非参数统计非参数密度估计(课堂PPT)

合集下载

非参数统计课件

非参数统计课件

什么是假设 检验?
假设检验用来判断 一个统计假设在给 定数据下是否成立。
非参数假设 检验的基本 思想
非参数假设检验不
依赖于总体参数的
具体分布。
U检验
U检验是一种常见的 非参数假设检验方 法。
KolmogorovSmirnov检验
KolmogorovSmirnov检验用来检 验样本是否符合给 定分布。
什么是核密度估计?
核密度估计是一种估计概率密度函数
概率密度函数和密度函数的区
2
的非参数方法。

概率密度函数是连续随机变量的密度
函数,而密度函数是离散随机变量的
3
高斯核密度估计
密度函数。
高斯核密度估计使用高斯核函数来估
计概率密度函数。
交叉验证方法
4
交叉验证方法可以用来选择合适的核 函数带宽。
分析?
回归分析用来建立变量之间的依赖关系。
Nadaraya-Watson核回归
Nadaraya-Watson核回归通过核函数加权来 估计回归函数。
非参数回归分析的基本思想
非参数回归分析不需要对回归函数做具体的 形式假设。
局部加权回归
局部加权回归在核回归的基础上引入了距离 权重来进一步提高估计精度。
非参数统计ppt课件
# 非参数统计PPT课件 ## 简介 - 什么是非参数统计? - 非参数统计和参数统计的区别
统计分布
什么是统计分布?
统计分布描述随机变量的不确定性和可能性。
常见的统计分布
包括正态分布、二项分布、泊松分布等。
经验分布函数
经验分布函数用样本数据来近似未知总体分布函数。
核密度估计
1
总结
1

非参数估计(完整)PPT演示课件

非参数估计(完整)PPT演示课件

P p xdx p xV R
Pˆ k N
pˆ x k / N
V
对p(x) 在小区域内的平均值的估计
9
概率密度估计
当样本数量N固定时,体积V的大小对估计的 效果影响很大。
过大则平滑过多,不够精确; 过小则可能导致在此区域内无样本点,k=0。
此方法的有效性取决于样本数量的多少,以 及区域体积选择的合适。
11
概率密度估计
理论结果:
设有一系列包含x 的区域R1,R2,…,Rn,…,对 R1采用1个样本进行估计,对R2用2 个,…, Rn 包含kn个样本。Vn为Rn的体积。
pn
x

kn / N Vn
为p(x)的第n次估计
12
概率密度估计
如果要求 pn x 能够收敛到p(x),那么必须满足:
分布,而不必假设密度函数的形式已知。
2
主要内容
概率密度估计 Parzen窗估计 k-NN估计 最近邻分类器(NN) k-近邻分类器(k-NN)
3
概率密度估计
概率密度估计问题:
给定i.i.d.样本集: X x1, x2 , , xl
估计概率分布: p x
4
概率密度估计
10.0
h1 0.25
1.0
0.1
0.01
0.001 10.0
1.0
0.1
0.01
0.001 10.0
1.0
0.1
0.01
0.001 10.0
1.0
0.1
0.01
0.001 2 0 2
h1 1 2 0 2
h1 4 2 0 2 27
由图看出, PN(x)随N, h1的变化情况 ①当N=1时, PN(x)是一个以第一个样本为中心的正

非参数估计(完整)ppt课件

非参数估计(完整)ppt课件
1 1 u 1 , ,d j , j u 2 0 o th e r w is e
中心在原点的 单位超立方体
Parzen窗估计
落入以X为中心的立方体区域的样本数为:
x xi kn i 1 hn X处的密度估计为:
n
n k / n x x 1 1 n i ˆ p x n V n n V i 1 n h n
估计P(x|ω1)即PN(x) x6 0 1 2 x5 x3 x1 x2 3 4
1
x4 5 6
x
( u ) 解:选正态窗函数
12 exp( u ) 2 2
2
| x | | x | 1 1 x x i i ( ) ( u ) ( ) exp[ ] 2 2h h N N
P k 的期望值为: Ek N
对P的估计:
k ˆ P N
当 N 时, 估计是非 常精确的
概率密度估计

假设p(x)是连续的,且R足够小使得p(x)在R内几乎 没有变化。
令R是包含样本点x的一个区域,其体积为V,设有 N个训练样本,其中有k落在区域R中,则可对概率 密度作出一个估计: k ˆ P p x d x p x V P N R
可以验证: p ˆn x 0
ˆ x x1 d p
n
窗函数的要求
Parzen窗估计过程是一个内插过程,样本xi
距离x越近,对概率密度估计的贡献越大,越 远贡献越小。 只要满足如下条件,就可以作为窗函数:
u 0
u 1 u d
窗函数的形式
方窗函数
1 1, | u | (u ) 2 0.其他

非参数统计讲义通用课件

非参数统计讲义通用课件
案例分析
通过实际案例展示如何使用Python进行非 参数统计,包括分布拟合、假设检验和模 型选择等步骤。
SPSS实现
SPSS简介
SPSS(Statistical Package for the Social Sciences) 是一款流行的社会科学统计 软件。
操作界面
SPSS的非参数统计功能通常 在“分析”菜单下的“非参 数检验”选项中,用户可以 通过直观的界面进行操作。
聚类分析方法在数据挖掘、 市场细分等领域有广泛应用, 可以帮助我们发现数据的内 在结构和模式。
异常值检测方法
• 异常值检测方法用于识别和剔除数据中的异常值,提高数据分析的准确性和可靠性。
• 常见的异常值检测方法包括基于统计的方法、基于距离的方法、基于密度的方等。 • 基于统计的方法利用统计学原理,如z分数、IQR等,判断数据是否为异常值;基于距离的方法通过计算对象与其它对象的距离来判断是否为异常值;基于密度的方法则根据对象周围的密度变化来判断是否
解释性较差
相对于参数统计,非参数统计结果通 常较为抽象,难以直接解释其具体含 义。
假设检验能力较弱
非参数统计在假设检验方面的能力相 对较弱,对于确定性的结论和预测不 如参数统计准确。
如何克服非参数统计的局限性
01
02
03
04
利用高效计算方法
采用并行计算、分布式计算等 高效计算方法,提高非参数统
计的计算效率和准确性。
描述性统计方法在数据分析中起到基 础作用,为后续的统计推断提供数据 基础和初步分析结果。
假设检验方法
假设检验方法是一种统计推断 方法,通过提出假设并对其进
行检验,判断假设是否成立。
假设检验方法包括参数检验和 非参数检验,其中非参数检验 不依赖于总体分布的具体形式,

非参数统计分析PPT课件

非参数统计分析PPT课件
第6页/共61页
思考的要点 什么是计数统计量; 什么是秩统计量,为什么要讨论秩; 为什么要讨论秩的分布、秩的期望和方差; 什么是符号秩和线性符号秩; 线性符号秩的期望和方差。
第7页/共61页
第一节 关于非参数统计
在参数统计学中,最基本的概念是总体、样本、随机 变量、概率分布、估计和假设检验等。其很大一部分内容是 建立在正态分布相关的理论基础之上的。总体的分布形式或 分布族往往是给定的或者是假定了的,所不知道的仅仅是一 些参数的值。于是,人们的任务就是对一些参数,比如均值 和方差(或标准差),进行点估计或区间估计,或者是对某 些参数值进行各种检验,比如检验正态分布的均值是否相等 或 等 于 零 等 等 . 最 常 见 的 检 验 为 对 正 态 总 体 的 t— 检 验 、 F—检验和最大似然比检验等。又比如,线性回归分析中, 需要估计回归系数j, j称为参数,所以线性回归分析应 该属于参数统计的范畴。
其一是样本容量不大; 其二是总体服从何种分布未知。下面我们来构造一 种检验的方法,看他们的资产负债有无显著性差异。
第11页/共61页
将两类企业的资产负债混合排序,并给出其序次, 这在统计中称为“秩”。在这张表中我们有两个可用的 信息。
负债率 55 59 61 64 64 65 70 73 75 76 77
第9页/共61页
在不知总体分布的情况下如何利用数据所包 含的信息呢?一组数据最基本的信息就是次序。如 果可以把数据按大小次序排队,每一个具体数目 都有它在整个数据中(从最小的数起)的位置或次 序,称为该数据的秩(rank)。数据有多少个观察值, 就有多少个秩。在一定的假定下,这些秩和秩的 统计量的分布是求得出来的,而且和原来的总体 分布无关。这样就可以进行所需要的统计推断。 注意:非参数统计的名字中的“非参数 (nonparametric)”意味着其方法不涉及描述总体 分布的有关数值参数(均值和方差等);它被称 为和分布无关(distribution—free),是因为其 推断方法和总体分布无关;不应理解为与所有分 布(例如有关秩的分布)无关。

非参数统计法PPT课件

非参数统计法PPT课件

36.2
-12.8 -8
9
44.1
45.2
-1.1
-2
10
399.8 404.1 -4.3
-4
11
25.9
39.3
-13.4 -9.5
12
535.6 544.8 -9.2
-5
T- =5.8 T+-=8
•为什么要用 非参数检验?
SPSS
6
S tati sti c s
d
N
Valid
Missing
Sk ewness
参数统计——检验效率较高,但使用条件较严格. 非参数统计——由于对资料无特殊要求,因此适用
范围广,资料收集和分析比较简便。但统计效率 较低(β较大)。 选择: 首先考虑参数检验,当条件不符,才选择非参数 统计方法。
.
3
(四) 非参数统计适用情况
(1)偏态分布资料; (2)总体分布不明资料; (3)数据一端或两端有未确定值; (4)等级资料; (5)方差不齐资料。
.
8
结果判断:
(1)查表法:当n<25时,查T界值表(符号秩和检验 用),得:
T0.05,11= 10~56,( T0.01, 11 = 5~61) 若T+或T-:落在范围内,则P>0.05;
落在范围外, 则P<0.05;
等于界值, 则P=0.05。
.
9
(2)正态近似法: 若 n>25时, 可近似认为T分布逼近正态分布。
温州医学院环境与公共卫生学院温州医学院环境与公共卫生学院一非参数统计一非参数统计不依赖于总体分布形式不须考虑被研究对象为何不依赖于总体分布形式不须考虑被研究对象为何种分布及分布是否已知不是参数间的比较而是种分布及分布是否已知不是参数间的比较而是用于分布之间的比较

《非参数统计》课件

《非参数统计》课件

核密度估计
详细讲解核密度估计方法, 可用于估计未知分布函数 的概率密度函数。
K近邻算法
介绍K近邻算法在非参数统 计中的应用,用于分类和 估计未知函数。
常用方法本 的中位数差异,对于不 符合正态分布的数据非 常有用。
Kruskal-Wallis检验
一种非参数方法,用于 比较多个独立样本的总 体分布,可以替代方差 分析。
介绍常用于非参数统计的软件和工具,帮助读者选择适合自己的数据分析工具。
3 Q&A
解答读者在非参数统计方面的疑问和问题,提供进一步的讨论和交流。
总结
1 非参数统计的优势和劣势总结
总结非参数统计方法和传统参数统计方法的优势和劣势,帮助选择合适的分析方法。
2 非参数统计的前景和未来发展方向
讨论非参数统计的前景和未来的发展方向,以及可能的研究方向。
附录
1 参考文献
提供相关参考文献,方便读者进一步学习非参数统计的理论和应用。
2 常用软件和工具介绍
Mann-Whitney U检 验
非参数的秩和检验方法, 用于比较两个独立样本 的总体分布。
实例应用
医疗领域的应用
展示非参数统计在医疗研究 中的应用,如临床试验和数 据分析。
社会调查中的应用
探讨非参数统计在社会调查 和民意调查中的应用,如对 人口统计数据的分析。
金融风险评估中的应用
介绍非参数统计在金融领域 中的应用,如风险评估和市 场预测。
《非参数统计》PPT课件
非参数统计是一门关于数据分析的重要领域,本课件将介绍非参数统计的基 本原理、常用方法和实例应用,以及其在医疗、社会调查和金融方面的应用。
简介
非参数统计是一种不基于总体概率分布的统计方法,适用于各种数据类型,具有广泛的应用场景 和灵活性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2) 建立高斯函数文件 Ga<-function(x,h,A) {(1/260*h)*sum((1/sqrt(2*pi))*exp(-0.5*((x-A[,1][1:260])/h)^2))}
以高斯核函数为例
3) 调用函数文件
source("d:\\S文件\\Ga.s") 4) 求函数值 > z<-Ga(1,1,A) >z [1] 0.01347425
2. 分别估计鲑鱼和鲈鱼的概率密度:
p ˆ(x| 1) p ˆ(x|2)
3.
归类原则:
x
2 1
其 中,
p(2 | x) p(1 | x) p(2 | x) p(1 | x)
p(i | x)
pˆ ( x | i ) p(i )
2
,
pˆ ( x | j ) p( j )
j 1
i 1, 2
(贝叶斯公式)
分类问题
序号
113 112 250 219 123 197 170 32 92 137
数值
19.6 22.3 14.07 8.5 17.3 7.6 6.3 6.5 22.1 2.0
7) 余 弦 8) 指 数
核函数
1 I (| u | 1 ) 2 (1 | u |) I (| u | 1 )
3 (1 u 2 ) I ( | u | 1 ) 4
1 5 (1 u 4 ) I (| u | 1 ) 16
3 5 (1 u 2 ) 3 I ( | u | 1 ) 32
1 exp( 1 u 2)
其中,hn是归一化参数,表示每组的组距,称为带宽 (窗宽)。
注意:针对连续型的总体X.
例8.1
鲑鱼和鲈鱼的身长(260条)
hist(A[,1], 20)
120
15
100
40
80
10
30
60
20
40
5
10
20
0
0
0
5
10
15
20
25
c1[, 1]
0
5
10
15
20
25
c1[, 1]
鲈鱼比鲑鱼的身长要长。
0
5
10
15
20
25
30
c1[, 1]
推广直方图的密度函数定义。X∈Rd
pˆ (x) ni / n V
1)若V很小,密度值局部变化很大,呈现多峰不稳定的 特点; 2)若V较大,从而使估计过于平滑。 如何在稳定与过度平滑之间寻找平衡? 方法(1)固定体积不变;(2)固定ni不变; 核估计和k-近邻估计。
第八章 非参数密度估计
8.1 非参数密度估计
直方图是最基本的非参数密度估计。
假定有数据{x1,x2,…,xn}, 将它由小到大排序,得到数 据覆盖的区间(a, b),对该区间等间距地分为k组,记 为I1,I2,…,Ik,计算Ii中的频率ni/n,则密度估计为:
pˆ(x)nnhin , 0,
xIi,i1,2,...,k 其他
8.2 核密度估计
设区域R是Rd空间上的d维立方体, 其体积为Vn, h是R的 边长, 对任意的x={x1,x2,…,xn}, 定义x的邻域函数:
(x)1,
|
xi
|1,i 2
1,2,...,d
0,
其他
kn
n ( x - xi )
i 1
hn
落入x邻域的样本数
pˆ(x) 1 n (xxi ) 称为Parzen窗密度估计
2
2
c o s ( u ) I (| u | 1 ) 42
e x p (| u |)
以高斯核函数为例
pˆn(x)n1hin1
1 exp(1(xxi)2) 2 2 h
其中{x1,K,xn}为样本序列
用S-Plus编程计算密度估计值. 1) 调用数据文件
A<-read.table("E:\\各种电子课件\\非参数统计 \\data\\newfish.txt",header=T,sep=",")
M S E (ˆ ,) E (ˆ ) 2 D ˆ E ( E ˆ ) 2
均方误差
MISEE (pˆn(x)p(x))2dx [Bias(pˆn(x))var(pˆn(x))]dx
分析: 1. 带宽hn越小, 核估计的偏差越小, 但方差会增大. 2. 带宽hn越大, 核估计的偏差大, 但方差会变小. 3. 说明hn的变化, 不可能同时使核估计的偏差和方差变小. 4. 只有同时使两者达到一种平衡. 5. 实际上, h的选取要根据数据和密度估计的情况不断调
整.
模式分类问题
一些实际问题: • 鉴定某河流的污染程度; • 通过检查某些指标, 诊断某人是否得了某种疾病; 3. 设备的故障诊断问题; 4. ……
应用密度估计对数据进行分类
1. 假设ω1——鲑鱼, ω2——鲈鱼,它们的先验概率为: p ( 1 ) p ( 2 ) 1 / 2 ( 因 为 两 类 的 频 数 为 1 3 0 条 )
0 .0 0 1
z 0 .0 0 2
0 .0 0 3
0 .0 0 4
0 .0 0 5
0 .0 2
z 0 .0 4
0 .0 6
0 .0 8
15
20
带宽对估计量的影响
25
0
5
10
h=1
x
15
20
25
0.05
0.10
Z 0.15
0.20
0.25
5
10
h=2
x
15
20
25
Parzen窗函数为核函数
h=5
Parzen窗函数 1 I(| u |1) 2
pˆn(x)
1 nh
n i1
1I 2
xi x h
1
带宽对估计量的影响
当带宽h=0.2时,密度函数曲线比较粗糙,噪声很多; 当带宽h=1时,密度函数曲线比较平滑,较为理想; 而带宽h=5时,密度函数曲线最平滑的,但信息损失很多; 如何选择合适的带宽,是核函数密度估计的关键.
考虑估计的均方误差.
5) 画图 > x<-seq(1,26,length=52) > z<-rep(0,52) > for(i in 1:52) {z[i]<-Ga(x[i],1,A)} (首先找到A[,1]向量中的最小和最大值,1.09和25.37) > plot(x,z,type="l")
0
5
10
h=0.2
x
0 .0
nVn i1 hn
ห้องสมุดไป่ตู้
核密度估计的定义
定义8.1
假设数据x1,x2,…,xn取自连续分布p(x), 定义核密度估计
pˆn
(x)
1 nVn
n K( x xi )
i1
hn
其中K()为核函数
只要核函数满足:
K(x)0, K(x)dx1 R
本节主要讲一维的密度估计。
常用核函数
核函数的名称 1) P arzen窗 2) 三 角 3) E p a n ech iko v 4) 四 次 5) 三 权 6) 高 斯
相关文档
最新文档