设计问题。

运动简图绘制时,有些齿轮和曲轴是同一构件,需要用焊接号把它们连接起来,这样才能表达成同一构件。

阻力最小定律:机构优先沿阻力最小的方向运动。

转动副的摩擦一般小于移动副的摩擦。

此定律可以增加机构的灵巧性和运动的自适应性。

计算运动副数目的时候,要特别注意是否是复合铰链,注意是否是同一运动副(转动副轴线重合,移动副移动方向平行,平面高副接触点公法线重合),注意是否是复合高副。

计算自由度时,要除去局部自由度、虚约束。

常发生虚约束的情况:轨迹重合、距离恒定不变、结构重复。

平面机构组成时,不能将同一杆组的各个外接运动副接于同一构件上,否则起不到增加杆组的作用。

第三章平面机构的运动分析较常用图解分析,要求方法方便、快捷、直观。

对于简单的机构,用速度瞬心法作其速度图解分析十分方便快捷。

结构复杂的机构的话,就采用综合法。

采用速度瞬心法时,待求的瞬心位置在两条下脚标中去掉公共号剩下的两个数字组合恰好和速度瞬心相同的延长线上的交点。

就比如说,速度瞬心P13在线段P12P23的延长线与线段P14P34的延长线的交点处。

利用瞬心法求解时,相对瞬心P24在两绝对瞬心P12、P14的延长线上时,与同向相对瞬心P24在两绝对瞬心P12、P14之间时,与向。

机械原理全部知识点总结

机械原理全部知识点总结

机械原理全部知识点总结一、牛顿定律1. 牛顿第一定律:物体在外力作用下静止或匀速直线运动,除非有外力作用,否则不会改变其状态。

2. 牛顿第二定律:物体受力作用时,其加速度与作用力成正比,与物体质量成反比,方向与力的方向相同。

3. 牛顿第三定律:作用力与反作用力大小相等,方向相反,作用在不同物体上。

二、运动学1. 位移、速度和加速度的定义及关系2. 直线运动和曲线运动的描述和分析3. 相对运动和相对运动问题的解决方法4. 圆周运动和角速度、角加速度的计算5. 瞬时速度和瞬时加速度的概念及计算方法三、动力学1. 动量和动量定理:动量的定义和计算方法,动量守恒定律的应用2. 动能和动能定理:动能的定义和计算方法,动能定理的应用3. 动力和动力定理:动力的定义和计算方法,动力定理的应用4. 质点受力分析:引力、弹力、摩擦力等力的计算和分析5. 动能、动量和功率的关系:能量守恒定律和功率的计算方法四、静力学1. 平衡条件和平衡方法:受力平衡条件的表述和计算方法2. 力的合成和分解:力的合成定理和力的分解定理的应用3. 各向同性和各向异性材料的力学性质4. 梁的静力学分析方法:简支梁、固支梁和悬臂梁的静力学分析方法五、轴系1. 轴系的分类和特点:一般轴系、滚动轴系和滑动轴系的特点和应用2. 轴系的受力分析:轴系受力平衡条件和计算方法3. 轴系的设计与选用:轴系的设计原则和选材方法4. 轴系的传动:轴系的传动原理和传动装置的种类及应用六、传动1. 传动的分类和特点:齿轮传动、带传动、链传动和齿条传动的特点和应用2. 传动的传递特性:传动的传递比、效率和传动比的计算方法3. 传动装置的设计与选用:传动装置的设计原则和选用方法4. 传动装置的振动和噪音控制:传动装置的振动和噪音控制原理和方法七、机构1. 机构的分类和特点:平面机构、空间机构、连杆机构和歧杆机构的特点和应用2. 机构的运动分析:机构的运动规律、运动轨迹和运动参数的计算方法3. 机构的静力学分析:机构的受力平衡条件和受力分析方法4. 机构的动力学分析:机构的运动学和动力学分析方法八、机器人1. 机器人的分类和特点:工业机器人、服务机器人和专用机器人的特点和应用2. 机器人的结构和工作原理:机器人的机械结构和工作原理3. 机器人的传感器和执行器:机器人的传感器和执行器的种类和应用4. 机器人的控制系统:机器人的控制系统和编程方法以上是机械原理的全部知识点总结,涵盖了牛顿定律、运动学、动力学、静力学、轴系、传动、机构和机器人等内容。

机械原理考试知识点.doc

机械原理考试知识点.doc

《机械原理》考试知识点第一篇基本机构及常用机构的运动学设计第一章绪论1.了解机械原理的研究对象及主要内容;2.了解机械原理的地位和作用;3.了解机械原理的学习目的和方法。

第二章机构的结构分析与综合1.掌握有关机构的概念,如构件、运动副、运动链、杆组等;2.掌握平面机构运动简图的绘制方法和步骤,能根据实际机械正确绘制机构运动简图;3.掌握机构具有确定运动的条件及平面机构自由度的计算,并注意复合铰链、局部自由度和虚约束等情况;4.掌握平面机构中高副低代的方法,要求代替前后,机构的自由度和机构的瞬时运动不变;5.掌握平面低副机构的结构分析和组成原理,能根据给定的机构运动简图进行拆杆组,进行机构的结构分析,并确定机构的级别。

第三章平面连杆机构及其设计1.了解平面连杆机构的类型、应用及其主要特点;2.掌握平面连杆机构特别是它的基本形式——平面铰链四杆机构的一些基本概念和基本知识及其演化方法和应用;3.掌握平面连杆机构的运动特性和传力特性:如有曲柄的条件、急回特性和行程速度变化系数、压力角与传动角、死点位置、运动连续性等;4.掌握等视角定理及几何法刚体导引机构的设计;5.掌握机构的刚化反转法及几何法函数生成机构的设计;6.掌握急回机构的设计;7.掌握用速度瞬心法作平面机构的速度分析方法;8.掌握用相对运动图解法进行机构的运动分析方法;9.掌握用复数矢量法进行机构的运动分析的方法。

第四章凸轮机构及其设计1.掌握凸轮机构的基本概念、凸轮机构的分类及应用;2.掌握从动件常用的运动规律及从动件运动规律的设计原则;3.掌握凸轮机构的反转法原理;4.掌握图解法设计平面凸轮轮廓曲线的设计方法;5.掌握解析法设计平面凸轮轮廓曲线的设计方法;6.掌握凸轮机构的压力角及基本尺寸的设计。

第五章齿轮机构及其设计1.了解齿轮机构的类型和应用;2.掌握齿廓啮合基本定律;3.掌握渐开线的形成及其性质;4.掌握渐开线标准直齿圆柱齿轮的基本参数和几何尺寸计算;5.掌握渐开线直齿圆柱齿轮的啮合传动特点,包括:1)定传动比;2)啮合线与啮合角;3)中心距的可分性;3)正确啮合条件;4)连续传动条件;5)标准中心距和安装中心距;6)无侧隙啮合条件等。

《机械原理》知识要点

《机械原理》知识要点

《机械原理》知识要点一、力学基础知识1.质点和刚体的概念:质点是没有尺寸的物体,可以看作是质量集中于一点;刚体是保持形状不变的物体。

2.牛顿力学定律:第一定律(惯性定律)、第二定律(动力学方程)、第三定律(作用-反作用定律)。

3.力的合成与分解:力的合成遵循力的平行四边形法则,力的分解将一个力分解为多个力的矢量和。

4.矢量运算:矢量的加法、减法、数量积和矢量积。

5.应力和应变:应力是单位面积上的力的作用,应变是物体在力的作用下发生的尺寸变化。

二、运动学1.位移、速度和加速度:位移是物体的位置变化,速度是位移关于时间的导数,加速度是速度关于时间的导数。

2.相对运动与相对速度:两个物体之间的相对运动以及相对速度的概念。

3.圆周运动学:圆周运动的位移、速度、加速度与线速度、角速度、角加速度的关系。

4.二维运动学:平面运动的描述与分析,如抛体运动。

三、动力学1.牛顿第二定律:力的作用会引起物体的加速度变化,加速度与作用力成正比,与物体质量成反比。

2.平衡分析:当物体受到的合力为零时,物体处于平衡状态。

3.静摩擦力与滑动摩擦力:静摩擦力是在物体静止时阻止其开始运动的力,滑动摩擦力是物体在运动中受到的阻力。

4.弹簧力与胡克定律:弹簧的变形与所受力成正比。

四、能量与功1.功与能量的概念:功是力在位移方向上的投影与位移的乘积,能量是物体在力或力场作用下所具有的能做功的能力。

2.动能与势能:动能是物体由于速度而具有的能量,势能是物体由于位置而具有的能量。

3.机械能守恒定律:在不受非保守力(如摩擦力)的作用下,机械能(动能和势能的和)守恒。

4.功率:功率是单位时间内所做的功。

五、重力和万有引力1.重力与质量:重力是地球对物体的吸引力,重力与物体的质量成正比。

2.万有引力:万有引力是质点之间的引力,与质点之间的距离平方成反比,与质点之间的质量成正比。

3.万有引力和圆周运动:行星绕太阳的运动遵循圆周运动学定律。

4.地球重力和物体的自由落体:地球重力是物体自由下落的原因,自由落体的位移、速度和加速度的关系。

机械原理基础知识点总结,复习重点

机械原理基础知识点总结,复习重点

机械原理知识点总结第一章平面机构的结构分析3一. 基本概念31. 机械: 机器与机构的总称。

32. 构件与零件33. 运动副34. 运动副的分类35. 运动链36. 机构3二. 基本知识和技能31. 机构运动简图的绘制与识别图32.平面机构的自由度的计算及机构运动确定性的判别33. 机构的结构分析4第二章平面机构的运动分析6一. 基本概念:6二. 基本知识和基本技能6第三章平面连杆机构7一. 基本概念7(一)平面四杆机构类型与演化7二)平面四杆机构的性质7二. 基本知识和基本技能8第四章凸轮机构8一.基本知识8(一)名词术语8(二)从动件常用运动规律的特性及选用原则8三)凸轮机构基本尺寸的确定8二. 基本技能9(一)根据反转原理作凸轮廓线的图解设计9(二)根据反转原理作凸轮廓线的解析设计10(三)其他10第五章齿轮机构10一. 基本知识10(一)啮合原理10(二)渐开线齿轮——直齿圆柱齿轮11(三)其它齿轮机构,应知道:12第六章轮系14一. 定轴轮系的传动比14二.基本周转(差动)轮系的传动比14三.复合轮系的传动比15第七章其它机构151.万向联轴节:152.螺旋机构163.棘轮机构164. 槽轮机构166. 不完全齿轮机构、凸轮式间歇运动机构177. 组合机构17第九章平面机构的力分析17一. 基本概念17(一)作用在机械上的力17(二)构件的惯性力17(三)运动副中的摩擦力(摩擦力矩)与总反力的作用线17二. 基本技能18第十章平面机构的平衡18一、基本概念18(一)刚性转子的静平衡条件18(二)刚性转子的动平衡条件18(三)许用不平衡量及平衡精度18(四)机构的平衡(机架上的平衡)18二. 基本技能18(一)刚性转子的静平衡计算18(二)刚性转子的动平衡计算18第十一章机器的机械效率18一、基本知识18(一)机械的效率18(二)机械的自锁19二. 基本技能20第十二章机械的运转及调速20一. 基本知识20(一)机器的等效动力学模型20(二)机器周期性速度波动的调节20(三)机器非周期性速度波动的调节20二. 基本技能20(一)等效量的计算20(二)飞轮转动惯量的计算20第一章平面机构的结构分析一. 基本概念1. 机械: 机器与机构的总称。

机械原理知识点总结笔记

机械原理知识点总结笔记

机械原理知识点总结笔记
机械原理是一门研究机械运动、力学性能、传动原理及运动控制等方面的学科。

以下是机械原理的一些重要知识点总结笔记:
1. 运动学:研究物体的运动状态、位置、速度和加速度等因素的学科。

包括点运动、直线运动、曲线运动、旋转运动等。

2. 动力学:研究物体的运动引起的力和加速度之间的关系的学科。

包括牛顿定律、作用力和反作用力、动量守恒定律等。

3. 静力学:研究物体处于静止状态下的受力和平衡条件的学科。

包括力的合成与分解、力的平衡、力矩和力的偶等。

4. 机械传动原理:研究机械元件之间的传动关系和力的传递方式的学科。

包括齿轮传动、皮带传动、链条传动等。

5. 运动副:具有相对运动关系的机械元件之间的接触部分。

常见的运动副有转动副、滑动副、滚动副等。

6. 运动链:由多个运动副按照一定顺序连接而成的机械系统。

运动链可以用于实现机械传动、运动转换和力的放大等功能。

7. 齿轮传动:通过齿轮的啮合将动力传递给机械元件的一种传动方式。

齿轮传动具有传递效率高、传动比稳定等特点。

8. 皮带传动:通过套在轮壳上的皮带将动力传递给机械元件的一种传动方式。

皮带传动具有传动平稳、减震降噪等特点。

9. 运动平面:在运动学研究中,用来描述物体运动及其组成的几何形状的平面。

常见的运动平面包括竖直平面、水平平面、垂直平面等。

10. 运动轨迹:物体在运动过程中经过的轨迹。

运动轨迹可以是直线、曲线、圆形、椭圆形等形状。

以上是机械原理的一部分重要知识点总结笔记,希望对你的学习有所帮助。

机械原理知识点归纳总结(良心出品必属精品)

机械原理知识点归纳总结(良心出品必属精品)

机械原理知识点归纳总结第一章绪论基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。

第二章平面机构的结构分析机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。

1. 机构运动简图的绘制机构运动简图的绘制是本章的重点,也是一个难点。

为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对。

2. 运动链成为机构的条件判断所设计的运动链能否成为机构,是本章的重点。

运动链成为机构的条件是:原动件数目等于运动链的自度数目。

机构自度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。

机构自度计算是本章学习的重点。

准确识别复合铰链、局部自度和虚约束,并做出正确处理。

(1) 复合铰链复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。

正确处理方法: k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。

(2) 局部自度局部自度是机构中某些构件所具有的并不影响其他构件的运动的自度。

局部自度常发生在为减小高副磨损而增加的滚子处。

正确处理方法:从机构自度计算公式中将局部自度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自度。

(3) 虚约束虚约束是机构中所存在的不产生实际约束效果的重复约束。

正确处理方法:计算自度时,首先将引入虚约束的构件及其运动副除去不计,然后用自度公式进行计算。

虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。

对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。

3. 机构的组成原理与结构分析机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考试复习重点资料(最新版)
资料见第二页


第一章概论
第一节 本课程的研究内容
什么是机器、机构?
机器的三特征:1)由一系列的运动单元体所组成。

2)各运动单元体之间都具有确定的相对运动。

3)能转换机械能或完成有用的机械功以代替或减轻人们的劳动。

具有以上1、2两个特征的实体称为机构。

构件——由一个或多个零件连接而成的运动单元体。

零件——机器中的制造单元体。

第二节 机构的分析与综合及其方法
机构分析:对已知机构的结构和各种特性进行分析。

机构综合:根据工艺要求来确定机构的结构形式、尺寸参数及某些动力学参数。

机构综合的内容: 1.机构的结构综合2.机构的尺度综合3.机构的动力学综合。

机构的结构综合:主要研究机构的组成规律。

机构的尺度综合(或运动学综合):研究已知机构如何按给定的运动要求确定其尺寸参数.概括为四类:
(1)刚体导引 :当机构的原动件做简单运动时,要求刚体连续地变换其位置。

(2)函数变换:使机构某从动件的运动参数为原动件运动参数的给定函数。

(3)轨迹复演:使连杆上某点的轨迹能近似地与给定曲线复合。

(4)瞬时运动量约束:按构件在某些特定位置时的运动量来设计机构的结构参数。

准点——符合预定条件的几个位置。

只要求几个位置处符合给定条件的机构综合方法称为准点法。

减小结构误差的途径是:合理确定准点的分布。

可按契比谢夫零值公式配置准点。

第三节 学习本课的方法1.注意基本理论与基本方法之间的联系2. 用工程观点学习理论与基本方法3.注意加强感性认识和实践性环节
第二章机构的结构分析
第一节 概述
构成机构的基本要素——构件 运动副 运动链
运动副:两构件间直接接触且能产生某些相对运动的联接称为运动副。

约束---对构件间运动的限制。

运动副元素—运动副参加接触的部分。

空间运动副和约束的关系。

平面机构中只有Ⅳ级副和Ⅴ级副。

(为什么?)低副---副元素为面接触(如移动副、转动副);
高副----副元素为点(线)接触。

运动链---构件由运动副连接而成的系统。

机构 —选定机架,给相应的原动件,其余构件作确定运动的运动链。

第二节 平面机构自由度
机构自由度——机构具有确定运动所必须的独立运动参数的数目。

高副提供一个约束,低副提供两个约束。

机构的自由度为:F=3n-(2p l+p h)。

(各符号的意义)机构具有确定运动的条件 1, F>0;2, F=原动件数。

(F>原动件数、F<原动件数时会出现什么情况?)
主动件—机构中传入驱动力(矩)的构件。

原动件——运动规律已知的构件。

其余的活动构件统称从动件。

输出构件——输出运动或动力的从动件
复合铰链——两个以上的构件构成的同轴线的转动副,其转动副个数等于构件数减1。

局部自由度——与机构整体运动无关的自由度。

虚约束——对运动不起实际限制作用的约束。

第三节 机构的组成
F=0的不可再拆分的最简单的运动链——基本杆组。

机构的组成原理——由若干基本杆组依次连接到原动件和机架上构成机构。

n=2;p l=3,——Ⅱ级组。

n=4;p l=6,且具有一个含三个低副的中心构件的基本组——Ⅲ级组。

n=4;p l=6,不含三个低副的中心构件的基本组——Ⅳ级组。

注意:基本杆组中是没有高副的。

机构的级别是以其中含有的杆组的最高级别确定的。

机构拆组的一般原则1.除掉虚约束和局部自由度,高副低代;2.从远离原动件开始拆组,先Ⅱ级后Ⅲ级;3.杆与其上运动副一并拆下;4.剩余部分必为一机构,最后为机架、原动件.
第四节 平面机构的高副低代高副低代——将机构中的高副用低副代替。

高副低代的替代条件:1,机构的自由度不变;2,机构的瞬时运动不变。

将高副C用具有两个铰链的构件代替,铰链的中心分别位于高副接触点的曲率中心处且与高副元素的所属构件相连。

机构在不同位置其低副替代机构也不同——高副低代的瞬时性。

第三章 平面机构的运动分析
第一节 概述 第二节Ⅱ级机构的运动分析
运动分析的步骤:
建立机构的位置方程式;位置方程式对时间t求导一次、两次得速度方程式、加速度方程。

一、铰链四杆机构的运动分析将坐标逆时针方向旋转求构件的角速度、角加速度
二、曲柄滑块机构的运动分析
导路平行坐标轴线时不可用坐标旋转法(为什么?)
二、导杆机构的运动分析
第七节 速度瞬心及其位置确定瞬心——作一般平面运动的两构件上的瞬时等速重合点或瞬时相对速度为零的重合点。

绝对瞬心——重合点的绝对速度为零.
相对瞬心——重合点的绝对速度不为零。

k=N(N-1)/2 k——瞬心的数目;N——机构的总构件数。

三心定理——彼此作平面运动的三个构件有三个速度瞬心,它们位于同一条直线上。

第四章 机构的力分析
第一节 概述
机构的静力分析—不计惯性力的机构力分析。

机构的动力分析—考虑惯性力的机构力分析。

如将惯性力视为一般外力加于产生该惯性力的构件上,该机械视为处于静力平衡状态。

驱动力—凡是驱使机械产生运动的力。

阻抗力—凡是阻止机械产生运动的力。

平衡力—与作用在机械上的已知外力相平衡的未知外力。

机构力分析的目的:1)求运动副反力;2)计算平衡力(矩).
第二节 运动副反力及构件组静定条件
不论是否楔形滑块,R21和N21之间的夹角可表示为ϕv
楔面接触较平面接触时所产生的摩擦力大。

(为什么?)
摩擦圆——以ρ为半径圆。

(ρ=rf)
对轴颈的总反力将始终切于摩擦圆。

(为什么?)
静定条件—所有未知外力都可以用静力学的方法确定出来的条件。

其条件为:3n=2p。

所有的基本杆组都是静定杆组。

第三节 不考虑摩擦的机构力分析
一,矩阵法RRR——Ⅱ级组的力分析
RPR——Ⅱ级组的力分析可以直接确定移动副反力的方向,不必按X、Y分解二,机构力分析的等功率法
机构处于平衡状态时,作用于机构上的所有外力的瞬时功率之和为零。

用于只求平衡力(力矩)情况的简便方法
三,首解运动副法
“首解运动副”—两构件相连的“内运动副”,且构件上的所有外载荷均为已知。

两构件分别对外运动副中心求矩可导出“首解运动副”反力的求解式。

四,直接求解法应用有关二力杆和三力汇交的理论,直接求解。

第四节考虑摩擦的机构力分析
第五节 机械效率与机械自锁
一,机械的效率
机械正常运转时W d=W r+W f
机械效率η—表示输入功在机械中有效利用的程度。

η=W r/W d=1- W f/W d=P r/P d=F0/F=M0/M。

(各符号的意义)
1)W f不可能为零,故η<1 2)为提高机械效率应尽量减小机械中的损耗。

理想机械—不存在摩擦和损耗的机械。

其效率η0=1。

η=理想驱动力F0(M0)与实际 驱动力F(M)之比。

斜面机构的效率:将正行程公式中的主动力与阻力置换,摩擦角符号反向即反行程公式。

机组—由若干台机器组成的系统
串联机组的总效率等于组成该机组的各个机器的效率的连乘积。

(1)串联机组的总效率小于各机器的效率η<ηi;
(2)并联机组的总效率:(ηi) min<η< (ηi) max。

若各个机器的效率均相等有 η=ηi
无论驱动力如何增大,也无法使机械运动的现象—机械的自锁。

机械出现自锁的条件即:η≤0
凡使机器反行程自锁的机构通称为自锁机构。

当螺旋升角小于摩擦角时,螺旋发生自锁。

第五章 机构的型综合
第一节概述机构结构分类法—研究由多少个构件、运动副能构成多少个给定自由度的不同机构,从中选择出最佳满足工艺要求的机构。

第二节 机构结构分类法讨论机构的类型即探讨运动链F、N、p间的关系。

运动链的环—由构件和运动副构成的独立封闭系统。

L=p-N+1(各符号的意义)用数组表示多元连杆与二元连杆间的连接方式的规则……
第三节连杆组合分类法机构型综合机构型综合的原则:1)最简原则——应首先考虑最简单的运动链。

2)不存在无功能结构原则——机构中不出现不起实际作用的结构部分;
3)最易综合原则——选择二元连杆为机架,易得到高级别机构;4)最低成本原则——运动副的加工成本按转动副、移动副、高副递增;5)最符合工艺要求原则
第六章 平面连杆机构
第一节 概述平面连杆机构——由低副连接而成的平面机构
一.平面连杆机构的特点:1)实现远距离传动或增力;2)可完成某种轨迹3)寿命较长,适于传递较大的动力;4)便于制造。

缺点:1,设计困难,一般只能近似地满足运动要求2,多数构件作变速运动,其惯性力难以平衡。

二、平面连杆机构设计的基本问题机构运动简图参数——各杆尺寸及机架、某点的位置尺寸设计的基本问题——根据工艺要求来确定机构运动简图的参数。

设计的两类基本问题:1,实现已知的运动规律; 2,实现已知的轨迹。

第二节 连杆机构的运动特性。

相关文档
最新文档