测量方位角计算公式精选
测量坐标方位角公式
测量坐标方位角公式引言坐标方位角是地理测量中常用的一个概念,用于描述一个点相对于参考方向的角度。
测量坐标方位角是确定一个点相对于某一基准点的相对位置的重要步骤。
本文将介绍测量坐标方位角的公式和计算方法。
坐标方位角的定义坐标方位角可以理解为从参考方向逆时针旋转的角度,以度数或弧度表示。
参考方向通常以正北或正东为基准,具体取决于实际应用场景。
方位角的取值范围为0°至360°或0至2π弧度。
坐标方位角的计算要计算一个点相对于参考方向的方位角,需要知道两者之间的水平方向角和距离。
水平方向角是指从参考方向到目标点方向的角度。
公式下面是计算坐标方位角的公式:方位角 = atan2(y2 - y1, x2 - x1) * 180 / π其中,(x1, y1)是参考点的坐标,(x2, y2)是目标点的坐标,atan2是求反正切的函数,π是数学常量π。
计算步骤1.确定参考点和目标点的坐标(x1, y1)和(x2, y2);2.计算水平方向角,即参考点指向目标点的角度。
可以借助数学库或计算工具来计算反正切;3.使用公式计算坐标方位角,将水平方向角转换为度数。
示例假设有一个参考点A的坐标为(2, 3),目标点B的坐标为(5, 7)。
我们来计算点B相对于点A的坐标方位角。
1.点A的坐标为(2, 3),点B的坐标为(5, 7);2.计算水平方向角:atan2(7 - 3, 5 - 2) = atan2(4, 3)≈ 51.34°;3.使用公式计算坐标方位角:51.34°。
因此,点B相对于点A的坐标方位角约为51.34°。
结论测量坐标方位角是地理测量中的一项重要任务。
通过计算水平方向角和距离,我们可以轻松计算出点相对于参考方向的方位角。
在实际的地理测量和导航应用中,坐标方位角的计算是不可或缺的步骤,能够帮助我们准确确定物体或位置相对于参考点的方向关系。
以上是测量坐标方位角的公式和计算方法的介绍,希望对您有所帮助。
方位角计算公式范文
方位角计算公式范文方位角是指从一个参考方向(通常是正北方向)起,按顺时针方向测量到其中一方向线的角度。
方位角通常用度数表示,范围从0度到360度。
下面介绍常见的方位角计算公式:1.方位角计算公式(两点坐标):假设已知起点坐标A(x1,y1)和终点坐标B(x2,y2),方位角θ的计算公式如下:θ = atan2(y2 - y1, x2 - x1)其中,atan2函数是一个双变量反正切函数,返回值为[-π, π]之间的角度值。
注意:上述公式计算得到的θ是以正北方向为参考的方位角。
如果要将方位角转换为以其他方向为参考的角度(如正东方向为0度),可以将θ减去相应的修正值。
2.方位角计算公式(两点经纬度):假设已知起点的经度(lon1)、纬度(lat1)和终点的经度(lon2)、纬度(lat2),方位角θ的计算公式如下:θ = atan2(sin(Δlon) * cos(lat2), cos(lat1) * sin(lat2) -sin(lat1) * cos(lat2) * cos(Δlon))其中,Δlon = lon2 - lon1是两点经度差。
注意:上述公式计算得到的θ是以正北方向为参考的方位角。
如果要将方位角转换为以其他方向为参考的角度(如正东方向为0度),可以将θ减去相应的修正值。
3.方位角计算公式(方向余弦矩阵):方向余弦矩阵(Direction Cosine Matrix)是一种将方位角和俯仰角等转化为三维空间坐标旋转的方式。
方向余弦矩阵的计算公式如下:D=[ cos(θ) * cos(φ), sin(θ) * cos(φ), -sin(φ) ][ -sin(θ), cos(θ), 0 ][ cos(θ) * sin(φ), sin(θ) * sin(φ), cos(φ) ]其中,θ是方位角,φ是俯仰角。
D是一个3行3列的矩阵,表示坐标变换矩阵。
上述是常见的方位角计算公式,根据不同的应用场景和问题,可能还会有其他的计算公式。
方位角计算公式.
一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13)上式右端,若<,用“+”号,若,用“-”号。
2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。
所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。
为了说明直线所在的象限,在前应加注直线所在象限的名称。
四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。
象限角和坐标方位角之间的换算公式列于表1-4。
表1-4 象限角与方位角关系表象限象限角与方位角换算公式第一象限(NE)=第二象限(SE)=-第三象限(SW)=+第四象限(NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。
设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。
水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。
设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。
二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。
坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。
如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。
方位角的计算方法
方位角的计算方法:(已知方位角+水平角大于540°-540°)已知方位角+水平角±180°=方位角坐标增量的计算方法:平距×COS方位角=△X坐标增量平距×Sin方位角=△Y坐标增量坐标的计算方法:已知X坐标±△X坐标增量=X坐标已知Y坐标±△Y坐标增量=Y坐标高差、平距的计算方法:斜距×Sin倾角=高差斜距×COS倾角=平距高差÷Sin倾角=斜距平距÷cos已知度分秒=斜距高程的计算方法:已知高程-仪器高+前视高±高差=该点的顶板高差原始记录计算方法:前视-后视相加÷2=水平角(前视不够-后视的+360°再减)后视 00°00′00″ 180°00′09″前视92°49′02″272°49′13″水平角= 92°49′03″实测倾角:正镜-270°倒镜-90°(正、倒镜相加-360°)实例: 110°30′38″-90°= 00°30′38″实例: 270°30′38″-270°= 00°30′38″激光的计算方法:两点的高程相减:比如:5点高程1479、479-4点高程1471、052 = 8、427 两点之间的平距:60、673×tan7°19′25″=7、7988、427-7、797=0、629(上山前面的点一定高于后面的点,所以前面的点减后面的点)测量:1、先测后视水平角:归零,倒镜180°不能误差15′2、前视:先测水平角并读数记录,然后倒镜测倾角,水平角、平距、斜距、高差、量出仪器高,前视量出前视高。
要求方位角-已知方位角±180°=拨角方位画两千的图:展点用0.6正好.倾角的计算方法:180°以下的-90°270°-超过180°的两点的高差除平距按tan=倾角比如:2点1500、026-6点1484、096=15、932点~6点平距=127、8315、93÷127、83=接按第二功能键、接按tan接按=接按度分秒键完事。
方位角计算公式
⽅位⾓计算公式⼀、直线定向1、正、反⽅位⾓换算对直线⽽⾔,过始点的坐标纵轴平⾏线指北端顺时针⾄直线的夹⾓是的正⽅位⾓,⽽过端点的坐标纵轴平⾏线指北端顺时针⾄直线的夹⾓则是的反⽅位⾓,同⼀条直线的正、反⽅位⾓相差,即同⼀直线的正反⽅位⾓= (1-13)上式右端,若<,⽤“+”号,若,⽤“-”号。
2、象限⾓与⽅位⾓的换算⼀条直线的⽅向有时也可⽤象限⾓表⽰。
所谓象限⾓是指从坐标纵轴的指北端或指南端起始,⾄直线的锐⾓,⽤表⽰,取值范围为。
为了说明直线所在的象限,在前应加注直线所在象限的名称。
四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。
象限⾓和坐标⽅位⾓之间的换算公式列于表1-4。
表1-4 象限⾓与⽅位⾓关系表3、坐标⽅位⾓的推算测量⼯作中⼀般并不直接测定每条边的⽅向,⽽是通过与已知⽅向进⾏连测,推算出各边的坐标⽅位⾓。
设地⾯有相邻的、、三点,连成折线(图1-17),已知边的⽅位⾓,⼜测定了和之间的⽔平⾓,求边的⽅位⾓,即是相邻边坐标⽅位⾓的推算。
⽔平⾓⼜有左、右之分,前进⽅向左侧的⽔平⾓为,前进⽅向右侧的⽔平⾓。
设三点相关位置如图1-17()所⽰,应有=++ (1-14)设三点相关位置如图1-17()所⽰,应有=++-=+- (1-15)若按折线前进⽅向将视为后边,视为前边,综合上⼆式即得相邻边坐标⽅位⾓推算的通式:=+(1-16)显然,如果测定的是和之间的前进⽅向右侧⽔平⾓,因为有=-,代⼊上式即得通式=- (1-17)上⼆式右端,若前两项计算结果<,前⾯⽤“+”号,否则前⾯⽤“-”号。
⼆、坐标推算1、坐标的正算地⾯点的坐标推算包括坐标正算和坐标反算。
坐标正算,就是根据直线的边长、坐标⽅位⾓和⼀个端点的坐标,计算直线另⼀个端点的坐标的⼯作。
如图1所⽰,设直线AB的边长DAB和⼀个端点A的坐标XA、YA为已知,则直线另⼀个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。
测量方位角计算公式
测量方位角计算公式测量方位角是指通过其中一种方法求得一些目标物体相对于指定基准方向的角度。
方位角通常使用度数表示,以正北方向为基准,沿顺时针方向递增,范围为0到360度。
测量方位角在地理导航、测量工程、天文学等领域有着广泛的应用。
计算方位角的公式主要有以下几种:1. 方位角 = atan((E - E0) / (N - N0))其中,E、N为目标物体的东北坐标,E0、N0为基准点的东北坐标。
该公式适用于平面坐标系。
2. 方位角 = atan2(E - E0, N - N0)其中,E、N为目标物体的东北坐标,E0、N0为基准点的东北坐标。
该公式适用于平面坐标系,可以通过atan2函数直接得到方位角,避免了先计算斜率再反求角度的过程。
3. 方位角= atan((sin(ΔL) * cos(L2)) / (cos(L1) * sin(L2) - sin(L1) * cos(L2) * cos(ΔL)))其中,ΔL为目标物体经度减去基准点经度的差值,L1、L2分别为目标物体和基准点的纬度。
该公式适用于地理坐标系。
4. 方位角= arc tan((sin(Δλ) * cos(φ2)) / (cos(φ1) *sin(φ2) - sin(φ1) * cos(φ2) * cos(Δλ)))其中,Δλ为目标物体经度减去基准点经度的差值,φ1、φ2分别为目标物体和基准点的纬度。
该公式适用于地理坐标系,常用于计算大地方位角。
这些公式的推导及原理比较复杂,涉及到三角学和二元一次方程等知识。
在实际应用中,可以通过使用现成的工具或软件来计算方位角,如地图软件、GPS定位设备等。
这些工具会自动计算目标物体相对于基准方向的角度,准确性高、方便快捷,可以满足大部分测量需要。
需要注意的是,测量方位角是基于特定坐标系的,不同坐标系的方位角计算公式可能有所不同。
另外,由于地球是一个球体,使用平面坐标系进行测量会引入一定的误差,尤其是在较长的距离范围内。
方位角计算公式
一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13) 上式右端,若<,用“+”号,若,用“-”号。
2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。
所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。
为了说明直线所在的象限,在前应加注直线所在象限的名称。
四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。
象限角和坐标方位角之间的换算公式列于表1-4。
表1-4 象限角与方位角关系表象限象限角与方位角换算公式第一象限(NE)=第二象限(SE)=-第三象限(SW)=+第四象限(NW)=-3、坐标方位角的推算1 / 32测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。
设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。
水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。
设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式2 / 32=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。
二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。
坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。
如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。
方位角的计算方法
方位角的计算方法:(已知方位角+水平角大于540°-540°)已知方位角+水平角±180°=方位角坐标增量的计算方法:平距×COS方位角=△X坐标增量平距×Sin方位角=△Y坐标增量坐标的计算方法:已知X坐标±△X坐标增量=X坐标已知Y坐标±△Y坐标增量=Y坐标高差、平距的计算方法:斜距×Sin倾角=高差斜距×COS倾角=平距高差÷Sin倾角=斜距平距÷cos已知度分秒=斜距高程的计算方法:已知高程-仪器高+前视高±高差=该点的顶板高差原始记录计算方法:前视-后视相加÷2=水平角(前视不够-后视的+360°再减)后视 00°00′00″ 180°00′09″前视92°49′02″272°49′13″水平角= 92°49′03″实测倾角:正镜-270°倒镜-90°(正、倒镜相加-360°)实例: 110°30′38″-90°= 00°30′38″实例: 270°30′38″-270°= 00°30′38″激光的计算方法:两点的高程相减:比如:5点高程1479、479-4点高程1471、052 = 8、427 两点之间的平距:60、673×tan7°19′25″=7、7988、427-7、797=0、629(上山前面的点一定高于后面的点,所以前面的点减后面的点)测量:1、先测后视水平角:归零,倒镜180°不能误差15′2、前视:先测水平角并读数记录,然后倒镜测倾角,水平角、平距、斜距、高差、量出仪器高,前视量出前视高。
要求方位角-已知方位角±180°=拨角方位画两千的图:展点用0.6正好.倾角的计算方法:180°以下的-90°270°-超过180°的两点的高差除平距按tan=倾角比如:2点1500、026-6点1484、096=15、932点~6点平距=127、8315、93÷127、83=接按第二功能键、接按tan接按=接按度分秒键完事。
(整理)公路测量中的计算公式总结
公路测量中的计算公式总结一、方位角的计算公式1. 字母所代表的意义:x1:QD的X坐标y1:QD的Y坐标x2:ZD的X坐标y2:ZD的Y坐标S:QD~ZD的距离α:QD~ZD的方位角2. 计算公式:1)当y2- y1>0,x2- x1>0时:2)当y2- y1<0,x2- x1>0时:3)当x2- x1<0时:二、平曲线转角点偏角计算公式1. 字母所代表的意义:α1:QD~JD的方位角α2:JD~ZD的方位角β:JD处的偏角2. 计算公式:β=α2-α1(负值为左偏、正值为右偏)三、平曲线直缓、缓直点的坐标计算公式1. 字母所代表的意义:U:JD的X坐标V:JD的Y坐标A:方位角(ZH~JD)T:曲线的切线长,D:JD偏角,左偏为-、右偏为+2. 计算公式:直缓(直圆)点的国家坐标:X′=U+Tcos(A+180°) Y′=V+Tsin(A+180°)缓直(圆直)点的国家坐标:X″=U+Tcos(A+D)Y″=V+Tsin(A+D)四、平曲线上任意点的坐标计算公式1. 字母所代表的意义:P:所求点的桩号B:所求边桩~中桩距离,左-、右+ M:左偏-1,右偏+1C:JD桩号D:JD偏角L s:缓和曲线长A:方位角(ZH~JD)U:JD的X坐标V:JD的Y坐标T:曲线的切线长,I=C-T:直缓桩号J=I+L:缓圆桩号:圆缓桩号K=H+L:缓直桩号2. 计算公式:1)当P中桩坐标:X m=U+(C-P)cos(A+180°) Y m=V+(C-P)sin(A+180°)边桩坐标:X b=X m+Bcos(A+90°)Y b=Y m+Bsin(A+90°)2)当I中桩坐标:X m=U+Tcos(A+180°)+GcosO Y m=V+Tsin(A+180°)+GsinO边桩坐标:X b=X m+Bcos(A+MW+90°)Y b=Y m+Bsin(A+MW+90°)3)当J中桩坐标:边桩坐标:X b=X m+Bcos(O+MW+90°)Y b=Y m+Bsin(O+MW+90°)4)当H中桩坐标:X m=U+Tcos(A+MD)+GcosO Y m=V+Tsin(A+MD)+GsinO边桩坐标:X b=X m+Bcos(A+MD-MW+90°) Y b=Y m+Bsin(A+MD-MW+90°)5)当P>K时中桩坐标:X m=U+(T+P-K)cos(A+MD)Y m=V+(T+P-K)sin(A+MD)边桩坐标:X b=X m+Bcos(A+MD+90°)Y b=Y m+Bsin(A+MD+90°)注:计算公式中距离、长度、桩号单位:“米”;角度测量单位:“度”;若要以“弧度”为角度测量单位,请将公式中带°的数字换算为弧度。
角度坐标测量计算公式细则
计算细则1、坐标计算:X1=X+Dcosα,Y1=Y+Dsinα;式中 Y、X为已知坐标,D为两点之间的距离,Α为方位角;2、方位角计算:1、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数±号判断象限;2、方位角:arctany2-y1/x2-x1;加减180大于180就减去180还大于360就在减去360、小于180就加180如果x轴坐标增量为负数,则结果加180°;如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°;S=√y2-y1+x2-x1,1)、当y2-y1>0,x2-x1>0时;α=arctany2-y1/x2-x1;2)、当y2-y1<0,x2-x1>0时;α=360°+arctany2-y1/x2-x1;3)、当x2-x1<0时;α=180°+arctany2-y1/x2-x1;再用两点之间的距离公式可算距离根号下两个坐标距离差的平方相加;拨角:arctany2-y1/x2-x11、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法前视边方位角减后视边方位在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”+360°就可化为右偏,正值为右偏“顺时针”;2、在图上标识方位的方法:就是导线边与Y轴的夹角;3、高程计算:目标高程=测点高程+h+仪器高—占标高;4、直角坐标与极坐标的换算:直角坐标用坐标增量表示;极坐标用方位角和边长表示1、坐标正算极坐标化为直角坐标已知一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知AXa,Ya、Sab、αab,求BXa,Ya解:Xab=Sab×COSαab 则有Xb=Xa+XabYab=Sab×SINαab Yb=Ya+Yab2)、坐标反算,已知两点的坐标,求两点的距离称反算边长和方位角称反算方位角的方法已知AXa,Ya、BXb,Yb,求αab、Sab;解:tanαab=Ya b/Xab所以;Αab=tanˉYab/Xab;则有:Sab=Yab/SINαab=Xab/COSαab=√X2ab+Y2ab;5、缘和曲线的方位角和坐标计算公式:S12=sqr<X2 -X12×Y2-Y12> =sqr X221× Y221;A12=arcsinY2-Y1/S12;S12为测站点1至放样点2的距离,A12为测站点1至放样点2的坐标方位角;X1,Y1为测站坐标,X2,Y2为放样点坐标;新公式:A12=arccosX21/S12×sgnY21360°只需将测量的成果用直线或其他线形连接起来;坐标输入时需注意交换输入,也就是将实测的X坐标在CAD中当Y坐标输入,而Y坐标则当X坐标输入;标高则用文字在标注在各相应的坐标点傍;一、建立新图时坐标偏移法1、先按比例大小绘制坐标网格,2、然后将测量整理得来的坐标拐点在CAD中输入绘制矿区范围,3、根据相应的测点坐标绘制实测图,4、填写图例;二、坐标增量上图相对坐标法①:如果比例尺为1:2000,平距除以2之后乘以方位角得坐标增量;②:点击直线或多线段按回车键点击后点,再输入ΔY,ΔX;倾斜巷道贯通计算:可根据倾斜角度进行换算,再结合地测交庄书中给的贯距或标高差来算,而且还要结合巷道的断面高差来综合计算;坡度的表示方法有百分比法、度数法、密位法和分数法四种;其中百分比法和度数法较为常用;1、百分比法表示坡度最为常用的方法,即两点的高程差与其水平距离的百分比,其计算公式如下:坡度=高程差/水平距离﹡100%,是指水平距离每100米垂直方向上下降…米;2、度数法用度数来表示坡度,利用反三角函数计算而得,其公式如下:TAN坡度=高程差 /水平距离,所以坡度=TAN-;一、平巷开门点仪器安设过程:用全站仪确定巷道开门点,C为开门点位置;1、在B点安置仪器,2、后视A点,用卷尺量出开门点的距离位置,定为C点然后在C点顶板钉点挂占标,再前视C点;3、把仪器移动安设在C点,后视B点,再用仪器把设计的方位、角度拨出来,用手拿着垂线或粉笔在开门点帮上,用仪器观测,左右移动垂线或粉笔,确定好准确点后用钉子钉上再用喷漆在帮上喷出;也就是中线点;为防止以后施工的破坏,多确定几个中线点,也是为了以后方便跟踪测量;一、标定腰线方法:1、用半圆仪标定倾斜巷道腰线,1点为新开斜巷的起点,称为起破点;1点高程H1由设计给出,Ha为已知点A高程,从图可知Ha-H1=ha在A点悬挂垂球,自A点向下量取ha,得到a点过a点拉一条水平线I'I,使1点位于新开巷道的一帮上,挂上半圆仪,此时半圆仪上读数应为0;将1点固定在巷道帮上,在1点系上测绳,沿巷道同侧拉向掘进方向,在帮上选定一点2,拉直测绳,悬挂半圆仪,上下移动测绳,使半圆仪的读数等于巷道设计倾角,此时固定2点,连接1、2点,划出腰线;2、用经纬仪标定腰线在主要倾斜巷道中,通常采用经纬仪标定腰线,其方法较多,这里只介绍三种; 1)、利用中线点标定腰线,图a为巷道横断图,图b为巷道纵断面图;标定方法如下:a:在中线点1安置仪器,量取仪器高i;b:使竖盘读数为巷道的设计倾角,此时的望远镜视线方向与腰线平行;然后瞄准掘进方向已标定的中线点2、3、4的垂线,分别作临时记号,得到 2'、3'、4',倒镜再测一次倾角a作为检查;c:由下式计算k值:k=H1-H'1+h-i;式中H1―1点处的高程;H'1 ―1点处轨面设计高程;i―仪器高;h ―轨面到腰线点的铅垂距离;d:由中线点的记号2'、3'、4' 分别向下量k值,得到 2"、3"、4"即为所求的腰线点;e:用半圆仪分别从腰线点拉一条垂直中线的水平线到两帮上;f:用测绳连接帮壁上的2"、3"、4"点并用喷漆沿测绳划出腰线;3、平巷与斜巷连接处腰线的标定:平巷与斜巷连接处是巷道坡度变化的地方,腰线到这里要改变坡度,巷道底板在竖起面上的转折点称为巷道变坡点,设平巷腰线到轨面或底板的距离为a,斜巷腰线到轨面或底板的法线距离也保持为a,那么,在变坡点处,平巷腰线必须抬高Δh,才能得到斜巷腰线起坡点,或者自变坡点处向前或向后量取距离ΔL,得到斜巷腰线起坡点,由此标定出斜巷腰线; Δh和ΔL值按下式计算Δh=a/COSδ-a=asecδ-1ΔL= Δδ;标定时,测量人员首先应在平巷的中线点上标定出A点的位置,然后在A点垂直于巷道中线的两帮上标出平巷腰线点,再从平巷腰线向上量取Δh 也可向前或向后量取ΔL,得到斜巷腰线起坡点位置;斜巷掘进时的最初10米,可以用半圆仪在帮手按δ角划出腰线;倾斜巷道的贯通:上下平巷和一号下山已掘好,二号下山正由下向上开掘至B点,现为加快掘进速度,欲上下同时开掘;这种贯通的特殊性在于上部开切点P的位置是未知的;为此,首先应确定P点的位置;确定P点的位置的方法主要有两种:第一种是根据A和C、B和D的坐标,列出直线方程,求解出交点P的位置;这种方法解联立方程的工作相当复杂,一般不予采用;第二种方法是根据三角学的基本知识,解算ΔAPB;由于在ΔAPB中,A、B的坐标已知,从而可求出它们间的水平距离Lba,和方位角eab,而且eba=edb,eap=eac也是已知的;这样我们就可以根据正弦定理求得Lap,确定出P点的位置;Lap=LbaSINδb/SINδp=<Ya-YbCOSeb-Xa-XbSINedb>/SINebd-eca;P点确定后,即可测定出其高程Hp,然后即可按与第一个例子类似的方法,标定贯通巷道的中线和腰线;水平巷道间的贯通:1、准备工作布设仪器和水准路线,计算出A、B点的平面直角坐标XA,YA、XB,YB以及它们的高程Ha、Hb;2、计算贯通测量的几何要素1计算贯通巷道中心线的方位角aAB:tanaAB=YB-YA/XB-XA;(2)计算A、B处的指向角β1、β2:β1=αAB- αAC β2=αBA- αBD(3)计算A、B间的水平距离LAB:LAB=√XB-XA2+YB-YA2;(4)计算贯通巷道的倾角δ:tanδ=HB-HA/LAB;(5)计算A、B间的斜长LAB:LAB=√LAB2+HB2-HA2或LAB=LAB/COSδ。
方位角计算坐标公式
方位角计算坐标公式方位角是指从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角。
在数学、地理、工程等领域中,方位角的计算坐标公式可是相当重要的工具。
咱先来说说方位角的基本概念。
想象一下,你站在一个空旷的地方,面前有一个目标点,你要知道从你所在的位置看向那个目标点的方向角度,这就是方位角。
比如说,你正对着北方,然后顺时针转动到目标点的角度就是方位角啦。
那方位角计算坐标公式到底是啥呢?其实就是通过已知点的坐标和目标点的坐标来算出方位角。
具体的公式是:$tan\alpha = \frac{y_2 - y_1}{x_2 - x_1}$然后通过反正切函数就能得到方位角$\alpha$啦。
这里的$(x_1,y_1)$是已知点的坐标,$(x_2, y_2)$是目标点的坐标。
给大家举个例子哈。
比如说有两个点,A 点的坐标是(3, 4),B 点的坐标是(7, 8)。
咱们来算算从 A 点看向 B 点的方位角。
首先,按照公式,$x_1 = 3$,$y_1 = 4$,$x_2 = 7$,$y_2 = 8$。
那么,$tan\alpha = \frac{8 - 4}{7 - 3} = \frac{4}{4} = 1$。
然后通过反正切函数,就知道$\alpha = 45°$。
这就意味着从 A 点看向 B 点的方位角是 45°。
在实际生活中,方位角的计算坐标公式用处可大了。
就拿建筑施工来说吧,工程师们要确定建筑物的朝向、道路的走向,就得靠这个公式来准确计算方位角。
我之前就碰到过这么个事儿,有一次去一个建筑工地,当时工人们正在打地基,但是因为方位角没算对,导致一开始的基础部分就有点偏差。
后来发现问题后,赶紧重新计算方位角,调整施工方案,这才避免了更大的错误。
你瞧,就这么一个小小的方位角计算,如果出错了,那带来的麻烦可不小。
在地理测量中,方位角也很关键。
比如测量山峰的位置、河流的走向等等。
还有导航系统,也是依靠方位角来为我们指引方向的。
测量方位角计算公式
方法2(*):
(1)计算角度闭合差:
f 测 理
其中, 理的计算公式如下:
左角: 终 始 理(左) n 180 理(左) 终 始 n 180 右角: 终 始 理(右) n 180 理(右) 始 终 n 180
2 x 2 y
XA=536.27m YA=328.74m
1122224
1051706 2
2
4
1233006 1014624 4
3
3
导线全长相对闭合差(relative length closing error of traverse): f K 1 / XXX D
例题:方位角的推算
已知:α12 ,各观测角β 如图,求各边坐标方位角 α23、α34、α45、α51。
解: α23= α
2
2
30 12
130
=300
1
1 95
122
3
65
3
-β 2±1800=800 12 ±1800=1950
5
128
5
4
α34= α23-β3
4
α45=2470
A1 484318 A
1
1
970300
1051706 2
A
2
(4)计算改正后新 的角值:
XA=536.27m YA=328.74m
1122224
4
1233006 1014624 4
3
ˆ V i i
3
3、按新的角值,推算各边坐标方位角。
4、按坐标正算公式,计算各边坐标增量。 5、坐标增量闭合差(closing error in coordination increment)计算与调整
方位角计算公式
1 / 26一、直线定向 1、正、反方位角换算 对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角 =(1—13> 上式右端,若<,用“+”号,若,用“-”号。
2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。
所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。
为了说明直线所在的象限,在前应加注直线所在象限的名称。
四个象限的名称分别为北东<NE )、南东<SE )、南西(SW 〉、北西(NW 〉。
象限角和坐标方位角之间的换算公式列于表1-4。
象 限 象限角与方位角换算公式第一象限 <NE ) = 第二象限 <SE) =- 第三象限 <SW ) =+ 第四象限 〈NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角. 设地面有相邻的、、三点,连成折线<图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。
水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。
设三点相关位置如图1—17(>所示,应有=++(1-14>设三点相关位置如图1—17(〉所示,应有=++-=+-(1-15〉若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16>显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=-(1-17>上二式右端,若前两项计算结果<,前面用“+"号,否则前面用“-”号。
2 / 26二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。
坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。
测量坐标方位角计算公式是什么
测量坐标方位角计算公式是什么引言在测量和导航领域中,确定两个点之间的方位角(也称为方向角或航向角)是一项重要的任务。
方位角定义为从一个参考点到目标点的方向,通常以北方向为参考。
测量坐标方位角是一种基本的导航技术,广泛应用于地理测量、航行、航空、地图制作等领域。
本文将介绍如何计算测量坐标方位角的公式。
问题陈述给定两个点的坐标(经度和纬度),我们的目标是计算从一个点到另一个点的方位角。
方法为了计算两个点之间的方位角,我们可以使用以下公式:Δφ = φ2 - φ1Δλ = λ2 - λ1θ = atan2(sin(Δλ) * cos(φ2), cos(φ1) * sin(φ2) - sin(φ1) * cos(φ2) * co s(Δλ))其中,φ1和λ1是起始点的纬度和经度,φ2和λ2是目标点的纬度和经度。
Δφ和Δλ是纬度和经度的差值。
以上公式是基于球面三角学的原理。
测量坐标方位角的计算方法是通过计算两个点形成的三角形的角度来确定方位角。
理解公式让我们逐步分解公式来理解其含义。
首先,我们计算纬度差值Δφ和经度差值Δλ。
这是因为方位角的计算涉及到两个点之间的相对位置。
接下来,我们使用以下公式计算方位角θ:•sin(Δλ) * cos(φ2):这部分表示纬度差(即起始点到目标点的维度变化)对方位角的影响。
sin(Δλ)表示纬度差的正弦值,而cos(φ2)表示目标点纬度的余弦值。
•cos(φ1) * sin(φ2) - sin(φ1) * cos(φ2) * cos(Δλ):这部分表示经度差(即起始点到目标点的经度变化)对方位角的影响。
cos(φ1) *sin(φ2)表示起始点纬度的余弦值乘以目标点纬度的正弦值,而sin(φ1) *cos(φ2) * cos(Δλ)表示起始点纬度的正弦值乘以目标点纬度的余弦值再乘以经度差的余弦值。
最后,使用atan2()函数计算弧度,并将其转换为角度值。
结论本文介绍了计算测量坐标方位角的公式。
方位角计算万能公式
方位角计算万能公式先计算出坐标增量:dX=Xb-XadY=Yb-YadY=dY+1E-10 为了使除数不为零而加一个很小的数方位角计算万能公式:Az=pi * (1-Sgn(dY)/2)-Atn(dX / dY)单位为弧度 Az=Az * 180 /pi 单位为度此公式计算无需判断象限,只需在值小于0时加上360即可!其中,sgn()为求符号函数,若dX<0时其值为-1,dX>0时为1,dX=0时为0。
使用此公式不用判断所在象限,直接将坐标增量代入即可求出方位角值,在用计算器编程时若没有SGN()函数可自行判断并用一个变量代替!VBA代码:'方位角计算函数 Azimuth()'Sx为起点X,Sy为起点Y'Ex为终点X,Ey为终点Y'Style指明返回值格式'Style=-1为弧度格式'Style=0为“DD MM SS”格式'Style=1为“DD-MM-SS”格式'Style=2为“DD°MMˊSS''”格式'Style=其它值时返回十进制度值Function Azimuth(Sx As Double, Sy As Double, Ex As Double, Ey As Double, Style As Integer)Dim DltX As Double, DltY As Double, A_tmp As Double, Pi As DoublePi = Atn(1) * 4 '定义PI值DltX = Ex - SxDltY = Ey - Sy + 1E-20A_tmp = Pi * (1 - Sgn(DltY) / 2) - Atn(DltX / DltY) '计算方位角A_tmp = A_tmp * 180 / Pi '转换为360进制角度Azimuth = Deg2DMS(A_tmp, Style)End Function'转换角度为度分秒'Style=-1为弧度格式'Style=0为“DD MM SS”格式'Style=1为“DD-MM-SS”格式'Style=2为“DD°MMˊSS''”格式'Style=其它值时返回十进制度值Function Deg2DMS(DegValue As Double, Style As Integer) Dim tD As Integer, tM As Integer, Ts As Double, tmp As DoubletD = Int(DegValue)tmp = (DegValue - tD) * 60tM = Int(tmp)tmp = (tmp - tM) * 60Ts = Round(tmp, 1)select Case StyleCase -1 '返回弧度Deg2DMS = DegValue * Atn(1) * 4 / 180Case 0Deg2DMS = tD & ' ' & Format(tM, '00') & ' ' & Format(Ts, '00.0')Case 1Deg2DMS = tD & '-' & Format(tM, '00') & '-' & Format(Ts, '00.0')Case 2Deg2DMS = tD & '°' & Format(tM, '00') & 'ˊ' & Format(Ts, '00.0') & ''''Case ElseDeg2DMS = DegValueEnd SelectEnd FunctionFunction pol(AX As Double, AY As Double, Bx As Double, By As Double) As Stringpol = Azimuth(AX, AY, Bx, By, 2) & ' ' & Distance(AX, AY, Bx, By, 3)End FunctionFunction rec(alpha As String, dist As Double) As StringDim Alpha_Rad As DoubleAlpha_Rad = StringToRad(alpha)rec = 'dx:' & Round(Cos(Alpha_Rad) * dist, 3) & ' dy:' & Round(Sin(Alpha_Rad) * dist, 3)End FunctionFunction StringToRad(strAz) '将字符串格式方位角转换成弧度格式Dim azSubStrIf strAz <> '' ThenazSubStr =Split(strAz, '-')If UBound(azSubStr) = 2 ThenStringToRad = (azSubStr(0) + azSubStr(1) / 60 + azSubStr(2) / 3600) * Atn(1) * 4 / 180ElseStringToRad = 0End IfElseStringToRad = 0 End IfEnd Function。
方位角的计算公式
方位角的计算公式方位角是指从其中一点出发,顺时针方向到另一个点的位置角度。
它通常用度数来表示,以正北方向为基准,逆时针方向为正方向。
方位角的计算公式主要有两种,一种使用正弦和余弦函数,另一种使用向量运算。
1.使用正弦和余弦函数的计算公式:假设点A的坐标为(Ax, Ay),点B的坐标为(Bx, By)。
首先需要计算两点之间的水平距离和垂直距离,即dx = Bx - Ax和dy = By - Ay。
然后可以计算方位角θ = arctan(dy/dx)。
但是由于arctan函数的值域是(-π/2, π/2),只能表示-90°到90°之间的角度,为了得到完整的方位角计算结果,还需要根据点的位置进行调整。
- 如果dx > 0且dy > 0,即点B位于点A的右上方,此时方位角为θ。
- 如果dx > 0且dy < 0,即点B位于点A的右下方,此时方位角为360° + θ。
- 如果dx < 0,即点B位于点A的左侧,此时方位角为180° + θ。
- 如果dx = 0且dy > 0,即点B位于点A的正北方向,此时方位角为90°。
- 如果dx = 0且dy < 0,即点B位于点A的正南方向,此时方位角为270°。
这样就可以得到点A到点B的方位角。
2.使用向量运算的计算公式:向量的加减可以表示方向的改变,因此方位角的计算也可以通过向量运算来实现。
假设点A的坐标为(Ax,Ay),点B的坐标为(Bx,By)。
首先构造向量AB,即将点B的坐标减去点A的坐标得到(ABx,ABy)。
然后可以计算该向量的方位角θ = arctan(ABy/ABx),同样需要根据点的位置进行调整。
-如果ABx>0且ABy>0,即点B位于点A的右上方,此时方位角为θ。
-如果ABx>0且ABy<0,即点B位于点A的右下方,此时方位角为360°+θ。
测量方位角计算公式
xy
= +0.09 =0.08
= x²+ y²=0.120
K = D
0
=
1 4000
<1
2000
例题:
用EXCEL程序进行闭合导线计算
(四)附合导线平差计算
说明:与闭合导线基本相同,以下是两者的不同点:
1、角度闭合差的分配与调整 方法1:
(1)计算方位角闭合差: f 终计算 终已知
+23.78 -91.32 472.34 350.62
4
+63.94 -21.89 +63.93 -21.88 536.27 328.74
A
1
48 43 18
539 59 00 540 00 00
理=5400000 = 测理=60 容=405 =89
485.47 +0.09 -0.08 0
•
例题:附合导线的计算
(1)绘制计算草图,在表内填写已知 数据和观测数据
D 41600
CD
(2)角度闭合差的计算与调整
XC=1845.69 YC=1039.98 C C
(3)各边方向角的推算
1803248
8
(4)坐标增量闭合差的计算与调整
4
(5)推算各点坐标。
7
2045430
C +146.92 +12.38 +146.90 +12.40 1845.691039.98
4 16 00
D
-9 +12
1119 00 24 1119 01 12
738.33
+614.90
+614.81 +366.53 +366.41
全站仪闭合导线方位角及距离计算方法步骤
全站仪闭合导线方位角及距离计算方法步骤本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March闭合导线测量计算方法①.方位角计算(左角)已知A,B两点坐标,且AB的方位角为30°即αAB = 30°,可求出其它方位角如下:αBC = αAB + ∠B ± 180° = 30°+ 60° + 180° = 270°αCD = αBC + ∠C ± 180° = 270°+ 70°- 180° = 160°αDE = αCD + ∠D ± 180° =160°+ 100° - 180° = 80°αEB = αDE + ∠E ± 180° = 80° + 130° - 180° = 30°②.方位角计算(右角)已知A,B两点坐标,且AB的方位角为30°即αAB = 30°,可求出其它方位角如下:αBC = αAB + ∠B ± 180° = 30°+ 60° + 180° = 270°αCD = αBC - ∠C ± 180° = 270° - 290° + 180°= 160°αDE = αCD - ∠D ± 180° =160°- 260° - 180° = 80°αEB = αDE - ∠E ± 180° = 80° - 230° - 180° = 30°总结:角在左边用加法,角在右边用减法(左加右减);在求方位角时,两个角相加或相减得出来的得数大于180°则减去180°,若小于180°则加上180°(大减小加)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
48 43 18
+12
97 03 00 97 03 12
+12
131 40 06
105 17 06 105 17 18
101
+12 46 24
101
206
46 36
22
48
+12 123 30 06
123 30
284
18
36
12
112
+12 22 24
112
22
341
36
05
54
115.10 100.09 108.32
XA=536.27m YA=328.74m
123?30?06?
?4 101?46?24?
f?
f
2 x
?
f
2 y
4
?3
3
?导线全长相对闭合差(relative length closing
error of traverse):
K ? f ? 1 / XXX
?D
11
(2)分配坐标增量闭合差。
若K<1/2000 (图根级),则将 fx、fy以相反符号,按 边长成正比分配到各坐标增量上去。并计算改正后的坐标
2
例题:方位角的推算
2
?2
已知:α12=30 0,各观测角β
30?
130?
? 12
如图,求各边坐标方位角α 23、 1 α 34、α 45、α 51。
? 1 95?
?3
65? 3
解: α23= α12-β2±1800=800 α34= α23-β3±1800=1950
122?
?5
5
128?
?4
4
α45=2470
讲题:导线测量内业计算
内容提要:
四、导线的内业计算
1
四.导线的内业计算——计算各导线点的坐标
(一)几个基本公式 1、坐标方位角 (grid bearing) 的推算
? 前 ? ? 后 ? ? 左 ? 180 ?
或: ? 前 ? ? 后 ? ? 右 ? 180 ?
注意:若计算出的方位角 >360 °,则减去360°; 若为负值,则加上 360°。
-2 +1
448.56 441.94
4 +23.80 -91.33 +23.78 -91.32
-1 +1
472.34 350.62
A +63.94 -21.89 +63.93 -21.88 536.27 328.74
? yAB ? xAB
(3)根据ΔXAB、ΔYAB的正负号判断 αAB所在的象限。
6
1、幸福的背后 2、吐鲁番的葡萄熟了
7
(三)闭合导线平差计算步骤
1、绘制计算草图,在图上填写已知数据和观测数据。 2、角度闭合差 (angle closing error) 的计算与调整。
(1)计算角度闭合差:
1
A
0
B
y
4
3、坐标反算公式
由A、B两点坐标来计算 αAB、DAB
D AB ?
?
x
2 AB
?
?
y
2 AB
tg ? AB
?
? y AB ? x AB
αAB的具体计算方法如下:
(1)计算: ? xAB ? xB ? xA ? yAB ? yB ? yA
X
? YAB
? XAB ? AB
DAB
A
0
B
y
5
(2)计算:? AB锐 ? arctg
增量。
1
? V? xi ? ?
fx D
Di
? V? yi ? ?
f
y
D
Di
? x?i ? ? x ? V? xi ? y?i ? ? x ? V? yi
?1
97?03?00?
48?43?18? ? A1
A
XA=536.27m
?A
112?22?24?
?2
105?17?06?
2
YA=328.74m
123?30?06?
94.38 67.58
-2 +2
536.27 328.74 A
1 +75.93 +86.50 +75.91 +86.52
-2 +2
612.18 415.26
2 -66.54 +74.77 -66.56 +74.79
-2 +2
545.62 490.05
3 -97.04 -48.13 -97.06 -48.11
YA=328.74m
123?30?06?
? 4 101?46?24?
4
?3
3
13
例题:闭合导线坐标计算表点 号转角 (右)改正后 转折角
方向角 ?
边长 D
坐标 增量(米)
改 正 后 坐标(米) 增量(米)
点 号
? ? ? ? ? ? ? ? ? (米) ? X ? Y ? X ? Y X Y
A 1
?4 101?46?24?
4
?3
3 12
6、坐标计算
根据起始点的已知坐标和经改正的新的坐标增量,
来依次计算各导线点的坐标。
1
x2 ? x1 ? ? x?12 y2 ? y1 ? ? y?12
?1
97?03?00?
48?43?18? ? A1
A
XA=536.27m
?A
112?22?24?
?2
105?17?06?
α51=3050
α12=300(检查)
3
2、坐标正算公式
由A、B 两点边长DAB和坐标方位角 αAB,计算坐标
增量。见图有:
X
? XAB =DAB ? cos ? AB ? YAB =DAB ? sin ? AB
其中, Δ XAB=XB -XA ΔYAB=YB-YA
? YAB
? XAB ? AB
DAB
数:
V?
?
? f? n
(4)计算改正后新 的角值:
??i ? ? i ? V?
1
?1
97?03?00?
48?43?18? ? A1
A
XA=536.27m
?A
112?22?24?
?2
105?17?06?
2
YA=328.74m
123?30?06?
?4 101?46?24?
4
?3
3
9
3、按新的角值,推算各边坐标方位角。
4、按坐标正算公式,计算各边坐标增量。
5、坐标增量闭合差(closing error in coordination increment) 计算与调整 1
?1
97?03?00?
48?43?18? ? A1
A
XA=536.27m
?A
112?22?24?
?2
105?17?06?
2
YA=328.74m
123?30?06?
??=?? 测-?? 理 = ?? 测-(n-2)? 180?
(2)计算限差:
f?允 ? ?40 n
?1
97?03?00?
48?43?18? ? A1
A
XA=536.27m
?A
112?22?24?
?2
105?17?06?
2
YA=328.74m
123?30?06?
?4 101?46?24?
4
?3
38
(3)若在限差内,则平均分配原则,计算改正
?4 101?46?24?
4
?3
3 10
1
(1)计算坐标增量闭合差:
? ? ? fx ? ? x测 ? ? x理 ? ? x测
?1
97?03?00?
? ? ? fy ? ? y测 ? ? y理 ? ? y测
48?43?18? ? A1
A
?A
112?22?24?
?2
105?17?06?
2
?导线全长闭合差: