华东师大版七年级下册数学期中测试卷(含答案)
华东师大版七年级数学下册期中测试卷及答案【完整版】
华东师大版七年级数学下册期中测试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④ B.①②④ C.①③④D.①②③3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-5.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A .102a ≤<B .01a ≤<C .102a -<≤D .10a -≤<6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠58.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.若320,a b -+=则a b +的值是( )A .2B .1C .0D .1-二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c,则图c中的∠CFE的度数是__________°.3.分解因式:32x2x x-+=_________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为____________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程组(1)532321x yx y+=⎧⎨+=⎩(2)4(1)3(1)2223x y yx y--=--⎧⎪⎨+=⎪⎩(3)2311632x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩2.化简求值:()1已知a是13的整数部分,3b=,求54ab+的平方根.()2已知:实数a,b在数轴上的位置如图所示,化简:22(1)2(1)a b a b++---.3.如图是一块长方形的空地,长为x米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为 ;(用含x 的代数式表示)(2)若设丙地的面积为S 平方米,求出S 与x 的关系式;(3)当200x =时,求S 的值.4.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值;(3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示).5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500销售获利(元/台)260190120()1购买丙型设备台(用含,x y的代数式表示) ;()2若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?()3在第()2题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、A6、C7、A8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a 4<<2、105°3、()2x x 1-.4、-405、2或2.56、2或-8三、解答题(本大题共6小题,共72分)1、(1)31x y =⎧⎨=-⎩;(2)23x y =⎧⎨=⎩;(3)123x y z ⎧⎪⎨⎪⎩===.2、(1)±3;(2)2a +b ﹣1.3、(1)(0)12x -米 (2)(120)(240)S x x =-- (3)32004、(1)60°;(2)50°;(3)18021n α︒--或18021n α︒-+ 5、(1)40;(2)72;(3)280.--; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5 6、(1) 60x y台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。
华东师大版2023-2024学年七年级下学期期中数学试题
华东师大版2023-2024学年七年级下学期期中数学试题一、单选题1.下列方程中,属于一元一次方程的是( )A .2x-1=0.B .1-x=y.C .34x =.D .1-x 2=0 2.下列各式中,运算正确的是( )A .325a a a +=B .()()235a a a -⋅-= C .()325a a = D .325a a a ⋅= 3.23a a 等于( )A .23aB .5aC .6aD .8a4.已知方程31ax y x +=-是关于x ,y 的二元一次方程,则a 满足的条件是( ) A .0a ≠ B .1a ≠- C .3a ≠ D .3a ≠- 5.如图,点A 在反比例函数4(0)y x x=>的图象上,过点A 作AB x ⊥轴,垂x 足为点B ,点C 在y 轴上,则ABC V 的面积为( )A .3B .2C .1.5D .16.如图,在平行四边形ABCD 中,AB =6cm ,AD =8cm ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( ).A .12cmB .14cmC .16cmD .28cm 7.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的部分关系如图所示.下列四种说法:其中正确的个数是( )①每分钟的进水量为5升.②每分钟的出水量为3.75升.③从计时开始8分钟时,容器内的水量为25升.④容器从进水开始到水全部放完的时间是20分钟.A .1个B .2个C .3个D .4个8.已知方程组5354x y ax y +=⎧⎨+=⎩与5125x by x y +=⎧⎨-=⎩有相同的解,则a ,b 的值为( ) A .12a b =⎧⎨=⎩ B .46a b =-⎧⎨=-⎩ C .62a b =-⎧⎨=⎩ D .142a b =⎧⎨=⎩9.我国明代数学读本《算法统宗》中有一道题,其题意为客人一起分银子,若每人分7两,则还剩4两;若每人分9两,则还差8两.问客人有几人?设客人共有x 人,则可列方程为( )A .7498x x +=-B .7498x x -=+C .4879x x +-=D .4879x x -+= 10.我国古代数学著作《算法统宗》中有这样一道题:以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长,井深各几何?意思是:用绳子测水井的深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成4等份,井外余绳1尺,问绳长、井深各是多少尺?设井深x 尺,绳长y 尺,则所列方程组正确的是( )A .143114y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .143114y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩C .3441y x y x +=⎧⎨+=⎩D .3441y x y x-=⎧⎨+=⎩二、填空题11.将方程41x y -=变形成用含y 的代数式表示x ,则x =.12.已知方程185x y -=,用含y 的代数式表示x ,那么. 13.若210x y -++=,则2x y -的值为.14.如果4m 、m 、6-2m 这三个数在数轴上所对应的点从左到右依次排列,那么 m 的取值范围.三、解答题15.解方程或方程组(1)213x +=(2)5234x x -=+()(3)321123x x -+-=(4)8423x y xy +=⎧⎪⎨+=⎪⎩(5)1225224x y z x y z x y++=⎧⎪++=⎨⎪=⎩16.解方程组:(1)6210x y x y +=⎧⎨+=⎩(2)23846x y x y +=⎧⎨-=-⎩17.解下列不等式(组). (1)2132134x x +-≤+; (2)267924152x x x x +>-⎧⎪⎨+-≤⎪⎩①②.18.m 等于什么数时,式子13m -与35m +的值相等?19.用“※”定义一种新运算:规定22a b ab ab b =+-※,如:2313213312=?创-=1※.(1)若21(4)0m n ++-=,求m n ※的值;(2)若()1312x -=※,求x 的值.20.学校准备购进一批甲、乙两种办公桌若干张.若学校购进20张甲种办公桌和15张乙种办公桌共花费17000元,购买10张甲种办公桌比购买5张乙种办公桌多花费1000元.(1)求甲、乙两种办公桌每张各多少元;(2)若学校购买甲、乙两种办公桌共40张,甲种办公桌数量不多于乙种办公桌数量的3倍,且总费用不超过18400元,那么有几种购买方案?21.已知m 是一个非零常数,且关于x ,y 的方程组2524x m y x y m-=⎧⎨+=⎩有解,求x y 的值. 22.随着某中学的规模逐渐扩大,学生人数越来越多,学校打算购买校车20辆,现有A 和B 两种型号校车,如果购买A 型号校车6辆,B 型号14辆,需要资金580万元;如果购买A 型号校车12辆,B 型号校车8辆,需要资金760万元.已知每种型号校车的座位数如表所示:经预算,学校准备购买设备的资金不高于500万元.(每种型号至少购买1辆)(1)每辆A 型校车和B 型校车各多少万元?(2)请问学校有几种购买方案?且哪种方案的座位数最多,是多少?23.某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买1个篮球和5个足球共需费用570元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球和足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?。
华师大版七年级下册数学期中考试试题及答案
华师大版七年级下册数学期中考试试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列方程是一元一次方程的是()A.x+y﹣1=0 B.x2﹣x=3 C.2+=1 D.=32.(3分)关于x的方程2(x﹣1)﹣a=0的根是3,则a的值为()A.4 B.﹣4 C.5 D.﹣53.(3分)若a<b,则下列各式中一定成立的是()A.a+1>b+1 B.a﹣1<b﹣1 C.ac<bc D.>4.(3分)已知是方程组的解,则(m+n)2017的值为()A.22017B.﹣1 C.1 D.05.(3分)用一根长12cm的铁丝围成一个长方形,使得长方形的宽是长的,则这个长方形的面积是()A.4cm2B.6cm2C.8cm2D.12cm26.(3分)已知∠A、∠B互余,∠A比∠B大30°,设∠A、∠B的度数分别为x°、y°,下列方程组中符合题意的是()A.B.C.D.7.(3分)若关于x的不等式(a﹣5)x>2a﹣10的解集是x<2,则a的取值范围是()A.a<5 B.a>5 C.a<0 D.a>08.(3分)某不等式组的解集在数轴上表示如图所示,则这个不等式组可能是()A.B.C.D.9.(3分)三个连续正整数的和小于39,这样的正整数中,最大一组的和是()A.39 B.36 C.35 D.3410.(3分)若不等式组有解,则a的取值范围是()A.a≤3 B.a<3 C.a<2 D.a≤2二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)若单项式3a3b2x与a3b是同类项,则x的值为.12.(3分)若代数式的值比的小1,则a的值为.13.(3分)已知方程组的解x,y互为相反数,则m的值为.14.(3分)若关于x,y的二元一次方程组的解满足不等式2x﹣y>1,则a的取值范围是.15.(3分)若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为.三、解答题(本大题共8小题,共75分)16.(10分)解方程(组)(1)﹣=x+1(2).17.(8分)解不等式组:,并把解集在数轴上表示出来.18.(9分)已知方程3(2x﹣1)=2+x的解与关于x的方程﹣2(x﹣3)=1的解相同,求k的值.19.(9分)已知方程组的解x、y的和为12,求n的值.20.(9分)已知关于x,y的方程组与同解,求的值.21.(9分)(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.22.(10分)某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买3件甲商品和1件乙商品需用190元,购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元.(1)甲、乙两种商品单价各多少元?(2)店庆期间,购买甲、乙两种商品各10件,省了多少钱?23.(11分)某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017春•商水县期中)下列方程是一元一次方程的是()A.x+y﹣1=0 B.x2﹣x=3 C.2+=1 D.=3【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).依此即可求解.【解答】解:A、x+y﹣1=0含有两个未知数,故选项错误;B、x2﹣x=3未知数的次数是2,故选项错误;C、符合一元一次方程的定义,故选项正确;D、不是整式方程,故选项错误.故选C.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.(3分)(2003•广东)关于x的方程2(x﹣1)﹣a=0的根是3,则a的值为()A.4 B.﹣4 C.5 D.﹣5【分析】虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.【解答】解:把x=3代入2(x﹣1)﹣a=0中:得:2(3﹣1)﹣a=0解得:a=4故选A.【点评】本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.3.(3分)(2017春•商水县期中)若a<b,则下列各式中一定成立的是()A.a+1>b+1 B.a﹣1<b﹣1 C.ac<bc D.>【分析】根据不等式的性质求解即可.【解答】解:A、两边都加1,不等号的方向不变,故A不符合题意;B、两边都减1,不等号的方向不变,故B不符合题意;C、c<0时,不等号的方向改变,故C不符合题意;D、两边都除以3,不等号的方向不变,故D不符合题意;故选:B.【点评】本题考查了不等式的性质,不等式的两边都乘以或除以同一个负数不等号的方向改变是解题关键.4.(3分)(2017春•商水县期中)已知是方程组的解,则(m+n)2017的值为()A.22017B.﹣1 C.1 D.0【分析】根据方程组的解满足方程组,可得关于m,n的方程组,根据解方程组,可得m,n的值,再根据1的任何次幂都等于1,可得答案.【解答】解:把代入方程组,得,解得,(m+n)2017=12017=1,故选:C.【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程组得出关于m,n的方程组是解题关键.5.(3分)(2017春•商水县期中)用一根长12cm的铁丝围成一个长方形,使得长方形的宽是长的,则这个长方形的面积是()A.4cm2B.6cm2C.8cm2D.12cm2【分析】设围成的长方形的宽为x,则长为2x,根据周长=(长+宽)×2,即可得出关于x的一元一次方程,解之即可得出长方形的长和宽,再根据长方形的面积公式,即可求出结论.【解答】解:设围成的长方形的宽为x,则长为2x,根据题意得:2(x+2x)=12,解得:x=2,∴2x=4,∴围成长方形的面积为2×4=8(cm2).故选C.【点评】本题考查了一元一次方程的应用,根据长方形的周长公式,列出关于x 的一元一次方程是解题的关键.6.(3分)(2017春•商水县期中)已知∠A、∠B互余,∠A比∠B大30°,设∠A、∠B的度数分别为x°、y°,下列方程组中符合题意的是()A.B.C.D.【分析】设∠A,∠B的度数分别为x°,y°,根据“∠A,∠B互补,∠A比∠B大30°”列出方程组解答即可.【解答】解:∠A比∠B大30°,则有x=y+30,∠A,∠B互余,则有x+y=90.故选D.【点评】此题考查从实际问题中的抽象出二元一次方程组,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.7.(3分)(2017春•商水县期中)若关于x的不等式(a﹣5)x>2a﹣10的解集是x<2,则a的取值范围是()A.a<5 B.a>5 C.a<0 D.a>0【分析】根据不等式的性质,可得答案.【解答】解:两边都除以(a﹣5),得x<2,∴a﹣5<0,即a<5,故选:A.【点评】本题考查了不等式的性质,利用不等式的性质是解题关键.8.(3分)(2017•龙湖区模拟)某不等式组的解集在数轴上表示如图所示,则这个不等式组可能是()A.B.C.D.【分析】先根据数轴得出不等式组的解集,再求出每个选项中不等式组的解集,即可得出答案.【解答】解:从数轴可知:不等式组的解集为﹣1≤x<4,A、不等式组的解集为空集,故本选项不符合题意;B、不等式组的解集为﹣1≤x<4,故本选项符合题意;C、不等式组的解集为x>4,故本选项不符合题意;D、不等式组的解集为﹣1<x≤4,故本选项不符合题意;故选B.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据数轴得出不等式组的解集是解此题的关键.9.(3分)(2016•遵义)三个连续正整数的和小于39,这样的正整数中,最大一组的和是()A.39 B.36 C.35 D.34【分析】设三个连续正整数分别为x﹣1,x,x+1,列出不等式即可解决问题.【解答】解:设三个连续正整数分别为x﹣1,x,x+1.由题意(x﹣1)+x+(x+1)<39,∴x<13,∵x为整数,∴x=12时,三个连续整数的和最大,三个连续整数的和为:11+12+13=36.故选B.【点评】本题考查一元一次不等式的应用,解题的关键是构建不等式解决问题,属于中考常考题型.10.(3分)(2012•襄阳)若不等式组有解,则a的取值范围是()A.a≤3 B.a<3 C.a<2 D.a≤2【分析】先求出不等式的解集,再根据不等式组有解即可得到关于a的不等式,求出a的取值范围即可.【解答】解:,由①得,x>a﹣1;由②得,x≤2,∵此不等式组有解,∴a﹣1<2,解得a<3.故选:B.【点评】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)(2017春•商水县期中)若单项式3a3b2x与a3b是同类项,则x的值为1.【分析】根据同类项定义可得4(x﹣)=2x,再解即可.【解答】解:由题意得:4(x﹣)=2x,解得:x=1,故答案为:1.【点评】此题主要考查了同类项,关键是掌握同类项定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.12.(3分)(2017春•商水县期中)若代数式的值比的小1,则a的值为﹣.【分析】根据题意列出方程,求出方程得到解即可得到a的值.【解答】解:根据题意得:+1=,去分母得:2a﹣2+6=6a+9,解得:a=﹣,故答案为:﹣【点评】此题考查了解一元一次方程,列出正确的方程是解本题的关键.13.(3分)(2017春•商水县期中)已知方程组的解x,y互为相反数,则m的值为0.【分析】先根据题意得到方程组,可得,再代入方程组中第一个方程,可得2﹣(﹣1)=4m+3,进而解得m=0.【解答】解:∵方程组的解x,y互为相反数,∴x+y=0,解方程组,可得,代入方程组中第一个方程,可得2﹣(﹣1)=4m+3,解得m=0,故答案为:0.【点评】本题主要考查了二元一次方程组的解,解题时注意:当遇到有关二元一次方程组的解的问题时,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.14.(3分)(2017春•商水县期中)若关于x,y的二元一次方程组的解满足不等式2x﹣y>1,则a的取值范围是a.【分析】两个方程相加,即可得出关于a的不等式,求出不等式的解集即可.【解答】解:①+②得:2x﹣y=3a,∵关于x,y的二元一次方程组的解满足不等式2x﹣y>1,∴3a>1,∴a>,故答案为:a.【点评】本题考查了解一元一次不等式和解二元一次方程组,能得出关于a的不等式是解此题的关键.15.(3分)(2013•鄂州)若不等式组的解集为3≤x≤4,则不等式ax+b <0的解集为x>.【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可求出a,b的值,代入求出不等式的解集即可.【解答】解:∵解不等式①得:x≥,解不等式②得:x≤﹣a,∴不等式组的解集为:≤x≤﹣a,∵不等式组的解集为3≤x≤4,∴=3,﹣a=4,b=6,a=﹣4,∴﹣4x+6<0,x>,故答案为:x>【点评】本题考查了解一元一次不等式(组),一元一次不等式组的整数解的应用,关键是能根据不等式组的解集求出a b的值.三、解答题(本大题共8小题,共75分)16.(10分)(2017春•商水县期中)解方程(组)(1)﹣=x+1(2).【分析】(1)根据解一元一次方程的方法解方程即可;(2)将两个方程先化简,再选择正确的方法进行消元,本题适合用加减法求解.【解答】解:(1)﹣=x+1去分母得,2x+4﹣3x+3=6x+6,移项并合并得,7x=1,系数化为1得,x=;(2)化简可得,①﹣②,得y=4,把y=4代入①,得2x﹣4=5,解得x=4.5.∴原方程组的解为.【点评】此题考查了解二元一次方程组,一元一次方程,利用了消元的思想,消元的方法为:加减消元法与代入消元法.17.(8分)(2015•上海)解不等式组:,并把解集在数轴上表示出来.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤2,∴不等式组的解集为﹣3<x≤2,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.18.(9分)(2017春•商水县期中)已知方程3(2x﹣1)=2+x的解与关于x的方程﹣2(x﹣3)=1的解相同,求k的值.【分析】根据同解方程,可得关于k的方程,根据解方程,可得答案.【解答】解:解3(2x﹣1)=2+x,得x=1,∵两方程的解相同,∴将x=1代入﹣2(x﹣3)=1,得﹣2(1﹣3)=1,解得k=6.【点评】本题考查了同解方程,利用同解方程得出关于k的方程是解题关键.19.(9分)(2010春•宿迁期末)已知方程组的解x、y的和为12,求n的值.【分析】由题意列出方程组求解,用n表示出x,y的值代入x+y=12,求得n的值.【解答】解:由题意可得,解得,代入x+y=12,得n=14.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.20.(9分)(2017春•商水县期中)已知关于x,y的方程组与同解,求的值.【分析】根据题意得出方程组,求出方程组的解,把x、y的值代入方程组,得出关于ab的方程组,求出方程组的解即可.【解答】解:∵关于x,y的方程组与同解,∴解方程组,得:,把x=5,y=﹣2代入方程组,得:,解得:a=,b=﹣.∴=﹣.【点评】本题考查了解二元一次方程组,二元一次方程组的解的应用,关键是能求出关于a、b的方程组.21.(9分)(2012•呼和浩特)(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.【分析】(1)根据不等式的基本性质先去括号,然后通过移项、合并同类项即可求得原不等式的解集;(2)根据(1)中的x的取值范围来确定x的最小整数解;然后将x的值代入已知方程列出关于系数a的一元一次方程2×(﹣2)﹣a×(﹣2)=3,通过解该方程即可求得a的值.【解答】解:(1)5(x﹣2)+8<6(x﹣1)+75x﹣10+8<6x﹣6+75x﹣2<6x+1﹣x<3x>﹣3.(2)由(1)得,最小整数解为x=﹣2,∴2×(﹣2)﹣a×(﹣2)=3∴a=.【点评】本题考查了解一元一次不等式、一元一次方程的解以及一元一次不等式的整数解.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.22.(10分)(2017春•商水县期中)某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买3件甲商品和1件乙商品需用190元,购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元.(1)甲、乙两种商品单价各多少元?(2)店庆期间,购买甲、乙两种商品各10件,省了多少钱?【分析】(1)设甲商品的单价为x元/件,乙商品的单价为y元/件,根据“购买3件甲商品和1件乙商品需用190元,购买2件甲商品和3件乙商品需用220元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据节省金额=打折前购买费用﹣打折后购买费用列式计算,即可得出结论,【解答】解:(1)设甲商品的单价为x元/件,乙商品的单价为y元/件,根据题意得:,解得:.答:甲商品的单价为50元/件,乙商品的单价为40元/件.(2)(50+40)×10﹣735=165(元).答:店庆期间,购买甲、乙两种商品各10件,省了165元钱.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据节省金额=打折前购买费用﹣打折后购买费用列式计算.23.(11分)(2016•益阳)某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?【分析】(1)设该班男生有x人,女生有y人,根据男女生人数的关系以及全班共有42人,可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设招录的男生为m名,则招录的女生为(30﹣m)名,根据“每天加工零件数=男生每天加工数量×男生人数+女生每天加工数量×女生人数”,即可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:(1)设该班男生有x人,女生有y人,依题意得:,解得:.∴该班男生有27人,女生有15人.(2)设招录的男生为m名,则招录的女生为(30﹣m)名,依题意得:50m+45(30﹣m)≥1460,即5m+1350≥1460,解得:m≥22,答:工厂在该班至少要招录22名男生.【点评】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)根据数量关系列出二元一次方程组;(2)根据数量关系列出关于m 的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.。
华东师大版七年级下册数学期中测试卷(含答案)
七年级下册数学期中检测题(时间120分钟,满分150分)班级: 姓名: 得分:一、选择题(每小题3分,共36分)1.已知下列方程:①x x 12=-②12.0=x ③33-=x x④x x 342=-⑤x=0 ⑥6=y -x .其中一元一次方程有()A.2个B.3个C.4个D. 5个2.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-33.若n m >,则下列不等式中成立的是()A.n a m a -<-B.bn am <C. 22nb ma >D. b n a m +<+4.不等式组⎩⎪⎨⎪⎧x +2>0,2x -1≤0的所有整数解是( ) A .-1,0 B .-2,-1 C .0,1 D .-2,-1,05.不等式组⎩⎪⎨⎪⎧-x <3,2x -1≤3的解集在数轴上表示正确的是( )6.已知⎩⎪⎨⎪⎧x =1,y =2和⎩⎪⎨⎪⎧x =2,y =5是方程ax +by =2的两组解,则( ) A .a =6,b =-2 B .a =-6,b =-2C .a =6,b =2D .a =-6,b =27.若关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =3m -1,x -y =5的解满足x +y =3,则m 的值为( ) A .-2 B .2 C .-1 D .18.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A .0.8x -10=90B .0.08x -10=90C .90-0.8x =10D .x -0.8x -10=909.已知a 2+3a =1,则代数式2a 2+6a -1的值为( )A .0B .1C .2D .310.某种肥皂售价为每块2元,凡购买两块以上(含两块),商场推出两种优惠销售方法,第一种:“一块按原价,其余按原价的七折优惠”;第二种:“全部按原价的八折优惠”.你在购买相同数量的肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少要购买肥皂( )A .5块B .4块C .3块D .2块11.一元一次方程0.2x−10.5−3x−0.40.02=1可化为( ) A .0.2x−15−3x−0.42=1B .2x−15−3x−42=1 C .2x−105−300x−402=1 D .2x−105−300x−402=1012.已知方程组的解x 为正数,y 为非负数,给出下列结论: ①﹣3<a ≤1;②当时,x=y ;③当a =﹣2时,方程组的解也是方程x+y=5+a的解;④若x≤1,则y≥2.其中正确的是( )A .①②B .②③C .③④D .②③④二、填空题(每小题3分,共30分)13.若关于x 、y 的方程x m-1-2y 3+n=5是二元一次方程,则m =,n =14.方程732=-y x 用含x 的代数式表示y 为.15.若方程2x -m =1和方程3x =2(x -1)的解相同,则m 的值为____.16.若⎩⎪⎨⎪⎧x =1,y =2是方程组⎩⎪⎨⎪⎧ax +by =4,bx -ay =7的解,则a +b 的值为____. 17.已知关于x 的方程x +2k =4(x +k)+1的解是负数,则k 的取值范围是 ___.18.方程组⎩⎪⎨⎪⎧ax +2y =2,2x +3y =0的解是⎩⎪⎨⎪⎧x =3,y =b ,则关于x 的不等式bx +2a ≥0的非负整数解是___.19.幼儿园分给“豆豆班”小朋友们零食,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则老师准备了零食____袋.20.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则列出的方程组为_. 21.定义运算“*”,规定x*y=ax 2+by ,其中a 、b 为常数,且1*2=5,2*1=6,则2*3= .22.如图,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2017次相遇在边____上.三、解答题(共68分)23.(10分)解下列方程(组):(1)x 6-30-x 4=5; (2)⎩⎪⎨⎪⎧2x +3y =1,3x +2y =4.24.(10分)解下列不等式(组),并把解集在数轴上表示出来:(1)1-2-x 3<x +12; (2)⎩⎪⎨⎪⎧3x -7<2,2x +3≥1.25.(8分)方程组⎩⎪⎨⎪⎧3x -2y =7,5x +2y =1的解满足方程2x -ky =10,求k 的值.26. (8分)若不等式组⎩⎪⎨⎪⎧x <1,x >m -1恰有两个整数解,求m 的取值范围.26.(8分)4月23日是世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元?27.(8分)若关于x 的方程2x -m =3(x -1)的解也是不等式组⎩⎪⎨⎪⎧2x -1>3x -2,x -12-1≤x的解,求m 的取值范围.28.(10分)阅读下列材料:求不等式(2x −1)(x +3)>0的解集。
华东师大版七年级数学下册期中质量检测考试题附答案
华师大七年级数学下学期期中质量检测题(时间:120分钟,满分120分)一、 有的放矢,圆满填空(每空2分,共26分) 1、若关于x 、y 的方程xm-1-2y3+n=5是二元一次方程,则m = ,n =2、已知方程x mx 32=-的解为1-=x ,则=m3、当=x 时,代数式21+x 与3-x 的值互为相反数。
4、不等式1330x ->的正整数解是5、方程组⎩⎨⎧-==+xy y x 3102的解是6、一个多边形的内角和与它的外角和相等,这个多边形的边数是______7、如图,用不等式表示公共部分x 的范围______ __8、大数和小数的差为12,这两个数的和为60,则大数是 ,小数是 9、三角形三个内角的比为2:3:4,则最大的内角是________度。
10、已知ΔABC 是等腰三角形,若它的两边长分别为8㎝和3㎝,则它的周长为 ;若它的两边长分别为8㎝和5㎝,则它的周长为 二、正本清源,做出选择(每题3分,共30分) 11、下列方程中是一元一次方程的是( ) A 、012=-xB 、 12=xC 、 12=+y xD 、213=-x12、解方程()x x =+-253去括号正确的是( ) A 、x x =+-23 B 、x x =--1053 C 、x x =+-1053 D 、x x =--23 13、下列每组三条线段的长可以构成三角形的是( ) A 、 4、5、6 B 、 3、8、5 C 、 1、2、3 D 、 4、7、214、已知⎩⎨⎧==12y x 是方程组⎩⎨⎧=+-=-513by x y ax 的解,则a 、b 的值为( )A 、1,3a b =-=B 、3,1==b aC 、1,3==b aD 、1,3-==b a 15、只用下列一种正多边形不能铺满平面的是( )A 、正六边形B 、正五边形C 、正四边形D 、正三角形 16、“x 的2倍与3的差不大于8”列出的不等式是( ) A 、238x -≤ B 、238x -≥ C 、238x -< D 、238x ->17、方程732=-y x 用含x 的代数式表示y 为( ) A 、327x y -=B 、372-=x y C 、237y x +=D 、237y x -=318、ΔABC 中,∠A=80°,∠B 的平分线与∠C 的平分线交点O ,则 ∠BOC 的度数是( )A 、100°B 、50°C 、80°D 、130° 19、若不等式组3x m m ≤⎧⎨>⎩ 无解,则m 的取值范围是( )A 、3m >B 、3m <C 、3m ≥D 、3m ≤20、爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是( ) A 、11岁B 、12岁C 、13岁D 、14岁三、细心解答,运用自如(每题5分,共30分) 21、解方程(组)(1) 2153x x -=+ (2)15y x x y =+⎧⎨+=⎩(3)21231+=-x x (4)13(1)4()32x x -<--(在数轴上把解集表示出来)(5)32825x y x y -=⎧⎨-=⎩ (6)2(2)33134x x x x +≤+⎧⎪+⎨<⎪⎩ ,并写出不等式的整数解。
华师大版七年级下册数学期中考试试题含答案
华师大版七年级下册数学期中考试试卷一、单选题1.下列方程中,是一元一次方程的为( )A .3x+2y =6B .x 2+2x ﹣1=0C .2x ﹣1=5D .3132x -=2.方程3x+1=m+4的解是x =2,则m 值是( )A .2B .5C .3D .13.当x =﹣2时,下列不等式成立的是( )A .x ﹣5>﹣7B .x ﹣2<0C .2(x ﹣2)>﹣2D .3x >2x 4.解方程21101136x x ++-=,“去分母”后变形正确的是( )A .21(101)1x x +-+=B .411016x x +-+=C .421016x x +--=D .2(21)(101)1x x +-+=5.不等式311x x ->+的解集在数轴上表示为( )A .B .C .D .6.解方程组323211x y x y -=⎧⎨+=⎩①②的最好解法是( )A .由①,得y =3x -2,再代入①B .由①,得3x =11-2y ,再代入①C .由①-①消去xD .由①×2+①消去y7.若方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是( )A .8.31.2x y =⎧⎨=⎩ B .10.32.2x y =⎧⎨=⎩ C . 6.32.2x y =⎧⎨=⎩ D .10.30.2x y =⎧⎨=⎩8.若关于x 的方程(k ﹣2)||1k x - +3y =6是二元一次方程,则k 的值是( ) A .2 B .﹣2 C .2或﹣2 D .39.二元一次方程2x+y=7的正整数解有多少组( )A.2B.3C.5D.410.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是()A.362x yy x+=⎧⎨=⎩B.3625240x yx y+=⎧⎨=⨯⎩C.3640y252x yx+=⎧⎪⎨=⎪⎩D.362x y2540x y+=⎧⎪⎨=⎪⎩二、填空题11.请写出一个以2,1xy=⎧⎨=-⎩为解的二元一次方程:__________________.12.已知a>b,则﹣4a+5_____﹣4b+5.(填>、=或<)13.已知﹣2xn﹣3my3与3x7ym+n是同类项,则mn的值是_____.14.若式子x-1的值不大于2x + 1的值,则所有满足条件的负整数x的和是___________. 15.如果买5支钢笔、2个文具盒和3把直尺需要91元;买1支钢笔、4个文具盒和3把直尺需要59元;那么买1支钢笔、1个文具盒和1把直尺需要_____元.16.若关于x的不等式组1321x mx->⎧⎨-≥⎩的所有整数解的和是15,则m的取值范围是_____.17.已知a,b为定值,关于x的方程2136kx a x bk++=-,无论k为何值,它的解总是1,则a+b=__.三、解答题18.解方程(方程组)(1)131124 x x+--=(2)12343314312 x yx y++⎧=⎪⎪⎨--⎪-=⎪⎩(3)20 21 32 x y zx y zx y z++=⎧⎪--=⎨⎪--=⎩19.解不等式3(x﹣1)>4(x﹣12)﹣4,把它的解集在数轴上表示出来,并求出它的非负整数解.20.一个两位数,个位与十位上的数字之和为12,如果交换个位与十位数字,则所得新数比原数大36,求原两位数.21.一件服装标价200元,若以6折销售,仍可获利20%,求这件服装的进价.22.如图,点A,B在数轴上,它们所对应的数分别是-4和213352x x--+,且点A,B到原点的距离相等,请你求出x的值.23.阅读理解:我们把acbd称作二阶行列式,规定它的运算法则为acbd=ad﹣bc,例如1234=1×4﹣2×3=﹣2,如果433xx->0,求x的取值范围.24.已知方程455x yax by+=⎧⎨-=-⎩和方程组325+1x yax by+=⎧⎨=⎩有相同的解,求a2﹣b2的值.25.已知关于x,y的方程组325x y ax y a-=+⎧⎨+=⎩的解满足x<y,试求a的取值范围.26.为了鼓励节能降耗,某市规定如下用电收费标准:用户每月的用电量不超过120度时,电价为x元/度;超过120度时,不超过部分仍为x元/度,超过部分为y元/度.已知某用户5月份用电115度,交电费69元,6月份用电140度,付电费94元.(1)求x、y的值;(2)若该用户计划7月份所付电费不超过83元,问该用户7月份最多可用电多少度?27.试根据图中信息,解答下列问题.(1)一次性购买6根跳绳需_____元,一次性购买12根跳绳需______元;(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.参考答案1.C【分析】根据一元一次方程的定义进行分析即可.【详解】A、不是一元一次方程,故此选项不合题意;B、不是一元一次方程,故此选项不合题意;C、是一元一次方程,故此选项符合题意;D、不是一元一次方程,故此选项不合题意;故选:C.【点睛】此题考查一元一次方程定义,解题关键是掌握一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.2.C【分析】直接把x的值代入方程3x+1=m+4,再解即可.【详解】把x=2代入3x+1=m+4得:6+1=m+4,解得:m=3,故选:C.【点睛】此题考查了一元一次方程的解,解题关键是掌握使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.B【分析】将x=-2代入计算得到结果,即可做出判断.【详解】A、将x=﹣2代入得:﹣2﹣5=﹣7,故此选项错误;B、将x=﹣2代入得:﹣2﹣2=﹣4<0,故此选项正确;C、将x=﹣2代入得:2×(﹣2﹣2)=﹣8<﹣2,故此选项错误;D、将x=﹣2代入得:﹣6<﹣4,故此选项错误,故选:B.【点睛】此题考查一元一次不等式的解集.解题的关键是掌握不等式的解集的定义,要注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.4.C【解析】由题意利用去分母的方法是方程两边同时乘以各分母的最小公倍数6,进行计算即可判断选项.【详解】解:方程两边同时乘以6得:4x+2-(10x+1)=6,去括号得:4x+2-10x-1=6.故选:C.【点睛】本题考查解带分母的一元一次方程,注意掌握去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.5.C【解析】【详解】试题解析:由3x﹣1>x+1,可得2x>2,解得x>1,所以一元一次不等式3x﹣1>x+1的解在数轴上表示为:故选C.点睛:首先根据解一元一次不等式的方法,求出不等式3x﹣1>x+1的解集,然后根据在数轴上表示不等式的解集的方法,把不等式3x﹣1>x+1的解集在数轴上表示出来即可.6.C【解析】【详解】①-①得:3y=9,即y=3,将y=3代入①得:x=53,则方程组最好的解法是由①-①,消去x,故选C.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,根据方程组的特点选择合适的消元方法是解题的关键.7.C【解析】【分析】由二元一次方程组的解的定义得出28.31 1.2xy+=⎧⎨-=⎩,求解即可.【详解】由题意知,28.31 1.2xy+=⎧⎨-=⎩,解得,6.32.2xy=⎧⎨=⎩,故选:C.【点睛】本题考查二元一次方程组的解,解题的关键是掌握换元法,体现了整体思想.8.B【解析】【分析】利用二元一次方程的定义判断即可.【详解】①关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,①|k|﹣1=1且k﹣2≠0,解得:k=﹣2,故选:B.【点睛】此题考查二元一次方程的定义,以及绝对值,熟练掌握二元一次方程的定义是解题的关键.9.B【解析】【分析】把x看做已知数表示出y,即可确定出正整数解.【详解】解:方程2x+y=7,解得:y=−2x+7,当x=1时,y=5;x=2时,y=3;x=3时,y=1,则方程的正整数解有3组,故选B.【点睛】本题考查了解二元一次方程,解题的关键是将x看做已知数求出y.10.C【解析】【详解】设用x张制作盒身,y张制作盒底,根据题意得:3640 252 x yyx+⎧⎪⎨⎪⎩==故选C.【点睛】此题考查二元一次方程组问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.11.x+y=1(答案不唯一)【解析】【详解】解:写出的二元一次方程的解为21xy=⎧⎨=-⎩即可,如x+y=1.故答案为:x+y=1(答案不唯一).12.<【解析】【分析】根据不等式的基本性质即可解决问题.【详解】解:①a>b,①﹣4a<﹣4b,①﹣4a+5<﹣4b+5,故答案为<.【点睛】本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.13.1.【解析】【分析】利用同类项的定义列出方程组,求出方程组的解得到m与n的值,代入原式计算即可求出值.【详解】①﹣2xn﹣3my3与3x7ym+n是同类项,①3=7=3n mm n-⎧⎨+⎩①,②①﹣①得:4m=﹣4,解得:m=﹣1,把m=﹣1代入①得:n=4,则mn=(﹣1)4=1,故答案为:1.【点睛】此题考查解二元一次方程组,解题关键在于利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.-3【解析】【分析】本题根据题意列出不等式,解出解集,找出解集中的负整数解,再求和即可.【详解】解:根据题意得,121,2,12x x x-≤+≥-∴--∴负整数解有:,;负整数x的和是-3.故答案为-3.15.25.【解析】【分析】设钢笔的单价为x元,文具盒的单价为y元,直尺的单价为z元,根据“买5支钢笔、2个文具盒和3把直尺需要91元;买1支钢笔、4个文具盒和3把直尺需要59元”,即可得出关于x,y,z的三元一次方程组,再利用(①+①)÷6即可求出结论.【详解】设钢笔的单价为x元,文具盒的单价为y元,直尺的单价为z元,依题意,得:523=9143=59x y zx y z++⎧⎨++⎩①②,(①+①)÷6,得:x+y+z=25.故答案为:25.【点睛】此题考查三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.16.3≤m<4或﹣4≤m<-3【解析】【分析】解不等式组得出解集,根据整数解的和为15,可以确定整数解必含6,5,4这三个数,再根据解集确定m 的取值范围.【详解】解:解不等式组01321x m x ->⎧⎨-≥⎩,得:m <x≤6, ①所有整数解的和是15,15=6+5+4①不等式组的整数解为①6,5,4,或①6,5,4,3,2,1,0,-1,-2,-3①3≤m <4或-4≤m <-3;故答案为: 3≤m <4或﹣4≤m <-3.【点睛】考查一元一次不等式组的解集、整数解,根据整数解和解集确定待定字母的取值范围,在确定的过程中,不等号的选择应认真细心,切实选择正确.17.0【解析】【分析】先把方程化简,然后把x=1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值.【详解】 解:2136kx a x bk ++=- ()()262kx a x bk +=-+当x=1时,()242b k a +=-无论k 为何值对方程无影响,所以20,2b b +==-所以420,2a a -==所以0a b +=【点睛】本题考查了一元一次方程的解,化解方程得出关系式是解题的关键.18.(1)x =﹣1;(2)22x y =⎧⎨=⎩;(3)123x y z =⎧⎪=-⎨⎪=⎩.【解析】【分析】(1)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(2)方程组整理后,利用加减消元法求出解即可;(3)方程组利用加减消元法求出解即可.【详解】(1)去分母得:2(x+1)﹣4=3x ﹣1,去括号得:2x+2﹣4=3x ﹣1,移项合并得:﹣x =1,解得:x =﹣1;(2)方程组整理得:43=234=2x y x y -⎧⎨--⎩①② ,①×4-①×3得:7x=14,解得:x=2,把x=2代入①得:y=2,则方程组的解为=2=2x y ⎧⎨⎩ ;(3)2=02=13=2x y z x y z x y z ++⎧⎪--⎨⎪--⎩①②③,①+①得:3x+y =1①,①+①得:4x+y =2①,①﹣①得:x =1,把x =1代入①得:y =﹣2,把x =1,y =﹣2代入①得:z =3,则方程组的解为=1=2=3xy z ⎧⎪-⎨⎪⎩ .【点睛】此题考查解三元一次方程组,解一元一次方程,以及解二元一次方程,熟练掌握各自的解法是解题的关键.19.在数轴上表示见解析;非负整数解有0,1,2.【解析】【分析】不等式去括号,移项合并,把x系数化为1,即可求出解集;【详解】去括号得:3x﹣3>4x﹣2﹣4移项合并得:﹣x>﹣3,解得:x<3,在数轴上表示为:非负整数解有0,1,2.【点睛】此题考查一元一次不等式的整数解,在数轴上表示不等式的解集,熟练掌握运算法则是解题的关键.20.原两位数为48.【解析】【分析】设个位上的数字为x,十位上的数字为12﹣x.根据等量关系“交换个位与十位数字,则所得新数比原数大36”列出方程并求解.【详解】设个位上的数字为x,十位上的数字为12﹣x,列方程得10(12﹣x)+x+36=10x+(12﹣x),解得:x=8,12﹣8=4.答:原两位数为48.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.21.这件服装的进价是100元.【解析】【分析】设这件服装的进价为x 元,找出相等关系为:进价×(1+20%)=200×60%,列方程即可求解.【详解】设这件服装的进价为x 元,依题意得:(1+20%)x =200×60%,解得:x =100.故这件服装的进价是100元.【点睛】此题考查一元一次方程的应用,解题的关键是找出相等关系,进价×(1+20%)=200×60%.22.x=3.【解析】【详解】试题分析:由点A 、B 到原点的距离相等且A ,B 是数轴上不同的两点,可得 21334,52x x --+= 解方程即可.试题解析:由题意得点B 表示的数是4,则有21334,52x x --+=去分母,得()()22153340.x x -+-=去括号,得42151540,x x -+-=移项,得41540152,x x +=++合并同类项,得1957.x =两边都除以19,得 3.x =23.x >97.【解析】【分析】根据新定义列出关于x 的一元一次不等式,解之可得.【详解】根据题意知4x ﹣3(3﹣x )>0,则4x ﹣9+3x >0,7x >9,解得x >97. 【点睛】此题考查解一元一次不等式,严格遵循解不等式的基本步骤是解题关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.24.﹣5.【解析】【分析】根据题意得出方程4=532=5x y x y +⎧⎨+⎩,解之求出x 、y 的值,继而代入得到 =5=1a b a b --⎧⎨+⎩,据此可得原式=(a+b )(a-b )的值. 【详解】根据题意,得:4=532=5x y x y +⎧⎨+⎩, 解得=1=1x y ⎧⎨⎩, 则=5=1a b a b --⎧⎨+⎩, 所以原式=(a+b )(a-b )=-5×1=-5.【点睛】此题考查二元一次方程组的解,解题关键在于掌握一般情况下二元一次方程组的解是唯一的.当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.25.a <﹣3.【解析】【分析】先把a 当作已知条件求出x 、y 的值,再根据x <y 即可得出关于a 的不等式,求出a 的取值范围即可.【详解】解方程组325x y a x y a -=+⎧⎨+=⎩得212x a y a =+⎧⎨=-⎩, ①x <y ,①2a+1<a ﹣2,解得a <﹣3.故a 的取值范围是a <﹣3.【点睛】本题考查的是解二元一次方程组及一元一次不等式,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.26.(1)0.61.1x y =⎧⎨=⎩;(2)若该用户计划7月份所付电费不超过83元,问该用户7月份最多可用电130度.【解析】【分析】(1)根据5、6月份的用电量及所交电费可得出二元一次方程组,解出即可; (2)先判断出是否超过120度,然后列方程计算即可.【详解】(1)由题意得,115=6912020=94x x y ⎧⎨+⎩, 解得:=0.6=1.1x y ⎧⎨⎩. (2)用电量为120度时需要交电费72元,设该用户7月份最多可用电x 度,由题意得,120×0.6+1.1(x ﹣120)=83,解得:x=130,答:若该用户计划7月份所付电费不超过83元,该用户7月份最多可用电130度.【点睛】此题考查元一次方程组的应用,解题的关键是仔细审题,根据等量关系得出方程组,难度一般.27.(1)150;240;(2)11根.【解析】【分析】(1)根据单价×数量=总价,求出6根跳绳需多少元;购买12根跳绳,超过10根,打八折是指现价是原价的80%,用单价×数量×0.8即可求出购买12根跳绳需多少元;(2)有这种可能,可以设小红购买x跳绳根,那么小明购买x-2根跳绳,列出方程25x×0.8=25(x-2)-5,解答即可.【详解】解:(1)一次性购买6根跳绳需25×6=150(元);一次性购买12根跳绳需25×12×0.8=240(元);故答案为150;240.(2)设小红购买x跳绳根,那么小明购买(x-2)根跳绳,25x×0.8=25(x-2)-5,解得:x=11;小明购买了:11-2=9根.答:小红购买11根跳绳.【点睛】本题考查一元一次方程的应用,解答的关键是读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程进行解答即可.。
最新华东师大版七年级数学下册期中试卷 含答案
华东师大版七年级下册期中试卷一、选择题(每小题3分,共30分)1.已知关于x 的方程2x -a -5=0的解是x =-2,则a 的值为( )A .1B .-1C .9D .-92.小亮在解方程5b -2x =16时,把-2x 错看成+2x ,结果解得x =-2,则原方程的解是( )A .x =-3B .x =0C .x =1D .x =23.要使多项式x 2-2kxy -3y 2+12xy -5x +70不含x ,y 的乘积项,则k 的值为( )A .-14B .-1 C.14D .1 4.若关于x ,y 的二元一次方程组⎩⎨⎧ax +y =0,x +by =1的解是⎩⎨⎧x =1,y =-1,那么b -a 的值是( )A .0B .1C .-2D .-15.不等式组⎩⎨⎧2x +1<3,3x +1≥-2的解集在数轴上表示正确的是( )6.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.⎩⎨⎧x -y =320x +10y =36B.⎩⎨⎧x +y =320x +10y =36C.⎩⎨⎧y -x =320x +10y =36D.⎩⎨⎧x +y =310x +20y =367.设“▲”“●”“■”分别表示三种不同的物体,现用天平称两次,情况如图所示,那么▲,●,■这三种物体按质量从大到小排列应为( )A .■,●,▲B .▲,■,●C .■,▲,●D .●,▲,■8.已知关于x 的方程x +2k =4(x +k )+1有负数解,则k 的取值范围是( )A .k >-12B .k <-12C .k >-13D .k <-139.关于x 的不等式⎩⎨⎧2(x -1)>4,a -x <0的解集为x >3,那么a 的取值范围为( )A .a >3B .a <3C .a ≥3D .a ≤310.西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10 000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1 000元,则这个小区的住户数( )A .至少20户B .至多20户C .至少21户D .至多21户二、填空题(每小题3分,共15分)11.当x =____时,代数式x -14与2-x 3的差为1. 12.不等式组⎩⎨⎧x -2≤0,x -12<x的解集是____. 13.已知⎩⎨⎧x =2,y =1是关于x ,y 的二元一次方程组⎩⎨⎧ax +by =7,ax -by =1的一组解,则a +b =____.14.小亮妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果少买了2 kg ,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x kg ,乙种水果y kg ,可列出方程组为___.15.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7·为例进行说明:设0.7·=x ,由0.7·=0.7777…可知,10x =7.7777…,所以10x -x =7,解方程,得x =79,于是.得0.7·=79.将0.3·6·写成分数的形式是___.三、解答题(共75分)16.(8分)解下列方程(组): (1)x -30.5-x +40.2=1.6; (2)⎩⎨⎧3(x +y )+2(x -3y )=20,30%x +6%y =10%×60.17.(9分)解不等式组:⎩⎨⎧2x +1>x ,x +52-x ≥1,并把解集在数轴上表示出来.18.(9分)求满足不等式组⎩⎨⎧x -3(x -2)≤8,12x -1<3-32x 的所有整数解.19.(9分)m 为何值时,方程组⎩⎨⎧5x +6y =2m -3,7x -4y =m -2的解满足x <0,y <0.。
华师大版七年级下册数学期中考试试题附答案
华师大版七年级下册数学期中考试试卷一、单选题1.已知x =2是关于x 的方程3x+a =0的一个解,则a 的值是( )A .﹣6B .﹣3C .﹣4D .﹣5 2.把方程2263x x -=-移项,得( )A .2362x x +=+B .2362x x -=+C .2362x x +=-D .2362x x -=- 3.下列方程组中,不是二元一次方程组的是( )A .123x y =⎧⎨+=⎩B .10x y x y +=⎧⎨-=⎩C .10x y xy +=⎧⎨=⎩D .21y x x y =⎧⎨-=⎩4.同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( )A .45x y =⎧⎨=-⎩B .45x y =-⎧⎨=⎩C .23x y =-⎧⎨=⎩D .36x y =⎧⎨=-⎩5.若关于x ,y 的二元一次方程组25245x y k x y k +=+⎧⎨-=-⎩的解满足x +y =9,则k 的值是( ) A .1 B .2 C .3 D .46.已知方程组2325x y x y +=⎧⎨-=⎩,则26x y +的值是( ) A .﹣2 B .2 C .﹣4 D .47.如图,10块形状、大小相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意可列方程组为( )A .2753x y y x +=⎧⎨=⎩B .2753x y x y +=⎧⎨=⎩C .2753x y y x -=⎧⎨=⎩D .2753x y x y +=⎧⎨=⎩8.下列各式中,不是不等式的是( )A .2x≠1B .3x 2﹣2x+1C .﹣3<0D .3x ﹣2≥19.下列说法不一定成立的是( )A .若a >b ,则a +c >b +cB .若a +c >b +c ,则a >bC .若a >b ,则ac > bcD .若ac 2>bc 2,则a >b10.不等式组22314x x x -≥-⎧⎨->-⎩的最小整数解是( ) A .-1 B .0 C .1 D .211.不等式组26{20x x -<-≤的解集,在数轴上表示正确的是( ) A . B . C . D .12.关于x 的不等式组1x a x ⎧⎨⎩>>的解集为x >1,则a 的取值范围是( ) A .a≥1 B .a >1 C .a≤1 D .a <113.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤- 14.若规定:[a]表示小于a 的最大整数,例如:[5]=4,[-6.7]=-7,则方程3[-π]-2x=5的解是( )A .7x =B .7x =-C .172x =-D .172x = 二、填空题15.已知方程(m ﹣2)x |m |﹣1+3=0是关于x 的一元一次方程,则m 的值是_____. 16.由方程459x y +=,可以用含x 的代数式表示y ,则y =_______. 17.方程组43235x y k x y -=⎧⎨+=⎩的解中x 与y 的值相等,则k 等于_______. 18.若单项式3x 4yn 与﹣2x 2m +3y 3的和仍是单项式,则(4m ﹣n )n=_____.19.在方程组2122x y m x y +=-⎧⎨+=⎩中,若未知数x 、y 满足x+y >0,则m 的取值范围是_______.20.若方程组142kx y x my -=⎧⎨+=⎩ 有无数解,则k ﹣m 的值是_____. 三、解答题21.(1)解方程53(2)8x x +-=(2)解方程组21538x y x y +=⎧⎨-=⎩22.解不等式:232126x x +-->.并把它们的解集在数轴上表示出来;23.当m 取什么整数时,关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭的解是正整数?24.在解方程组107ax y x by +=⎧⎨+=⎩时,由于粗心,甲看错了方程组中的a ,而得到方程组的解为16x y =⎧⎨=⎩ ,乙看错了方程组中的b ,而得到方程组的解为112x y =-⎧⎨=⎩, (1)甲把a 看成了什么?乙把b 看成了什么?(2)求出原方程组的正确解.25.已知代数式2y ax bx c =++,当1x =-时,4y =;当0x =时,1y =;当2x =时,25y =;①求a 、b 、c 的值;①求3x =时,y 的值.26.已知关于x的不等式组20x a bx a b-->⎧⎨-+<⎩的解集为119x-<<,求a,b的值.27.一家商场将某种商品按成本价提高50%后标价出售,元旦期间,为答谢新老顾客对商场的光顾,打八折销售,每件商品仍可获利40元,请问这件商品的成本价是多少元?(列一元一次方程求解)28.为了更好地保护美丽如画的邛海湿地,西昌市污水处理厂决定先购买A,B两种型号的污水处理设备共20台,对邛海湿地周边污水进行处理.每台A型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640t,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080t.(1)求A,B两种型号的污水处理设备每周每台分别可以处理污水多少吨.(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500t,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少。
华师大版七年级下学期数学《期中考试题》及答案
A 若x<0,则x2>xB. 如果a<-1,则a>-a
C. 若 ,则a>0D. 如果b>a>0,则
[答案]B
[解析]
若x<0,则x2>0,x2>x,故A选项正确;
如果a<-1,则-a>1,a<-a,故B选项错误;
∵ < ,∴要使 ,则a>0,故C选项正确;
∵b>a>0,∴ > ,∴- <- ,故D选项正确.
(2)方程整理后,去括号,去分母,移项合并,把x系数化为1,即可求出解.
[详解]解:(1)3(x+8)﹣5=6(2x﹣1),
3x+24﹣5=12x﹣6,
3x﹣12x=﹣6﹣24+5,
﹣9x=﹣25,
x= ;
(2) ,
5(18﹣80x)﹣3(13﹣30x)﹣20(50x﹣4)=0,
解得a=2.
故选:B.
[点睛]本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.
2.在数轴上表示不等式x≥-2的解集正确的是( )
A. B.
C. D.
[答案]D
[解析]
[分析]
根据在数轴上表示不等式解集的方法利用排除法进行解答.
[详解]∵不等式x⩾−2中包含等于号,
∴必须用实心圆点,
三、解答题
16.解方程:
(1)3(x+8)﹣5=6(2x﹣1 );
(2) ﹣ ﹣ =0
17.解下列方程组:
(1) ;
(2) ;
18.解下列不等式:
(1)5(x+2)≥1﹣2(x﹣1);
(2) ﹣(x﹣1)<1
19.在做解方程练习时,学习卷中有一个方程“2y– = y+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=2时代数式5(x–1)–2(x–2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?
华东师大版七年级数学下册期中试卷(参考答案)
华东师大版七年级数学下册期中试卷(参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2B.3C.9D.±32.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.已知x是整数,当30x取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x个字,则下面所列方程正确的是().A.x+2x+4x=34 685 B.x+2x+3x=34 685C.x+2x+2x=34 685 D.x+12x+14x=34 6858.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A .B .C .D .10.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为A .-1B .1C .2D .3二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________. 4.方程()()()()32521841x x x x +--+-=的解是_________. 5.若264a =3a =________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3x ﹣7(x ﹣1)=3﹣2(x +3) (2)131148x x ---=2.解不等式组:3(1)72323x x x x x --<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.3.如图所示,宽为20米,长为32米的长方形地面上,修筑宽度为x米的两条互相垂直的小路,余下的部分作为耕地,如果要在耕地上铺上草皮,选用草皮的价格是每平米a元,(1)求买草皮至少需要多少元?(用含a,x的式子表示)(2)计算a=40,x=2时,草皮的费用.4.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图0次1次2次3次4次及书的次数以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:类别次数购买A商品数量(件)购买B商品数量(件)消费金额(元)第一次 4 5 320 第二次 2 6 300 第三次 5 7 258 解答下列问题:(1)第次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、A6、D7、A8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、83、2或2 -34、3x .5、±26、2或-8三、解答题(本大题共6小题,共72分)1、(1):x=5;(2)x=﹣9.2、x≥3 53、(1)(640-52x+ x2)a;(2)21600元.4、(1)130°.(2)∠Q==90°﹣12∠A;(3)∠A的度数是90°或60°或120°.5、()117、20;()22次、2次;()372;()4120人.6、(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件。
华东师大版七年级数学下册期中考试卷及答案【完整版】
华东师大版七年级数学下册期中考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.100992.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).A.35° B.70° C.110° D.145°3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.若数a使关于x的不等式组232x ax a->⎧⎨-<-⎩无解,且使关于x的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.计算()233a a ⋅的结果是( ) A .8a B .9a C .11a D .18a二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列不等式(组),并把它们的解集在数轴上表示出来:(1)9221163x x +--≥- (2)()328134x x x x ⎧+>+⎪⎨-≤⎪⎩①②2.(1)若a 2=16,|b |=3,且ab<0,求a +b 的值.(2)已知a 、b 互为相反数且a ≠0,c 、d 互为倒数,m 的绝对值是3,且m 位于原点左侧,求22015(1)()2016m a b cd --++-的值.3.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N∠=∠.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)求购买一个足球、一个篮球各需多少元?(2)根据学校实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、B2、C3、D4、C5、B6、C7、C8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、2b-2a2、40°3、(3,7)或(3,-3)4、205、40°6、48三、解答题(本大题共6小题,共72分)1、(1)2x ≥-,画图见解析;(2)14x <≤,画图见解析2、(1)1±;(2)9.3、(1)35°;(2)36°.4、(1)略;(2)略.5、(1)20%;(2)6006、(1)购买一个足球需要50元,购买一个篮球需要80;(2)30个.。
【华师大版】七年级下学期数学《期中检测题》含答案解析
华东师大版七年级下学期期中考试数学试题一、选择题(每小题4分,共40分)(答案须填在答题卷上).1. 在平面直角坐标系中,点M (-1,1)在( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 将下图所示的图案通过平移后可以得到的是( )A.B. C. D.3. 已知a b ,则下列四个不等式中,不正确的是( )A. 22a b -- B. 22ab -- C. 22a b D. 22a b ++4. 在-1.732,2 ,π, 3, 2+3,3.212212221…,3.14这些数中,无理数的个数为( ) A. 5B. 2C. 3D. 45. 下列调查方式,你认为最合适的是( )A. 日光灯管厂要检测一批灯管的使用寿命,采用普查方式B. 了解衢州市每天的流动人口数,采用抽查方式 C .了解衢州市居民日平均用水量,采用普查方式 D. 旅客上飞机前的安检,采用抽样调查方式6. 如下图,海平面上的两艘军舰的位置在A 和B ,则由B 测得A 的方向应该是( )A. 南偏东30°B. 南偏东60°C. 北偏西30°D. 北偏西60°7. 不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示为( ).A.B.C.D.8. 某商店举办促销活动,将原价x 元的商品以0. 6(10 )x -元出售,则下列说法中,能正确表达该商店促销方法的是( ) A. 原价减去10元后再打6折 B. 原价打6折后再减去10元 C. 原价减去10元后再打4折 D. 原价打4折后再减去10元9. 根据下表回答:x1 1.1 1.2 1.3 1.4 2x11.211.441.691.96下列结论正确的是() A. 31 1.12<< B. 31.1 1.22<< C. 31.2 1.32<< D. 31.3 1.42<< 10. 在平面直角坐标系中,任意两点A (1x ,1y ),B (2x ,2y ),规定运算:①A ⊕B=(12x x +,12y y +);②A ⊗B=1212x x y y +;③当12x x =且12y y =时,A=B ,有下列四个命题:(1)若A (1,2),B (2,﹣1),则A ⊕B=(3,1),A ⊗B=0; (2)若A ⊕B=B ⊕C ,则A=C ; (3)若A ⊗B=B ⊗C ,则A=C ; (4)对任意点A 、B 、C ,均有(A ⊕B )⊕C=A ⊕(B ⊕C )成立,其中正确命题的个数为( ) A. 1个B. 2个C. 3个D. 4个二、填空题(本大题有6小题,第11题8分,其余各小题每题4分,共28分)(答案须填在答题卷上) 11. (1)22-=________; (2)25的算术平方根是_____;(3)3278=______; (4)命题“对顶角相等”的题设是__________________,结论是__________________. 12. 用不等式表示“x 的2倍与3的和不大于2”为________________ . 13. 已知方程23x y -=,用含x 的式子表示y ,则y =__________,当时,y =________.14. 如图,已知如图,40C ∠=,ADB ∠︰BDC ∠=1︰3,ADB ∠=35°,则AD 与BC 的关系是________°.15. 若x ,y 是方程组3210023220y x ay x +=-⎧⎨-=⎩ 的解,且x,y ,a 都是正整数.当6a ≤时,方程组的解是_______________. 16. 如图,已知AB‖CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC 与∠AEC 之间的数量关系是_____________________________三、解答题(本大题有9小题,共82分)17.(1)计算:3984+-- (2)解方程组148x y x y +=⎧⎨+=-⎩18. 解不等式组2(1)31132x x x x +≤-⎧⎪+⎨<⎪⎩19. 完成下面的证明(在下面的括号内填上相应的结论或推理的依据):如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠3,求证:AD 是∠BAC 平分线.证明:∵AD ⊥BC ,EG ⊥BC (已知) ∴∠4=∠5=90°( ) ∴AD ∥EG ( )∴∠1=∠E ( ) ∠2=∠3( ) ∵∠E=∠3(已知) ∴( )=( )∴AD 是∠BAC 的平分线( )20. (本题8分) 某校数学兴趣小组的成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:(1)频数分布表中a = ,b = ; (2)补全频数分布直方图;21. 某电脑公司有A 型、B 型两种型号的电脑,其中A 型电脑每台5000元,B 型电脑每台3000元.我校购买10台电脑共花费34000元.问我校购买A 型、B 型电脑分别多少台?22. 在图中,A (﹣1,4)、B (﹣4,﹣1)、C (1,1),△ABC 内任意一点P (x 0,y 0)经过平移后对应点为P 1(x 0+5,y 0+3),将三角形ABC 作同样的平移得到三角形A 1B 1C 1,请回答下列问题.(1)画出平移后△A 1B 1C 1; (2)求△ABC 的面积; 23. 当a ,b 都是实数,且满足26a b -=,就称点P (1,1)2ba -+为完美点. (1)判断点A (2,3)是否为完美点.(2)已知关于,的方程组42x y x y m+=⎧⎨-=⎩,当m 为何值时,以方程组的解为坐标的点B (,)x y 是完美点,请说明理由.24. 在平面直角坐标系中,点A 的坐标为(0,4)m +,点B 的坐标为(3,)m m +,且m 是方程39212m m ++=的解. (1)请求出A 、B 两点坐标(2)点C 在第一象限内,//AC x 轴,将线段AB 进行适当的平移得到线段DC ,点A 的对应点为D ,点B 的对应点为C ,连接AD ,若ACD △的面积为12,连接OD ,P 为y 轴上一动点,若使PAB AOD S S ∆∆=,求此时点P 的坐标.25. 已知AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B.(1)如图1,直接写出∠A 和∠C 之间的数量关系___; (2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD=∠C ;(3)如图3,在(2)问的条件下,点E. F 在DM 上,连接BE 、BF 、CF,BF 平分∠DBC,BE 平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE ,求∠EBC 的度数.答案与解析一、选择题(每小题4分,共40分)(答案须填在答题卷上).1. 在平面直角坐标系中,点M (-1,1)在( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】 【分析】根据各象限内点的坐标特征解答. 【详解】解:点M (-1,1)在第二象限. 故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 2. 将下图所示的图案通过平移后可以得到的是( )A. B. C. D.【答案】C 【解析】分析:平移不会改变图形的大小、形状和方向,根据性质即可得出答案. 详解:根据平移的性质可得本题选C .点睛:本题主要考查的是平移图形的性质,属于基础题型.记住平移图形的性质是解决这个题目的关键. 3. 已知a b ,则下列四个不等式中,不正确的是( ) A. 22a b --B. 22ab -- C. 22a b D. 22a b ++【答案】B 【解析】 【分析】根据不等式的性质即可得出答案.在不等式的左右两边同时加上或减去一个数,不等式成立;在不等式的左右两边同时乘以或除以一个正数,不等式成立;在不等式的左右两边同时乘以或除以一个负数,不等符号需要改变.【详解】根据不等式的性质可知:-2a>-2b,故选B.【点睛】本题主要考查的是不等式的基本性质,属于基础题型.记住不等式的性质是解决这个问题的关键.4. 在-1.732,2,π, 3, 2+3,3.212212221…,3.14这些数中,无理数的个数为( )A. 5B. 2C. 3D. 4【答案】D【解析】分析:无理数是指无线不循环小数,初中阶段主要有以下几种形式:构造数,如0.12122122212222...(相邻两个1之间依次多一个2)等;有特殊意义的数,如圆周率π;部分带根号的数,如23、等.详解:根据无理数的定义可知无理数有:2,π,2+3,3.212212221…共四个,故选D.点睛:本题主要考查的是无理数的定义,属于基础题型.理解无理数的定义是解决这个问题的关键.5. 下列调查方式,你认为最合适的是()A. 日光灯管厂要检测一批灯管的使用寿命,采用普查方式B. 了解衢州市每天的流动人口数,采用抽查方式C. 了解衢州市居民日平均用水量,采用普查方式D. 旅客上飞机前的安检,采用抽样调查方式【答案】B【解析】【分析】根据抽样调查和全面调查的特点与意义,分别进行分析即可得出答案:【详解】A.日光灯管厂要检测一批灯管的使用寿命,应采用抽样调查方式,故此选项错误;B.了解衢州市每天的流动人口数,采用抽查方式;故此选项正确;C.了解衢州市居民日平均用水量,应采用抽样调查方式;故此选项错误;D.旅客上飞机前的安检,应采用全面调查方式;故此选项错误.故选B.6. 如下图,海平面上的两艘军舰的位置在A和B,则由B测得A的方向应该是()A. 南偏东30°B. 南偏东60°C. 北偏西30°D. 北偏西60°【答案】D【解析】分析:根据方位的判定方法即可得出答案.详解:根据图示可得:A的方向为:北偏西60°方向上,故选D.点睛:本题主要考查的是方位角的问题,属于基础题型.解决这个问题的关键就是找出观测点.7. 不等式组21xx≥-⎧⎨<⎩的解集在数轴上表示为().A. B. C. D.【答案】B【解析】【分析】根据不等式在数轴上的表示方法就可以得出答案.含有等号的要用实心点,不含等号的要用空心点.【详解】解:x≥-2表示从-2向右,用实心点;x<1表示从1向左,用空心点,故选B.【点睛】本题主要考查的是不等式的解集在数轴上的表示方法,属于基础题型.是用实心点还是空心点是解决这个问题的关键.8. 某商店举办促销活动,将原价x元的商品以0. 6(10 )x-元出售,则下列说法中,能正确表达该商店促销方法的是()A. 原价减去10元后再打6折B. 原价打6折后再减去10元C. 原价减去10元后再打4折D. 原价打4折后再减去10元【答案】A【解析】【分析】首先根据括号内的减法可知原价减去10元,然后得到的价格再按照6折出售,据此判断即可.【详解】解:(x-10)表示原价减去10元,0. 6(10 )x-表示原价减去10元后,再打6折;故选择:A.【点睛】此题主要考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,要熟练掌握,解答此题的关键是要明确“折”的含义. 9. 根据下表回答:下列结论正确的是()A. 1 1.1<B. 1.1 1.2<< C. 1.2 1.3<< D. 1.3 1.4<< 【答案】C 【解析】 分析:根据32的取值范围,然后根据表格得出答案.详解:∵1.44<1.5<1.69, ∴1.2 1.3, 故选C . 点睛:本题主要考查的是无理数的估算问题,属于中等难度题型.解决这个问题的关键就是得出被开方数的取值范围,从而得出答案. 10.平面直角坐标系中,任意两点A (1x ,1y ),B (2x ,2y ),规定运算:①A ⊕B=(12x x +,12y y +);②A ⊗B=1212x x y y +;③当12x x =且12y y =时,A=B ,有下列四个命题:(1)若A (1,2),B (2,﹣1),则A ⊕B=(3,1),A ⊗B=0; (2)若A ⊕B=B ⊕C ,则A=C ; (3)若A ⊗B=B ⊗C ,则A=C ; (4)对任意点A 、B 、C ,均有(A ⊕B )⊕C=A ⊕(B ⊕C )成立,其中正确命题的个数为( ) A. 1个 B. 2个C. 3个D. 4个【答案】C 【解析】试题分析:(1)A ⊕B=(1+2,2﹣1)=(3,1),A ⊗B=1×2+2×(﹣1)=0,所以(1)正确;(2)设C (3x ,3y ),A ⊕B=(12x x +,12y y +),B ⊕C=(23x x +,23y y +),而A ⊕B=B ⊕C ,所以12x x +=23x x +,12y y +=23y y +,则13x x =,13y y =,所以A=C ,所以(2)正确;(3)A ⊗B=1212x x y y +,B ⊗C=2323x x y y +,而A ⊗B=B ⊗C ,则1212x x y y +=2323x x y y +,不能得到13x x =,13y y =,所以A≠C ,所以(3)不正确;(4)因为(A ⊕B )⊕C=(123x x x ++,123y y y ++),A ⊕(B ⊕C )=(123x x x ++,123y y y ++),所以(A ⊕B )⊕C=A ⊕(B ⊕C ),所以(4)正确. 故选C .考点:1.命题与定理;2.点的坐标.二、填空题(本大题有6小题,第11题8分,其余各小题每题4分,共28分)(答案须填在答题卷上)11. (12=________; (2)25的算术平方根是_____;(3; (4)命题“对顶角相等”的题设是__________________,结论是__________________.【答案】 (1). 2 (2). 5; (3). 1.5; (4). 两个角互为对顶角, (5). 这两个角相等. 【解析】 【分析】【详解】分析:(1)、根据绝对值的计算法则即可得出答案;(2)、根据算术平方根的计算法则得出答案;(3)、根据立方根的计算法则得出答案;(4)、根据命题的构成得出答案.详解:(12=2- (2)25的算术平方根是5;(3; (4)命题“对顶角相等”的题设是两个角互为对顶角,结论是这两个角相等.点睛:本题主要考查的是绝对值的计算、算术平方根、立方根以及命题,属于基础题型.理解定义是解题的关键.12. 用不等式表示“x 的2倍与3的和不大于2”为________________ . 【答案】2x+3≤2 【解析】 【分析】不大于用“≤”的符号来表示. 【详解】解:根据题意得:2x+3≤2.【点睛】本题主要考查的是代数式表示不等量关系,属于基础题型.理解不等符号的概念是解题的关键. 13. 已知方程23x y -=,用含x 的式子表示y ,则y =__________,当时,y =________.【答案】 (1). 2x-3, (2). -3. 【解析】 【分析】【详解】分析:首先根据等式的性质将y 保留在等号的左边,其余的放在等号的右边,从而得出答案. 详解:y=2x -3;当x=0时,y=2×0-3=-3. 点睛:本题主要考查的是代数式的表示方法以及代数式的计算,属于基础题型.了解等式的性质是解题的关键.14. 如图,已知如图,40C ∠=,ADB ∠︰BDC ∠=1︰3,ADB ∠=35°,则AD 与BC 的关系是________°.【答案】AD BC 【解析】分析:首先根据角度之间的关系得出∠ADC 的度数,然后根据同旁内角互补得出直线的关系. 详解:∵∠ADB=35°,ADB ∠︰BDC ∠=1︰3, ∴∠BDC=35°×3=105°, ∴∠ADC=140°, ∵∠C=40°, ∴∠ADC+∠C=180°, ∴AD ∥BC .点睛:本题主要考查的是平行线的判定定理,属于基础题型.利用角度之间的关系得出∠ADC 的度数是解题的关键.15. 若x ,y 是方程组3210023220y x ay x +=-⎧⎨-=⎩ 的解,且x,y ,a 都是正整数.当6a ≤时,方程组的解是_______________. 【答案】1718x y =⎧⎨=⎩【解析】分析:首先用含a 的代数式表示出x 和y ,然后根据整数以及a 的取值范围得出答案.详解:解方程可得:12021203x ay a⎧=-⎪⎪⎨⎪=-⎪⎩,∵a≤6,x、y、a为正整数,∴a=6,∴方程组的解为:1718 xy=⎧⎨=⎩点睛:本题主要考查的是二元一次方程组的解法,属于基础题型.解决这个问题的关键就是用含a的代数式表示x和y.16. 如图,已知AB‖CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC与∠AEC之间的数量关系是_____________________________【答案】4∠AFC=3∠AEC【解析】分析:连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,然后根据平行线的性质得出∠AEC=4(x°+y°),∠AFC=3(x°+y°),从而得出答案.详解:连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°)∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∴4∠AFC=3∠AEC.点睛:主要考查你对平行线的性质,平行线的公理等考点的理解,属于基础题型.解决本题的关键就是根据平行线的性质以及三角形内角和定理得出答案.三、解答题(本大题有9小题,共82分)17. (1)计算3984-(2)解方程组1 48 x yx y+=⎧⎨+=-⎩【答案】(1)-1;(2)34 xy=-⎧⎨=⎩【解析】分析:(1)、首先根据算术平方根和立方根的性质求出各式的值,然后进行求和得出答案;(2)、利用②-①求出x的值,然后将x的值代入求出y的值,从而得出方程组的解.详解:(1)、原式=3-2-2=-1(2)、②-①,得3x=-9 ,解得x=-3,将x=-3代入①,得y=4,∴该方程组的解为34xy=-⎧⎨=⎩.点睛:本题主要考查的是立方根、算术平方根的计算以及二元一次方程组的解法,属于基础题型.理解计算法则是解题的关键.18. 解不等式组2(1)31132x xx x+≤-⎧⎪+⎨<⎪⎩【答案】x≥3.【解析】分析:首先分别求出每一个不等式的解,从而得出不等式组的解集.详解:解不等式①:2x+2≤3x-1 即x≥3;解不等式②:2x<3(x+1) 即x>-3;∴该不等式组的解集为x≥3.点睛:本题主要考查的是不等式组的解法,属于基础题型.理解不等式的性质是解题的关键.19. 完成下面的证明(在下面的括号内填上相应的结论或推理的依据):如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,求证:AD是∠BAC的平分线.证明:∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°()∴AD∥EG()∴∠1=∠E()∠2=∠3()∵∠E=∠3(已知)∴()=()∴AD是∠BAC的平分线()【答案】详见解析.【解析】分析:根据平行线的性质以及判定定理即可进行填空得出答案.详解:证明:∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°(垂直的定义)∴AD∥EG(同位角相等,两直线平行)∴∠1=∠E(两直线平行,同位角相等)∠2=∠3(两直线平行,内错角相等)∵∠E=∠3(已知)∴(∠1 )=(∠2 )∴AD是∠BAC的平分线(角平分线的定义)点睛:本题主要考查的是平行线的判定及性质,属于基础题型.理解平行线的判定与性质是解题的关键.20. (本题8分)某校数学兴趣小组的成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:(1)频数分布表中a= ,b= ;(2)补全频数分布直方图;【答案】(1)8,0.08;(2)详见解析.【解析】分析:(1)、根据频数、频率、样本容量之间的关系即可得出答案;(2)、根据题意得出60—70分的频数,从而得出答案.详解:请你根据图表提供的信息,解答下列问题: (1)频数分布表中a = 8 ,b = 0.08 ; (2)补全频数分布直方图; 如图所示.点睛:本题主要考查的频数、频率以及样本容量之间的关系,属于基础题型.理解三者之间的关系是解题的关键.21. 某电脑公司有A 型、B 型两种型号的电脑,其中A 型电脑每台5000元,B 型电脑每台3000元.我校购买10台电脑共花费34000元.问我校购买A 型、B 型电脑分别多少台? 【答案】购买A 型电脑2台,B 型8台.【解析】分析:首先设我校购买A 型电脑x 台,B 型电脑y 台,根据题意列出二元一次方程组,从而得出答案.详解:设我校购买A 型电脑x 台,B 型电脑y 台,依题意得:500030003400010x y x y +=⎧⎨+=⎩, 解得28x y =⎧⎨=⎩.答:购买A 型电脑2台,B 型8台.点睛:本题主要考查的是二元一次方程组的应用,属于基础题型.找出题目中的等量关系是解题的关键. 22. 在图中,A (﹣1,4)、B (﹣4,﹣1)、C (1,1),△ABC 内任意一点P (x 0,y 0)经过平移后对应点为P 1(x 0+5,y 0+3),将三角形ABC 作同样的平移得到三角形A 1B 1C 1,请回答下列问题.(1)画出平移后△A 1B 1C 1; (2)求△ABC 的面积; 【答案】(1)详见解析;(2)192. 【解析】分析:(1)、根据△ABC 中任意一点P 的平移法则可知△ABC 应向右平移5个单位,向上平移3个单位,由此作出△A 1B 1C 1即可;(2)、利用正方形的面积减去三个直角三角形的面积得出答案. 详解:(1)、如图所示:(2)、S=5×5-5×2÷2-2×3÷2-5×3÷2=25-5-3-7.5=192. 点睛:本题考查的是作图-平移变换,属于基础题型.熟知图形平移不变性的性质是解答此题的关键. 23. 当a ,b 都是实数,且满足26a b -=,就称点P (1,1)2ba -+为完美点. (1)判断点A (2,3)是否为完美点. (2)已知关于,的方程组42x y x y m+=⎧⎨-=⎩,当m 为何值时,以方程组的解为坐标的点B (,)x y 是完美点,请说明理由.【答案】(1)A 不是完美点;(2)1.2m = 【解析】分析:(1)、根据完美点的概念求出a 和b 的值,看是否满足2a -b=6,从而得出答案;(2)、首先求出方程组的解,然后根据完美点的概念求出a和b的值,最后根据2a-b=6求出m的值.详解:(1)若A为完美点,则1213 2ab-=⎧⎪⎨+=⎪⎩,解得34ab=⎧⎨=⎩26426,.a bA∴-=-=≠∴不是完美点(2)、解方程组3l,得22x my m=+⎧⎨=-⎩21212Bm abm+=-⎧⎪∴⎨-=+⎪⎩点是完美点,,解得:322a mb m=+⎧⎨=-⎩,()()22322446a b m m m∴-=+--=+=,解得12m=.点睛:本题主要考查的是同学们对新定义的题目的理解和应用,属于中等难度题型.理解“完美点”的概念是解题的关键.24. 在平面直角坐标系中,点A的坐标为(0,4)m+,点B的坐标为(3,)m m+,且m是方程39212mm++=的解.(1)请求出A、B两点坐标(2)点C在第一象限内,//AC x轴,将线段AB进行适当的平移得到线段DC,点A的对应点为D,点B 的对应点为C,连接AD,若ACD△的面积为12,连接OD,P为y轴上一动点,若使PAB AODS S∆∆=,求此时点P的坐标.【答案】(1)A(0,3),B(2,-1);(2)P(0,-3)或(0,9).【解析】分析:(1)、根据一元一次方程求出m的值,从而得出点A和点B的坐标;(2)、首先根据平移的法则得出点D到AC的距离,然后根据面积求出AC的长度,从而得出△AOD的面积,最后根据面积求出点P的坐标.详解:(1)、解方程39212mm++=得:m=-1,所以点A坐标为(0,3),点B坐标为(2,-1);(2)、∵AC∥x轴,∴C点的纵坐标为3,∵点B的对应点为点C,而B(2,-1),∴点B向上平移了4个单位,∴点A向上平移了4个单位,∴点D到AC的距离为4,∵12×4×AC=12,∴AC=6;∵AC∥x轴,∴C点坐标为(6,3),∴点B向上平移4个单位,再向右平移4个单位得到点C,∴点A向上平移4个单位,再向右平移4个单位得到点D,即D(4,7),∴S△AOD=12×3×4=6,设P点坐标为(0,t),则12•|t-3|•2=6,解得t=-3或t=9,∴点P的坐标为(0,-3)或(0,9).点睛:本题主要考查的是点的平移的法则,属于中等难度的题型.解决这个问题的关键就是根据已知条件得出点的平移法则.25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)见解析;(3)105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行解答即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】此题考查平行线的判定与性质,余角和补角,解题关键在于作出辅助线,灵活运用所学知识进行求解.。
华东师大版七年级数学下册期中考试及答案【审定版】
华东师大版七年级数学下册期中考试及答案【审定版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若分式的值为0, 则x的值为()A. 0B. 1C. ﹣1D. ±12.如图, 直线AB∥CD, ∠C=44°, ∠E为直角, 则∠1等于()A. 132°B. 134°C. 136°D. 138°3.按如图所示的运算程序, 能使输出y值为1的是()A. B. C. D.4.已知5x=3, 5y=2, 则52x﹣3y=()A. B. 1 C. D.5.如图, AB∥CD, ∠1=58°, FG平分∠EFD, 则∠FGB的度数等于()A. 122°B. 151°C. 116°D. 97°6. 下列运算正确的是()A. B. C. D.7.如图, 下列各组角中, 互为对顶角的是()A. ∠1和∠2B. ∠1和∠3C. ∠2和∠4D. ∠2和∠58.用图象法解某二元一次方程组时, 在同一直角坐标系中作出相应的两个一次函数的图象(如图所示), 则所解的二元一次方程组是()A. B.C. D.9.如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线交AC, AD, AB于点E, O, F, 则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对10.若x﹣m与x+3的乘积中不含x的一次项, 则m的值为()A. 3B. 1C. 0D. ﹣3二、填空题(本大题共6小题, 每小题3分, 共18分)1. 三角形三边长分别为3, , 则a的取值范围是________.2.如图, AB∥CD, FE⊥DB, 垂足为E, ∠1=50°, 则∠2的度数是_____.3. 分解因式: _________.4. 已知直线AB∥x轴, 点A的坐标为(1, 2), 并且线段AB=3, 则点B的坐标为________.5. A.B两地相距450千米, 甲、乙两车分别从A.B两地同时出发, 相向而行. 已知甲车的速度为120千米/时, 乙车的速度为80千米/时, t时后两车相距50千米, 则t的值为____________.6. 已知一组从小到大排列的数据:2, 5, x, y, 2x, 11的平均数与中位数都是7, 则这组数据的众数是________.三、解答题(本大题共6小题, 共72分)1.解下列不等式(组), 并把它们的解集在数轴上表示出来:(1)9221163x x+--≥-(2)()328134x xx x⎧+>+⎪⎨-≤⎪⎩①②2. 解不等式组: , 把它的解集在数轴上表示出来, 并写出其整数解.3. 如图, 在△ABC中, ∠B=40°, ∠C=80°, AD是BC边上的高, AE平分∠BAC,(1)求∠BAE的度数;(2)求∠DAE的度数.4. 如图, 四边形ABCD中, ∠A=∠C=90°, BE, DF分别是∠ABC, ∠ADC的平分线.(1)∠1与∠2有什么关系, 为什么?(2)BE与DF有什么关系?请说明理由.5. 为了解某市市民“绿色出行”方式的情况, 某校数学兴趣小组以问卷调查的形式, 随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类), 并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息, 回答下列问题:(1)参与本次问卷调查的市民共有人, 其中选择B类的人数有人;(2)在扇形统计图中, 求A类对应扇形圆心角α的度数, 并补全条形统计图;(3)该市约有12万人出行, 若将A, B, C这三类出行方式均视为“绿色出行”方式, 请估计该市“绿色出行”方式的人数.6. 某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车, 其中B型车单价是A型车单价的6倍少60元.(1)求A.B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张, 投入购车的资金不超过 5.86万元, 但购进这批自行年的总数不变, 那么至多能购进B型车多少辆?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、B3、D4、D5、B6、C7、A8、D9、D10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1、1a4<<2.40°3、()2 x x1-.4.(4, 2)或(﹣2, 2).5.2或2.56、5三、解答题(本大题共6小题, 共72分)1.(1), 画图见解析;(2), 画图见解析2、, x的整数解为﹣2, ﹣1, 0, 1, 2.3.(1) ∠BAE=30 °;(2) ∠EAD=20°.4.(1)∠1+∠2=90°;略;(2)(2)BE∥DF;略.5、(1)800, 240;(2)补图见解析;(3)9.6万人.6、(1)A型自行车的单价为260元/辆, B型自行车的单价为1500元/辆;(2)至多能购进B型车20辆.。
华东师大版七年级(下)期中测试数学试卷含答案解析
华东师大版七年级(下)期中测试数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.(注意:在试题卷上作答无效)1.下列方程中,是一元一次方程的是()A.x+1=0B.x+2y=5C.=1D.x2+1=x2.下列解方程过程中,变形正确的是()A.由5x﹣1=3,得5x=3﹣1B.由+1=+12,得+1=+12C.由3﹣=0,得6﹣x+1=0D.由﹣=1,得2x﹣3x=13.利用代入消元法解方程组,下列做法正确的是()A.由①得x=B.由①得y=C.由②得y=D.由②得y=4.在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.5.若方程组的解x,y相等,则k的值为()A.1B.0C.2D.﹣26.一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17B.18C.19D.207.对于任意有理数a,b,c,d,规定=ad﹣bc,如果<8,那么x的取值范围是()A.x>﹣3B.x<﹣3C.x<5D.x>﹣58.若不等式组的解集是x>2,则m的取值范围是()A.m<2B.m>2C.m≤2D.m≥2二.选择题(每题3分,共24分)9.已知2x﹣6=0,则4x=.10.若关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,则k=.11.已知a>b,则﹣4a+5﹣4b+5.(填>、=或<)12.已知已知是方程组的解,则(m﹣n)2=.13.如果|x﹣2y+1|+|x+y﹣5|=0,那么xy=.14.不等式组的最大整数解是.15.在方程y=kx+b中,当x=﹣2时,y=3,当x=1时,y=0,那么k=,b=.16.对非负实数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n﹣≤x<n+,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若()=4,则实数x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);⑤(x+y)=(x)+(y);其中,正确的结论有(填写所有正确的序号).三.解答题(共8道小题,共72分)17.(20分)解方程(组)(1)5x﹣2=3x+8(2)(3)(4)18.(10分)解不等式(组),并将每道题的解集都在数轴上表示出来(1)5x﹣3≥13﹣3x(2)19.(6分)当x取何值时,代数式3x﹣5与﹣4x+6的值互为相反数.20.(6分)当整数a为何值时,关于x的方程的解是正整数.21.(6分)一个两位数,个位与十位上的数字之和为12,如果交换个位与十位数字,则所得新数比原数大36,求原两位数.22.(6分)已知关于x,y的方程组的解满足x<y,试求a的取值范围.23.(9分)机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?24.(9分)在解不等式|x+1|>2时,我们可以采用下面的解答方法:①当x+1≥0时,|x+1|=x+1.∴由原不等式得x+1>2.∴可得不等式组∴解得不等式组的解集为x>1.②当x+1<0时,|x+1|=﹣(x+1).∴由原不等式得﹣(x+1)>2.∴可得不等式组∴解得不等式组的解集为x<﹣3.综上所述,原不等式的解集为x>1或x<﹣3.请你仿照上述方法,尝试解不等式|x﹣2|≤1.参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.(注意:在试题卷上作答无效)1.下列方程中,是一元一次方程的是()A.x+1=0B.x+2y=5C.=1D.x2+1=x【分析】直接利用一元一次方程的定义进而分析得出答案.【解答】解:A、x+1=0,是一元一次方程,故此选项正确;B、x+2y=5,是二元一次方程,故此选项错误;C、=1,是分式方程,故此选项错误;D、x2+1=x,是一元二次方程,故此选项错误;故选:A .【点评】此题主要考查了一元一次方程的定义,正确把握定义是解题关键. 2.下列解方程过程中,变形正确的是( ) A .由5x ﹣1=3,得5x =3﹣1B .由+1=+12,得+1=+12C .由3﹣=0,得6﹣x +1=0D .由﹣=1,得2x ﹣3x =1【分析】各方程变形得到结果,即可作出判断.【解答】解:A 、由5x ﹣1=3,得到5x =3+1,不符合题意;B 、由+1=+12,得+1=+12,不符合题意;C 、由3﹣=0,得6﹣x +1=0,符合题意;D 、由﹣=1,得2x ﹣3x =6,不符合题意, 故选:C .【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.3.利用代入消元法解方程组,下列做法正确的是( )A .由①得x =B .由①得y =C .由②得y =D .由②得y =【分析】根据一元一次方程的解法分别表示出两个方程的x 、y ,然后选择即可. 【解答】解:由①得,2x =6﹣3y ,x =;3y =6﹣2x ,y =;由②得,5x =2+3y ,x =,3y =5x ﹣2,y=.故选:B.【点评】本题考查了解二元一次方程组,主要是代入消元法y=kx+b形式的转化,是基础题.4.在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.【分析】求出不等式的解集,在数轴上表示出不等式的解集,即可选出答案.【解答】解:x﹣1<0,∴x<1,在数轴上表示不等式的解集为:,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集的应用,注意:在数轴上,右边表示的数总比左边表示的数大,不包括该点时,用“圆圈”,包括时用“黑点”.5.若方程组的解x,y相等,则k的值为()A.1B.0C.2D.﹣2【分析】根据方程组的解满足方程,可得方程的解,根据方程的解满足方程,可得关于k的方程,根据解方程,可得答案.【解答】解:由的解x,y相等,得4x+3x=7,解得x=1,x=y=1,由方程的解满足方程,得k+(k﹣1)=3,解得k=2,故选:C.【点评】本题考查了二元一次方程的解,利用方程的解满足方程的关于k的方程是解题关键.6.一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17B.18C.19D.20【分析】设某同学做对了x道题,那么他做错了25﹣x道题,他的得分应该是4x﹣(25﹣x)×1,据此可列出方程.【解答】解:设该同学做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=70,解得x=19.故选:C.【点评】本题考查了一元一次方程的应用,难度不大,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.7.对于任意有理数a,b,c,d,规定=ad﹣bc,如果<8,那么x的取值范围是()A.x>﹣3B.x<﹣3C.x<5D.x>﹣5【分析】根据规定运算,将不等式左边转化为多项式,再解不等式.【解答】解:根据规定运算,不等式<8化为﹣2x+2<8,解得x>﹣3.故选A.【点评】本题考查了学生对规定运算的适应能力,解不等式的方法.8.若不等式组的解集是x>2,则m的取值范围是()A.m<2B.m>2C.m≤2D.m≥2【分析】先求出不等式②的解集,再根据已知得出选项即可.【解答】解:∵解不等式②得:x>2,又∵不等式组的解集是x>2,∴m≤2,故选:C.【点评】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出m的范围是解此题的关键.二.选择题(每题3分,共24分)9.已知2x﹣6=0,则4x=12.【分析】方程变形后,代入原式计算即可求出值.【解答】解:由2x﹣6=0,得到2x=6,则4x=12,故答案为:12【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.若关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,则k=﹣2.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:根据题意得:,解得:k=﹣2.故答案为:﹣2.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.11.已知a>b,则﹣4a+5<﹣4b+5.(填>、=或<)【分析】根据不等式的基本性质即可解决问题.【解答】解:∵a>b,∴﹣4a<﹣4b,∴﹣4a+5<﹣4b+5,故答案为<.【点评】本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.12.已知已知是方程组的解,则(m﹣n)2=4.【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【解答】解:把代入方程组得:,解得:,则原式=4,故答案为:4【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.13.如果|x﹣2y+1|+|x+y﹣5|=0,那么xy=6.【分析】由题意|x﹣2y+1|+|x+y﹣5|=0,根据非负数的性质可以得到方程组,解方程组求出x和y的值,然后代入xy求解.【解答】解:∵|x﹣2y+1|+|x+y﹣5|=0,∴,解得:,∴xy=3×2=6,故答案为:6.【点评】此题主要考查了非负数的性质以及二元一次方程组的解法,具有非负性的数有:①偶次方②算术平方根③绝对值.14.不等式组的最大整数解是3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式x+2>1,得:x>﹣1,解不等式2x﹣1≤8﹣x,得:x≤3,则不等式组的解集为:﹣1<x≤3,则不等式组的最大整数解为3,故答案为:3.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.在方程y=kx+b中,当x=﹣2时,y=3,当x=1时,y=0,那么k=﹣1,b=1.【分析】由题目中给出的条件,可得到关于k,b的方程组为:,解方程组即可.【解答】解:将x=﹣2,y=3和x=1,y=0分别代入方程y=kx+b中得方程组:,∴k=﹣1,b=1.故答案为:﹣1;1.【点评】此题考查二元一次方程组的解,先将x,y的值代入方程中得到关于k,b的方程组,然后便可求出k,b的值.16.对非负实数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n﹣≤x<n+,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若()=4,则实数x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);⑤(x+y)=(x)+(y);其中,正确的结论有①③④(填写所有正确的序号).【分析】对于①可直接判断,②、⑤可用举反例法判断,③、④我们可以根据题意所述利用不等式判断.【解答】解:①(1.493)=1,正确;②(2x)≠2(x),例如当x=0.3时,(2x)=1,2(x)=0,故②错误;③若()=4,则4﹣≤x﹣1<4+,解得:9≤x<11,故③正确;④m为整数,故(m+2013x)=m+(2013x),故④正确;⑤(x+y)≠(x)+(y),例如x=0.3,y=0.4时,(x+y)=1,(x)+(y)=0,故⑤错误;综上可得①③正确.故答案为:①③④.【点评】本题考查了理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题可得解.三.解答题(共8道小题,共72分)17.(20分)解方程(组)(1)5x﹣2=3x+8(2)(3)(4)【分析】(1)根据解一元一次方程的步骤求解即可;(2)先去分母,根据解一元一次方程的步骤求解即可;(3)用加减法解方程组即可;(4)先去括号化简方程组,再利用加减法解方程组即可.【解答】解:(1)5x﹣2=3x+8,移项得:5x﹣3x=8+2,合并同类项得:2x=10,系数化为1得:x=5;(2),去分母,方程的两边同时乘以6得:2(2x+1)﹣6=5x﹣1,去括号得:4x+2﹣6=5x﹣1,移项得:4x﹣5x=﹣1+6﹣2,合并同类项得:﹣x=3,系数化为1得:x=﹣3;(3),②﹣①×3得:y=1,把y=1代入①得:x+1=2,x=1,∴方程组的解为:;(4),整理得:,②﹣①得:32y=﹣64,y=﹣2,把y=﹣2代入①得:x=5,∴方程组的解为:.【点评】本题考查了解一元一次方程,二元一次方程组,解题的关键是把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.18.(10分)解不等式(组),并将每道题的解集都在数轴上表示出来(1)5x﹣3≥13﹣3x(2)【分析】(1通过移项、合并同类项、系数化为1,求出其解;(2)把不等式组中的两个不等式分别通过移项、合并同类项、系数化为1,求出不等式的解,再根据不等式组解集的口诀:大小小大中间找,来求出不等式组的解,并把它表示在数轴上.【解答】解:(1)5x﹣3≥13﹣3x,5x+3x≥13+3,8x≥16,x≥2,解集在数轴上如下图:(2),解不等式①得:x>﹣1,解不等式②得:x<2,故原不等式组的解集为﹣1<x<2.解集在数轴上如下图:【点评】主要考查了一元一次不等式组解集的求法,利用不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解),来求不等式组的解;另外还考查了不等式的解集在数轴上表示出来的方法(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.19.(6分)当x取何值时,代数式3x﹣5与﹣4x+6的值互为相反数.【分析】先根据相反数的性质列出关于x的方程,再根据解一元一次方程的步骤依次计算可得.【解答】解:根据题意,得:3x﹣5+(﹣4x+6)=0,去括号,得:3x﹣5﹣4x+6=0,移项,得:3x﹣4x=5﹣6,合并同类项,得:﹣x=﹣1,系数化为1,得:x=1.【点评】本题主要考查了解一元一次方程和相反数的性质,解题的关键是掌握相反数的两数的和为0及解一元一次方程的步骤.20.(6分)当整数a为何值时,关于x的方程的解是正整数.【分析】解关于x的方程可得x=,要使方程的解为正整数,即必须使为正整数,(5a﹣8)应是6的正约数,分析可得:a=2.【解答】解:解关于x的方程,解为x=,要使方程的解为正整数,即必须使为正整数,则(5a﹣8)应是6的正约数,则5a﹣8=1,2,3,6,且a是整数,则a=2.【点评】本题考查解一元一次方程的整数解问题,先解方程,把方程的解用未知数表示出来,分析其为整数的情况,可得出答案.21.(6分)一个两位数,个位与十位上的数字之和为12,如果交换个位与十位数字,则所得新数比原数大36,求原两位数.【分析】设个位上的数字为x,十位上的数字为12﹣x.根据等量关系“交换个位与十位数字,则所得新数比原数大36”列出方程并求解.【解答】解:设个位上的数字为x,十位上的数字为12﹣x,列方程得10(12﹣x)+x+36=10x+(12﹣x),解得:x=8,12﹣8=4.答:原两位数为48.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.22.(6分)已知关于x,y的方程组的解满足x<y,试求a的取值范围.【分析】先把a当作已知条件求出x、y的值,再根据x<y即可求出a的不等式,求出a的取值范围即可.【解答】解:解方程组得,∵x<y,∴2a+1<a﹣2,解得a<﹣3.故a的取值范围是a<﹣3.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.23.(9分)机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?【分析】设需安排x名工人加工大齿轮,安排(27﹣x)名工人加工小齿轮,根据“平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套”可列成方程求解.【解答】解:设需安排x名工人加工大齿轮,安排(27﹣x)名工人加工小齿轮,依题意得:12×(27﹣x)×2=10x×3解得x=12,则27﹣x=15.答:安排12名工人加工大齿轮,安排15名工人加工小齿轮.【点评】本题考查理解题意能力,关键是能准确2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.24.(9分)在解不等式|x+1|>2时,我们可以采用下面的解答方法:①当x+1≥0时,|x+1|=x+1.∴由原不等式得x+1>2.∴可得不等式组∴解得不等式组的解集为x>1.②当x+1<0时,|x+1|=﹣(x+1).∴由原不等式得﹣(x+1)>2.∴可得不等式组∴解得不等式组的解集为x<﹣3.综上所述,原不等式的解集为x>1或x<﹣3.请你仿照上述方法,尝试解不等式|x﹣2|≤1.【分析】分两种情况:①当x﹣2≥0时,|x﹣2|=x﹣2.②当x﹣2<0时,|x﹣2|=﹣(x﹣2).讨论即可求解.【解答】解:①当x﹣2≥0时,|x﹣2|=x﹣2.∴由原不等式得x﹣2≤1.∴可得不等式组.∴解得不等式组的解集为2≤x≤3.②当x﹣2<0时,|x﹣2|=﹣(x﹣2).∴由原不等式得﹣(x﹣2)≤1.∴可得不等式组.∴解得不等式组的解集为1≤x<2.综上所述,原不等式的解集为1≤x≤3.【点评】考查了含绝对值的一元一次不等式组,注意读懂题目的解答,以及分类思想的运用.。
华师大版七年级下册数学期中考试试题及答案
华师大版七年级下册数学期中考试试题及答案华师大版七年级下册数学期中考试试卷一、单选题1.下列各项中,是一元一次方程的是()A。
x-2y=4 B。
xy=4 C。
3y-1=4 D。
x-42.已知x>y,则下列不等式成立的是()C。
-x<-y3.用“加减法”将方程组x+2y=13x-4y=4中的x消去后得到的方程是()B。
7y=84.不等式组1≤x<2的解集在数轴上可表示为()B。
5.不等式组的解集是x>4,那么m的取值范围()B。
m≥46.方程组的解为,被遮盖的前后两个数分别为()D。
2、47.下列变形正确的是()C。
若m>b,bc8.不等式组的整数解的个数为()C。
3个9.一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元。
若设这件羽绒服的成本是x元,根据题意,可得到的方程是B。
x(1+50%)×80%=x+250二、填空题11.把二元一次方程2x+y-3=0化成用x表示y的形式,则y=3-2x。
12.x的3倍与5的和大于8,用不等式表示为3x+5>8.13.不等式1-2x<6的负整数解是-4.14.若是方程2x+y=0的解,则6a+3b+2=-4a。
15.如图,由八块相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是1.三、解答题16.解下列方程:1)2(x+3)=5(x-3)2x+6=5x-153x=21x=7A选项中的解法有误,应该是将不等式两边乘以7,得到2-7x≤2+7x,化简后得到14x≥0,再除以14得到x≥0,所以应该选C;B选项中的解法有误,应该是将不等式两边乘以3,得到6-x≤6+3x,化简后得到-4x≤0,再除以-4得到x≥0,所以应该选C;C选项中的解法有误,应该是将不等式两边乘以3,得到9(x-2)≥3(x-4),化简后得到6x≥15,再除以6得到x≥2.5,所以应该选A;D选项中的解法有误,应该是将不等式两边乘以3,得到6x+3>3x-3,化简后得到3x。
华东师大版七年级数学下册期中试卷及完整答案
华东师大版七年级数学下册期中试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±12.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-5.如图所示,点P到直线l的距离是()A.线段PA的长度 B.线段PB的长度C.线段PC的长度 D.线段PD的长度6.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.若320,a b -+=则a b +的值是( )A .2B .1C .0D .1-二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________. 2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)5(8)6(27)22m m m +--=-+ (2)2(3)7636x x x --+=-2.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7.(1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.3.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示);(3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.4.如图,已知AB ∥CD ,CN 是∠BCE 的平分线.(1)若CM 平分∠BCD ,求∠MCN 的度数;(2)若CM 在∠BCD 的内部,且CM ⊥CN 于C ,求证:CM 平分∠BCD ;(3)在(2)的条件下,连结BM ,BN ,且BM ⊥BN ,∠MBN 绕着B 点旋转,∠BMC +∠BNC 是否发生变化?若不变,求其值;若变化,求其变化范围.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、D5、B6、D7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、83、2或2-3 4、50°5、16、48三、解答题(本大题共6小题,共72分)1、(1)10m =;(2)5x =2、(1)3a 2-ab +7;(2)12.3、(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由略. 4、(1)90°;(2)略;(3)∠BMC +∠BNC =180°不变,理由略5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛.6、(1) 钢笔的单价为21元,毛笔的单价为25元;(2)①见解析;②签字笔的单价可能为2元或6元.。
【华东师大版】七年级数学下期中试题(及答案)
(1)
(2)
25.如图,直线 、 相交于点 , 、 为射线, , 平分 , = .求 的度数.
26.平移三角形ABC,使点A移动到点A′,画出平移后的三角形A′B′C′.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【分析】
先根据第二象限点坐标符号特点可得 ,再化简绝对值可得x、y的值,然后代入即可得.
点A坐标为 ,
的坐标为 ,
关于y轴对称点的坐标为 ,
故选:C.
【点睛】
本题考查了点坐标关于坐标轴对称的变换规律,熟练掌握点坐标关于坐标轴对称的变换规律是解题关键.
3.B
解析:B
【分析】
应先判断出所求的点的横纵坐标的可能值,进而判断点所在的位置.
【详解】
∵点A(m,n)满足mn=0,
∴m=0或n=0,
一、选择题
1.若点P(x, y)在第二象限,且 ,则x + y =( )
A.-1B.1C.5D.-5
2.已知点A坐标为 ,点A关于x轴的对称点为 ,则 关于y轴对称点的坐标为()
A. B. C. D.以上都不对
3.点 满足 ,则点A在()
A.原点B.坐标轴上C. 轴上D. 轴上
4.如图,将点A0(-2,1)作如下变换:作A0关于x轴对称点,再往右平移1个单位得到点A1,作A1关于x轴对称点,再往右平移2个单位得到点A2,…,作An-1关于x轴对称点,再往右平移n个单位得到点An(n为正整数),则点A64的坐标为()
A.(2078,-1)B.(2014,-1)C.(2078,1)D.(2014,1)
5.在实数: ,π, , ,2π, ,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1), , 中,无理数的个数为()
华东师大版七年级数学下册期中试卷及答案【完整】
华东师大版七年级数学下册期中试卷及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A.5个B.4个C.3个D.2个7.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A.B. C. D.10.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣a|+|b﹣c|的结果是________.2.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=________.3.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是_________.5.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______________.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x-1)=15(2)212 32x x-+-=-2.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x一2y=0的解,则k的值是多少?3.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.4.某学校要对如图所示的一块地进行绿化,已知4mAD=,3mCD=,AD DC⊥,13mAB=,12mBC=,求这块地的面积.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时 a超过150千瓦时但不超过300千瓦时的部分0.65超过300千瓦时的部分0.9(1)上表中,a=________,若居民乙用电200千瓦时,应交电费________元;(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x 的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价不超过0.62元/千瓦时?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、B2、C3、D4、C5、B6、B7、A8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、60°3、70.4、a ≤2.5、±46、±3三、解答题(本大题共6小题,共72分)1、(1)x 3=;(2)x 5=.2、5k =-3、略4、224cm .5、(1)30;(2)①补图见解析;②120;③70人.6、(1)0.6;122.5;(2)(0.9x -82.5)元;(3)250千瓦.。
华师大版数学七年级下学期《期中考试试卷》附答案
A. B. C. D.
[答案]B
[解析]
[分析]
A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.
B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.
C:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.
14.不等式 的解集是_______________.
15.方程组 的解是__________________.
16.数轴上100个点所表示的数分别为 、 、 …、 ,且当 为奇数时, ,当 为偶数时, ,① ______;②若 ,则 ______.
三、解答题:本题共9小题,共86分.解答应写出文字说明或演算步骤.
A 1组B.2组C.3组D.4组
[答案]C
[解析]
[分析]
先变形得出x=10-3y,再取正整数解即可.
[详解]x+3y=10,
x=10-3y,
当y=1时,x=7;
当y=2时,x=4,
当y=3时,x=1;
所以共有3组解.
故选C.
[点睛]考查了解二元一次方程,能求出符合的所有正整数解是解此题的关键.
10.定义:对于任意数 ,符号 表示不大于 的最大整数,例如: , , .若 ,则 的取值范围是().
A. 8、2B. 8、-2C. 2、2D. 2、-2
6.已知 ,下列不等式中错误的是().
A. B. C. D.
7.在解方程 过程中,变形正确的是().
A. B.
C. D.
8.方程组 的解是 ,则方程组 的解是()
A. B. C. D.
华师大版七年级(下)期中数学试卷(含答案)
华师大版七年级(下)期中数学试卷一、选择题(每小题3分;共30分)1.方程2x −1=3x +2的解为 A .x =−3B .x =−1C .x =3D .x =12.若53=x 是关于x 的方程5x −m =0的解,则m 的值为 A .3- B .31 C .3 D .31-3.在解方程5113--=x x 时,去分母后正确的是 A .5x =3−3(x −1) B .5x =15−3(x −1) C .5x =1−3(x −1)D .x =1−(3x −1)4.下列各组值中,是方程3x +y =5的解的是 A .⎪⎩⎪⎨⎧=-=1,2y xB. ⎪⎩⎪⎨⎧==1,2y xC .⎪⎩⎪⎨⎧==2,1y xD .⎪⎩⎪⎨⎧-==5,0y x5.已知 ⎪⎩⎪⎨⎧=-=1,1y x 是二元一次方程组⎪⎩⎪⎨⎧=-=+1,23y nx m y x 的解,则m -n 的值是A .1B .-2C .3D .-4 6.同时适合方程 2x +y =5 和 3x +2y =8 的解是 A .⎪⎩⎪⎨⎧==2,1y xB .⎪⎩⎪⎨⎧==1,2y xC .⎪⎩⎪⎨⎧==1,3y xD .⎪⎩⎪⎨⎧-==1,3y x7.不等式 −2x <4 的解集是A .x >−2B .x <−2C .x >2D .x <2 8.不等式组的解集在数轴上如图所示,则该不等式组是A .⎪⎩⎪⎨⎧+-31,31<<x xB .⎪⎩⎪⎨⎧+-31,31><x xC .⎪⎩⎪⎨⎧+-31,31>>x xD .⎪⎩⎪⎨⎧+-31,31<>x x9.如果不等式3x −m ≤0的正整数解是1,2,3,那么m 的取值范围是 A .m >9B .m <12C .129<≤mD .129≤<m10.《九章算术 》 是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是 《九章算术 》 最高的数学成就.《九章算术 》中记载:“今有牛五、羊二,直金十两:牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为A .⎪⎩⎪⎨⎧=+=+1052,825y x y xB .⎪⎩⎪⎨⎧=+=+852,2y x y xC .⎪⎩⎪⎨⎧=+=+85,1025y x y xD .⎪⎩⎪⎨⎧=+=+852,1025y x y x二、填空题(每小题3分,共15分)11.若关于x 的方程ax +3x =2的解是x =1,则a 的值为 .12.若关于x ,y 的二元一次方程组⎪⎩⎪⎨⎧+=+-=+1212k y x k y x ,的解互为相反数,则k 的值为 .13.若关于x 的不等式()1212+<+m x m 的解集是x >1,则m 的取值范围是 . 14.如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上.已知AB 边上的数是3,BC 边上的数是7,CD 边上的数是12,则AD 边上的数是 .15.已知c b a 、、满足:⎪⎩⎪⎨⎧=+-=+-0432032c b a c b a ,则a ∶b ∶c 等于 .三、解答题.(8+9+9+9+9+10+10+11=75分)16.解方程:1675413=---x x17.解方程组:⎪⎩⎪⎨⎧+-==+.32,732y x y x18.关于y x 、的方程组⎪⎩⎪⎨⎧-=+=-152by ax y x 和⎪⎩⎪⎨⎧=+=+221123by ax y x 的解相同,求a 、b 的值.19.解不等式组()⎪⎪⎩⎪⎪⎨⎧--+≤+37510714x x x x <并写出该不等式组的所有非负整数解.20.某种商品有大小盒两种包装,3大盒、4小盒共装108瓶;2大盒、3小盒共装76瓶,大盒与小盒每盒各装多少瓶?21.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,经过市场调查,购买一台A 型设备比购买一台B 型设备多花费2万元,购买2台A 型设备比购买3台B 型设备少花费6万元.(1)购买一台A 型设备、购买一台B 型设备各需要多少万元;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案?22.阅读下列材料:解答“已知x −y =2,且x >1,y <0,试确定x +y 的取值范围”有如下解法: 解:∵ x −y =2, 又∵ x >1, ∴y +2>1, ∴ y >−1. 又 y <0,∴-1<y <0, ……① 同理得:1<x <2, ……② 由①+②得−1+1<y +x <0+2, ∴x +y 的取值范围是:0<x +y <2. 请按照上述方法,完成下列问题:已知关于x ,y 的方程组⎪⎩⎪⎨⎧+=+-=-332523a y x a y x 的解都为正数.(1)求a 的取值范围;(2)已知a −b =4,且b <2,求a +b 的取值范围;(3)已知a −b =m (m 是大于0的常数),且b ≤1,直接写出b a 212 的最大值 .(用含m 的代数式表示)23.小明家需要用钢管做防盗窗,按设计要求,其中需要长为0.8米的钢管100根,还需要长为2.5米的钢管32根,两种长度的钢管粗细必须相同;并要求这些用料不能是焊接而成的.经市场调查,钢材市场中符合这种规格的钢管每根长均为6米.(1)试问:把一根长为6米的钢管进行裁剪,有下面几种方法, 请完成填空(余料作废).方法①:只裁成为0.8米的用料时,最多可裁7根;方法②:先裁下1根2.5米长的用料,余下部分最多能裁成为0.8米长的用料 根; 方法③:先裁下2根2.5米长的用料,余下部分最多能裁成为0.8米长的用料1 根. (2)分别用(1)中的方法②和方法③各裁剪多少根6米长的钢管,才能刚好得到所需要的相应数量的材料?(3)试探究:除(2)中方案外,在(1)中还有哪两种方法联合,所需要6米长的钢管与(2)中根数相同?数学试题参考答案一、选择题(每小题3分;共30分)1~5 ACBCA 6~10 BABCD 二、填空题(每小题3分,共15分)11、-1; 12、0; 13、21-<m ; 14、8; 15、1∶2∶1三、解答题.(8+9+9+9+9+10+10+11=75分)16、解:去分母得:3(3x −1)−2(5x −7)=12,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学期中检测题
(时间120分钟,满分150分)
班级: 姓名: 得分:
一、选择题(每小题3分,共36分)
1.已知下列方程:①x x 1
2=-②12.0=x ③33-=x x
④x x 342=-⑤x=0 ⑥
6=y -x .其中一元一次方程有()
A.2个
B.3个
C.4个
D. 5个
2.若代数式x +2的值为1,则x 等于( )
A .1
B .-1
C .3
D .-3
3.若n m >,则下列不等式中成立的是()
A.n a m a -<-
B.bn am <
C. 22nb ma >
D. b n a m +<+
4.不等式组⎩
⎪⎨⎪⎧x +2>0,2x -1≤0的所有整数解是( ) A .-1,0 B .-2,-1 C .0,1 D .-2,-1,0
5.不等式组⎩
⎪⎨⎪⎧-x <3,2x -1≤3的解集在数轴上表示正确的是( )
6.已知⎩⎪⎨⎪⎧x =1,y =2和⎩
⎪⎨⎪⎧x =2,y =5是方程ax +by =2的两组解,则( ) A .a =6,b =-2 B .a =-6,b =-2
C .a =6,b =2
D .a =-6,b =2
7.若关于x ,y 的方程组⎩
⎪⎨⎪⎧x +2y =3m -1,x -y =5的解满足x +y =3,则m 的值为( ) A .-2 B .2 C .-1 D .1
8.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )
A .0.8x -10=90
B .0.08x -10=90
C .90-0.8x =10
D .x -0.8x -10=90
9.已知a 2+3a =1,则代数式2a 2+6a -1的值为( )
A .0
B .1
C .2
D .3
10.某种肥皂售价为每块2元,凡购买两块以上(含两块),商场推出两种优惠销售方法,第一种:“一块按原价,其余按原价的七折优惠”;第二种:“全部按原价的八折优惠”.你在购买相同数量的肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少要购买肥皂( )
A .5块
B .4块
C .3块
D .2块
11.一元一次方程
可化为( ) A .
B .
C .
D . 12.已知方程组
的解x 为正数,y 为非负数,给出下列结论: ①;②当时,x=y ;③当时,方程组的解也是方程x+y=5+a 的解;④若x≤1,则y≥2.其中正确的是( )
A .①②
B .②③
C .③④
D .②③④
二、填空题(每小题3分,共30分)
13.若关于x 、y 的方程x m-1-2y 3+n
=5是二元一次方程,则m =,n =
14.方程732=-y x 用含x 的代数式表示y 为.
15.若方程2x -m =1和方程3x =2(x -1)的解相同,则m 的值为____.
16.若⎩⎪⎨⎪⎧x =1,y =2是方程组⎩⎪⎨⎪⎧ax +by =4,bx -ay =7的解,则a +b 的值为____. 17.已知关于x 的方程x +2k =4(x +k)+1的解是负数,则k 的取值范围是 ___.
18.方程组⎩⎪⎨⎪⎧ax +2y =2,2x +3y =0的解是⎩
⎪⎨⎪⎧x =3,y =b ,则关于x 的不等式bx +2a ≥0的非负整数解是___.
19.幼儿园分给“豆豆班”小朋友们零食,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则老师准备了零食____袋. 20.如图,10块相同的小长方形墙砖拼成一个大长
方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘
米,则列出的方程组为_.
21.定义运算“*”,规定x*y=ax 2+by ,其中a 、b 为
常数,且1*2=5,2*1=6,则2*3=.
22.如图,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿
正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方
向环行.若甲的速度是乙的速度的3倍,则它们第2017次相遇
在边____上.
三、解答题(共68分)
23.(10分)解下列方程(组):
(1)x 6-30-x 4=5; (2)⎩⎪⎨⎪⎧2x +3y =1,3x +2y =4.
24.(10分)解下列不等式(组),并把解集在数轴上表示出来:
(1)1-2-x 3<x +12; (2)⎩⎪⎨⎪⎧3x -7<2,2x +3≥1.
25.(8分)方程组⎩⎪⎨⎪⎧3x -2y =7,5x +2y =1
的解满足方程2x -ky =10,求k 的值.
26. (8分)若不等式组⎩⎪⎨⎪⎧x <1,x >m -1
恰有两个整数解,求m 的取值范围.
26.(8分)4月23日是世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元?
27.(8分)若关于x 的方程2x -m =3(x -1)的解也是不等式组⎩⎪⎨⎪⎧2x -1>3x -2,
x -1
2-1≤x 的
解,求m 的取值范围.
28.(10分)阅读下列材料:求不等式的解集。
解:根据“同号两数相乘,积为正”可得
① ,或②.
解①,得.解②,得,
∴不等式的解集为。
请你仿照上述方法解决下列问题:
(1) 求不等式的解集;
(2)求不等式的解集。
29.(10分)某校为学生开展拓展性课程,拟在一块长比宽多6米的长方形场
....地.内建造由两个大棚组成的植物养殖区(如图①),要求两个大棚之间有间隔4米的路,设计方案如图②,已知每个大棚的周长为44米.
(1)求每个大棚
....的长和宽各是多少?
(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?
30.(12分)为了更好地保护美丽如画的邛海湿地,西昌市污水处理厂决定先购买A,B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.
(1)求A,B两型污水处理设备每周每台分别可以处理污水多少吨?
(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨.请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?。