中考数学材料阅读题

合集下载

中考数学材料阅读题专题练习(2020年整理).pdf

中考数学材料阅读题专题练习(2020年整理).pdf

阅读理解(二)(24题)典型例题: 例1、进位制是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n ,即可称n 进制.现在最常用的是十进制,通常使用10个阿拉伯数字0~9进行记数,特点是逢十进一.对于任意一个用n ()10n ≤进制表示的数,通常使用n 个阿拉伯数字0~()1n −进行记数,特点是逢n 进一.我们可以通过以下方式把它转化为十进制:例如:五进制数()252342535469=⨯+⨯+=,记作5(234)69=, 七进制数()271361737676=⨯+⨯+=,记作7(136)76=. (1)请将以下两个数转化为十进制:5(331)= ,7(46)= ;(2)若一个正数可以用七进制表示为()7abc ,也可以用五进制表示为()5cba ,请求出这个数并用十进制表示.例2、如果一个自然数能表示为两个自然数的平方差,那么称这个自然数为智慧数,例如: 223-516=,16就是一个智慧数,小明和小王对自然数中的智慧数进行了如下的探索: 小明的方法是一个一个找出来的:220-00=,220-11=,221-23=,220-24=,222-35=,223-47=,221-38=,224-59=,225-611=,。

小王认为小明的方法太麻烦,他想到:设k 是自然数,由于12)1)(1)122+=−+++=−+k k k k k k k ((。

所以,自然数中所有奇数都是智慧数。

问题:(1) 根据上述方法,自然数中第12个智慧数是______(2) 他们发现0,4,8是智慧数,由此猜测4k(3≥k 且k 为正整数)都是智慧数,请你参考小王的办法证明4k (3≥k 且k 为正整数)都是智慧数。

(3) 他们还发现2,6,10都不是智慧数,由此猜测4k+2(k 为自然数)都不是智慧数,请利用所学的知识判断26是否是智慧数,并说明理由。

例3、如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上的数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…,都是“妙数”.(1) 若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为;(2) 证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除;(3) 在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一个新的四位自然数A ,且m 大于自然数A 百位上的数字.是否存在一个一位自然数n ,使得自然数(9)A n +各数位上的数字全都相同?若存在,请求出m 和n 的值;若不存在,请说明理由.例4、连续整数之间有许多神奇的关系,如:32+42=52,这表明三个连续整数中较小两个数的平方和等于最大数的平方,称这样的正整数组为“奇幻数组”,进而推广:设三个连续整数为a ,b ,c (a <b <c )若a 2+b 2=c 2,则称这样的正整数组为“奇幻数组”;若a 2+b 2<c 2,则称这样的正整数组为“魔幻数组”;若a 2+b 2>c 2,则称这样的正整数组为“梦幻数组”。

2021年中考数学阅读材料题专题(二)

2021年中考数学阅读材料题专题(二)

2021年中考数学阅读材料题专题(二)1.阅读材料:对于一个三位自然数m ,将各个数位上的数字分别3倍后取个位数字,得到三个新的数字x ,y ,z ,我们对自然数m 规定一个运算:F (m )=x 2+y 2+z 2.例如:m =752,其各个数位上的数字分别3倍后再取个位数字分别是:1、5、6,则F (752)=12+52+62=62.(1)根据材料内容,求F (234)﹣F (567)的值;(2)已知两个三位数p =3a a ,q =33b (a ,b 为整数,且2≤a ≤7,2≤b ≤7),若p +q 能被17整除,求F (p +q )的值.2.若一个三位数m =xyz (其中x ,y ,z 不全相等且都不为0),现将各数位上的数字进行重排,将重排后得到的最大数与最小数之差称为原数的差数,记作M (m ).例如435,重排后得到345,354,453,534,543,所以435的差数M (435)=543﹣345=198.(1)若一个三位数t =2x y (其中x >y >2)的差数M (t )=594,且各数位上的数字之和能被5整除,求t 的值;(2)若一个三位数m ,十位数字为2,个位数字比百位数字大2,且m 被4除余1,求所有符合条件的M (m )的最小值.3.若一个五位正整数满足:①各个数位上的数字都不为0,②它的万位数字、千位数字、十位数字、个位数字的和等于百位数字,我们称这样的五位正整数为“顶尖数”.例如:31822,因为3+1+2+2=8,所以31822是一个“顶尖数”.(1)最小的“顶尖数”是 ,最大的“顶尖数”是 ;(2)写出所有百位数字是6且个位数字是1的“顶尖数”.4.对于任意一个自然数n,如果n的各个数位上的数字之和是一个整数的平方,那么称n为“方数”,例如,自然数32587各位数字之和是3+2+5+8+7=25=52,所以32587就是一个“方数”;对于任意一个自然数m,如果m是一个整数的立方,那么称m为“立方数”,例如,8=23,所以8是一个立方数.(1)判断9999是不是方数?729是不是立方数?(2)若一个两位数各位数字之和是一个“立方数”,并且各位数字相差4,请求出这个两位数;(3)若自然数n既是“方数”又是“立方数”,则称n为完美数,请直接写出小于1000的自然数中的所有完美数.5.阅读下列材料,解答下列问题材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”,如:65362,362﹣65=297=11×27,称65362是“网红数”.材料二:对任的自然数p均可分解为P=100x+10y+z(x≥0,0≤y≤9,0≤z≤9且x、y,z均为整数)如:5278=52×100+10×7+8,规定:G(P)=2(1)1x x z xx z+-++-.(1)求证:任两个“网红数”之和一定能被11整除;(2)已知:S=300+10b+a,t=1000b+100a+1142(1≤a≤7,0≤b≤5,其a、b均为整数),当s+t 为“网红数”时,求G(t)的最大值.6. 定义:如果一个三位数,它的各个数位上的数字都不为0,且满足百位上的数字与各位上的数字的平均数等于十位上的数字,则称这个三位数为开合数,设A 为一个开合数,将A 的百位数字和个位数交换位置后得到新数再与A 相加的和为()A φ,例如852是开合数,则(852)=852+258=1110φ.(1)已知开合数10310m x =+(09x <≤,且为x 整数),求()m φ的值;(2) 三位数A 是一个整数,请求满足条件的所有A值.7(10 分)根据阅读材料,解决问题.材料 1:若一个正整数,从左到右各位数上的数字与从右到左各位数上的数字对应相同,则称为“对称数”.(例如:1、232、4554 是对称数)材料 2:对于一个三位自然数 A ,将它各个数位上的数字分别 2 倍后取个位数字,得到三个新的数字 x , y , z ,我们对自然数 A 规定一个运算; K ( A ) = x 2 + y 2 + z 2 ,例如:A = 191是一个三位的“对称数”,其各个数位上的数字分别 2 倍后取个位数字分别是:2、8、2.则 K (191) = 22 + 82 + 22 = 72 . 请解答:(1)请你直接写出最大的两位对称数: ,最小的三位对称数: ;(2)如果将所有对称数按照从小到大的顺序排列,请直接写出第 1100 个对称数; (3)一个四位的“对称数” B ,若 K (B ) = 8 ,请求出 B 的所有值.8.若一个三位数m xyz =(期中x,y,z 不全相等且都不为0),现将各个数位上的数字进行重排,将重排后得到的最大数与最小数之差称为原数的差数,记作()M m .例如537,重排后得到357,375,753,735,573,所以537的差数(537)=753-357=396M .(1)若一个三位数t abc =(其中b a c >>,且0abc ≠),求证:()M t 能被99整除;(2)若一个三位数m ,十位数字为2,个位数字比百位数字大2,且m 被4除余1,求所有符合条件的()M m 的最小值.9.一个三位正数m ,其各位数字均不为零且互不相等,若将M 的十位数字与百位数字交换位置,得到一个新的三位数。

中考数学阅读材料题

中考数学阅读材料题

中考阅读材料题——代数1.(2015•重庆)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.分析:(1)根据“和谐数”的定义(把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同)写出四个“和谐数”,设任意四位“和谐数”形式为:,根据和谐数的定义得到a=d,b=c,则===91a+10b为正整数,易证得任意四位“和谐数”都可以被11整除;(2)设能被11整除的三位“和谐数”为:,则===9x+y+为正整数.故y=2x(1≤x≤4,x为自然数).解答:解:(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一)任意一个四位“和谐数”都能被11整除,理由如下:设任意四位“和谐数”形式为:,则满足:最高位到个位排列:d,c,b,a个位到最高位排列:a,b,c,d.由题意,可得两组数据相同,则:a=d,b=c,则===91a+10b为正整数.∴四位“和谐数”能被11整数,又∵a,b,c,d为任意自然数,∴任意四位“和谐数”都可以被11整除;(2)设能被11整除的三位“和谐数”为:,则满足:个位到最高位排列:x,y,z.最高位到个位排列:z,y,x.由题意,两组数据相同,则:x=z,故==101x+10y,故===9x+y+为正整数.故y=2x(1≤x≤4,x为自然数).2.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F (12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【分析】(1)根据题意可设m=n2,由最佳分解定义可得F(m)==1;(2)根据“吉祥数”定义知(10y+x)﹣(10x+y)=18,即y=x+2,结合x的范围可得2位数的“吉祥数”,求出每个“吉祥数”的F(t),比较后可得最大值.【解答】解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F(57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.3.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,......如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”。

2021年中考数学阅读材料题专题(二)

2021年中考数学阅读材料题专题(二)

2021年中考数学阅读材料题专题(二)1.阅读材料:对于一个三位自然数m ,将各个数位上的数字分别3倍后取个位数字,得到三个新的数字x ,y ,z ,我们对自然数m 规定一个运算:F (m )=x 2+y 2+z 2.例如:m =752,其各个数位上的数字分别3倍后再取个位数字分别是:1、5、6,则F (752)=12+52+62=62.(1)根据材料内容,求F (234)﹣F (567)的值;(2)已知两个三位数p =3a a ,q =33b (a ,b 为整数,且2≤a ≤7,2≤b ≤7),若p +q 能被17整除,求F (p +q )的值.2.若一个三位数m =xyz (其中x ,y ,z 不全相等且都不为0),现将各数位上的数字进行重排,将重排后得到的最大数与最小数之差称为原数的差数,记作M (m ).例如435,重排后得到345,354,453,534,543,所以435的差数M (435)=543﹣345=198.(1)若一个三位数t =2x y (其中x >y >2)的差数M (t )=594,且各数位上的数字之和能被5整除,求t 的值;(2)若一个三位数m ,十位数字为2,个位数字比百位数字大2,且m 被4除余1,求所有符合条件的M (m )的最小值.3.若一个五位正整数满足:①各个数位上的数字都不为0,②它的万位数字、千位数字、十位数字、个位数字的和等于百位数字,我们称这样的五位正整数为“顶尖数”.例如:31822,因为3+1+2+2=8,所以31822是一个“顶尖数”.(1)最小的“顶尖数”是 ,最大的“顶尖数”是 ;(2)写出所有百位数字是6且个位数字是1的“顶尖数”.4.对于任意一个自然数n,如果n的各个数位上的数字之和是一个整数的平方,那么称n为“方数”,例如,自然数32587各位数字之和是3+2+5+8+7=25=52,所以32587就是一个“方数”;对于任意一个自然数m,如果m是一个整数的立方,那么称m为“立方数”,例如,8=23,所以8是一个立方数.(1)判断9999是不是方数?729是不是立方数?(2)若一个两位数各位数字之和是一个“立方数”,并且各位数字相差4,请求出这个两位数;(3)若自然数n既是“方数”又是“立方数”,则称n为完美数,请直接写出小于1000的自然数中的所有完美数.5.阅读下列材料,解答下列问题材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”,如:65362,362﹣65=297=11×27,称65362是“网红数”.材料二:对任的自然数p均可分解为P=100x+10y+z(x≥0,0≤y≤9,0≤z≤9且x、y,z均为整数)如:5278=52×100+10×7+8,规定:G(P)=2(1)1x x z xx z+-++-.(1)求证:任两个“网红数”之和一定能被11整除;(2)已知:S=300+10b+a,t=1000b+100a+1142(1≤a≤7,0≤b≤5,其a、b均为整数),当s+t 为“网红数”时,求G(t)的最大值.6. 定义:如果一个三位数,它的各个数位上的数字都不为0,且满足百位上的数字与各位上的数字的平均数等于十位上的数字,则称这个三位数为开合数,设A 为一个开合数,将A 的百位数字和个位数交换位置后得到新数再与A 相加的和为()A φ,例如852是开合数,则(852)=852+258=1110φ.(1)已知开合数10310m x =+(09x <≤,且为x 整数),求()m φ的值;(2) 三位数A 是一个整数,请求满足条件的所有A值.7(10 分)根据阅读材料,解决问题.材料 1:若一个正整数,从左到右各位数上的数字与从右到左各位数上的数字对应相同,则称为“对称数”.(例如:1、232、4554 是对称数)材料 2:对于一个三位自然数 A ,将它各个数位上的数字分别 2 倍后取个位数字,得到三个新的数字 x , y , z ,我们对自然数 A 规定一个运算; K ( A ) = x 2 + y 2 + z 2 ,例如:A = 191是一个三位的“对称数”,其各个数位上的数字分别 2 倍后取个位数字分别是:2、8、2.则 K (191) = 22 + 82 + 22 = 72 . 请解答:(1)请你直接写出最大的两位对称数: ,最小的三位对称数: ;(2)如果将所有对称数按照从小到大的顺序排列,请直接写出第 1100 个对称数; (3)一个四位的“对称数” B ,若 K (B ) = 8 ,请求出 B 的所有值.8.若一个三位数m xyz =(期中x,y,z 不全相等且都不为0),现将各个数位上的数字进行重排,将重排后得到的最大数与最小数之差称为原数的差数,记作()M m .例如537,重排后得到357,375,753,735,573,所以537的差数(537)=753-357=396M .(1)若一个三位数t abc =(其中b a c >>,且0abc ≠),求证:()M t 能被99整除;(2)若一个三位数m ,十位数字为2,个位数字比百位数字大2,且m 被4除余1,求所有符合条件的()M m 的最小值.9.一个三位正数m ,其各位数字均不为零且互不相等,若将M 的十位数字与百位数字交换位置,得到一个新的三位数。

2024年四川中考数学真题分类汇编——几何压轴材料阅读

2024年四川中考数学真题分类汇编——几何压轴材料阅读

2024年四川中考数学真题分类汇编——几何压轴材料阅读一成都数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE 的面积;若不能,请说明理由.倍,某数学兴趣小组以此为方向对菱形的对角线和边长的数量关系探究发现,具体如下:如图1.(1) 四边形ABCD 是菱形,AC BD ∴⊥,AO CO =,BO DO =.222AB AO BO ∴=+.又2AC AO = ,2BD BO =,2AB ∴=______+______.化简整理得22AC BD +=______.【类比探究】(2)如图2.若四边形ABCD 是平行四边形,请说明边长与对角线的数量关系.【拓展应用】(3)如图3,四边形ABCD 为平行四边形,对角线AC ,BD 相交于点O ,点E 为AO 的中点,点F 为BC 的中点,连接EF ,若8AB =,8BD =,12AC =,直接写出EF 的长度.数学实验,能增加学习数学的乐趣,还能经历知识“再创造”的过程,更是培养动手能力,创新能力的一种手段.小强在学习《相似》一章中对“直角三角形斜边上作高”这一基本图形(如图1)产生了如下问题,请同学们帮他解决.在ABC 中,点D 为边AB 上一点,连接CD .(1)初步探究如图2,若ACD B ∠=∠,求证:2AC AD AB =⋅;(2)尝试应用如图3,在(1)的条件下,若点D 为AB 中点,4BC =,求CD 的长;(3)创新提升如图4,点E 为CD 中点,连接BE ,若30CDB CBD ∠=∠=︒,ACD EBD ∠=∠,AC =求BE 的长.在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题:【问题情境】如图1,在中,,,点D、E在边上,且,,,求的长.解:如图2,将绕点A逆时针旋转得到,连结.由旋转的特征得,,,.∵,,∴.∵,∴,即.∴.在和中,,,,∴___①___.∴.又∵,∴在中,___②___.∵,,∴___③___.【问题解决】上述问题情境中,“①”处应填:______;“②”处应填:______;“③”处应填:______.刘老师进一步谈到:图形的变化强调从运动变化的观点来研究,只要我们抓住了变化中的不变量,就能以不变应万变.【知识迁移】如图3,在正方形中,点E、F分别在边上,满足的周长等于正方形的周长的一半,连结,分别与对角线交于M、N两点.探究的数量关系并证明.【拓展应用】如图4,在矩形中,点E、F分别在边上,且.探究的数量关系:______(直接写出结论,不必证明).【问题再探】如图5,在中,,,,点D、E在边上,且.设,,求y与x的函数关系式.五眉州综合与实践问题提出:在一次综合与实践活动中,某数学兴趣小组将足够大的直角三角板的一个顶点放在正方形的中心处,并绕点旋转,探究直角三角板与正方形重叠部分的面积变化情况.操作发现:将直角三角板的直角顶点放在点处,在旋转过程中:(1)若正方形边长为4,当一条直角边与对角线重合时,重叠部分的面积为______;当一条直角边与正方形的一边垂直时,重叠部分的面积为______.(2)若正方形面积为,重叠部分的面积为,在旋转过程中与的关系为______.类比探究:如图1,若等腰直角三角板的直角顶点与点重合,在旋转过程中,两条直角边分别角交正方形两边于,两点,小宇经过多次实验得到结论,请你帮他进行证明.拓展延伸:如图2,若正方形边长为4,将另一个直角三角板中角的顶点与点重合,在旋转过程中,当三角板的直角边交于点,斜边交于点,且时,请求出重叠部分的面积.(参考数据:,,)。

中考数学材料阅读题专题练习

中考数学材料阅读题专题练习

阅读理解(二)(24题)典型例题: 例1、进位制是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n ,即可称n 进制.现在最常用的是十进制,通常使用10个阿拉伯数字0~9进行记数,特点是逢十进一.对于任意一个用n ()10n ≤进制表示的数,通常使用n 个阿拉伯数字0~()1n -进行记数,特点是逢n 进一.我们可以通过以下方式把它转化为十进制:例如:五进制数()252342535469=⨯+⨯+=,记作5(234)69=,七进制数()271361737676=⨯+⨯+=,记作7(136)76=.(1)请将以下两个数转化为十进制:5(331)= ,7(46)= ;(2)若一个正数可以用七进制表示为()7abc ,也可以用五进制表示为()5cba ,请求出这个数并用十进制表示.例2、如果一个自然数能表示为两个自然数的平方差,那么称这个自然数为智慧数,例如: 223-516=,16就是一个智慧数,小明和小王对自然数中的智慧数进行了如下的探索: 小明的方法是一个一个找出来的:220-00=,220-11=,221-23=,220-24=,222-35=,223-47=,221-38=,224-59=,225-611=,。

小王认为小明的方法太麻烦,他想到:设k 是自然数,由于12)1)(1)122+=-+++=-+k k k k k k k ((。

所以,自然数中所有奇数都是智慧数。

问题:(1) 根据上述方法,自然数中第12个智慧数是______(2) 他们发现0,4,8是智慧数,由此猜测4k(3≥k 且k 为正整数)都是智慧数,请你参考小王的办法证明4k (3≥k 且k 为正整数)都是智慧数。

(3) 他们还发现2,6,10都不是智慧数,由此猜测4k+2(k 为自然数)都不是智慧数,请利用所学的知识判断26是否是智慧数,并说明理由。

例3、如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上的数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…,都是“妙数”.(1) 若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为;(2) 证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除;(3) 在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一个新的四位自然数A ,且m 大于自然数A 百位上的数字.是否存在一个一位自然数n ,使得自然数(9)A n +各数位上的数字全都相同?若存在,请求出m 和n 的值;若不存在,请说明理由.例4、连续整数之间有许多神奇的关系,如:32+42=52,这表明三个连续整数中较小两个数的平方和等于最大数的平方,称这样的正整数组为“奇幻数组”,进而推广:设三个连续整数为a ,b ,c (a <b <c )若a 2+b 2=c 2,则称这样的正整数组为“奇幻数组”;若a 2+b 2<c 2,则称这样的正整数组为“魔幻数组”;若a 2+b 2>c 2,则称这样的正整数组为“梦幻数组”。

中考数学阅读题训练精选(1)

中考数学阅读题训练精选(1)

中考数学阅读题训练精选(1)1.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A、B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图1,已知数轴上有三点A、B、C,AB=40,BC=60,点A对应的数是30.【综合运用】(1)点B表示的数是,点C表示的数是.(2)如图2,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的4倍,点Q的速度是点R的速度3倍少5个单位长度/秒.经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度;(3)如图3,O表示原点,动点P、T分别从C、O两点同时出发向左运动,同时动点R 从点A出发向右运动,点P、T、R的速度分别为5个单位长度/秒,1个单位长度/秒、2个单位长度/秒,在运动过程中,如果点M为线段PT的中点,点N为线段OR的中点.请问PT﹣MN的值是否会发生变化?若不变,请求出相应的数值;若变化,请说明理由.2.数轴是初中数学的一个重要工具,利用数轴可以将数与形进行完美地结合.若数轴上点A、点B表示的数分别为a、b,则A、B两点之间的距离AB=|a﹣b|.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)求线段MN的长.(2)若点P到点M和点N的距离相等,求x的值.(3)若点P到M和点N的距离之和为6?请写出所有满足条件的x值.3.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A,B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,.4.数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合,研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB =|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.已知数轴上有A,B两点,分别表示的数为﹣21,9,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动,设运动时间为t秒(t>0).(1)运动开始前,A,B两点的距离为;线段AB的中点M所表示的数.(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(用含t的式子表示)(3)它们按上述方式运动,A,B两点经过多少秒会相距5个单位长度?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间.5.根据教育部印发《规定》,“中小学生每天在校体育活动时间不低于1h.为此,某初中数学名师工作室就“每天在校体育活动时间”的问题随机调查了部分初中学生,现将调查结果绘制成如下不完全的统计图,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h.请根据上述信息解答下列问题:(1)本次调查的人数是人;(2)请根据题中的信息补全频数分布直方图;(3)D组对应扇形的圆心角为°;(4)本次调查数据的中位数落在组内;(5)若我市约有160000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.6.数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A、B两点之间的距离AB=|a﹣b|.线段AB的中点表示的数为.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t秒(t>0).(1)填空:①A、B两点之间的距离AB=,线段AB的中点表示的数为.②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.③当t=时,P、Q两点相遇,相遇点所表示的数为.(2)当t为何值时,PQ=AB.7.【问题背景】已知二次函数y=x2﹣2mx+m2﹣4(m为常数).数形结合和分类讨论是初中数学的基本思想方法,应用广泛.以形助数或以数解形,相互转化,可以化繁为简,抽象问题具体化;而对问题进行合理的分情况探究,则可以使结果不重不漏.(1)我国著名数学家说过,“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休.”(请将正确选项的字母代号填写在答题卡相应位置上)A.华罗庚B.陈景润C.苏步青D.陈省身(2)若该二次函数的对称轴为x=1,关于x的一元二次方程x2﹣2mx+m2﹣4﹣t=0(t 为实数)在﹣3<x<2的范围内无解,则t的取值范围是.(3)若该二次函数自变量x的值满足﹣3≤x≤﹣1时,与其对应的函数值y的最小值为12,则m的值为.【拓展应用】(4)当m=1时,二次函数图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,点D与原点O关于直线BC对称,点E是线段BC上一动点(不与B、C重合),连接OE并延长交射线CD于点F,连接DE,△DEF为等腰三角形时,求线段DF的长.8.课本再现下面是人教版初中数学教科书七年级上册第102页探究1的部分内容.探究1 销售中的盈亏(1)一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是(填“盈利”、“亏损”或“不盈不亏”).拓展应用(2)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了一部分,因市场原因,为回笼资金,商场准备采取促销措施,将剩下的衬衫在原售价的基础上每件降价40%销售,并全部销售完.请你帮商场计算一下,降价之前销售的衬衫数量为多少时,销售完这批衬衫正好达到盈利20%的预期目标?9.数轴是初中数学中一个重要的工具,研究数轴可以发现许多重要的规律.如数轴上的点A、点B表示的数分别为a、b,则A、B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.解决问题:现数轴上有一点A表示的数为﹣10,点B表示的数为18,点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度向左匀速运动,设运动的时间为t秒(t>0).(1)填空:①A、B两点之间的距离AB=,到A、B两点距离相等的点表示的数是.②当t=时,P,Q两点相遇,相遇点所表示的数为.(2)求当t为何值时,PQ=AB.(3)折叠数轴使点A与P重合,折点记为M,还原后再折叠数轴使点B与P重合,折点记为N,点P在运动过程中,M、N两点间的距离是否发生变化?若不变,请求出线段MN的长度.10.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现了许多重要的规律.(1)【特例感知】若数轴上点A,点B表示的数分别为8,﹣2,则A,B两点之间的距离为,线段AB的中点表示的数为;(2)若数轴上点A,点B表示的数分别为a,b.①【分类讨论】若a>b>0,则A,B两点之间的距离为:AB=a﹣b;若a>0>b,则A,B两点之间的距离为:AB=a﹣b;若0>a>b,则A,B两点之间的距离为:AB=;②【类比探究】线段AB的中点表示的数为;(3)【综合运用】若数轴上点A,点B表示的数分别为8,﹣2,点P从点A出发,以每秒2个单位长度的速度向左匀速运动,同时点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,当P,Q相遇时,停止运动.设运动时间为t秒(t>0),点P,Q在运动过程中,①P,Q两点之间的距离为;(用含t的代数式表示)②若点M为P A的中点,点N为QB的中点,线段MN的长度为.(用含t的代数式表示)11.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A、B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图1,已知数轴上有三点A、B、C,AB=60,点A对应的数是40.【综合运用】(1)点B表示的数是.(2)若BC:AC=4:7,求点C到原点的距离.(3)如图2,在(2)的条件下,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒.经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度;(4)如图3,在(2)的条件下,O表示原点,动点P、T分别从C、O两点同时出发向左运动,同时动点R从点A出发向右运动,点P、T、R的速度分别为5个单位长度/秒,m(m<5)个单位长度秒、2个单位长度/秒,在运动过程中,如果点M为线段PT的中点,点N为线段OR的中点.若PT﹣MN的值为定值,请求出m的值.12.数轴是初中数学的一个重要工具,利用数轴可以将数与形进行完美地结合.研究数轴我们发现了很多重要的规律,例如;数轴上点M、点N表示的数分别为m、n,则M、N两点之间的距离MN=|m﹣n|,线段MN的中点表示的数为.如图,数轴上点M表示的数为﹣1,点N表示的数为3.(1)直接写出:线段MN的长度是,线段MN的中点表示的数为;(2)x表示数轴上任意一个有理数,利用数轴探究下列问题,直接回答:|x+1|+|x﹣3|有最小值是,|x+1|﹣|x﹣3|有最大值是;(3)点S在数轴上对应的数为x,且x是方程2x﹣1=x+4的解,动点P在数轴上运动,若存在某个位置,使得PM+PN=PS,则称点P是关于点M、N、S的“麓山幸运点”,请问在数轴上是否存在“麓山幸运点”?若存在,则求出所有“麓山幸运点”对应的数;若不存在,则说明理由.13.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>1).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点C表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为;(2)求当t为何值时,;(3)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.14.数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观,从而可以帮助我们快速解题,初中数学里的一些代数公式,很多都可以通过表示几何图形积的方法进行直观推导和解释.(1)如图1,是一个重要的乘法公式的几何解释,请你写出这个公式.(2)如图2,在Rt△ABC中,∠ACB=90°,BC=a,AC=b,AB=c,以Rt△ABC的三边长向外作正方形的面积分别为S1,S2,S3,试猜想S1,S2,S3之间存在的等量关系为.(3)如图3,如果以Rt△ABC的三边长a,b,c为直径向外作半圆,那么第(2)问的结论是否成立?请说明理由.15.数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要结论和规律.小亮同学借助于两根小木棒m、n研究数学问题.如图,他把两根木棒放在数轴上,木棒的端点A、B、C、D在数轴上对应的数分别为a、b、c、d,已知|a+5|+(b+1)2=0,c=3,d=8.(1)m和n的长度分别为:、;(2)小亮把木棒m、n同时沿数轴正方向移动,m、n的速度分别为4个单位/s和3个单位/s.设平移时间为t(s)①点B表示的数为:(用含t的代数式表示),点D表示的数为:(用含t的代数式表示).②若在平移过程中原点O恰好是木棒m的中点,则t=(s);(3)在平移过程中,当木棒m、n重叠部分的长为2个单位长度时,请直接写出t的值为.16.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点C表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为;(2)求当t为何值时,PQ=AB;(3)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.17.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:,求代数式的值.解:∵,∴即∴∴材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k 的等式,这样就可以通过适当变形解决问题.例:若2x=3y=4z,且xyz≠0,求的值.解:令2x=3y=4z=k(k≠0)则,,,∴根据材料解答问题:(1)已知,求的值.(2)已知,求的值.。

中考数学阅读理解题型含答案

中考数学阅读理解题型含答案

2011年阅读理解试题汇编: (2011年昌平区一模) 22. 现场学习题问题背景:在△ABC 中,AB 、BC 、AC小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.AB C图3图2图1(1)请你将△ABC 的面积直接填写在横线上.________ 思维拓展:(2)我们把上述求△ABC 面积的方法叫做构图法.若△ABC、(0)a >,请利用图2的正方形网格(每个小正方形的边长为a )画出相应的△ABC ,并求出它的面积是: .探索创新:(3)若△ABC、(0,,)m n o m n >>≠ ,请运用构图法在图3指定区域内画出示意图,并求出△ABC 的面积为:答案:(1) 25.(2)面积:23a .(3)面积:3mn .图2AB CA CB 4m2m 2mn n 2n 图3(通州区一模) 22.问题背景(1)如图22(1),△ABC 中,DE ∥BC 分别交AB ,AC 于D ,E 两点,过点E 作EF ∥AB交BC 于点F .请按图示数据填空:四边形DBFE 的面积S = ,△EFC 的面积1S = ,△ADE 的面积2S = . 探究发现(2)在(1)中,若BF a =,FC b =,DE 与BC 间的距离为h .请证明2124S S S =.拓展迁移(3)如图22(2),□DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为2、5、3,试利用..(2.)中的结论....求△ABC 的面积.答案:(1)四边形DBFE 的面积S =632=⨯,△EFC 的面积1S =93621=⨯⨯,△ADE 的面积2S =1.(2)根据题意可知:ah S =,bh S 211=,DE ∥BC ,EF ∥AB∴四边形DEFB 是平行四边形,EFC ADE ∠=∠,C AED ∠=∠∴DE=a ; ADE ∆∽EFC ∆, ∴122S S b a =⎪⎭⎫ ⎝⎛ ∴b h a S b a S 221222== ∴222212244h a bha bh S S =⨯⨯= ∴2124S S S =(3) 过点G 作GH//AB∴由题意可知:四边形DGFE 和四边形DGHB 都是平行四边形 ∴DG=BH=EF ∴BE=HFGHF DBE S S ∆∆=8=∆GHC S64824S 4S G H C A D G D G H B 2=⨯⨯=⋅=∆∆四边形S∴8DGHB=四边形S∴18882S ABC =++=∆B C D G F E A6 22(1)A GFDCBA(2011年房山区一模) 22.(本小题满分5分)小明想把一个三角形拼接成面积与它相等的矩形.他先进行了如下部分操作,如图1所示: ①取△ABC 的边AB 、AC 的中点D 、E ,联结DE ; ②过点A 作AF ⊥DE 于点F ;(1)请你帮小明完成图1的操作,把△ABC 拼接成面积与它相等的矩形.(2)若把一个三角形通过类似的操作拼接成一个与原三角形面积相等的正方形,那么原三角形的一边与这边上的高之间的数量关系是________________.(3)在下面所给的网格中画出符合(2)中条件的三角形,并将其拼接成面积与它相等的 答案:解:(1)(22:1 (3)画对一种情况的一个图给1分或N M ②①②①F E D C B A(2011年海淀一模)22.如图1,已知等边△ABC 的边长为1,D 、E 、F 分别是AB 、BC 、AC 边上的点(均不与点A 、B 、C 重合),记△DEF 的周长为p .(1)若D 、E 、F 分别是AB 、BC 、AC 边上的中点,则p =_______;(2)若D 、E 、F 分别是AB 、BC 、AC 边上任意点,则p 的取值范围是 .小亮和小明对第(2)问中的最小值进行了讨论,小亮先提出了自己的想法:将ABC △以AC 边为轴翻折一次得1AB C △,再将1AB C △以1B C 为轴翻折一次得11A B C △,如图2所示. 则由轴对称的性质可知,112DF FE E D p ++=,根据两点之间线段最短,可得2p DD ≥. 老师听了后说:“你的想法很好,但2DD 的长度会因点D 的位置变化而变化,所以还得不出我们想要的结果.”小明接过老师的话说:“那我们继续再翻折3次就可以了”.请参考他们的想法,写出你的答案.答案 解:(1)32p =; .…………………………….……………………………2分 (2)332p <≤..…………………………….……………………………5分(2011年顺义一模)22. 如图,将正方形沿图中虚线(其x y <)剪成① ② ③ ④ 四块图形,用这四块图形恰好能拼成一个矩形(非正方形).(1)画出拼成的矩形的简图; (2)求xy的值.答案.(1)如图(2)面积可得 2()(2)x y x y y +=+ ----------------------3分 22222x xy y xy y ++=+ 220x xy y +-= 2()10xx yy +-=x y =(舍去)x y = A B DFC E1图AB DFCE 1F 1A 1B 2D 1D 1E 2图yy xy x y x x④③②①④③②①(2011年朝阳区一模)22.阅读并操作:如图①,这是由十个边长为1的小正方形组成的一个图形,对这个图形进行适当分割(如图②),然后拼接成新的图形(如图③).拼接时不重叠、无空隙,并且拼接后新图形的顶点在所给正方形网格图中的格点上(网格图中每个小正方形边长都为1).图①图②图③请你参照上述操作过程,将由图①所得到的符合要求的新图形画在下边的正方形网格图中.(1)新图形为平行四边形;(2)新图形为等腰梯形.答案:解:(1)(2)ABCABCFEDA BC(2011年丰台一模)22.认真阅读下列问题,并加以解决:问题1:如图1,△ABC 是直角三角形,∠C =90º.现将△ABC 补成一个矩形.要求:使△ABC 的两个顶点成为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上.请将符合条件的所有矩形在图1中画出来;图1 图2问题2:如图2,△ABC 是锐角三角形,且满足BC >AC >AB ,按问题1中的要求把它补成矩形.请问符合要求的矩形最多可以画出 个,并猜想它们面积之间的数量关系是 (填写“相等”或“不相等”);问题3:如果△ABC 是钝角三角形,且三边仍然满足BC >AC >AB ,现将它补成矩形.要求:△ABC 有两个顶点成为矩形的两个顶点,第三个顶点落在矩形的一边上,那么这几个矩形面积之间的数量关系是 (填写“相等”或“不相等”).答案.解:(1)………………… 正确画出一个图形给1分,共2’(2)符合要求的矩形最多可以画出 3 个,它们面积之间的数量关系是 相等 ;………4’ (3) 不相等 . …………………………………………………………………………………5’(燕山区一模)22.将正方形ABCD (如图1)作如下划分:第1次划分:分别联结正方形ABCD 对边的中点(如图2),得线段HF 和EG ,它们交于点M ,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH 按上述方法再作划分,得图3,则图3中共有_______个正方形; 若每次都把左上角的正方形依次划分下去,则第100次划分后,图中共有_______个正方形;继续划分下去,能否将正方形ABCD 划分成有2011个正方形的图形?需说明理由.答案:第2次划分,共有9个正方形; 第100次划分后,共有401个正方形;依题意,第n 次划分后,图中共有4n+1个正方形,而方程4n+1=2011没有整数解,A D A H D A H DE M G E M GB FC B F C 图1 图2 图3所以,不能得到2011个正方形. (2011年西城一模)22.我们约定,若一个三角形(记为1A ∆)是由另一个三角形(记为A ∆)通过一次平移,或绕其任一边中点旋转︒180得到的,称1A ∆是由A ∆复制的。

中考数学阅读理解材料

中考数学阅读理解材料

1.阅读下面材料: 小伟遇到这样一个问题:如图1,在正方形ABCD 中,点E 、F 分别为DC 、BC 边上的点,∠EAF =45°,连结EF ,求证:DE +BF =EF .小伟是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是将△ADE 到△ABG (如图2),此时GF 即是DE +BF .请回答:在图2中,∠GAF 的度数是 .参考小伟得到的结论和思考问题的方法,解决下列问题:(1)如图3,在直角梯形ABCD 中,AD ∥BC (AD >BC ),∠D =90°,AD =CD =10,E 是CD 上一点,若∠BAE =45°,DE =4,则BE = .(2)如图4,在平面直角坐标系xOy 中,点B 是x 轴上一动点,且点A (3-,2),连结AB 和AO ,并以3. 阅读下面材料:小明遇到这样一个问题:如图1,△ABO 和△CDO 均为等腰直角三角形,∠AOB=∠COD=90°.若△BOC 的面积为1,试求以AD 、BC 、OC+OD 的长度为三边长的三角形的面积.小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO 到E ,使得OE=CO ,连接BE ,可证△OBE ≌△OAD ,从而得到的△BCE 即是以AD 、BC 、OC+OD 的长度为三边长的三角形(如图2).请你回答:图2中△BCE 的面积等于请你尝试用平移、旋转、翻折的方法,解决下列问题:如图3,已知△ABC ,分别以AB 、AC 、BC 为边向外作正方形ABDE 、AGFC 、BCHI ,连接EG 、FH 、ID .(1)在图3中利用图形变换画出并指明以EG 、FH 、ID 的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC 的面积为1,则以EG 、FH 、ID 的长度为三边长的三角形的面积等于4.课题学习问题背景??甲、乙、丙三名同学探索课本上一道题:如图1,E 是边长为a 的正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形任务要求:(1)请你在图1中画出旋转后的图形甲、乙、丙三名同学又继续探索:在正方形ABCD 中,∠EAF=45°,点F 为BC 上一点,点E 为DC 上一点,∠EAF 的两边AE 、AF 分别与直线BD 交于点M 、N .连接EFF E D AB C B E D A G F E D A B C C 图1图2图3C D AO B xy图4甲发现:线段BF ,EF ,DE 之间存在着关系式EF=BF+DE ;乙发现:△CEF 的周长是一个恒定不变的值;丙发现:线段BN ,MN ,DM 之间存在着关系式BN 2+DM 2=MN 2(2)现请也参与三位同学的研究工作中来,你认为三名同学中哪个的发现是正确的,并说明你的理由.5. 小曼和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:“已知正方形ABCD ,点E 、F 、G 、H 分别在边AB 、BC 、CD 、DA 上,若EG ⊥FH ,则EG=FH .”为了解决这个问题,经过思考,大家给出了以下两个方案:方案一:过点A 作AM ∥HF 交BC 于点M ,过点B 作BN ∥EG 交CD 于点N ;方案二:过点A 作AM ∥HF 交BC 于点M ,过点A 作AN ∥EG 交CD 于点N .…(1)对小曼遇到的问题,请在甲、乙两个方案中任选一个加以证明(如图(1)).(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图(2)),是探究EG 、FH 之间有怎样的数量关系,并证明你的结论.(3)如果把条件中的“EG ⊥FH ”改为“EG 与FH 的夹角为45°”,并假设正方形ABCD 的边长为1,FH 的长为25(如图(3)),试求EG 的长度.6. 如图1,已知正方形ABCD ,将一个45度角∝的顶点放在D 点并绕D 点旋转,角的两边分别交AB 边和BC 边于点E 和F ,连接EF .求证:EF=AE+CF(1)小明是这样思考的:延长BC 到G ,使得CG=AE ,连接DG ,先证△DAE ≌△DCG ,再证△DEF ≌△DGF ,请你借助图2,按照小明的思路,写出完整的证明思路.(2)刘老师看到这条题目后,问了小明两个小问题:①如果正方形的边长和△BEF 的面积都等于6,求EF 的长②将角∝绕D 点继续旋转,使得角∝的两边分别和AB 边延长线、BC 边的延长线交于E 和F ,如图3所示,猜想EF 、AE 、CF 三线段之间的数量关系并给予证明.请你帮忙解决.7. 请阅读下列材料:问题:如图,在正方形ABCD 和平行四边形BEFG 中,点A ,B ,E 在同一条直线上,P 是线段DF 的中点,连接PG ,PC .探究:当PG 与PC 的夹角为多少度时,平行四边形BEFG 是正方形?小聪同学的思路是:首先可以说明四边形BEFG 是矩形;然后延长GP 交DC 于点H ,构造全等三角形,经过推理可以探索出问题的答案.请你参考小聪同学的思路,探究并解决这个问题.(1)求证:四边形BEFG 是矩形;(2)PG 与PC 的夹角为 度时,四边形BEFG 是正方形.理由:8.阅读下面材料:小阳遇到这样一个问题:如图(1),O 为等边△ABC 内部一点,且OA :OB :OC=1:2:3,求∠AOB 的度数.小阳是这样思考的:图(1)中有一个等边三角形,若将图形中一部分绕着等边三角形的某个顶点旋转60°,会得到新的等边三角形,且能达到转移线段的目的.他的作法是:如图(2),把△ACO 绕点A 逆时针旋转60°,使点C 与点B 重合,得到△ABO ′,连接OO ′.则△AOO ′是等边三角形,故OO ′=OA ,至此,通过旋转将线段OA 、OB 、OC 转移到同一个三角形OO ′B 中.(1)请你回答:∠AOB= °.(2)参考小阳思考问题的方法,解决下列问题:已知:如图(3),四边形ABCD 中,AB=AD ,∠DAB=60°,∠DCB=30°,AC=5,CD=4.求四边形ABCD 的面积.9. 问题背景(1)如图1,△ABC 中,DE ∥BC 分别交AB ,AC 于D ,E 两点,过点E 作EF ∥AB 交BC 于点F .请按图示数据填空:四边形DBFE 的面积S = ,△EFC 的面积1S = ,△ADE 的面积2S = . 探究发现(2)在(1)中,若BF a =,FC b =,DE 与BC 间的距离为h .请证明2124S S S =. 拓展迁移(3)如图2,□DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为2、5、3,试利用..(2.)中的结论....求△ABC10. 正方形ABCD 中,点O 是对角线DB 的中点,点P 是DB BC 于E ,PF ⊥DC 于F. (1)当点P 与点O 重合时(如图①),猜测AP 与EF (2)当点P 在线段DB 上 (不与点D 、O 、B 重合)时(如图②)过程;若不成立,请说明理由;(3)当点P 在DB 的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论. B C D G F E 图2 A 图1。

中考数学 阅读材料

中考数学 阅读材料

1.材料一:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,且千位数字小于百位数字,则称这个四位数为“美好数”,例如3443为“美好数”;材料二:一个正整数x 能写成22b a x -=(a ,b 均为正整数,且b a ≠),则称x 为“美满数”,a ,b 为x 的一个平方差分解,在x 的所有平方差分解中,若22b a +最大,则称a ,b 为x 的最佳平方差分解,此时ba x F =)(。

例如:222521-=,21为“美满数”,5和2为21的一个平方差分解,2222221748111348-=-=-=,因为22222217481113+>+>+,所以13和11为48的最佳平方差分解,所以1113)48(=F . 根据材料回答:(1)求证:任一个美好数的各数位上的数字之和为6的倍数,则这个“美好数”一定能被33整除;(2)若一个数m 既是“美好数”又是“美满数”,并且另一个“美好数”的前两位数字组成的两位数与后两位数组成的两位数恰好是m 的一个平方差分解,求出所有满足条件的数m 中)(m F 的最大值。

2.材料一:一个正整数x 能写成b a b a x ,(22-=均为正整数,且)b a ≠,则称x 为“雪松数”,b a ,为x 的一个平方差分解,在x 的所有平方差分解中,若22b a +最大,则称b a ,为x 的最佳平方差分解,此时22)(b a x F +=。

例如:225724-=,24为雪松数,7和5为24的一个平方差分解,227932-=,222632-=,因为22222679+>+,所以9和7为32的最佳平方差分解,2279)32(+=F 。

材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”.例如4334,5665均为“南麓数”。

根据材料回答:(1)请直接写出两个雪松数,并分别写出它们的一对平方差分解;(2)试证明10不是雪松数;(3)若一个数t 既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t 的一个平方差分解,请求出所有满足条件的数t 中)(t F 的最大值。

(完整版)中考数学阅读理解题试题练习题

(完整版)中考数学阅读理解题试题练习题

中考数学阅读理解题试题练习题1. 为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为a -2b 、2a +b .例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,1D .1,1 2. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =__________.3. 阅读下列材料,并解决后面的问题.材料:一般地,n 个相同的因数a 相乘:nn a a a a 记为个⋅.如23=8,此时,3叫做以2为底8的对数,记为()38log 8log 22=即.一般地,若()0,10>≠>=b a a b a n且,则n 叫做以a 为底b 的对数,记为()813.log log 4==如即n b b a a ,则4叫做以3为底81的对数,记为)481log (81log 33=即.问题:(1)计算以下各对数的值: ===64log 16log 4log 222 .(2)观察(1)中三数4、16、64之间满足怎样的关系式?64log 16log 4log 222、、之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?(2分)()0,0,10log log >>≠>=+N M a a N M a a 且(4)根据幂的运算法则:m n mna a a +=⋅以及对数的含义证明上述结论.4. 先阅读下列材料,然后解答问题: 从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯例:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.5. 式子“1+2+3+4+5+……+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+……+100”表示为∑=1001n n,这里“∑”是求和符号.例如:“1+3+5+7+9+……+99”(即从1开始的100以内的连续奇数的和)可表示为∑=-501)12(n n ;又如“13+23+33+43+53+63+73+83+93+103”可表示为∑=1013n n.同学们,通过对以上材料的阅读,请解答下列问题:①2+4+6+8+10+……+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ; ②计算:∑=-512)1(n n= (填写最后的计算结果).6. 定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位。

中考数学阅读理解题

中考数学阅读理解题

×3×5×7)=___2_0___;④f(25×3×5×7)=_1_4____.
21
15
解:(2)设交换 t 的个位上数与十位上的数得到的新数为 t′,则 t′=10b +a,根据题意得 t′-t=(10b+a)-(10a+b)=9(b-a)=54,∴b=a+ 6.∵1≤a≤b≤9,a,b 为正整数,∴满足条件的 t 为 17,28,39.∵f(17)=117 , f(28)=47 ,f(39)=133 ,∵47 >133 >117 ,∴f(t)的最大值为47 .
专题六 阅读理解题(含初高中衔接)
类型一 代数类 1.定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫作虚数单 位,把形如a+bi(a,b为实数)的数叫作复数,其中a叫这个复数的实部,b 叫作这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算 类似.
例如:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i; (1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i. 根据以上信息,完成下列问题: (1)填空:i3=__-__i__,i4=__1__; (2)计算:(1+i)×(3-4i). 解:(1)【解法提示】i3=i2·i=-i,i4=(i2)2=(-1)2=1; (2)(1+i)×(3-4i)=3-4i+3i-4i2=3-i+4=7-i.
7.对数的定义:一般地,若ax=N(a>0且a≠1),那么x叫作以a为底N的 对数,记作x=logaN.比如指数式24=16可以转化为对数式4=log216,对数 式2=log525可以转化为指数式52=25.
我们根据对数的定义可得到对数的一个性质:
loga(M·N)=logaM+logaN(a>0,a≠1,M>0,N>0). 设logaM=m,logaN=n,则M=am,N=an, ∴M·N=am·an=am+n, 由对数的定义得m+n=loga(M·N), 又∵m+n=logaM+logaN ∴loga(M·N)=logaM+logaN.

中考数学阅读理解题目集锦

中考数学阅读理解题目集锦

阅读理解题 1 / 8阅读理解题1、 为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为a -2b 、2a +b .例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,1D .1,1 2、 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a b c d ,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x xx +--+6=,则x =__________.3、 阅读下列材料,并解决后面的问题.材料:一般地,n 个相同的因数a 相乘:nn a a a a 记为个⋅.如23=8,此时,3叫做以2为底8的对数,记为()38log 8log 22=即.一般地,若()0,10>≠>=b a a b a n且,则n 叫做以a 为底b 的对数,记为()813.log log 4==如即n b b a a ,则4叫做以3为底81的对数,记为)481log (81log 33=即.问题:(1)计算以下各对数的值: ===64log 16log 4log 222 .(2)观察(1)中三数4、16、64之间满足怎样的关系式?64log 16log 4log 222、、之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?(2分) ()0,0,10log log >>≠>=+N M a a N M a a且(4)根据幂的运算法则:m n mna a a +=⋅以及对数的含义证明上述结论.4、先阅读下列材料,然后解答问题:材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为23326A =⨯=。

初三中考初中数学阅读理解专题训练含答案

初三中考初中数学阅读理解专题训练含答案

初三中考初中数学阅读理解专题训练含答

阅读理解是中考数学考试中常见的题型之一。

在这种题型中,
学生需要通过阅读一篇数学相关的文章,并回答相关的问题。

以下
是一些初三中考初中数学阅读理解专题训练题目及其答案,供同学
们练。

题目一:
某公司为两位员工A和B购买了一套办公设备,设备总价为元。

公司决定按照员工A的工作量和贡献度,将设备总价分成两份。

员工A参与公司工作的时间为8个月,员工B参与公司工作的时间为4个月。

设员工A和B分别支付的费用为X元和Y元,则X+Y
的值为多少?
A. 4000元
B. 6000元
C. 8000元
D. 元
答案:C. 8000元
题目二:
某学校举行篮球比赛,共有12名学生参加。

其中有7名男生
和5名女生。

学校规定,要选出一支由至少3名男生和至少2名女
生组成的比赛队。

则符合要求的不同组队方式有多少种?
A. 50种
B. 60种
C. 70种
D. 80种
答案:C. 70种
题目三:
某商店打折出售一种商品,原价120元,现在打8折出售。

同时,商店还提供会员折扣,会员购买可再打7折。

某消费者是该商
店的会员,他购买了两件该商品。

则他需要支付的总费用是多少元?
A. 82.4元
B. 86.4元
C. 89.6元
D. 93.6元
答案:B. 86.4元
通过完成以上的阅读理解训练题目,同学们可以提高自己的阅读理解能力,并更好地应对中考数学考试。

中考数学专题(阅读理解)

中考数学专题(阅读理解)

中考专题(阅读理解题) 姓名 学号1.阅读以下材料:对于三个数a b c ,,,用{}M a b c ,,表示这三个数的平均数,用{}min a b c ,,表示这三个数中最小的数.例如:{}123412333M -++-==,,;{}min 1231-=-,,;{}(1)min 121(1).a a a a -⎧-=⎨->-⎩≤;,,解决下列问题:(1)填空:{}min sin30cos 45tan30=,, ;如果{}min 222422x x +-=,,,则x 的取值范围为x ________≤≤_________. (2)①如果{}{}212min 212M x x x x +=+,,,,,求x ;②根据①,你发现了结论“如果{}{}min M a b c a b c =,,,,,那么 (填a b c ,,的大小关系)”.证明你发现的结论;③运用②的结论,填空:若{}{}2222min 2222M x y x y x y x y x y x y +++-=+++-,,,,, 则x y += .(3)在同一直角坐标系中作出函数1y x =+,2(1)y x =-,2y x =-的图象(不需列表描点).通过观察图象,填空:{}2min 1(1)2x x x +--,,的最大值为.2.(05陕西省) 阅读:我们知道,在数轴上,1x =表示一个点.而在平面直角坐标系中,1x =表示一条直线;我们还知道,以二元一次方方程210x y -+=的所有解为坐标的点组成的图形就是一次函数21y x =+的图象,它也是一条直线,如图2-4-10可以得出:直线1x =与直线21y x =+的交点P 的坐标(1,3)就是方程组13x y =⎧⎨=⎩x在直角坐标系中,1x≤表示一个平面区域,即直线1x=以及它左侧的部分,如图2-4—11;21y x≤+也表示一个平面区域,即直线21y x=+以及它下方的部分,如图2—4—12.回答下列问题:在直角坐标系(图2-4—13)中,(1)用作图象的方法求出方程组222xy x=-⎧⎨=-+⎩的解.(2)用阴影表示222xy xy≥-⎧⎪≤-+⎨⎪≥⎩,所围成的区域.图2-4-12图2-4-11图2-4-10yxOy=2x+1yxO13y=2x+11P(1,3)O x y3。

中考数学 阅读理解题及答案

中考数学 阅读理解题及答案

阅读理解题1.(2019·重庆中考A卷22题)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.解(1)2019不是“纯数”,2020是“纯数”.理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”.(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共3个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数字是0,1,2,共9个,当这个数是三位自然数时,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”有13个.2.阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”,如:(5+3)(5-3)=-4,(3+2)(3-2)=1,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:如13=1×33×3=33,2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫分母有理化.解决问题:(1)比较大小:16-2________15-3(用“>”“<”或“=”填空); (2)计算:23+3+253+35+275+57+…+29997+9799; (3)设实数x ,y 满足(x +x 2+2019)(y +y 2+2019)=2019,求x +y +2019的值.解 (1)16-2=6+2(6-2)(6+2)=6+22, 15-3=5+3(5-3)(5+3)=5+32, ∵6+2>5+3,∴16-2>15-3. (2)原式=2⎝ ⎛⎭⎪⎫3-36+53-3530+75-5770+…+9997-979999×97×2=2⎝ ⎛⎭⎪⎫12-36+36-510+510-714+…+97194-99198=2⎝ ⎛⎭⎪⎫12-99198=1-9999=1-1133. (3)∵(x + x 2+2019)(y + y 2+2019)=2019,∴x + x 2+2019=2019y + y 2+2019=2019(y - y 2+2019)-2019= y 2+2019-y ,①同理可得y + y 2+2019=2019x + x 2+2019 =2019(x - x 2+2019)-2019= x 2+2019-x ,②①+②得x +y =0,∴x +y +2019=2019.3.阅读材料:在处理分数和分式问题时,有时由于分子比分母大,或者分子的次数高于分母的次数,在实际运算中往往难度比较大,这时我们可以考虑逆用分数(分式)的加减法,将假分数(分式)拆分成一个整数(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们称之为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明.解:x2-x+3x+1=x(x+1)-2(x+1)+5x+1=x(x+1)x+1-2(x+1)x+1+5x+1=x-2+5x+1.这样,分式x2-x+3x+1就拆分成一个整式x-2与一个分式5x+1的和的形式.解决问题:(1)将分式x2+6x-3x-1拆分成一个整式与一个分子为整数的分式的和的形式,则结果为________;(2)已知整数x使分式2x2+5x-20x-3的值为整数,则满足条件的整数x=________;(3)若关于x的方程2x2+(1-2a)x+(4-3a)=0有整数解,求正整数a的值.解(1)x+7+4x-1[解法提示]x2+6x-3x-1=(x-1)2+8(x-1)+4x-1=x-1+8+4x-1=x+7+4x-1.故结果为x+7+4x-1.(2)2,4,16,-10 [解法提示]2x2+5x-20x-3=2x2-6x+11x-33+13x-3=2x(x-3)+11(x-3)+13x-3=2x+11+13x-3.要使原式的值为整数,则13x-3为整数,故x=2,4,16,-10.(3)∵2x2+(1-2a)x+(4-3a)=0,∴2x 2+x -2ax +4-3a =0,即(2x +3)a =2x 2+x +4,∴a =2x 2+x +42x +3=7+(2x +3)(x -1)2x +3=x -1+72x +3. 又∵a ,x 均为整数,∴2x +3是7的约数,∴2x +3=±1,±7,∴⎩⎨⎧ x =-1,a =5或⎩⎨⎧ x =-2,a =-10或⎩⎨⎧ x =2,a =2或⎩⎨⎧ x =-5,a =-7.又∵a 为正整数,∴a =5或2.4.阅读下列材料:已知实数m ,n 满足(2m 2+n 2+1)(2m 2+n 2-1)=80,试求2m 2+n 2的值. 解:设2m 2+n 2=t ,则原方程变为(t +1)(t -1)=80,整理得t 2-1=80,t 2=81,∴t =±9,因为2m 2+n 2>0,所以2m 2+n 2=9.上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.解决问题:(1)已知实数x ,y 满足(2x 2+2y 2+3)(2x 2+2y 2-3)=27,求x 2+y 2的值;(2)若四个连续正整数的积为11880,求这四个连续正整数.解 (1)令2x 2+2y 2=t ,则原方程变为(t +3)(t -3)=27,整理得,t 2-9=27,t 2=36.t =±6.∵2x 2+2y 2≥0,∴2x 2+2y 2=6,∴x 2+y 2=3.(2)设四个连续正整数为k -1,k ,k +1,k +2(k ≥2且k 为整数).由题得(k -1)k (k +1)(k +2)=11880,∴(k -1)(k +2)k (k +1)=11880,∴(k 2+k -2)(k 2+k )=11880.令t =k 2+k ,则(t -2)·t =11880,t 2-2t -11880=0,∴t 1=110,t 2=-108(舍去),则k2+k=110,得k1=10,k2=-11(舍去).综上,四个连续正整数为9,10,11,12.5.阅读材料:材料一:对实数a,b,定义T(a,b)的含义为:当a<b时,T(a,b)=a+b;当a≥b时,T(a,b)=a-b.例如:T(1,3)=1+3=4;T(2,-1)=2-(-1)=3.材料二:关于数学家高斯的故事:200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+…+100=?据说,当其他同学忙于把100个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+…+(50+51)=101×50=5050.也可以这样理解:令S=1+2+3+…+100①,则S=100+99+…+3+2+1②,①+②得2S=(1+100)+(2+99)+(3+98)+…+(100+1)100个=100×(1+100)=10100,即S=100×(1+100)2=5050.解决问题:(1)已知x+y=10,且x>y,求T(5,x)-T(5,y)的值;(2)对于正数m,有T(m2+1,-1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)的值.解(1)∵x+y=10,且x>y,∴x>5,y<5.∴T(5,x)-T(5,y)=(5+x)-(5-y)=x+y=10.(2)∵m2+1>-1,∴m2+1-(-1)=3,∵m>0,∴m=1,∴T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)=T(1,100)+T(2,100)+T(3,100)+…+T(199,100)=(1+100)+(2+100)+…+(99+100)+(100-100)+(101-100)+…+(199-100)=(1+2+3+…+199)-100=199×(1+199)2-100=19900-100=19800.6.(热点信息)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+x2-4x-4因式分解的结果为(x +1)(x +2)(x -2),当x =15时,x +1=16,x +2=17,x -2=13,此时可以得到数字密码161713.(1)根据上述方法,当x =20,y =17时,对于多项式x 2y +x 2+xy +x 分解因式后可以形成哪些数字密码?(写出三个)(2)若多项式x 3+(m -3n )x 2-nx -21因式分解后,利用本题的方法,当x =27时可以得到其中一个密码为242834,求m ,n 的值.解 (1)x 2y +x 2+xy +x =x (xy +x +y +1)=x (x +1)(y +1).∴当x =20,y =17时,x =20,x +1=21,y +1=18.∴形成的数字密码可以是202118,211820,182021(其他结果合理即可).(2)由题意得,x 3+(m -3n )x 2-nx -21=(x -3)(x +1)(x +7),∵(x -3)(x +1)(x +7)=x 3+5x 2-17x -21,∴x 3+(m -3n )x 2-nx -21=x 3+5x 2-17x -21.∴⎩⎨⎧ m -3n =5,n =17,解得⎩⎨⎧ m =56,n =17.∴m ,n 的值分别是56,17.7.已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如果一个数既是“和数”,又是“谐数”,则称这个数为“和谐数”.例如321,∵3=2+1,∴321是“和数”,∵3=22-12,∴321是“谐数”,∴321是“和谐数”.(1)证明:任意“谐数”的各个数位上的数字之和一定是偶数;(2)已知a =10m +4n +716(0≤m ≤7,1≤n ≤3,且m ,n 均为正整数)是一个“和数”,请求出所有a 的值.解 (1)证明:设“谐数”的百位数字为x ,十位数字为y ,个位数字为z (1≤x ≤9,0≤y ≤9,0≤z ≤9且y >z ,x ,y ,z 均为整数),由题意知x =y 2-z 2=(y +z )(y -z ),∴x +y +z =(y +z )(y -z )+y +z =(y +z )(y -z +1).∵y +z ,y -z 的奇偶性相同,∴y +z ,y -z +1必然一奇一偶.∴(y +z )(y -z +1)必是偶数.∴任意“谐数”的各个数位上的数字之和一定是偶数.(2)∵0≤m ≤7,∴2≤m +2≤9.∵1≤n ≤3,∴4≤4n ≤12.∴10≤4n +6≤18,∴a =10m +4n +716=7×100+(m +1)×10+(4n +6)=7×100+(m +2)×10+(4n +6-10)=7×100+(m +2)×10+(4n -4),∵a 为“和数”,∴7=m +2+4n -4,即m +4n =9.∵0≤m ≤7,1≤n ≤3,且m ,n 均为正整数,∴⎩⎨⎧ m =1,n =2或⎩⎨⎧ m =5,n =1,∴a 的值为734或770.8.如果一个正整数m 能写成m =a 2-b 2(a ,b 均为正整数,且a ≠b ),我们称这个数为“平方差数”,则a ,b 为m 的一个平方差分解,规定:F (m )=b a. 例如:8=8×1=4×2,由8=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =8,a -b =1或⎩⎨⎧ a +b =4,a -b =2.因为a ,b 为正整数,解得⎩⎨⎧ a =3,b =1,所以F (8)=13. 又例如:48=132-112=82-42=72-12,所以F (48)=1113或12或17. (1)判断:6________平方差数(填“是”或“不是”),并求F (45)的值;(2)若s 是一个三位数,t 是一个两位数,s =100x +5,t =10y +x (1≤x ≤4,1≤y ≤9,x ,y 是整数),且满足s +t 是11的倍数,求F (t )的最大值.解 (1)不是[解法提示] 根据题意,6=2×3=1×6,由6=a 2-b 2=(a +b )(a -b )可得,⎩⎨⎧ a +b =3,a -b =2或⎩⎨⎧ a +b =6,a -b =1,因为a ,b 为正整数,则可判断出6不是平方差数.根据题意,45=3×15=5×9=1×45,由45=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =15,a -b =3或⎩⎨⎧ a +b =9,a -b =5或⎩⎨⎧ a +b =45,a -b =1.∵a 和b 都为正整数,解得⎩⎨⎧ a =9,b =6或⎩⎨⎧ a =7,b =2或⎩⎨⎧ a =23,b =22,∴F (45)=23或27或2223.(2)根据题意,s =100x +5,t =10y +x ,∴s +t =100x +10y +x +5.∵1≤x ≤4,1≤y ≤9,x ,y 是整数,∴100≤100x ≤400,10≤10y ≤90,6≤x +5≤9,∴116≤s +t ≤499.∵s +t 为11的倍数,∴s +t 最小为11的11倍,最大为11的45倍.∵100x 末位为0,10y 末位为0,x +5末位为6到9之间的任意一个整数, ∴s +t 的末位是6到9之间的任意一个整数.①当x =1时,x +5=6,∴11×16=176,此时x =1,y =7,∴t =71.根据题意,71=71×1,由71=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =71,a -b =1,解得⎩⎨⎧ a =36,b =35,∴F (t )=3536. ②当x =2时,x +5=7,∴11×27=297,此时x =2,y =9.∴t =92.根据题意,92=92×1=46×2=23×4,由92=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =92,a -b =1或⎩⎨⎧ a +b =46,a -b =2或⎩⎨⎧ a +b =23,a -b =4. 解得⎩⎨⎧ a =24,b =22.∴F (t )=1112. ③当x =3时,x +5=8,∴11×38=418,此时x =3,y 没有符合题意的值,∴11×28=308,此时x =3,y 没有符合题意的值.④当x =4时,x +5=9,∴11×39=429,此时x =4,y =2.∴t =24.根据题意,24=24×1=12×2=8×3=6×4,由24=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =24,a -b =1或⎩⎨⎧ a +b =12,a -b =2或⎩⎨⎧ a +b =8,a -b =3或⎩⎨⎧ a +b =6,a -b =4.解得⎩⎨⎧ a =7,b =5或⎩⎨⎧ a =5,b =1,∴F (t )=57或15. 11×49=539不符合题意.综上,F (t )=3536或1112或57或15. ∴F (t )的最大值为3536. 9.(1)问题发现:如图1,在△ABC 中,AB =AC ,∠BAC =60°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转60°得到线段AE ,连接EC ,则①∠ACE 的度数是________;②线段AC ,CD ,CE 之间的数量关系是________;(2)拓展探究:如图2,在△ABC 中,AB =AC ,∠BAC =90°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接EC ,请写出∠ACE 的度数及线段AC ,CD ,CE 之间的数量关系,并说明理由;(3)解决问题:如图3,在四边形ADBC 中,∠ABC =∠ACB =45°,∠BDC =90°.若BD =3,CD =5,请直接写出AD 的长.解 (1)①60° ②AC =CD +CE[解法提示] 由题意,得△ABC 和△ADE 均为等边三角形,∴AB =AC =BC ,AD =AE ,∠BAC =∠DAE =∠B =60°.∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE .∴△BAD ≌△CAE (SAS).∴∠ACE =∠B =60°,BD =CE .∴AC =BC =CD +BD =CD +CE .(2)∠ACE =45°,2AC =CD +CE .理由:由题意,得∠BAC =∠DAE =90°,AB =AC ,AD =AE .∴∠BAC -∠DAC =∠DAE -∠DAC .即∠BAD =∠CAE .∴△BAD≌△CAE.∴BD=CE,∠ACE=∠B=45°.∴BC=CD+BD=CD+CE.∵BC=2AC,∴2AC=CD+CE.(3)AD的长为 2.[解法提示] 过点A作AE⊥AD交DC于点E,则∠DAB=∠EAC.∵∠BDC=90°,∴∠DBA+∠ABC+∠DCB=90°.∴∠DBA+45°+(45°-∠ECA)=90°.∴∠DBA=∠ECA.又AB=AC.∴△BAD≌△CAE(ASA).∴BD=CE,AD=AE,∴CD-BD=CD-CE=DE,而DE=2AD,∴CD-BD=2AD,∴AD= 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学材料阅读题1.定义一种新运算n•x n﹣1dx=a n﹣b n,例如2xdx=k2﹣n2,若﹣x﹣2dx=﹣,则m为()A.﹣1+B.﹣1﹣C.±1D.﹣1±【解析】:由题意可得:(m2﹣1)﹣1﹣(m﹣1)﹣1=﹣,故﹣=﹣,整理得:m2+2m﹣1=0,解得:m=﹣1±,故选:D.2.若a≠2,则我们把称为a的“哈利数”,如3的“哈利数”是,﹣2的“哈利数”是,已知a1=3,a2是a1的“哈利数”,a3是a2的“哈利数”,a4是a3的“哈利数”,……,依此类推,则a2020=()A.3B.﹣2C.D.【解析】:∵a1=3,∴a2=,a3==,a4==,a5==3,……发现规律:这些数每四个数循环一次,∵2020÷4=505,∴a2020=a4=,故选:D.3.如图,图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个【解析】:①是相反数是,故该同学判断正确;②|﹣(﹣2)|=2,故该同学判断错误;③1,2,2,3的众数是2,故该同学判断错误;④(a2)3=a6,故该同学判断正确;⑤(﹣a)3÷a=﹣a2,故该同学判断错误;所以他做对的题数是①④共2个.故选:A.4.(2019秋•东阳市期末)已知max表示取三个数中最大的那个数,例如:当x=9时,max=81.当max时,则x的值为()A.B.C.D.【解析】:当max时,①=,解得:x=,此时>x>x2,符合题意;②x2=,解得:x=;此时>x>x2,不合题意;③x=,>x>x2,不合题意;故只有x=时,max.故选:C.5.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的两倍,则称这样的方程为“2倍根方程”,以下说法不正确的是()A.方程x2﹣3x+2=0是2倍根方程B.若关于x的方程(x﹣2)(mx+n)=0是2倍根方程,则m+n=0C.若m+n=0且m≠0,则关于x的方程(x﹣2)(mx+n)=0是2倍根方程D.若2m+n=0且m≠0,则关于x的方程x2+(m﹣n)x﹣mn=0 是2倍根方程【解析】:A、解方程x2﹣3x+2=0得x1=1,x2=2,所以A选项的说法正确,不符合题意;B、解方程得x1=2,x2=﹣,当﹣=2×2,则4m+n=0;当﹣=×2,则m+n=0,所以B选项的说法错误,符合题意;C、解方程得x1=2,x2=﹣,而m+n=0,则x2=1,所以C选项的说法正确,不符合题意;D、解方程得x1=﹣m,x2=n,而2m+n=0,即n=﹣2m,所以x2=2x1,所以D选项的说法正确,不符合题意.故选:B.6.老师设计了接力游戏,用合作的方式完成“求抛物线y=2x2+4x﹣4的顶点坐标”,规则如下:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成解答.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有丁B.乙和丁C.乙和丙D.甲和丁【解析】:y=2x2+4x﹣4=2(x2+2x﹣2),故甲错误;y=x2﹣2x﹣2=x2﹣2x+1﹣3,故乙正确;y=x2﹣2x+1﹣3=(x﹣1)2﹣3,故丙正确;y=(x﹣1)2﹣3的顶点坐标为为(1,﹣3),故丁错误;故选:D.7.中国魏晋时期的数学家刘徽首创“割圆术”,奠定了中国圆周率计算在世界上的领先地位.刘微提出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,由此求得圆周率π的近似值.如图,设半径为r的圆内接正n边形的周长为C,圆的直径为d,当n=6时,π≈==3,则当n=12时,π≈= 3.11.(结果精确到0.01,参考数据:sin15°=cos75°≈0.259,sin75°═cos15°≈0.966)【解析】:如图,圆的内接正十二边形被半径分成12个如图所示的等腰三角形,其顶角为30°,即∠AOB=30°,作OH⊥AB于点H,则∠AOH=15°,∵AO=BO=r,∵Rt△AOH中,sin∠AOH=,即sin15°=,∴AH=r×sin15°,AB=2AH=2r×sin15°,∴l=12×2r×sin15°=24r×sin15°,又∵d=2r,∴π≈.故答案为:3.11.8.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB =BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有6个.【解析】:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA∴发出警报的可能最多有6个.故答案为6.9.如图,曲线AB是抛物线y=﹣4x2+8x+1的一部分(其中A是抛物线与y轴的交点,B是顶点),曲线BC是双曲线y=(k≠0)的一部分.曲线AB与BC组成图形W.由点C 开始不断重复图形W形成一组“波浪线”.若点P(2020,m),Q(x,n)在该“波浪线”上,则m的值为1,n的最大值为5.【解析】:∵y=﹣4x2+8x+1=﹣4(x﹣1)2+5,∴当x=0时,y=1,∴点A的坐标为(0,1),点B的坐标为(1,5),∵点B(1,5)在y=(k≠0)的图象上,∴k=5,∵点C在y=的图象上,点C的横坐标为5,∴点C的纵坐标是1,∴点C的坐标为(5,1),∵2020÷5=404,∴P(2020,m)在抛物线y=﹣4x2+8x+1的图象上,m=﹣4×0+8×0+1=1,∵点Q(x,n)在该“波浪线”上,∴n的最大值是5,故答案为:1,5.10.若二次函数的图象与x轴的两个交点和顶点构成等边三角形,则称这样的二次函数的图象为标准抛物线.如图,自左至右的一组二次函数的图象T1,T2,T3……是标准抛物线,且顶点都在直线y=x上,T1与x轴交于点A1(2,0),A2(A2在A1右侧),T2与x 轴交于点A2,A3,T3与x轴交于点A3,A4,……,则抛物线T n的函数表达式为.【解析】:设抛物线T1,T2,T3…的顶点依次为B1,B2,B3…,连接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,过抛物线各顶点作x轴地垂线,如图所示:∵△A1B1A2是等边三角形,∴∠B1A1A2=60°,∵顶点都在直线y=x上,设,∴OC1=m,,∴,∴∠B1OC1=30°,∴∠OB1A1=30°,∴OA1=A1B1=2=A1B2,∴A1C1=A1B1•cos60°=1,,∴OC1=OA1+A1C1=3,∴,A2(4,0),设T1的解析式为:,则,∴,∴T1:,同理,T2的解析式为:,T3的解析式为:,…则T n的解析式为:,故答案为:.11.我国明代数学家程大位在他六十岁时终于完成了《算法统宗》的编撰.这是﹣﹣木简明实用的数学书,书中列出了许多应用题的数字计算请从A,B两题中任选一题作答.A.有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差半斤,设所分银子共x两.根据题意列出的方程是.(注:明代时1斤=16两.故有“半斤八两”这个成语)B.用九百九十九文钱共买了一千个甜果和苦果.其中四文钱可以买甜果七个,十一文钱可以买苦果九个,设买了x个甜果,根据题意列出的方程是.【解析】:A、由题意,得.B、由题意,得.故答案是:;.12.在2019年全国信息学奥利匹克联赛中,重庆八中学子再创辉煌,竞赛成绩全市领先,共56人获得全国一等奖,同时摘下高一年级组冠军,高二年级组第二名,包揽初二年级组冠、亚、季军.在校内选拔赛时,某位同学连续答题40道,答对一题得5分,答错一题扣2分,最终该同学获得144分.请问这位同学答对多少道题?下面共列出4个方程,其中正确的是AB.(多选)A.设答对了x道题,则可列方程:5x﹣2(40﹣x)=144B.设答错了y道题,则可列方程:5(40﹣y)﹣2y=144C.设答对题目得a分,则可列方程:+=40D.设答错题目扣b分,则可列方程﹣=40【解析】:A、若设答对了x道题,则可列方程:5x﹣2(40﹣x)=144,故本选项符合题意;B、若设答错了y道题,则可列方程:5(40﹣y)﹣2y=144,故本选项符合题意;C、若设答对题目得a分,则可列方程:+=40,故本选项不符合题意;D、设答错题目扣b分,则可列方程+=40,故本选项不符合题意.故答案是:AB.13.数学课上李老师让同学们做一道整式的化简求值题,李老师把整式(7a3﹣6a3b)﹣3(﹣a3﹣2a3b+a3﹣1)在黑板上写完后,让一位同学随便给出一组a,b的值,老师说答案.当刘阳刚说出a,b的值时,李老师不假思索,立刻说出了答案.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”.你能说出其中的道理吗?【解析】:原式=7a3﹣6a3b+3a3+6a3b﹣10a3+3=3,由多项式化简可知:多项式的值跟a和b无关,∴无论多项式中a和b的值是多少,多项式的值都是3.14.滴滴公布了新的滴滴快车计价规则,车费由“总里程费+总时长费”两部分构成,不同时段收费标准不同,具体收费标准如下表,如果车费不足起步价,则按起步价收费.时间段里程费(元/千米)时长费(元/分钟)起步价(元)06:00﹣10:00 1.800.8014.0010:00﹣17:00 1.450.4013.0017:00﹣21:00 1.500.8014.0021:00﹣6:000.800.8014.00(1)小明早上7:10乘坐滴滴快车上学,行车里程6千米,行车时间10分钟,则应付车费多少元?(2)小云17:10放学回家,行车里程2千米,行车时间12分钟,则应付车费多少元?(3)下晚自习后小明乘坐滴滴快车回家,20:45在学校上车,由于堵车,平均速度是a 千米/小时,15分钟后走另外一条路回家,平均速度是b千米/小时,10分钟后到家,则他应付车费多少元?【解析】:(1)由题意得,应付车费=1.8×6+0.8×10=18.8(元)>14元,答:应付车费18.8元;(2)由题意得,1.5×2+0.8×12=12.6(元)<14元,∴应付车费=14元,答:应付车费14元;(3)根据题意得,他应付车费=1.5×a a+0.8×15+0.8×a b+0.8×10=(元).答:他应付车费()元.15.若在一个两位正整数N的个位数与十位数字之间添上数字5,组成一个新的三位数,我们称这个三位数为N的“广善数”,如34的“广善数”为354;若将一个两位正整数M加5后得到一个新数,我们称这个新数为M的“广美数”,如34的“广美数”为39.(1)26的“广善数”是156,“广美数”是31.(2)求证;对任意一个两位正整数A,其“广善数”与“广美数”之差能被45整除.【解析】:(1)有定义可得:26的“广善数”是256,26的,“广美数”是26+5=31,故答案为156,31;(2)设A的十位数字是x,个位数字是y,则A的“广善数”是100x+50+y,A的“广美数”是10x+y+5,∴100x+50+y﹣(10x+y+5)=90x+45=45(2x+1),∴45(2x+1)能被45整除,∴A的“广善数”与“广美数”之差能被45整除.16.若一个正整数x能表示成a2﹣b2(a,b是正整数,且a>b)的形式,则称这个数为“明礼崇德数”,a与b是x的一个平方差分解.例如:因为5=32﹣22,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:M=x2+2xy=x2+2xy+y2﹣y2=(x+y)2﹣y2(x,y 是正整数),所以M也是“明礼崇德数”,(x+y)与y是M的一个平方差分解.(1)判断:9是“明礼崇德数”(填“是”或“不是”);(2)已知N=x2﹣y2+4x﹣6y+k(x,y是正整数,k是常数,且x>y+1),要使N是“明礼崇德数”,试求出符合条件的一个k值,并说明理由;(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m既是“七喜数”,又是“明礼崇德数”,请求出m的所有平方差分解.【解析】:(1)∵9=52﹣42,∴9是“明礼崇德数”,故答案为是;(2)∵N是“明礼崇德数”,∵x>y+1,∴x+2>y+3,∴N=x2﹣y2+4x﹣6y+4﹣9=(x+2)2﹣(y+3)2,∵N=x2﹣y2+4x﹣6y+k=(x+2)2﹣(y+3)2,∴k=﹣5;(3)设百位数字是x,则个位数字是x+7,∴x=1或x=2,当x=1时,这个三位数是178,∴m=178=2×89,此时m不是“明礼崇德数”;当x=2时,这个三位数是279,∴m=279=3×93=9×31,∴m=482﹣452=202﹣112,∴48与45是m的平方差分解;21与11是m的平方差分解.17.定义:关于x的两个一次二项式,其中任意一个式子的一次项系数都是另一个式子的常数项,则称这两个式子互为“田家炳式”.例如,式子3x+4与4x+3互为“田家炳式”.(1)判断式子﹣5x+2与﹣2x+5不是(填“是”或“不是”)互为“田家炳式”;(2)已知式子ax+b的“田家炳式”是3x﹣4且数a、b在数轴上所对应的点为A、B.①化简|x+a|+|x+b|的值为7,则x的取值范围是﹣3≤x≤4;②数轴上有一点P到A、B两点的距离的和P A+PB=11,求点P在数轴上所对应的数.(3)在(2)的条件下,①若A点,B点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,且3秒后,2OA=OB,求点A的速度.②数轴上存在唯一的点M,使得点M到A、B两点的距离的差MA﹣MB=m,求m的取值范围.(直接写出结果)【解析】:(1)∵﹣5x+2与﹣2x+5的其中一个式子的一次项系数不是另一个式子的常数项,∴它们不互为“田家炳式”,故答案为:不是;(2)①∵式子ax+b的“田家炳式”是3x﹣4,∴a=﹣4,b=3,∵|x+a|+|x+b|=7,∴|x﹣4|+|x+3|=7,当x<﹣3时,4﹣x﹣x﹣3=7,解得x=﹣3(舍去);当﹣3≤x≤4时,4﹣x+x+3=7,解得,x为﹣3≤x≤4中任意一个数;当x>4时,x﹣4+x+3=7,解得x=4(舍去).综上,﹣3≤x≤4.故答案为:﹣3≤x≤4.②∵P A+PB=11,∴当P点在A作左边时,有P A+P A+AB=11,即2P A+7=11,则P A=2,于是P为﹣4﹣2=﹣6;当P点在A、B之间时,有P A+PB=AB=7≠11,无解;当P点在B点右边时,有2PB+AB=11,则PB=2,于是P为3+2=5,综上,点P在数轴上所对应的数是﹣6或5;(3)①设A点运动的速度为x个单位/秒,∵A点的速度是B点速度的2倍,且3秒后,2OA=OB当点A在原点左边时,有2(4﹣3x)=3+3×x,解得,x=当点A在原点右边时,有2(3x﹣4)=3+3×x,解得,x=,∴点A的速度为个单位/秒或个单位/秒;②由题意可知,当M点在AB的中点与B之间(包括中点,不包括B点),则存在唯一一点M,使得MA﹣MB=m,此时0<MB≤3.5,∵m=MA﹣MB=AB﹣MB﹣MB=7﹣2MB,∴0≤m<7.故答案为:0≤m<7.18.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?意思是:今有美酒一斗,价格是50钱;普通酒一斗,价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?请你建立适当的数学模型,解决上面问题.【解析】:设买美酒x斗,普通酒y斗,依题意,得:,解得:.答:买美酒0.25斗,普通酒1.75斗.19.已知a,b,c,d都是有理数,现规定一种新的运算:,例如:(1)计算;(2)若,求x的值.【解析】:(1)根据题中的新定义得:原式=﹣2×5﹣3×5=﹣10﹣15=﹣25;(2)由题中的新定义化简得:2x﹣(﹣3)×(1﹣x)=6,去括号得:2x+3﹣3x=6,移项合并得:﹣x=3,解得:x=﹣3.20.阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=(x>0)是减函数.证明:设0<x1<x2,f(x1)﹣f(x2)=﹣==.∵0<x1<x2,∴x2﹣x1>0,x1x2>0.∴>0.即f(x1)﹣f(x2)>0.∴f(x1)>f(x2).∴函数f(x)=(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=+2x(x<0),f(﹣1)=+(﹣2)=﹣1,f(﹣2)=+(﹣4)=﹣(1)计算:f(﹣3)=﹣,f(﹣4)=﹣;(2)猜想:函数f(x)=+2x(x<0)是增函数(填“增”或“减”);(3)请仿照例题证明你的猜想.【解析】:(1)∵f(x)=+2x(x<0),∴f(﹣3)=+2×(﹣3)=﹣,f(﹣4)=+2×(﹣4)=﹣故答案为:﹣,﹣;(2)∵﹣4<﹣3,f(﹣4)<f(﹣3)∴函数f(x)=+2x(x<0)是增函数,故答案为:增;(3)设x1<x2<0,∵f(x1)﹣f(x2)=+2x1﹣﹣2x2=(x1﹣x2)(2﹣)∵x1<x2<0,∴x1﹣x2<0,x1+x2<0,∴f(x1)﹣f(x2)<0∴f(x1)<f(x2)∴函数f(x)=+2x(x<0)是增函数.21.在平面直角坐标系中,已知点A(0,a)和点B(b,0),给出如下定义:以AB为边,按照逆时针方向排列A,B,C,D四个顶点,作正方形ABCD,则称正方形ABCD为点A,B的逆序正方形.例如,当a=﹣4,b=3时,点A,B的逆序正方形如图1所示.(1)图①中,点C的坐标为(﹣1,3).(2)改变图①中点A的位置,其余条件不变,则点C的纵坐标不变(填“横”或“纵”),它的值为3.(3)已知正方形ABCD为点A,B的逆序正方形.判断:结论“若点C落在x轴上,则点D一定落在第一象限内.”错误(填“正确”或“错误”),若结论正确,请说明理由;若结论错误,请在图②中画出一个反例.(4)若a=4,b>0,且抛物线y=﹣x2+2mx﹣m2+2恰好经过点C时,求m的取值范围.【解析】:(1)如图1,过点C作CE垂直x轴,垂足为E,∴∠CEB=∠BOE=90°,∴∠CBE+∠BCE=90°,∵正方形ABCD,∴BC=AB,∠ABC=90°,∴∠CBO+∠ABO=90°,∴∠BCE=∠ABO,∴△BCE≌△ABO(AAS),∴BE=AO=4,CE=BO=3,∴C(﹣1,3),故答案为(﹣1,3);(2)∵△BCE≌△ABO,∴CE=BO=3,∴改变图1中的点A的位置,其余条件不变时,点C的纵坐标总是3,故答案为:纵,3;(3)结论“若点C落在x轴上,则点D一定落在第一象限内.”错误,反例如图2;点C在x轴上,当点D在第三象限;故答案为:错误.(4)如图,若a=4,b>0时,与(1)同理可证△BCE≌△ABO,∴CE=BO=b,BE=OA=4,∴点C(b+4,b),∴点C在直线y=x﹣4(x>4)上,作直线y=x﹣4(x>4),交坐标轴于M,N两点,当x=0时,y=﹣4,当y=0时,x=4,∴M(0,﹣4),N(4,0),①当抛物线经过N点时,如图3,有m2﹣8m+14=0,解得:(舍去),,②当抛物线与直线y=x﹣4只有一个交点时,如图4,有﹣x2+2mx﹣m2+2=x﹣4,△=(1﹣2m)2﹣4(m2﹣6)=0,解得:m=.∴.22.问题探究:(1)如图1,∠AOB=45°,在∠AOB内部有一点P,分别作点P关于边OA、OB的对称点P1,P2顺次连接O,P1,P2,则△OP1P2的形状是等腰直角三角形.(2)如图2,在△ABC中,AB=AC,∠BAC=30°,AD⊥BC于D,AD=2+,求:△ABC的面积.问题解决:(3)如图3,在四边形ABCD内有一点P,点P到顶点B的距离为10,∠ABC=60°,点M、N分别是AB、BC边上的动点,顺次连接P、M、N,使△PMN在周长最小的情况下,面积最大,问:是否存在这种情况?若存在,请求出△PMN的面积的最大值;若不存在,请说明理由.【解析】:(1)如图1中,△OP1P2是等腰直角三角形.理由:∵点P关于边OA、OB的对称点分别为P1,P2,∴OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,∵∠AOB=45°,∴∠P1OP2=2(∠AOP+∠BOP)=90°,∴△OP1P2是等腰直角三角形.故答案为等腰直角.(2)如图2中,在AD上取一点E,使得AE=EC,连接EC.∵AB=AC,AD⊥BC,∴∠EAC=∠BAC=15°,∵EA=EC,∴∠EAC=∠ECA=15°,∴∠DEC=∠EAC+∠ECA=30°,设CD=BD=x,则EC=EA=2x,DE=x,∵AD=2+,∴2x+x=2+,∴x=1,∴BC=2CD=2,∴S△ABC=•BC•AD=×2×(2+)=2+.(3)如图3中,不存在.理由:∵点P关于AB,BC的对称点分别为M,N,∴PB=BM=BN=10,∠PBA=∠ABM,∠PBC=∠CBN,∵∠ABC=60°,∴∠MBN=2(∠ABP+∠PBC)=120°,∴△BNM是顶角为120°,腰长为10的等腰三角形,∴MN为定值,∵PM+PN≥MN,∴当点P落在AB或BC上时,PM+PN=MN=定值,此时△PMN不存在,∴△PMN的周长不存在最小值.23.综合与实践:折纸中的数学问题情境:在矩形纸片ABCD中,点M,N分别是AD,BC的中点,点E,F分别在AB,CD上,且AE=CF.将△AEM沿EM折叠,点A的对应点为点P.将△NCF沿NF折叠,点C 的对应点为点Q.数学思考:(1)如图①,若点P,Q分别落在边BC,AD上,则四边形PNQM的形状是平行四边形.(2)如图②,若点P,Q均落在矩形ABCD的内部,其他条件不变,你认为(1)中的结论是否仍然成立?并说明理由.拓展探究:(3)如图③,在(2)的条件下,若AD=2AB=4,当四边形PNQM为菱形时,求AE的长度.【解析】:(1)结论:四边形PNQM是平行四边形.理由:如图①中,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠A=∠C=90°,∵点M,N分别是AD,BC的中点,∴AM=NC,∵AE=CF,∴△EAM≌△FCN(SAS),∴∠AME=∠CNF,∵∠AME=∠EMP,∠CNF=∠FNQ,∴∠AMP=∠QNC,∵AD∥BC,∴∠AQN=∠CNQ,∴∠AMP=∠AQN,∴PM∥QN,∵MQ∥PN,∴四边形PNQM是平行四边形.故答案为平行四边形.(2)成立.理由如下:如图②中,延长NQ交AD的延长线于H.∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠A=∠C=90°,∵点M,N分别是AD,BC的中点,∴AM=NC,∴PM=NQ,∵AE=CF,∴△EAM≌△FCN(SAS),∴∠AME=∠CNF,∵∠AME=∠EMP,∠CNF=∠FNQ,∴∠AMP=∠QNC,∵AD∥BC,∴∠AHN=∠CNH,∴∠AMP=∠AHN,∴PM∥NH,∴四边形PNQM是平行四边形.(3)如图③中,连接MN,PQ交于点O,延长PQ交CD于H,延长QP交AB于G.∵四边形PNQM是菱形,∴MN⊥PQ,∵PQ∥AD∥BC,∴AG=DK=OM=AB=AD=1,∵PM=AM=2,∴sin∠MPO=,∴∠MPO=30°,∵∠EPM=90°,∴∠EPG=90°﹣30°=60°∴OP=OM=,∵OG=2,∴EG=PG•tan60°=2﹣3,∴GP=2﹣,∴AE=AG﹣EG=1﹣(2﹣3)=4﹣2.24.在探究三角形内角和等于180°的证明过程时,小明同学通过认真思考后认为,可以通过剪拼的方法将一个角剪下来,然后把这个角进行平移,从而实现把三角形的三个内角转移到一个平角中去,如图所示:(1)小明同学根据剪拼的过程,抽象出几何图形;并进行了推理证明,请你帮助小明完成证明过程.证明:过点B作BN∥AC,延长AB到M∵BN∥AC∴∠NBM=∠A(两直线平行,同位角相等;)∠CBN=∠C(两直线平行,内错角相等)∵∠CBA+∠CBN+∠NBM=180°(平角定义)∴∠CBA+∠A+∠C=180o(等量代换)(2)小军仿照小明的方法将三角形的三个内角都进行了移动,也将三个内角转移到一个平角中去,只不过平角的顶点放到了AB边上,如图所示:请你仿照小明的证明过程,抽象出几何图形再进行证明.(3)小兰的方法和小明以及小军的方法都不相同,她将三角形三个内角分别沿某一条直线翻折,一共进行了三次尝试,如图所示:小兰第三次成功的关键是什么,请你写出证明思路.【解答】(1)证明:过点B作BN∥AC,延长AB到M,∵BN∥AC,∴∠NBM=∠A(两直线平行,同位角相等),∠CBN=∠C(两直线平行,内错角相等),∵∠CBA+∠CBN+∠NBM=180°(平角定义),∴∠CBA+∠A+∠C=180o(等量代换).故答案为:两直线平行,同位角相等;两直线平行,内错角相等;(2)证明:过点O作ON∥AC,交BC于点D,过点O作OM∥BC,∵ON∥AC,∴∠NOB=∠A,∠ODB=∠C,∵OM∥BC,∴∠MOA=∠B,∠MON=∠ODB,∵∠AOM+∠MON+∠NOB=180°,∴∠A+∠B+∠C=180o.(3)小兰第三次成功的关键:将△ABC沿点C所在的垂直于AB的直线翻折,折痕与AB 的交点为H,使点C与点H重合,确定折痕MN,将△MAH沿点M所在的垂直于AB的直线翻折,折痕与AB的交点为E,将△NBH沿点N所在的垂直于AB的直线翻折,折痕与AB的交点为F.证明思路:∵△CMN翻折得到△HMN,∴CH⊥AB,△CMN≌△HMN,MN是CH的垂直平分线,∴MN∥AB,∠CMN=∠A,∠CDM=∠MEA,CD=ME,∴△CMD≌△MAE(AAS),∴CM=MA=MH,同理CN=NB=NH,∴△MAE≌△MHE,△NBF≌NHF,∵∠MHN+∠MHE+∠NHB=180°,∴∠A+∠B+∠C=180o.25.阅读下列材料,完成相应的任务数学活动课上,老师提出如下问题:如图①,在四边形ABCD中,AB⊥BC,DC⊥BC,AB=2,DC=4,BC=8,点P为BC 边上的动点,求当BP的值是多少时,AP+DP有最小值,最小值是多少.小丽和小明对老师提出的问题进行了合作探究:小丽:设BP=x,则CP=8﹣x,根据勾股定理,可得AP+DP=+.但没有办法继续求解.小明:利用轴对称作图,如图②,作点A关于直线BC的对称点A′,连接A′D,与BC交于点P,根据两点之间线段最短,将求AP+DP的最小值转化为求线段A'D的长.由△A′BP∽△DCP,得==所以BP=.过点A′作A′H⊥DC,交DC的延长线于点H,再由勾股定理,可得A′D===10.所以当BP=时,AP+DP有最小值,最小值为10.任务:(1)类比探究:对于函数y=+,当x=1时,y有最小值,最小值为4.(2)应用拓展:如图③,若点D在BC上运动,AD⊥BC,AD=3,BC=5.连接AB,AC.求△ABC周长的最小值.【解析】:(1)∵y=+=+,如图,取BC=4,AB=1,CD=3,AB⊥BC于B,CD⊥CB于C,设BP=x,则CP=BC﹣BP=4﹣x,AP+DP=+=y,要y最小,则AP+DP最小,作点A关于BC的对称点A',连接A'P,当点A',P,D在同一条线上时,AP+DP最小=A'D,∵∠A'BP=∠DCP=90°,∠A'PB=∠DPC,∴△A′BP∽△DCP,∴,∴,∴x=1,过点A'作AH∥BC交DC的延长线于H,则四边形BA'HC是矩形,∴CH=A'B=AB=1,A'H=BC=4,∠H=90°,∴DH=CD+CH=4,在Rt△A'HD中,根据勾股定理得,A'D==4,故答案为1,4;(2)设BD=a,则CD=BC﹣BD=5﹣a,在Rt△ABD中,根据勾股定理得,AB==,在Rt△ADC中,根据勾股定理得,AC==,∴△ABC的周长为AB+AC+BC=++5,要△ABC的周长最小,则有(+)最小,同(1)的方法得,(+)最小==,即:△ABC的周长最小为+5.。

相关文档
最新文档