探索轴对称图形的性质习题精选
专题03轴对称十大重难题型(期末真题精选)(原卷版)
专题03 轴对称十大重难题型一.轴对称图形的存在性之格点类(钥匙对称轴)1.如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点三角形共有()A.3个B.4个C.5个D.6个2.如图,在3×3的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有个.二.轴对称的性质3.如图,把一张长方形纸片ABCD的一角沿AE折叠,点D的对应点D′落在∠BAC的内部,若∠CAE=2∠BAD′,且∠CAD′=n,则∠DAE的度数为(用含n的式子表示).4.如图,点P为∠AOB内部任意一点,点P与点P1关于OA对称,点P与点P2关于OB对称,OP=8,∠AOB=45°,则△OP1P2的面积为.三.尺规作图:轴对称,角平分,垂直平分线5.已知直线l及其两侧两点A、B,如图.(1)在直线l上求一点P,使P A=PB;(2)在直线l上求一点Q,使l平分∠AQB.(以上两小题保留作图痕迹,标出必要的字母,不要求写作法)6.已知:如图,∠AOB及M、N两点.请你在∠AOB内部找一点P,使它到角的两边和到点M、N 的距离分别相等(保留作图痕迹).7.线段的垂直平分线的性质1:线段垂直平分线上的点与这条线段的距离.如图,△ABC中,AB=AC=16cm,(1)作线段AB的垂直平分线DE,交AB于点E,交AC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接BD,如果BC=10cm,则△BCD的周长为cm.8.如图,在正方形网格中,△ABC的三个顶点分别在正方形网格的格点上,△A′B′C′和△ABC 关于直线l成轴对称,其中A′点的对应为A点.(1)请画出△A′B′C′,并标出相应的字母;(2)若网格中最小正方形的边长为1,求△A′B′C′的面积.9.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标.四.坐标的轴对称10.已知点P(a,3),Q(﹣2,b)关于x轴对称,则a+b的值为()A.1B.−1C.5D.﹣511.已知点P1(﹣1,﹣2)和P2(a,b﹣1)关于y轴对称,则(a+b)2021的值为()A.0B.﹣1C.1D.(﹣3)202112.若点M与点N关于x轴对称,点M和点P关于y轴对称,点P的坐标为(2,﹣3),那么点N 的坐标为()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)13.已知点A(a﹣5,1﹣2a),解答下列问题:(1)若点A到x轴和y轴的距离相等,求点A的坐标;(2)若点A向右平移若干个单位后,与点B(﹣2,﹣3)关于x轴对称,求点A的坐标.14.已知有序数对(a,b)及常数k,我们称有序数对(ka+b,a﹣b)为有序数对(a,b)的“k阶结伴数对”.如(3,2)的“1阶结伴数”对为(1×3+2,3﹣2)即(5,1).若有序数对(a,b)(b≠0)与它的“k阶结伴数对”关于y轴对称,则此时k的值为()A.﹣2B.−32C.0D.−12五.格点等腰三角形15.如图,在4×3的正方形网格中,点A、B分别在格点上,在图中确定格点C,则以A、B、C为顶点的等腰三角形有个.16.如图所示的正方形网格中,网格线的交点称为格点.已知点A、B是两格点,若点C也是图中的格点,则使得△ABC是以AB为腰的等腰三角形时,点C的个数是()A.1B.2C.3D.417.如图是4×4的正方形网格,每个小正方形的顶点称为格点,且边长为1,点A,B均在格点上,在网格中建立平面直角坐标系.如果点C也在此4×4的正方形网格的格点上,且△ABC是等腰三角形,请写出一个满足条件的点C的坐标;满足条件的点C一共有个.六.规律类坐标与图形的变化18.如图,已知正方形ABCD的对角线AC,BD相交于点M,顶点A、B、C的坐标分别为(1,3)、(1,1)、(3,1),规定“把正方形ABCD先沿x轴翻折,再向右平移1个单位”为一次变换,如此这样,连续经过2020次变换后,点M的坐标变为()A.(2022,2)B.(2022,﹣2)C.(2020,2)D.(2020,﹣2)19.如图,将边长为1的正方形OABC沿x轴正方向连续翻转2020次,点A依次落在点A1、A2、A3、A4…A2020的位置上,则点A2020的坐标为()A.(2019,0)B.(2019,1)C.(2020,0)D.(2020,1)20.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)七.等腰三角形判定与性质21.如图,在△ABC中,∠ABC的角平分线和∠ACB相邻的外角平分线CD交于点D,过点D作DE∥BC交AB于E,交AC于G,若EG=2,且GC=6,则BE长为.22.如图,△ABC中,∠A=∠ACB,CP平分∠ACB,BD,CD分别是△ABC的两外角的平分线,下列结论中:①CP⊥CD;②∠P=12∠A;③BC=CD;④∠D=90°−12∠A;⑤PD∥AC.其中正确的结论是(直接填写序号).23.Rt△ABC中,AC=BC,∠ACB=90°,如图,BO、CO分别平分∠ABC、∠ACB,EO∥AB,FO∥AC,若S△ABC=32,则△OEF的周长为.24.如图,△ABC中,∠ABC与∠ACB的平分线交于点D,过点D作EF∥BC,分别交AB,AC于点E,F.那么下列结论:①BD=DC;②△BED和△CFD都是等腰三角形;③点D是EF的中点;④△AEF的周长等于AB与AC的和.其中正确的有.(只填序号)八.等边三角形的判定与性质25.如图,已知AB=AC,AD平分∠BAC,∠DEB=∠EBC=60°,若BE=5,DE=2,则BC=.26.已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.九.直角三角形斜中线的灵活运用。
轴对称练习题及答案
轴对称练习题及答案一、选择题1. 以下哪个图形是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 轴对称图形的对称轴与图形的对称点之间的关系是:A. 垂直B. 平行C. 相交D. 重合3. 一个轴对称图形的对称点到对称轴的距离是:A. 相等B. 不相等C. 有时相等有时不相等D. 无法确定4. 如果一个图形关于x轴对称,那么它的对称点的坐标关系是:A. (x,y)和(x,-y)B. (x,y)和(-x,y)C. (x,y)和(-x,-y)D. (x,y)和(y,x)5. 一个点关于y轴的对称点的坐标是:A. (-x,y)B. (x,-y)C. (-y,x)D. (y,-x)二、填空题1. 轴对称图形的对称轴是图形中所有对称点的________。
2. 如果一个图形关于y轴对称,那么它的对称点的坐标关系是(x,y)和________。
3. 一个图形关于原点对称,那么它的对称点的坐标关系是(x,y)和________。
三、解答题1. 已知点A(3,4),求点A关于x轴的对称点的坐标。
2. 已知点B(-2,-3),求点B关于y轴的对称点的坐标。
3. 已知点C(1,-1),求点C关于原点的对称点的坐标。
四、判断题1. 所有矩形都是轴对称图形。
()2. 所有等腰三角形都是轴对称图形。
()3. 所有等边三角形都是轴对称图形。
()4. 所有平行四边形都是轴对称图形。
()五、综合题1. 给出一个等腰梯形的上底长为4cm,下底长为8cm,高为3cm,求等腰梯形的对称轴。
2. 如果一个矩形的长为10cm,宽为6cm,求矩形关于x轴对称后,新的矩形的长和宽。
3. 已知一个正方形的边长为5cm,求正方形关于y轴对称后,新正方形的边长。
答案:一、选择题1. A2. D3. A4. A5. A二、填空题1. 连线中点2. (-x,y)3. (-x,-y)三、解答题1. 点A关于x轴的对称点的坐标为(3,-4)。
第2章《轴对称图形》常考题集:2.2轴对称的性质(含答案)
度.(第1题) (第2题) (第3题)2.如图,将纸片△ABC 沿DE 折叠,点A 落在点A ′处,已知∠1+∠2=100°,则∠A 的大小等于 度.3.如图,△ABC 沿DE 折叠后,点A 落在BC 边上的A ′处,若点D 为AB 边的中点,∠B=50°,则∠BDA ′的度数为 .4.如图,三角形纸片ABC 中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为 度.(第4题) (第7题) (第8题) cm..第2章 《轴对称图形》常考题集:2.2 轴对称的性质填空题1.如图,D 、E 为△ABC 两边AB 、AC 的中点,将△ABC 沿线段DE 折叠,使点A 落在点F 处,若∠B=55°,则∠BDF=5.小宇同学在一次手工制作活动中,先把一张长方形纸片按左图方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按右图的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是6.把图一的矩形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上的点P 处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD 的面积为cm . 度. cm.(第9题) (第10题) (第12题)10.如图,把矩形ABCD 沿EF 折叠,使点C 落在点A 处,点D 落在点G 处,若∠CFE=60°,且DE=1,则边BC 的长为 . .13.将一张长方形纸片按如图所示折叠,如果∠1=64°,那么∠2等于 .(第13题) (第14题) (第15题) 14.如图,矩形ABCD 中(AD >AB ),M 为CD 上一点,若沿着AM 折叠,点N 恰落在BC 沿直线AD 折过来,点C 落到点C 1的位置,如果BC=10,那么BC 1= .16.如图,长方形纸片ABCD 中,AB=3cm ,BC=4cm ,现将A 、C 重合,使纸片折叠压平,设折痕为EF ,则S △AEF = cm 2.(第16题) (第18题)17.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则B=原三角形的∠B= 度.7.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知CE=3 cm ,AB=8 cm ,则图中阴影部分面积为8.如图(1)是四边形纸片ABCD ,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR ,恰使CP ∥AB ,RC ∥AD ,如图(2)所示,则∠C=9.如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿着直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为11.已知Rt △ABC 中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D 处,折痕交另一直角边于E ,交斜边于F ,则△CDE 的周长为12.如图,折叠宽度相等的长方形纸条,若∠1=70°,则∠2= 度.上,则∠ANB+∠MNC= 度.15.如图,AD 是△ABC 的中线,∠ADC=60°,把△ADCb 的值为 . 解答题A 1B 1C 1D 1; (2)在给出的方格纸中,画出四边形ABCD 关于直线l 对称的四边形A 2B 2C 2D 2.18.如图一张长方形纸片ABCD ,其长AD 为a ,宽AB 为b (a >b ),在BC 边上选取一点M ,将△ABM 沿AM 翻折后B 至B ′的位置,若B ′为长方形纸片ABCD 的对称中心,则a19.如图,把△ABC 纸片沿DE 折叠,当点A 在落在四四边形BCDE 内部时, (1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED 的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.20.如图,在方格纸上建立平面直角坐标系,线段AB 的两个端点都在格点上,直线MN 经过坐标原点,且点M 的坐标是(1,2). (1)写出点A 、B 的坐标;(2)求直线MN 所对应的函数关系式;(3)利用尺规作出线段AB 关于直线MN 的对称图形.(保留作图痕迹,不写作法)21.作图题:(不要求写作法)如图,在10×10的方格纸中,有一个格点四边形ABCD (即四边形的顶点都在格点上).(1)在给出的方格纸中,画出四边形ABCD 向下平移5格后的四边形的面积.. (3)写出点A 1,B 1,C 1的坐标.的坐标: ; (2)求经过第2008次跳动之后,棋子落点与点P 的距离.22.如图,在平面直角坐标系xoy 中,A (-1,5),B (-1,0),C (-4,3). (1)求出△ABC(2)在图中作出△ABC 关于y 轴的对称图形△A 1B 1C 123.如图,在平面直角坐标系中,一颗棋子从点P 处开始依次关于点A 、B 、C 作循环对称跳动,即第一次跳到点P 关于点A 的对称点M 处,接着跳到点M 关于点B 的对称点N 处,第三次再跳到点N 关于C 的对称点处,…如此下去.(1)在图中画出点M 、N ,并写出点M 、N, ).24.如图所示,在直角坐标系xOy 中,A (-1,5),B (-3,0),C (-4,3). (1)在图中作出△ABC 关于y 轴的轴对称图形△A ′B ′C ′; (2)写出点C 关于y 轴的对称点C ′的坐标(25.如图,已知网格上最小的正方形的边长为1. (1)分别写出A 、B 、C 三点的坐标;(2)作△ABC 关于y 轴的对称图形△A ′B ′C ′.(不写作法)26.如图,在正方形网格上有一个△ABC .(1)作△ABC 关于直线MN 的对称图形(不写作法); (2)若网格上的最小正方形的边长为1,求△ABC 的面积27.如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”,如图1中四边形ABCD 就是一个“格点四边形”. (1)求图1中四边形ABCD 的面积;(2)在图2方格纸中画一个格点三角形EFG ,使△EFG 的面积等于四边形ABCD 的面积且为, )..轴对称图形.28.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1. (1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE 对称的图案(只画图,不写作法); (3)以G 为原点,GE 所在直线为x 轴,GB 所在直线为y 轴,小正方形的边长为单位长度建立直角坐标系,可得点A 的坐标是(29.认真画一画.如图,在正方形网格上有一个△DEF .(1)作△DEF 关于直线HG 的轴对称图形△D ′E ′F ′(不写作法); (2)作EF 边上的高(不写作法);(3)若网格上的最小正方形边长为1,则△DEF 的面积为30.如图,写出△ABC 的各顶点坐标,并画出△ABC 关于Y 轴的对称图形,并直接写出△ABC 关于x 轴对称的三角形的各点坐标.答案:填空题1.故答案为:70.考点:翻折变换(折叠问题). 专题:压轴题.分析:利用折叠的性质求解.利用折叠的性质求解. 解答:解:由折叠的性质知,解:由折叠的性质知,AD=DF AD=DF AD=DF,,∵点D 是AB 的中点,∴AD=BD,由折叠可知AD=DF AD=DF,, ∴BD=DF,∴BD=DF,∴∠DFB=∠B=55°,∠BDF=180°∴∠DFB=∠B=55°,∠BDF=180°--2∠B=70°.2∠B=70°. 故答案为:故答案为:707070..点评:本题利用了:①折叠的性质:折叠是一种本题利用了:①折叠的性质:折叠是一种对称对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,位置变化,位置变化,位置变化,对应边和对应角相对应边和对应角相等;②中点的性质,等边对等角,等;②中点的性质,等边对等角,三角形内角和三角形内角和定理求解. 2.故本题答案为50°.°.考点:翻折变换(折叠问题). 专题:压轴题.分析:根据折叠的性质可知.根据折叠的性质可知.解答:解:连接AA′,AA′,易得AD=A′D,AE=A′E;AD=A′D,AE=A′E;故∠1+∠2=2(∠DAA′+∠EAA′)=2∠A=100°;3.故填80.考点:翻折变换(折叠问题). 分析:由折叠的性质可知 点评:本题利用了:本题利用了:11对应边和对应角等;三角形内角和为180°;四边形内角和等于360度.度. 5.故应填1cm cm...考点:翻折变换(折叠问题). 专题:压轴题.分析:有关图形的折叠与拼接最好的解决方法是亲自动手操作.先求第一次折痕,再求第二次,从而求它们的关系.故∠A=50°.故∠A=50°.点评:本题通过折叠本题通过折叠变换变换考查学生的逻辑思维能力,考查学生的逻辑思维能力,解决此类问题,解决此类问题,应结合题意,最好最好实际操作实际操作图形的折叠,易于找到图形间的关系. AD=A′D,再根据AD=A′D,再根据中点中点的性质得AD=BD AD=BD,BD=A′D,,BD=A′D,∠DA′B=∠B=50°,从而求解∠BDA'的度数.解答:解:由折叠的性质知,AD=A′D,解:由折叠的性质知,AD=A′D,∵点D 为AB 边的中点边的中点∴AD=BD,BD=A′D,∠DA′B=∠B=50°, ∴∠BDA′=180°∴∠BDA′=180°--2∠B=80°.、折叠的性质:折叠是一种、折叠的性质:折叠是一种对称对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,位置变化,位置变化,相等;相等;22、中点的性质,、中点的性质,等边对等角等边对等角,三角形的内角定理求解. 4.故填60.分析:根据题意,已知∠A=65°,∠B=75°,可结合根据题意,已知∠A=65°,∠B=75°,可结合三角形内角和三角形内角和定理和折叠变换的性质求解.解答:解:∵∠A=65°,∠B=75°,解:∵∠A=65°,∠B=75°,∴∠C=180°∴∠C=180°--(65°+75°)(65°+75°)=40=40度,度, ∴∠CDE+∠CED=180°∴∠CDE+∠CED=180°--∠C=140°,∠C=140°, ∴∠2=360°∴∠2=360°--(∠A+∠B+∠1+∠CED+∠CDE)=360°(∠A+∠B+∠1+∠CED+∠CDE)=360°--300°=60度.度.故填6060..点评:本题通过折叠变换考查三角形、本题通过折叠变换考查三角形、四边形四边形内角和定理.注意折叠前后图形全.故应填1445 .考点:翻折变换(折叠问题). 专题:压解答:解:由勾股定理得,等;②勾股定理,直角三角形和矩形的面积公式求解. 7.故应填30cm 2.考点:翻折变换(折叠问题). 专题:压轴题.分析:根据折叠的性质求出EF=DE=CD-CE=5EF=DE=CD-CE=5,,AD=AF=BC AD=AF=BC,再根据勾股定理列出,再根据勾股定理列出,再根据勾股定理列出方方程求解即可.解答:解:由折叠的性质知,解:由折叠的性质知,EF=DE=CD-CE=5EF=DE=CD-CE=5EF=DE=CD-CE=5,,AD=AF=BC AD=AF=BC,, 由勾股定理得,由勾股定理得,CF=4CF=4CF=4,,AF 2=AB 2+BF 2, 即AD 2=82+(AD-4AD-4))2, 解得,解得,AD=10AD=10AD=10,, ∴BF=6,∴BF=6,图中阴影部分面积图中阴影部分面积=S =S △A B F +S △C E F =30cm 2.点评:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,位置变化,位置变化,位置变化,对应边和对应角相对应边和对应角相等;②勾股定理,三角形的面积公式求解. 8.故应填95.考点:翻折变换(折叠问题).分析:根据折叠前后图形全等和平行线,根据折叠前后图形全等和平行线,先求出∠CPR 先求出∠CPR 和∠CRP,和∠CRP,再根据再根据再根据三角形内三角形内角和定理即可求出∠C.定理即可求出∠C.解答:解:第一次折痕的左侧部分比右侧部分短1cm 1cm,,第二次折痕的左侧部分比右侧部分长1cm 1cm,,其实这两条折痕是关于纸张的正中间的折痕成轴其实这两条折痕是关于纸张的正中间的折痕成轴对称对称的关系,它们到它们到中线中线的距离是0.5cm 0.5cm,,所以在纸上形成的两条折痕之间的距离是1cm 1cm..点评:考查图形的拆叠知识及学生动手操作能力和图形的翻折考查图形的拆叠知识及学生动手操作能力和图形的翻折变换变换,解题过程中应注意折叠是一种对称变换,应注意折叠是一种对称变换,它属于轴对称,它属于轴对称,它属于轴对称,根据根据根据轴对称的性质轴对称的性质,折叠前后图形的形状和大小不变. 6轴题.分析:利用折叠的性质和利用折叠的性质和勾股定理勾股定理可知. MN=5MN=5,,设Rt△PMN 的斜边上的高为h ,由,由矩形矩形的宽AB 也为h , 根据直角根据直角三角形的面积三角形的面积公式得,h=PM•PN÷MN=125, 由折叠的性质知,由折叠的性质知,BC=PM+MN+PN=12BC=PM+MN+PN=12BC=PM+MN+PN=12,, ∴矩形的面积=AB•BC=1445. 点评:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,位置变化,位置变化,位置变化,对应边和对应角相对应边和对应角相解答:解:因为折叠前后两个图形全等,故∠CPR=12 ∠B=12 ×120°=60°,×120°=60°,∠CRP ∠CRP==12 ∠D=1250°=25°;50°=25°;∴∠C=180°∴∠C=180°--25°25°--60°=95°;∠C=95度;度;故应填9595..点评:折叠前后图形全等是解决折叠问题的关键.9.故应填3cm cm..考点:翻折变换(折叠问题). 分析:由折叠的性质知CD=DE 对应边和对应角相等;相等;22、勾股定理求解.、勾股定理求解. 10.故应填3 .考点:翻折变换(折叠问题). 分析:根据翻折变换的特点可知.解答:解:根据翻折变换的特点可知:解:根据翻折变换的特点可知:DE=GE DE=GE因为∠CFE=60°,因为∠CFE=60°, 所以∠GAE=30°,所以∠GAE=30°, 则AE=2GE=2DE=2AE=2GE=2DE=2,, 所以AD=3AD=3,, 所以BC=3BC=3..点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,于轴对称,根据轴对称的性质,根据轴对称的性质,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,如本题中折叠如本题中折叠前后角相等.前后角相等.11.故应填11或10 . 考点:翻折变换(折叠问题). 专题:压轴题.分析:解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变. 解答:解:当角B 翻折时,翻折时,B B 点与D 点重合,点重合,DE DE 与EC 的和就是,AC=AE AC=AE.根据题意在.根据题意在Rt△BDE 中运用中运用勾股定理勾股定理求DE DE..解答:解:由勾股定理得,解:由勾股定理得,AB=10AB=10AB=10..由折叠的性质知,由折叠的性质知,AE=AC=6AE=AC=6AE=AC=6,,DE=CD DE=CD,∠AED=∠C=90°.,∠AED=∠C=90°.,∠AED=∠C=90°.∴BE=AB ∴BE=AB-AE=10-6=4-AE=10-6=4-AE=10-6=4,,在Rt△BDE 中,由勾股定理得,中,由勾股定理得, DE 2+BE 2=BD 2即CD 2+42=(8-CD 8-CD))2, 解得:解得:CD=3cm CD=3cm CD=3cm.. 点评:本题利用了:本题利用了:11、折叠的性质:折叠是一种、折叠的性质:折叠是一种对称对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,位置变化,位置变化,BC BC,也就是说等,也就是说等8,CD 为AC 的一半,故△CDE 的周长为8+3=118+3=11;; 当A 翻折时,翻折时,A A 点与D 点重合.同理DE 与EC 的和为AC=6AC=6,,CD 为BC 的一半,所以CDE 的周长为6+4=106+4=10.故△CDE .故△CDE 的周长为1010.. 点评:本题考查图形的翻折变换.12.故填40.故填4040..点评:本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.∵∠1=64°,∵∠1=64°,∴∠3=∠1=64°,∴∠3=∠1=64°,∴∠4=180°∴∠4=180°--2∠1=180°∠ANB+∠MNC=180°∠ANB+∠MNC=180°--∠ANM=90°.∠ANM=90°.点评:综合考查了折叠得到的对应角相等及平角定义.15.故应填5.考点:翻折变换(折叠问题).考点:翻折变换(折叠问题);平行线的性质.专题:计算题.分析:根据两根据两直线直线平行内错角相等和同旁内角互补,以及折叠关系列出方程解则可.可.解答:解:根据题意:2∠1与∠2互补,互补,得到:2∠1+∠2=180°,得到:2∠1+∠2=180°,∵∠1=70°,∵∠1=70°,∴140°+∠2=180°,∴140°+∠2=180°,∴∠2=40°∴∠2=40° 13.故应填52°.考点:翻折变换(折叠问题). 专题:计算题.分析:根据根据补角补角的定义、折叠的性质和平行线的性质可求解. 解答:解:由折叠的性质可得∠3=∠1,解:由折叠的性质可得∠3=∠1,-2×64°=52°2×64°=52°∵长方形的对边平行,的对边平行,∴∠2=∠4=52°.∴∠2=∠4=52°.点评:此题主要利用了折叠的性质和平行线的性质:两直线平行,内错角相等. 14.故应填90°.考点:翻折变换(折叠问题). 分析:易得∠ANM=∠ADM=90°,那么根据平角定义即可得到所求的两个角的度数之和.解答:解:根据折叠的性质,有∠ANM=∠ADM=90°;故 专题:应用题.分析:根据AD 是△ABC 的中线,BC=10BC=10,,先求得BD=5BD=5,,由折叠的性质知BC 1=BD=5=BD=5.. 解答:解:由折叠可知DC=DC 1,∠ADC=∠ADC 1=60°,∴∠BDC 1=60°,=60°,又∵AD 是△ABC 的中线,的中线,BC=10BC=10BC=10,,∴BD=DC=DC 1=5=5,,∴△B ∴△BDC DC 1为等边三角形,∴BC 1=BD=5=BD=5..16.故本题答案为7516. 考点:翻折变换(折叠问题). 分析:由翻折的性质知D′F=DF,D′F=DF,CE=AE CE=AE CE=AE,且,且CE=BC-BE 长,再证得△ABE≌△AD′F,有AF=AD-FD AF=AD-FD,则,则S△A E F =12AF•AB.AF•AB. 解答:解:由题意知,D′F=DF,解:由题意知,D′F=DF,CE=AE CE=AE CE=AE,, 在Rt△ABE 中,中,AB AB 2+BE 2=AE 2,AB 2+BE 2=(BC-BE BC-BE))2,即32+BE 2=(4-BE 4-BE))2,解得:解得:BE=BE=78, ∵∠D′AF+∠EAF=∠EAF+∠BAE=90°,∴∠D′AF=∠BAE ∴∠D′AF=∠BAE又∵∠D′=∠B=90°,AD′=CD=AB 又∵∠D′=∠B=90°,AD′=CD=AB∴△D′AF≌△BAE ∴△D′AF≌△BAE∴FD=D′F=BE=78. ∴AF=AD ∴AF=AD-FD=4- -FD=4- 78 =258∴S △A E F =12 AF•AB=12 ×258 ×3=7516 . 故本题答案为7516 .考点:翻折变换(折叠问题).点评:本题利用了折叠的性质:折叠是一种对称本题利用了折叠的性质:折叠是一种对称变换变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.,故由,故由勾股定理勾股定理求得BE 的点评:本题考查了翻折的性质,本题考查了翻折的性质,全等三角形全等三角形的判定和性质、勾股定理. 17.故应填78°. 专题:压轴题.分析:在图①的△ABC 中,根据中,根据三角形内角和三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD 中,得到另一个关于∠B、∠C 度数的等量关系式,联立两式即可求得∠B 的度数.的度数.解答:解:在△ABC 中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD 中,则有:∠CBD+∠BCD=180°中,则有:∠CBD+∠BCD=180°--82°,即:82°,即:13 ∠B+∠C=98°…②;①-②,得:23∠B=52°,∠B=52°, 故应填 3 .考点:翻折变换(折叠问题). 专题:压:解:连接CB′.cos∠ACB=cos30°=a:解答题19.考点:全等三角形的判定;三角形内解得∠B=78°.解得∠B=78°.点评:此题主要考查的是图形的折叠此题主要考查的是图形的折叠变换变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B 和∠CBD 的倍数关系是解答此题的关键.关系是解答此题的关键.18.轴题. 分析:连接CB′.由于B'B'为长方形纸片为长方形纸片ABCD 的对称中心,∴AB′C 是矩形的对角线.角线.由折叠的性质知可得△ABC 三边关系求解.三边关系求解.解答由于B'B'为长方形纸片为长方形纸片ABCD 的对称中心,∴AB′C 是矩形的是矩形的对角对角线.线.由折叠的性质知,AC=2AB′=2AB=2b,由折叠的性质知,AC=2AB′=2AB=2b,∴sin∠ACB=AB:∴sin∠ACB=AB:AC=1AC=1AC=1::2,∴∠ACB=30°.∴∠ACB=30°.b= 3 3 ..点评:本题利用了:本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、矩形的性质,锐角三角函数的概念求解.角和定理;翻折变换(折叠问题). 专题:操作型;探究型.分析:(1)根据折叠就可写出一对全等三角形,根据折叠,则重合的)根据折叠就可写出一对全等三角形,根据折叠,则重合的顶点顶点是对应点,重合的角是对应角;点,重合的角是对应角;(2)根据全等三角形的对应角相等,以及平角的定义进行表示;(3)根据()根据(22)中的表示方法,可以求得∠1+∠2,再找到∠A 和x 、y 之间的关系,就可建立它们之间的联系.系,就可建立它们之间的联系.解答:解:(1)△EAD≌△EA'D,其中∠EAD=∠EA'D,∠AED=∠A'ED,∠ADE=∠A'DE;(2)∠1=180°)∠1=180°-2x -2x -2x,∠2=180°,∠2=180°,∠2=180°-2y -2y -2y;;(3)∵∠1+∠2=360°)∵∠1+∠2=360°-2-2-2((x+y x+y)=360°)=360°)=360°-2-2-2(180°(180°(180°--∠A)=2∠A.∠A)=2∠A.规律为:∠1+∠2=2∠A.)(8分)分)点评:根据图形,找出需要的点的坐标即可根据图形,找出需要的点的坐标即可21.考点评:在研究折叠问题时,有全等形出现,要充分利用全等的性质.20.考点:作图-轴对称变换.专题:作图题;压轴题;网格型.分析:考查平面直角坐标系的基本知识,但同时也考查了考查平面直角坐标系的基本知识,但同时也考查了待定系数法待定系数法, 解答:解:(1)A (-1-1,,3),B (-4-4,,2.(2分)分)(2)解法1:∵:∵直线直线MN 经过坐标原点,经过坐标原点,∴设所求函数的关系式是y=kx y=kx,,又点M 的坐标为(的坐标为(11,2), ∴k=2.(3分)分)∴直线MN 所对应的函数关系式是y=2x y=2x..(4分)分)解法2:设所求函数的关系式是y=kx+b y=kx+b,,则由题意得:îïíïìb =0 k +b =2, 解这个解这个方程组方程组,得îïíïìk =2 b b==0 ,(6分)分)∴直线MN 所对应的函数关系式是y=2x y=2x..(3)利用)利用直尺直尺和圆规,作线段AB 关于直线MN 的对称图形A′B′,如图所示.点:作图-轴对称变换.专题:作图题;压轴题;网格型.分析:在平移时要注意平移的方向和平移的距离.确定平移的方向和距离,先确定一组对应点;确定图形中的确定图形中的关键点关键点;利用第一组对应点和平移的性质确定图中所有关键点的对应点;按原图形顺序依次连接对应点,按原图形顺序依次连接对应点,所得到的图形即为平移后所得到的图形即为平移后的图形.的图形.轴对称图形轴对称图形对应点到对称轴的距离相等,对应点到对称轴的距离相等,利用此性质找对应点,利用此性质找对应点,利用此性质找对应点,顺次连顺次连接即可.接即可.解答:解:作图如右图:解:作图如右图:分析:(1)根据网格可以看出三角形的底AB 是5,高是C 到AB 的距离,是3,解:(1)画出对应点的位置,连接即可.画出对应点的位置,连接即可.点评:本题考查的是平移变换与轴对称变换本题考查的是平移变换与轴对称变换作图作图.作平移图形时,作平移图形时,找找关键点的对应点也是关键的一步.的对应点也是关键的一步.平移作图的一般步骤为:平移作图的一般步骤为:平移作图的一般步骤为:①①确定平移的方向和距离,确定平移的方向和距离,先确定一组对应点;先确定一组对应点;先确定一组对应点;②确定图形中的关键点;②确定图形中的关键点;②确定图形中的关键点;③利用第③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作轴对称后的图形的依据是作轴对称后的图形的依据是轴对称的性质轴对称的性质,基本作法是①先确定图形的关键点;②利用轴②利用轴对称性对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.22.考点:作图-轴对称变换.专题:综合题.利用面积公式计算.利用面积公式计算. (2)从三角形的各)从三角形的各顶点顶点向y 轴引轴引垂线垂线并延长相同长度,找对应点.顺次连接即可.可.(3)从图中读出新三角形三点的坐标.)从图中读出新三角形三点的坐标.解答:S △A B C =12 ×5×3=152(或7.57.5))(平方单位).(2)如图.)如图.(3)A 1(1,5),B 1(1,0),C 1(4,3).点评:本题综合考查了三角形的面积,网格,本题综合考查了三角形的面积,网格,轴对称图形轴对称图形,及直角坐标系,学生对所学的知识要会灵活运用.对所学的知识要会灵活运用.23.故本题答案为(-2,0),(4,4). 考点:作图-轴对称变换.专题:压轴题;规律型.分析:(1)点P 关于点A 的对称点M ,即是连接PA 延长到M 使PA=AM PA=AM,所以,所以M 的坐标是,N (4,4); 故答案为:故答案为:M M (-2-2,,0),N (4,4);(2)棋子跳动3次后又回点P 处,且2008÷3=669…1,所以经过第2008次跳动后,棋子落在点M 处,处,∴PM ∴PM==OM 22+OP 22 =22+22 =2 2 2 ..答:经过第2008次跳动后,棋子落点与P 点的距离为2 2 2 ..点评:考查学生对点对称意义的理解及学生在新的知识环境下运用所学知识的能力.本题着重考查学生探索规律和计算能力.24.考点:作图-轴对称变换.专M (-2-2,,0),点M 关于点B 的对称点N 处,即是连接MB 延长到N 使MB=BN MB=BN,,所以N 的坐标是N (4,4);(2)棋子跳动3次后又回点P 处,所以经过第2008次跳动后,棋子落在点M 处,根据处,根据勾股定理勾股定理可知PM 的值.的值.解答:解:(1)M (-2-2,,0)题:网格型.分析:(1)从三角形的三边向y 轴引轴引垂线垂线,并延长相同的距离找到三点的对称点,顺次连接.顺次连接.(2)从图形中找出点C′,并写出它的坐标.C′,并写出它的坐标.解答:解:(1)如图;)如图;(2)根据)根据轴对称图形轴对称图形的性质可:C′(的性质可:C′(44,3). 点评:本题主要考查了轴对称图形的作法,注意本题主要考查了轴对称图形的作法,注意画轴对称图形画轴对称图形找关键点的对称点然后顺次连接是关键.然后顺次连接是关键.25.考点:作图-轴对称变换.专题:网格型.分析:根据点关于y 轴对称的特点找出各点的对称点,然后顺次连线即可. 解答:解:(1)A (-3-3,,3),B (-5-5,,1),C (-1-1,,0);(3分)分)(2)如上图.)如上图.26.考点:作图-轴对称变换.专题:网格型.分析:(1)分别作A、B 、C 关于MN 的对称点,顺次连接即可;的对称点,顺次连接即可;(2)可在△ABC 所在的2×3的网格中求面积.解答:解:(1)作图正确给5分;分;(2)此三角形面积为:)此三角形面积为:S △A B C =S 矩形D E C F -S △A B D -S △A C F -S △B E C=2×3=2×3--2×(较到位,学生需要学会触类旁通,举一反三.27.考点:作图-轴对称变换.专题:网格型.分析:(1)用矩形面积减去周围三角形面积即可;(2)画一个面积为解答:解:(1)根据面积公式得:方法一:)根据面积公式得:方法一:S=S=12×6×4=12;×6×4=12; 方法二:S=4×6方法二:S=4×6- - 12 ×2×1×2×1- - 12 ×4×1×4×1- - 12 ×3×4×3×4- - 12×2×3=12;×2×3=12; (2)(只要画出一种即可)(只要画出一种即可) 12 ×1×2)×1×2)- - 12 ×1×3=6×1×3=6-2- -2- 32 =52.(5分)分) 点评:此题考查此题考查轴对称图形轴对称图形的作法、动手操作、面积的计算,对综合能力考查比12的等腰三角形,即底和高相乘为24即可.即可.(8分)对称轴:折痕所在的这条直线叫做对称轴.28.故应填-4,1.考点:作图-轴对称变换.点评:解答此题要明确:如果一个图形沿着一条解答此题要明确:如果一个图形沿着一条直线直线对折,直线两侧的图形能够完全重合,这个图形就是完全重合,这个图形就是轴对称图形轴对称图形;专题:网格型.分析:将“小猪”所占的面积转化为三角形和将“小猪”所占的面积转化为三角形和四边形四边形面积的和来解答,合理地进行图形的移动和变换是做此题的关键.解答:解:(1)4×4×12 +8×3×12 +1×1×12=32.5 =32.5;;(3分)分) (2)(画图)(6分)分)(3)(-4-4,,1).(7分)分)点评:解答此题要明确解答此题要明确轴对称的性质轴对称的性质:①对称轴是一条直线.①对称轴是一条直线.②垂直并且平分一条②垂直并且平分一条线段线段的直线称为这条线段的垂直平分线,的直线称为这条线段的垂直平分线,或中或中或中垂线垂线.线段垂直平分线上的点到线段两端的距离相等.③在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等. ④在轴对称图形中,对称轴把图形分成完全相等的两份.⑤如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.直平分线.29.故应填3 .考点:作图-轴对称变换.专题:作图题.。
轴对称图形练习题及答案
轴对称图形练习题及答案轴对称图形是指在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是这个图形的对称轴。
以下是一些轴对称图形的练习题及答案。
练习题1:判断下列哪些图形是轴对称图形,并找出它们的对称轴。
- 三角形- 矩形- 圆形- 等边三角形- 等腰梯形答案1:- 三角形:不是所有三角形都是轴对称图形,只有等腰三角形和等边三角形是轴对称图形。
- 矩形:是轴对称图形,有两条对称轴,分别是两条对角线。
- 圆形:是轴对称图形,有无数条对称轴,每条都是通过圆心的直线。
- 等边三角形:是轴对称图形,有三条对称轴,分别是三条中线。
- 等腰梯形:是轴对称图形,有一条对称轴,是两底边的垂直平分线。
练习题2:如果一个轴对称图形的对称轴是垂直于地面的直线,那么这个图形在地面上的投影是什么形状?答案2:如果轴对称图形的对称轴垂直于地面,那么这个图形在地面上的投影将是该图形的轴对称图形的一半,且投影的形状与原图形相同。
练习题3:给定一个轴对称图形,如果将其沿对称轴旋转180度后,图形的位置和形状会发生什么变化?答案3:如果将一个轴对称图形沿其对称轴旋转180度,图形的位置会发生变化,但是形状不会改变。
旋转后,图形的每个点都会移动到其对称点上,但整个图形的形状与原来完全相同。
练习题4:在几何设计中,如何利用轴对称性来简化设计过程?答案4:在几何设计中,可以利用轴对称性来简化设计过程。
首先,设计图形的一半,然后通过对称轴复制另一半,这样可以确保图形的对称性和平衡性。
这种方法可以减少设计时间,提高设计效率。
练习题5:如果一个轴对称图形的对称轴是水平的,那么这个图形的对称点之间有什么关系?答案5:如果一个轴对称图形的对称轴是水平的,那么这个图形的对称点之间在垂直方向上是等距离的。
也就是说,对称点的垂直坐标相同,而水平坐标则关于对称轴对称。
通过这些练习题和答案,可以帮助学生更好地理解和掌握轴对称图形的概念和性质。
轴对称的性质测试题(有答案)-教学文档
轴对称的性质测试题(有答案)下面是查字典数学网为您推荐的轴对称的性质测试题(有答案),希望能给您带来帮助。
轴对称的性质测试题(有答案)1、如图所示的两位数中,是轴对称图形的有 ( )A. 1个B.2个C.3个D.4个2、下列说法不正确的是 ( )A.两个关于某直线对称的图形一定全等B. 对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称3、请按要求画图并回答问题:(1)画线段AB; (2)画AB的中垂线MN,垂足为O;(3)在MN上任取一点P,连接PA、PB ,PA =PB吗?为什么?(4)B吗? APO= BPO吗?为什么?(5)再在MN上任取一点Q,连接QA、QB,那么PAQ= PBQ吗?4、如图表示长方形纸片ABCD沿对角线BD折叠后的情况,图中有没有关于某条直线对称的图形?如有,请作出对称轴,有没有相等的线段、相等的角(不含直角)?如有,请写出相等的线段、相等的角.八. 【课后作业】及时巩固、查漏补缺1、下列说法正确的是 ( )A.直线上的一点关于直线的对称点不存在B.关于直线对称的两个图形全等C.△ABC和△A1B1C 1关于直线对称,则△ABC是轴对称图形D.AD是△ABC的中线,若ABAC,则△ABC关于AD对称的图形不存在2、一束太阳光垂直照到水平地面上,小明想利用平面镜反射的太阳光观察一个呈水平方向的小洞内的情况,则平面镜与水平面所成的锐角的度数为( )A.45B.60C.70D.803、作出下列图形的对称轴:4、如图:直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC③ AO=CO;④ABBC.其中正确的有__________.5、如图,矩形CDEF的台球面上有位于点A、B两球,试问怎样撞击球 A,使球A先碰到台边EF反弹后再击中球B?更多初二数学试题,请关注查字典数学网。
北师大七年级下《5.2探索轴对称的性质》同步练习含答案
5.2 探索轴对称的性质基础训练1.如图,已知△A'B'C'与△ABC关于直线MN对称,则MN垂直平分__________.2.如图,正方形ABCD的边长为 4 cm,则图中阴影部分的面积为____________.3.如图,△ABC与△DEF关于直线MN对称,则以下结论中错误的是( )A.AB∥DFB.∠B=∠EC.AB=DED.A,D两点所连的线段被MN垂直平分4.如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是( )A.AM=BMB.AP=BNC.∠MAP=∠MBPD.∠ANM=∠BNM5.如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM=BM=AM,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A的度数是( )A.30°B.40°C.50°D.60°6.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC 边上的点E处,若∠A=22°,则∠BDC等于( )A.44°B.60°C.67°D.77°7.如图,在长方形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将长方形ABCD沿EF折叠,使点A,D分别落在长方形ABCD外部的点A1,D1处,则阴影部分图形的周长为( )A.15B.20C.25D.308.如图,△ABC和△A'B'C'关于直线l对称.(1)△ABC△A'B'C';(2)A点的对应点是,C'点的对应点是;(3)连接BB'交l于点M,连接记分'交l于点N,则BM= ,记分'与BB'的位置关系是;(4)直线l 记分'.9.如图,在由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有个.10.请画出已知图形(如图所示)关于直线l的对称图形.(保留作图痕迹,不写画法)11.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有多少个?画出图形.提升训练12.如图,在△ABC中,AB=AC,DE是△AB E的对称轴,△BCE的周长为14,BC=6,求AB的长.13.如图,将长方形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G处,EF为折痕.(1)试说明:△FGC≌△EBC;(2)若AB=8,AD=4,求四边形ECGF(阴影部分)的面积.14.如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F.试说明:点E,F关于AD对称.15.如图,在△ABC中,D,E为AC边上的两个点,试在AB,BC上分别取一个点M,N,使四边形DMNE的周长最小.16.如图,把△ABC沿DE折叠,使点A落在四边形BCDE内部的点A'处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少(用含有x或y的式子表示)?(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.参考答案1.【答案】记分',BB',CC'2.【答案】8 cm23.【答案】A4.【答案】B解:因为直线MN是四边形AMBN的对称轴,所以点A与点B对应.所以AM=BM,AN=BN,∠ANM=∠BNM.又因为点P是直线MN上的点,所以∠MAP=∠MBP.故选B.5.【答案】A解:因为∠A<∠B,AM=CM=BM,所以∠A=∠MCA.因为将△ACM沿CM折叠,点A落在点D处,所以CM平分∠ACD,∠A=∠D.所以∠ACM=∠DCM.因为CD⊥AB,所以∠B+∠BCD=90°.因为∠A+∠B=90°,所以∠A=∠BCD.所以∠BCD=∠DCM=∠MCA=30°.所以∠A=30°.6.【答案】C解:因为∠ACB=90°,∠A=22°,所以∠B=90°-∠A=68°.由折叠知,∠BCD=∠ACD=×90°=45°.所以∠BDC=180°-∠B-∠BCD=67°.7.【答案】D解:由折叠知,DF=D1F,AD=A1D1=BC=5,AE=A1E.所以阴影部分图形的周长=A1E+EB+A1D1+FD1+FC+CB=AB+AD+DC+BC=(10+5)×2=30. 8.【答案】(1)≌(2)A'点;C点(3)B'M;互相平行(4)垂直平分解:直接由轴对称的性质得出.9.【答案】310.解:如图.11.解:如图,与△ABC成轴对称且也以格点为顶点的三角形有5个.分别为△BCD,△BFH,△ADC,△AEF,△CGH.12.解:因为DE是△ABE的对称轴,所以AE=BE.所以C△BCE=BC+CE+BE=BC+CE+AE=BC+AC=14.因为BC=6,所以AC=8.所以AB=AC=8.13.解:(1)因为∠GCF+∠FCE=90°,∠FCE+∠BCE=90°,所以∠GCF=∠BCE.又因为∠G=∠B=90°,GC=BC,所以△FGC≌△EBC.(2)由(1)知,DF=GF=BE,所以四边形ECGF的面积=四边形AEFD的面积===16.14.解:如图,连接EF交AD于点G,因为AD平分∠BAC,所以∠EAD=∠FAD.又因为∠AED=∠AFD,AD=AD,所以Rt△ADE≌Rt△ADF(记分S).所以AE=AF.又∠EAG=∠FAG,AG=AG,所以△AEG≌△AFG.所以EG=FG,∠AGE=∠AGF.又∠AGE+∠AGF=180°,所以∠AGE=∠AGF=90°.所以AD垂直平分EF.所以点E,F关于AD对称.15.解:如图,(1)作点D关于直线AB的对称点D',作点E关于直线BC的对称点E'.(2)连接D'E'交AB于点M,交BC于点N.(3)连接DM,EN.四边形DMNE就是符合要求的四边形,此时周长最小.16.解:(1)△EAD≌△EA'D,其中∠EAD=∠EA'D,∠AED=∠A'ED,∠ADE=∠A'DE.(2)∠1=180°-2x,∠2=180°-2y.(3)∠1+∠2=360°-2(x+y)=360°-2(180°-∠A)=2∠A.规律为∠1+∠2=2∠A.。
轴对称测试题及答案
轴对称测试题及答案一、选择题(每题3分,共30分)1. 下列图形中,哪一个是轴对称图形?A. 不规则多边形B. 等腰三角形C. 任意四边形D. 圆形答案:B、D2. 轴对称图形的定义是什么?A. 一个图形关于某条直线对称B. 一个图形关于某点对称C. 一个图形关于某面对称D. 一个图形关于某曲线对称答案:A3. 一个图形关于一条直线对称,那么这条直线被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:A4. 下列哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 半圆形D. 非等腰的梯形答案:D5. 一个图形关于某点对称,那么这个点被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:B6. 一个图形关于某面对称,那么这个面被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:C7. 轴对称图形的对称轴可以有多少条?A. 0条B. 1条C. 2条D. 无数条答案:D8. 一个图形关于某条直线对称,那么这条直线将图形分成的两部分是:A. 完全相同B. 完全相反C. 部分相同D. 完全不同答案:A9. 轴对称图形的对称轴一定是:A. 直线B. 曲线C. 点D. 面答案:A10. 下列哪个图形不是轴对称图形?A. 正五边形B. 正六边形C. 正七边形D. 正八边形答案:C二、填空题(每题4分,共20分)1. 一个图形关于一条直线对称,那么这条直线被称为______。
答案:对称轴2. 轴对称图形的定义是:一个图形关于某条直线对称,那么这条直线将图形分成的两部分是______。
答案:完全相同3. 一个图形关于某点对称,那么这个点被称为______。
答案:对称中心4. 轴对称图形的对称轴可以有______条。
答案:无数5. 一个图形关于某面对称,那么这个面被称为______。
答案:对称面三、简答题(每题5分,共10分)1. 请说明什么是轴对称图形,并给出一个例子。
八年级第十三章轴对称典型例题
八年级第十三章轴对称典型例题一、关于轴对称图形概念的例题。
例题1:下列图形中,是轴对称图形的是()A. 平行四边形。
B. 三角形。
C. 梯形。
D. 正方形。
解析:1. 首先分析平行四边形,沿任何一条直线对折后,直线两侧的部分都不能完全重合,所以平行四边形不是轴对称图形。
2. 三角形有多种类型,一般三角形不是轴对称图形,但等腰三角形和等边三角形是轴对称图形,这里说三角形太笼统,不能确定是轴对称图形。
3. 梯形中,一般梯形不是轴对称图形,等腰梯形是轴对称图形,这里说梯形不准确。
4. 正方形沿两条对角线所在直线以及两组对边中点连线对折,直线两侧的部分都能完全重合,所以正方形是轴对称图形。
答案为D。
例题2:正六边形的对称轴有()条。
A. 3.B. 6.C. 9.D. 12.解析:1. 正六边形可以分别沿三组对边中点连线以及三条对角线所在直线对折后完全重合。
2. 所以正六边形的对称轴有6条。
答案为B。
二、线段垂直平分线性质的例题。
例题3:如图,在△ABC中,AB = AC,DE是AB的垂直平分线,△BCE的周长为14,BC = 6,则AB的长为()A. 4.B. 6.C. 8.D. 10.解析:1. 因为DE是AB的垂直平分线,根据线段垂直平分线的性质,可得AE = BE。
2. 已知△BCE的周长为14,即BE + EC+BC = 14。
3. 又因为AE = BE,所以AC+BC=14。
4. 已知BC = 6,所以AC = 14 - 6=8。
5. 因为AB = AC,所以AB = 8。
答案为C。
例题4:已知点P在直线l外,点A、B在直线l上,且PA = PB,则直线l与线段AB的关系是()A. l垂直但不平分AB。
B. l平分但不垂直AB。
C. l垂直且平分AB。
D. l与AB相交但不一定垂直平分。
解析:1. 因为点P在直线l外,PA = PB,所以点P在线段AB的垂直平分线上。
2. 又因为两点确定一条直线,所以直线l是线段AB的垂直平分线。
北师大七级下《探索轴对称的性质》练习含答案
《探索轴对称的性质》练习一、选择——基础知识运用1.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变2.如图,正六边形ABCDEF关于直线l的轴对称图形是六边形A′B′C′D′E′F′,下列判断错误的是()A.AB=A′B′B.BC∥B′C′C.直线l⊥BB′D.∠A′=120°3.下列语句中,正确的个数有()①两个关于某直线对称的图形是全等的②两个图形关于某直线对称,对称点一定在该直线的两旁③两个成轴对称的图形的对应点连线的垂直平分线,就是它们的对称轴④平面内两个全等的图形一定关于某直线对称.A.1个B.2个C.3个D.4个4.如图,△ABC和△A′B′C′关于直线对称,下列结论中:①△ABC≌△A′B′C′;②∠BAC′=∠B′AC;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上,正确的有()A.4个B.3个C.2个D.1个5.已知△ABC关于直线MN对称,则下列说法错误的是()A.△ABC中必有一个顶点在直线MN上B.△ABC中必有两个角相等C.△ABC中,必有两条边相等D.△ABC中必有有一个角等于60°二、解答——知识提高运用6.如图,△ABC和△A′B′C′关于直线l对称,求证:△ABC≌△A′B′C′.若△ABC≌△A′B′C′,那么△ABC和△A′B′C′一定关于某条直线l对称吗?若一定请给出证明,若不一定请画出反例图。
7.如图,△ABC和△A′B′C′关于直线m对称。
(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其它对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流。
8.如图所示,已知O是∠APB内的一点,点M、N分别是O点关于PA、PB的对称点,MN与PA、PB分别相交于点E、F,已知MN=5cm,求△OEF的周长。
轴对称基本性质练习题
轴对称基本性质练习题对应点为B和B',对应线段为BC和B'C,对应角为∠B 和∠B'8.答案因汉字不同而异,有些字的笔划在对称轴上,例如“人”字的横笔划就在中间9.周长为10cm10.见下图探索轴对称的性质一、填空题:(每题8分,共24分)1.设A、B两点关于直线MN轴对称,则线段AB垂直平分MN。
2.若直角三角形是轴对称图形,则其三个内角的度数分别为45°、45°和90°。
3.已知直角三角形ABC中,斜边AB=2BC,以直线AC 为对称轴,点B的对称轴是B′,如图所示,则与线段BC相等的线段是B′C,与线段AB相等的线段是BB′和AB′,与∠B 相等的角是∠BAB′和∠B′,因此,∠B=60°。
二、选择题:(每题8分,共24分)4.下列说法正确的是B.关于某条直线的对称的两个三角形一定全等。
5.下列说法中正确的有①角的两边关于角平分线对称;②两点关于连结它的线段的中垂线为对称;③成轴对称的两个三角形的对应点、或对应线段、或对应角也分别成轴对称;④到直线L距离相等的点关于L对称。
答案为C.3个。
6.下列说法错误的是A.等边三角形是轴对称图形。
三、解答题:(每题13分,共52分)7.图A是轴对称图形,对应点为B和B',对应线段为BC 和B'C,对应角为∠B和∠B'。
8.答案因汉字不同而异,有些字的笔划在对称轴上,例如“人”字的横笔划就在中间。
9.周长为10cm。
10.见下图。
注:已删除明显有问题的段落,小幅度改写了每段话,使其更易读懂。
)如果以EF为对称轴,那么点A和点B、点M和点N、点C和点D等就是对称点。
线段AG和BH、CM和DN、PG 和PH等是对应线段,∠A和∠B、∠C和∠D、∠AMC和∠BND等是对应角。
根据题目中的条件,可以得知P、P1、P2关于OA、OB 对称。
因此,PM=P1M,PN=P2N。
由此可以得出△XXX的周长为P1P2,即5cm。
生活中的轴对称(经典例题)
班级小组姓名成绩(满分120)一、轴对称现象(一)轴对称和轴对称图形(共4小题,每题3分,题组共计12分)例1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个例1.变式1.下列图形中对称轴最多是()A.圆B.正方形C.角D.线段例1.变式2.如图所示的图形是由棋子围成的正方形图案,图案的每条边有4个棋子,这个图案有条对称轴.例1.变式3.如图所示的方格纸中,请你把任意五个方格涂黑,使这五个方格构成一个轴对称图形(图形不能重复,至少设计三个)二、探索轴对称的性质(一)轴对称的性质(共4小题,每题3分,题组共计12分)例2.下列说法:①长方形的对称轴有两条;②角是轴对称图形,它的平分线就是它的对称轴;③两点关于连接它们的线段的垂直平分线对称.其中正确的有()A.1个B.2个C.3个D.0个例2.变式1.如图,△ABC与△A'B'C'关于直线l对称,且∠A=78°,∠C'=48°,则∠B的度数为()A.48°B.54°C.74°D.78°例2.变式2.如图所示,AC垂直平分线段BD,若AB=3cm,CD=5cm,则四边形ABCD的周长是()A.11cmB.13cmC.16cmD.18cm例2.变式3.如图,把一张长方形纸ABCD折叠,使点C与点A重合,折痕为EF.如果∠DEF=123°,那么∠BAF=.(三)轴对称的性质及应用(共4小题,每题3分,题组共计12分)例3.轴对称图形对应点连线被,对应角、对应线段都.例3.变式1.如图,∠AOB内有一点P,分别画出P关于OA,OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长为多少?例3.变式2.如图,将长方形纸片ABCD沿其对角线AC折叠,使点B落到点B'的位置,AB'与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.16B.19C.22D.25例3.变式3.如图,在△ABC中,∠ACB=90°,点D在边AB上,连接CD,将△BCD沿CD翻折得到△ECD,使DE∥AC,CE交AB于点F,若∠B=α,则∠ADC的度数是(用含α的代数式表示).三、简单的轴对称图形(一)等腰三角形的性质(共4小题,每题3分,题组共计12分)例4.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.腰上的高所在的直线D.顶角平分线所在的直线例4.变式1.等边三角形对称轴的条数是()A.1B.2C.3D.4例4.变式2.如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9例4.变式3.等腰三角形中有一个角是50°,那么这个等腰三角形的底角是.(二)等腰三角形的性质二(共4小题,每题3分,题组共计12分)例5.下列说法中正确的是()A.关于某条直线对称的两个三角形是全等三角形B.全等三角形一定是关于某条直线对称的C.两个图形关于某条直线对称,则这两个图形一定分别位于这条直线的两侧D.若A,B两点关于直线MN对称,则AB垂直平分MN例5.变式1.如图,BD是△ABC的角平分线,∠ABD=36°,∠C=72°,则图中的等腰三角形有个.例2.变式2.如图,在△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=.例5.变式3.有一个三角形的支架如图所示,AB=AC,小明过点A和BC边的中点D又架了一个细木条,经测量∠B=30°,你在不用任何测量工具的前提下,能得到∠BAD和∠ADC的度数吗?(三)线段和角的轴对称性(共4小题,每题3分,题组共计12分)例6.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是()A.3B.4C.5D.6例6.变式1.如图所示,下列推理中正确的个数是()①因为OC平分∠AOB,点P,D,E分别在OC,OA,OB上,所以PD=PE;②因为P在OC上,PD⊥OA,PE⊥OB,所以PD=PE;③因为P在OC上,PD⊥OA,PE⊥OB,且OC平分∠AOB,所以PD=PE.A.0B.1C.3D.4例6.变式2.小明把一张长方形的纸对折了两次,如图所示,使A,B都落在DC上,折痕分别是DE,DF,则∠EDF的度数为.例6.变式3.如图,已知△ABC中,DE垂直平分AC,且交AC于点E,交BC于点D,△ABD的周长是20,AC=8,你能计算出△ABC的周长吗?(四)等腰(边)三角形的性质的综合应用(共4小题,每题3分,题组共计12分)例7.在△ABC中,若BC=AC,∠A=58°,则∠C=,∠B=.例7.变式1.等边三角形的两条中线相交所成的钝角度数是.例7.变式2.如图P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,则∠BAC=.例7.变式3.如图,已知△ABC中,∠C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连接AD,若∠B=37°,求∠CAD的度数.(五)轴对称图形的综合运用(共4小题,每题3分,题组共计12分)例8.如图所示,△ABC中,∠B与∠C的平分线相交于点O,过点O作MN∥BC,分别交AB,AC于点M,N,若AB=6cm,AC=9cm,BC=12cm,则△AMN的周长为.例8.变式1.如图所示,将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上,则图中等腰三角形有个.例8.变式2.如图所示,在△ABC中,AB=AC,AD⊥BC于D,AB+AC+BC=50cm,AB+BD+AD=40cm,则AD=cm.例8.变式3.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;照这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.(六)轴对称图形的综合运用二(共4小题,每题3分,题组共计12分)例9.如图,D,E是△ABC的BC边上的两点,且BD=DE=EC=AD=AE,求∠BAC的度数.例9.变式1.如图,∠1=∠2,AE⊥OB于点E,BD⊥OA于点D,AE,BD交于点C,试说明AC=BC.例9.变式2.如图所示,△ABC是等边三角形,点D是AC的中点,DE∥AB,AE∥BC,DE与AE交于点E,点G是AE的中点,GF∥DE,EF∥AC,EF交GF于点F,若AB=4cm,则图形ABCDEFG的外围的周长是多少?例9.变式3.如图,△ABC中,AB=2AC,∠1=∠2,DA=DB,你能说明DC⊥AC吗?四、利用轴对称进行设计(共4小题,每题3分,题组共计12分)例10.如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形例10.变式1.如左下图,将一张正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个大小相等的圆洞,最后将正方形纸片展开,得到的图案是右下图中的()例10.变式2.当你面对镜子的时候,右手拿笔向左挥动,对于镜子中的像来说是()A.右手拿笔,向右挥动B.左手拿笔,向左挥动C.右手拿笔,向左挥动D.左手拿笔,向右挥动例10.变式3.某一车牌在平面镜中的像是,则这辆车的实际号码是()。
探索轴对称图形的性质习题精选
探索轴对称图形的性质习题精选一、选择题1.在“工、木、口、民、公、晶、离”这几个汉字中,是轴对称的有( )A.2个 B.3个 C.4个 D.5个2.将写有“K”字母的纸条垂直于镜面放置,则在镜中所成的像有 ( )A.1种 B.2种 C.3种 D.4种3.从平面镜里看到背后墙上电子钟显示数如图7—88所示,这时的时间应是 ( )A.21:05 B.21:15 C.20:15 D.20:054.图7—89是从镜子中看到的一串数,这串数字应为( )A.67018 B.81076 C.97018 D.81079二、填空题1.一位足球运动员穿着“”号球衣走到镜子前,他发现在镜中球衣号码变成了_________.2.前后两辆摩托车,从前面一辆的反光镜中看到后面一辆的车牌号是“”,则后面摩托车的实际号码就是__________.3.“”在水中的倒影是__________.4.从镜中看到一串数字,则这串数字应该是_____________.5.我们把左右数字排列对称的自然数叫做回文数.请你写出下列回文数是由哪个数的平方得到的(可借助计算器):(1)()2____________121=(2)()2____________14641=(3)()2____________12321=(4)()2____________123454321=(5)()2____________543211234567876= (6) ()2____________40804=(7)()2____________44944=三、解答题1.已知:如图7—90,在△ABC中,∠ACB=90°,M为AB的中点,∠PMQ=90°.求证:222BQAPPQ+=.2.如图7—91,在河岸的同侧有A、B两村,在河边修一水泵站P,使所用的水管最短,另修一码头Q,使Q与A、B两村的距离相等.试画出P、Q所在的位置.3.如图7—92,在△ABC中,AB=AC,E是AB中点,延长AB到D,使BD=BA.求证:CD=2CE.4.如图7—93,在△AB C 中,∠B=2∠C,AD 是∠BAC 的平分线.求证:AC =AB +BD .5.如图7—94,在△ABC 中,AB =AC ,D 是BA 上一点,求证:()BD CD AB +>21.《生活中的轴对称》测试题一、选择题(每小题3分,共30分)1. 如图所示,下列图案是我国几家银行的标志,其中不是轴对称图形的是( )2.从镜子中看到钟的时间是8点25分,正确的时间应是几点?( )A.3点25分B.3点30分C.3点35分D.3点45分 3. 国旗是一个国家的象征,观察下面的国旗,是轴对称图形的是( )A.加拿大、哥斯达黎加、乌拉圭B.加拿大、瑞典、澳大利亚C.加拿大、瑞典、瑞士D.乌拉圭、瑞典、瑞士加拿大 哥斯达黎加 澳大利亚 乌拉圭 瑞典 瑞士4. 下列图形中,是轴对称图形的有( )个.①角;②线段;③等腰三角形;④等边三角形;⑤三角形 . A.1个 B.2个 C. 3个 D.4个5.如右图,在桌面上竖直放置两块镜面相对的平面镜,在两镜之间放一个小皮球,那么在两镜中小皮球的像共有( )个.A.1个 B.2个 C.4个 D.无数个6.等腰三角形的一个角为100°,则它的底角为( )A.100° B.40°C.100°或40° D.不能确定7.如图,直线1l ,2l ,3l 表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) 8、小亮运动衣上的实际号码是( ) A.901 B.109 C.601D.1069. 下列图形中,不是轴对称图形的是( )A.角 B.等边三角形 C.线段 D.不等边三角形 10. 如图,把一个正方形三次对折后沿虚线剪下,得到的图形是( )二.填空题:(每小题4分,共24分)1l 3l 2l 7题5题右下方折 上折右折沿虚线剪开A BC D第1题第8题第2题A 1处C 3处 B 2处D 4处11. 如图,∠A=200,∠C=400,∠ADB=800,则∠ABD=___,∠DBC=___,12. 如图,已知DE 是AC 的垂直平分线,AB=10cm ,BC=11cm , 则ΔABD 的周长为 cm 。
《探索轴对称的性质》同步练习1
5. 2探索轴对称的性质基础训练一、选择题1 •以下结论正确的是()•A.两个全等的图形一定成轴对称B •两个全等的图形一定是轴对称图形C •两个成轴对称的图形一定全等D •两个成轴对称的图形一定不全等2.下列说法中正确的有()・①角的两边关于角平分线对称;②两点关于连接它的线段的中垂线为对称;③成轴对称的两个三角形的对应点,或对应线段,或对应角也分别成轴对称.④到直线L距离相等的点关于L对称A. 1个B・2个C. 3个D・4个3.下列说法错误的是()・A.等边三角形是轴对称图形;B.轴对称图形的对应边相等,对应角相等;C.成轴对称的两条线段必在对称轴一侧;D •成轴对称的两个图形对应点的连线被对称轴垂直平分・二、填空题4 •轴对称图形对应点连线被__________ 对应角对应线段都___________ ・5•设A、B两点关于直线MN成轴对称,则__________ 直平分________ ・三、解答题6 •找出图中是轴对称图形的图形,并找出两对对应点、两对对应线段、两对对应角.ABC7•如图,将正方形ABCD绕A点按逆时针方向旋转60°至正方形/EC,则旋转前后组成的图形是轴对称图形吗?若是轴对称图形,画出它的对称轴,并求出/ DAB的度数.能力提咼、填空题8•如图,矩形ABCD沿AE折叠,使点D落在BC边上的点F处,如果/ BAF=60°那么/ DAE二9.已知RtAABC中,斜边AB二2BC,以直线AC为对称轴,点B的对称点是£ , 如图所示,则与线段BC相等的线段是,与线段AB相等的线段是、解答题10.如图,/ AOB内一点P,分别画出P关于OA、0B的对称点Pi、巳,连接P1P2交0A于M,交0B于N,若PiP2=5cm,则厶PMN的周长为多少?参考答案1. C 2・C 3. C 4•略5•直线MN,线段AB6•图A是轴对称图形•如图,若以EF为对称轴,由点A与点乩点力与点N ,点C 与点D等是对称点,线段AG与BH, CM与DN, PG与PH等是对应线段,/ A与/B, / C与/ D, / AMC与/BND等是对应角.7•是轴对称图形,/ DAB =30°8. 15°9.B‘ C BB,, AB', / BAB, / B6O010.v P, Pi, P, P2 关于0A, 0B 对称,••• PM二PiM, PN二P2N,•••△ PMN 的周长=PiP2,•••△ PMN的周长是5cm.学习这件事,不是缺乏时间,而是缺乏努力。
北师大七年级下《5.2探索轴对称的性质》课时练习含答案解析
北师大版数学七年级下册第五单元5.2探索轴对称的性质课时练习一、选择题(共15题)1.下列说法正确的是( )A.两个全等的三角形一定关于某条直线对称B.关于某条直线的对称的两个三角形一定全等C.直角三角形是轴对称图形D.锐角三角形都是轴对称图形答案:B解析:解答:根据轴对称的性质,A全等三角形不一定关于某直线对称,故错;C直角三角形中,等腰直角三角形是轴对称图形,其他一般的直角三角形不是,故错;D锐角三角形不一定是轴对称图形,如三个角分别是50°、60°、70°的三角形就不是轴对称图形.故选B.分析:本题考察轴对称的性质,关键是把握住对称一定全等,但反过来不成立.2.下列说法中正确的有( )①角的两边关于角平分线对称; ②两点关于连结它的线段的中垂线对称③成轴对称的两个三角形的对应点,或对应线段,或对应角也分别成轴对称④到直线l距离相等的点关于l对称A.1个B.2个C.3个D.4个答案:B解析:解答:根据轴对称的性质,①应该为角的两边关于“角平分线所在直线”对称; ②“两点关于连结它的线段的中垂线对称”正确;③“成轴对称的两个三角形的对应点,或对应线段,或对应角也分别成轴对称”正确;④“到直线l距离相等的点关于l对称”不正确;故选B.分析:本题容易出错的是最后一个,可以通过下图来说明:AB3.下列说法错误的是( )A.等边三角形是轴对称图形;B.轴对称图形的对应边相等,对应角相等C.成轴对称的两条线段必在对称轴一侧D.成轴对称的两个图形对应点的连线被对称轴垂直平分答案:C解析:解答:根据轴对称的性质可知,A 、B 、D 都成立,故选C.分析:本题思路的关键是考虑线段与对称轴的相对位置,可以通过下图来说明:l4.观察下列平面图形:其中属于轴对称图形的有( )A.1个B.2个C.3个D.4个 答案:C 解析:解答:根据轴对称的性质可知,前三个图形分别有5条、5条、3条对称轴,最后一个图形三角形内的图案没有对称轴,故选C.分析:本题思路的关键是利用轴对称的性质,不但要看图形的外部图案,还要考虑到图形的内部图案,必须沿某条直线折叠后都能够重合,才能判断是轴对称图形.5.如图所示,在桌面上坚直放置两块镜面相对的平面镜,在两镜之间放一个小凳,那么在两镜中共可得到小凳的像( )A.2个B.4个C.16个D.无数个答案:D解析:解答:∵两块镜面相对∴在每一块镜面中,都能有对方镜面的图像∴小凳在每一个镜面中都有图像∵第一镜面中的小凳都在对面镜子中有图像∴循环往复,图像无数故选D分析:本题思路的关键是利用轴对称的性质,得到镜面在对方镜子中的图像无数,相应得到小凳的图像无数,还可以通过实际操作来解决思维上的困惑.6.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是( )A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形答案:A解析:解答:∵这个三角形是轴对称图形∴一定有两个角相等∴这是一个等腰三角形∵有一个内角是60°∴根据有一个角是60°的等腰三角形是等边三角形得这是一个等边三角形分析:本题思路的关键是利用轴对称的性质,得到两个锐角相等,从而得到等腰三角形,再根据等边三角形的判定方法得到结论.7.以下结论正确的是( ).A.两个全等的图形一定成轴对称B.两个全等的图形一定是轴对称图形C.两个成轴对称的图形一定全等D.两个成轴对称的图形一定不全等答案:C解析:解答:根据轴对称的性质,可以判断A中说法错误,应该是轴对称的两个图形一定全等,反过来不对;B中前后矛盾,两个全等的图形,是指两个图形,而后面的轴对称图形是指一个图形;D中根据轴对称的性质可以知道,成轴对称的两个图形,一定全等,所以D 错;故选C.分析:此题解决的关键是正确理解成轴对称的两个图形的关系,以及轴对称图形的意义. 8.两个图形关于某直线对称,对称点一定( )A.这直线的两旁B.这直线的同旁C.这直线上D.这直线两旁或这直线上答案:D解析:解答:这是考察对成轴对称的两个图形的位置的理解,成轴对称的两个图形的对称点,或者在对称轴上,或者在对称轴两旁.故选D.分析:此题解决的关键是正确理解成轴对称的两个图形的位置关系,思维含量低.9.轴对称图形沿对称轴对折后,对称轴两旁的部分( )A.完全重合B.不完全重合C.两者都有 D.不确定答案:A解析:解答:这是直接考察轴对称图形的意义,故选A.分析:此题解决的关键是正确理解轴对称图形的意义,思维含量低.10.下面说法中正确的是( )A.设A、B关于直线MN对称,则AB垂直平分MN.B.如果△ABC≌△DNF,则一定存在一条直线MN,使△ABC与△DNF关于MN对称.C.如果一个三角形是轴对称图形,且对称轴不止一条,则它是等边三角形.D.两个图形关于MN对称,则这两个图形分别在MN的两侧.答案:C解析:解答:A中应该是直线MN垂直平分线段AB;B中错在全等,不一定对称;D中错在这两个图形不一定要在直线两侧,可以直线两侧都有.故选C.分析:此题中最不好理解的是对于D的判断,可以用下图去理解.11.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;④若B、D是对称点,则PB=PD.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个答案:D解析:解答:此题根据轴对称的性质容易得到结果,特别是对于②③④,可以通过画图来确定一下.分析:此题需要注意一下题干中的“互不平行”这个词语.否则对于②的判断就会出错. 12.下列推理中,错误的是( )A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形答案:B解析:解答:A正确;B重复且条件不足;C可以得到三个角都是60°,正确;D根据有一个角是60°的等腰三角形是等边三角形可以得到.故选B.分析:本题容易出错的是看到B选项中,既有边相等,又有角相等,就判断正确.此题不难,但是容易出错.13.对于下列命题:①关于某一直线成轴对称的两个三角形全等;②等腰三角形的对称轴是顶角的平分线;③一条线段的两个端点一定是关于经过该线段中点的直线的对称点;④如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为( )A .0B .1C .2D .3答案:B解析:解答: 根据轴对称的性质知①正确;②对称轴是直线,但顶角的平分线不是直线,故错;经过该线段中点的直线还需要垂直于这条线段才正确;④全等三角形不一定关于某直线对称,故错.综上,只有①是正确的,故选B分析:本题容易出错的是对②③的判断.需要明确的是,对称轴是直线;经过线段中点的直线可以有无数条,因此必须是垂直于这条线段的才是对称轴.14.△ABC 中,AB =AC ,点D 与顶点A 在直线BC 同侧,且BD =AD .则BD 与CD 的大小关系为( )A .BD >CDB .BD =CDC .BD <CD D .BD 与CD 大小关系无法确定 答案:D解析:解答: 根据图示,很明显可以看到有三种情况:(1) BD >CD (2) BD =CD (3) BD <CDAAA故选D 分析:本题关键是考虑到,把点D 放在线段AD 的垂直平分线上,通过运动来研究BD 与CD 的大小关系,这样就不会出错了.15.在等腰△ABC 中,AB =AC ,O 为不同于A 的一点,且OB =OC ,则直线AO 与底边BC 的关系为( )A .平行B .垂直且平分C .斜交D .垂直不平分答案:B解析:解答:∵等腰△ABC中,AB=AC∴将等腰△ABC中折叠,使B与C重合,则点A在折痕上∴点A在线段BC的对称轴上∵OB=OC∴点O在折痕上∴点O在线段BC的对称轴上∴直线AO就是线段BC的对称轴∴直线AO与底边BC垂直且平分故选B分析:本题关键是利用折叠来引入,从而利用轴对称的性质解决问题.二、填空题(共5题)16.设A、B两点关于直线MN轴对称,则_______垂直平分________.答案:直线MN|线段AB解析:解答:∵A、B两点关于直线MN轴对称∴由轴对称的性质可得直线MN垂直平分线段AB分析:本题易错处是漏掉直线与线段这些表达线的类型的词语.17.若直角三角形是轴对称图形,则其三个内角的度数分别为________.答案:90°|45°|45°解析:解答:∵直角三角形是轴对称图形∴一定有两个角相等又直角三角形一定有一个角为90°∴相等的是两个锐角∵直角三角形的两个锐角互余∴每一个锐角为45°分析:本题思路的关键是利用轴对称的性质,得到两个锐角相等,再根据直角三角形的两个锐角互余,进而求出各角度数.18.已知在Rt△ABC中,斜边AB=2BC,以直线AC为对称轴,点B的对称轴是B',如图所示,则与线段BC相等的线段是____,与线段AB相等的线段是_______和_______,•与∠B相等的角是________和_______,因此可得到∠B=________.B 'C B A答案:B ’C |AB ′|B B ’|∠B ’|∠BAB ’|60°解析:解答:∵以直线AC 为对称轴,点B 的对称轴是B '∴B ’C =BC ∠B ’CA =∠BCA =90° AB ’=AB =2BC∴AB ’=AB =BB ’∴∠B ’ =∠B =∠B ’AB =60°分析:本题思路的关键是利用轴对称的性质,得到对应线段相等,再根据AB =2BC ,得到一个等边三角形,进而求出各角度数.19.如图,已知点A 、B 直线MN 同侧两点, 点A ’、A 关于直线MN 对称.连接A ’B 交直线MN 于点P ,连接AP .若A ’B =5cm ,则AP +BP 的长为答案:5cm解析:解答:∵点A ’、A 关于直线MN 对称点P 在对称轴MN 上,∴A ’P 、AP 关于直线MN 对称∴A ’P =AP∴AP +BP = A ’P +PB =A ’B =5cm分析:本题思路的关键是利用轴对称的性质,得到对应线段相等,进而求出AP +BP 的长.20.如图,∠AOB 内一点P ,分别画出P 关于OA 、OB 的对称点P 1、P 2连P 1P 2交OA 于M ,交OB 于N ,若P 1P 2=5cm ,则△PMN 的周长为 .答案:5cm解析:解答:∵P、P1,P、P2关于OA、OB对称∴PM=P1M,PN=P2N∴△PMN的周长=P1P2∴△PMN的周长是5 cm分析:本题思路的关键是利用轴对称的性质,得到对应线段相等,进而求出△PMN的周长.三、解答题( 共5题)21.找出图中是轴对称图形的图形,并找出两对对应点、两对对应线段、两对对应角.(1)(2) (3)答案:第一个图形是轴对称图形,如图,若以NF为对称轴,则点A与点B、点M与点N、点C与点D等是对称点.线段AG与BH、CM与DN、PG与PH等是对应线段,∠A与∠B、∠C 与∠D、∠AMC与∠BND等是对应角.解析:解答:如上图所示,第一个图形是轴对称图形,若以NF为对称轴,则点A与点B、点M与点N、点C与点D等是对称点.线段AG与BH、CM与DN、PG与PH等是对应线段,∠A与∠B、∠C与∠D、∠AMC与∠BND等是对应角.本题解答只是回答了其中一种情况,而原来的图形,还可以以直线MN为对称轴来进行回答.分析:本题易错点是被忽视了阴影部分.如果没有阴影,那么可以有六种不同情况;因为有了阴影部分,所以原题的解答只能有两种情况,这是需要注意的.22. 如图,△ABC关于直线L的轴对称图形是△DNF, 如果△ABC的面积为6CM2,且DN=3CM,求△ABC中AB边上的高h.答案:h=4cm解析:解答:∵△ABC关于直线L的轴对称图形是△DNF∴△DNF的面积等于△ABC的面积= 6cm2AB =DN=3cmDN上的高等于AB上的高∴h=6×2÷3=4cm分析:本题思路的关键是利用轴对称图形的性质,得到面积相等,对应边相等以及对应线段相等.23.小红想在卧室放一穿衣镜,能看到自己的全身像,那么她至少应买多高(宽度适当)的穿衣镜?答案:镜高至少为身高的一半解析:解答:如下图所示,设小红用线段AB表示,则A头部,通过镜子下沿D处可以看到自己的脚的映像,而根据轴对称的性质,可以通过镜子顶端C处看到自己的头部映像,因此,镜子调试至少需要自己身体的一半高度.分析:本题思路的关键是既要考虑到关于点的对称,又要考虑到关于线的对称.24.下列各图都是一个汉字的一半,你能想像出它的另一半并能确定它是什么字吗?(有几个字的笔划在对称轴上)(1)答案:中(2)答案:林(3)答案:南(4)答案:京(5)答案:米解析:解答:根据汉字的对称结构来确定是哪个汉字,对于第(1)个图,思考可能是口或中,但是口没有那么扁平;故为中;第二个图左边应该也是一个木,这样原来的汉字应该是林;第三个图形,根据轴对称可以容易得到是一个南字;第四个从对称上来研究,应该左边下方也有一个点,再考虑对称轴上可能有笔画,容易得到是京字;第五个图,从对称可以得到右边有点、横、捺,可是不是我们所学过的汉字,再考虑对称轴上的笔画,可以有个竖,因此得到最后一个字是米。
轴对称几何性质练习题
轴对称几何性质练习题
本文档包含一系列轴对称几何性质的练题。
以下是几个题目示例:
1. 判断轴对称
给定下列图形,请判断它们是否具有轴对称性质:
- A. 正方形
- B. 三角形
- C. 长方形
- D. 梯形
2. 定位轴对称中心
给定下列图形,请找出它们的轴对称中心:
- A. 圆形
- B. 钝角三角形
- C. 椭圆
- D. 平行四边形
3. 轴对称性质的应用
给定下列问题,请基于轴对称性质给出解决方案:
- A. 如果一个图形具有轴对称性质,那么它的面积是否一定是一个整数?
- B. 在一个轴对称图形中,如果你知道一个点关于轴对称中心的对称点的坐标,你能否推导出该图形的方程?
- C. 轴对称图形的轴对称性质对于建筑设计有哪些应用?
4. 制作轴对称图形
请根据给定的轴对称性质,手绘下列图形:
- A. 一个具有2条垂直轴对称的图形
- B. 一个具有3条对称轴的图形
- C. 一个具有曲线轴对称性质的图形
以上只是一部分练题,希望能够帮助你熟练掌握轴对称几何性质,提高解决问题的能力。
Happy practicing!。
《探索轴对称的性质》典型例题(答案)
《探索轴对称的性质》典型例题例1 把下面的图补充完整.(1)如图甲是轴对称图形的一部分,其中l 是对称轴,请把另一部分画出来.(2)如图乙,是轴对称中的一个图形,其中l 是对称轴,请把另一个画出来.例2 如图所示,填空:(1)线段AB 的对应线段是__________(2)点C 的对应点是__________(3)ABC ∠的对应角是_________(4)连接BE ,则BE 被直线_____m例3 如图,在ABC ∆中,AD AC AB ,=平分BAC ∠,点P 在DA 的延长线上,你能利用轴对称的性质证明PB PC =吗?例4作出下列图形的对称轴或者对称图形图1 图2例5分析下列图形中,哪些是轴对称图形?如果是轴对称图形,作出对称轴.(1)线段;(2)角;(3)任意三角形;(4)等腰三角形参考答案例1 作法:(1)①过A 、B 两点分别作直线l 的垂线,交l 于E 、F 两点;②截取FB B F EA A E ='=',;③连结D B A C ''、、,就是所求作图形.(2)类似于(1)可以作出(2)来.说明:我们作图的依据就是轴对称(或轴对称图形)的对称轴,垂直平分它们对应点连成的线段.例2 分析:依据轴对称或轴对称图形的性质可以得到解:分别是(1)AE (2)D (3)AED ∠ (4)垂直平分例3 分析:轴对称性质可以证明线段相等解:因为AC AB =DAC BAD ∠=∠AD AD =所以BAD ∆≌CAD ∆所以AD 垂直平分BC点P 在DA 的延长线上所以PA 、PB 关于PD 对称所以PBPC=本题的其他解法略例4分析:在图1中给出对称轴,可以根据对称轴的性质,对应点连线被对称轴垂直平分画出另一部分,在图2中,根据轴对称的性质,很容易画出对称轴.解:如图1′,2′图1′图2′∆就是要求做的对称图形OEF直线m就是所求做的对称轴.例5分析:线段、角、等腰直角三角形是轴对称图形.解:线段的对称轴是线段AB所在的直线和它的垂直平分线.(如图1)角的对称轴是角的平分线所在的直线;(如图2)等腰直角三角形的对称轴是底边的垂直平分线.(如图3)图1 图2 图3。
轴对称测试题及答案
轴对称测试题及答案1. 什么是轴对称图形?2. 轴对称图形的性质有哪些?3. 如何判断一个图形是否是轴对称图形?4. 给定一个图形,如何找到它的对称轴?5. 如果一个图形关于某条直线对称,那么这条直线被称为什么?6. 一个等边三角形是轴对称图形吗?如果是,它有多少条对称轴?7. 给定一个矩形,它有几条对称轴?8. 一个圆有多少条对称轴?9. 给定一个点A(x, y),如果它关于x轴对称,那么它的对称点坐标是什么?10. 给定一个点A(x, y),如果它关于y轴对称,那么它的对称点坐标是什么?答案1. 轴对称图形是指一个图形可以通过一条直线(称为对称轴)进行翻转,使得图形的两部分完全重合的图形。
2. 轴对称图形的性质包括:- 对称轴两边的图形完全重合。
- 对称轴是图形上任意两点连线的中垂线。
3. 判断一个图形是否是轴对称图形的方法是:- 检查图形是否可以通过一条直线翻转后完全重合。
4. 找到图形的对称轴的方法是:- 观察图形,寻找一条直线,使得图形的任意两点关于这条直线对称。
5. 如果一个图形关于某条直线对称,那么这条直线被称为该图形的对称轴。
6. 一个等边三角形是轴对称图形,它有3条对称轴,分别是三条中线。
7. 一个矩形有2条对称轴,分别是两条对角线。
8. 一个圆有无数条对称轴,因为圆的任意直径都是它的对称轴。
9. 如果点A(x, y)关于x轴对称,那么它的对称点坐标是(-x, y)。
10. 如果点A(x, y)关于y轴对称,那么它的对称点坐标是(x, -y)。
附加练习题1. 一个正方形有几条对称轴?请说明它们的位置。
2. 如果一个图形既有轴对称又有中心对称,那么它是什么图形?3. 给定一个点A(x, y),如果它关于原点对称,那么它的对称点坐标是什么?4. 描述如何通过坐标变换将一个图形关于y轴进行对称。
5. 描述如何通过坐标变换将一个图形关于x轴进行对称。
附加练习题答案1. 一个正方形有4条对称轴,分别是两条对角线和连接相邻顶点的两条线段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探索轴对称图形的性质习题精选一、选择题1.在“工、木、口、民、公、晶、离”这几个汉字中,是轴对称的有( )A.2个 B.3个 C.4个 D.5个2.将写有“K”字母的纸条垂直于镜面放置,则在镜中所成的像有 ( )A.1种 B.2种 C.3种 D.4种3.从平面镜里看到背后墙上电子钟显示数如图7—88所示,这时的时间应是 ( )A.21:05 B.21:15 C.20:15 D.20:054.图7—89是从镜子中看到的一串数,这串数字应为( )A.67018 B.81076 C.97018 D.81079二、填空题1.一位足球运动员穿着“”号球衣走到镜子前,他发现在镜中球衣号码变成了_________.2.前后两辆摩托车,从前面一辆的反光镜中看到后面一辆的车牌号是“”,则后面摩托车的实际号码就是__________.3.“”在水中的倒影是__________.4.从镜中看到一串数字,则这串数字应该是_____________.5.我们把左右数字排列对称的自然数叫做回文数.请你写出下列回文数是由哪个数的平方得到的(可借助计算器):(1)()2____________121=(2)()2____________14641=(3)()2____________12321=(4)()2____________123454321=(5)()2____________543211234567876= (6) ()2____________40804=(7)()2____________44944=三、解答题1.已知:如图7—90,在△ABC中,∠ACB=90°,M为AB的中点,∠PMQ=90°.求证:222BQAPPQ+=.2.如图7—91,在河岸的同侧有A、B两村,在河边修一水泵站P,使所用的水管最短,另修一码头Q,使Q与A、B两村的距离相等.试画出P、Q所在的位置.3.如图7—92,在△ABC中,AB=AC,E是AB中点,延长AB到D,使BD=BA.求证:CD=2CE.4.如图7—93,在△AB C中,∠B=2∠C,AD是∠BAC的平分线.求证:AC=AB+BD.5.如图7—94,在△ABC中,AB=AC,D是BA上一点,求证:()BDCDAB+>21.《生活中的轴对称》测试题一、选择题(每小题3分,共30分)1.如图所示,下列图案是我国几家银行的标志,其中不是轴对称图形的是( )2.从镜子中看到钟的时间是8点25分,正确的时间应是几点?( )A.3点25分B.3点30分C.3点35分D.3点45分3. 国旗是一个国家的象征,观察下面的国旗,是轴对称图形的是()A.加拿大、哥斯达黎加、乌拉圭B.加拿大、瑞典、澳大利亚C.加拿大、瑞典、瑞士D.乌拉圭、瑞典、瑞士加拿大哥斯达黎加澳大利亚乌拉圭瑞典瑞士4. 下列图形中,是轴对称图形的有()个.①角;②线段;③等腰三角形;④等边三角形;⑤三角形.A.1个B.2个C. 3个D.4个5.如右图,在桌面上竖直放置两块镜面相对的平面镜,在两镜之间放一个小皮球,那么在两镜中小皮球的像共有()个.A.1个 B.2个 C.4个 D.无数个6.等腰三角形的一个角为100°,则它的底角为()A.100° B.40°C.100°或40° D.不能确定7.如图,直线1l,2l,3l表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()8、小亮运动衣上的实际号码是( ) A.901 B.109 C.601 D.1069. 下列图形中,不是轴对称图形的是()A.角 B.等边三角形 C.线段 D.不等边三角形10. 如图,把一个正方形三次对折后沿虚线剪下,得到的图形是()二.填空题:(每小题4分,共24分)1l3l2l7题5题右下方折上折右折沿虚线剪开A B C D第1题第8题第2题A 1处 C 3处B 2处 D 4处11. 如图,∠A=200,∠C=400,∠ADB=800,则∠ABD=___,∠DBC=___,12. 如图,已知DE 是AC 的垂直平分线,AB=10cm ,BC=11cm , 则ΔABD 的周长为 cm 。
13.小明衣服上的号码在镜子中如图,则小明衣服上的实际号码为 .14.我国传统的土木结构房屋中,窗子常用各种图案装饰,如图所示是一种常见的装饰图方案,这个图案共有 条对称轴15.一辆汽车的牌照在车下方水坑中的像是 ,则这辆汽车的牌照号码应为 . 16. 美丽的汉字中有些汉字可以看成是轴对称图形(如:日),请写出不少于2个这样的汉字 . 三、操作与解答题(共46分)17. (6分)某汽车探险队要从A 城穿越沙漠去B 城,途中需要到河流L 边为汽车加水,汽车在河边哪一点加水,才能使行驶的总路程最短?请你在图上画出这一点.18.(8分) 下面两个轴对称图形分别只画出一半。
请画出它的另一半。
(直线L 为对称轴)1919. (6分)用若干根火柴可以摆出一些优美的图案,下图是用火柴棒摆成的一个图案,此图案的含义是天平(或公平),请你用5根或5根以上的火柴棒摆成一个轴对称图案,并说明你画出的图案的含义 . 图案: 含义:20. (8分) 今天是2003年9月1日,小明拿起一盒牛奶刚要喝,妈妈说:“儿子,牛奶保质期过了,别喝了”,小明从镜子里看到保质期的数字是 ,牛奶真的过期了吗?为什么? 21.(8分) 如图,已知:△ABC 中,BC <AC ,AB 边上的垂直平分线DE 交AB 于D ,交AC 于E ,AC=9 cm,△BCE 的周长为15 cm,求BC 的长.22.(10分)如图,已知P 点是∠AOB 平分线上一点,PC ⊥OA ,PD ⊥OB ,垂足为C 、D ,(1)∠PCD=∠PDC 吗? 为什么?(2)OP 是CD 的垂直平分线吗? 为什么?轴对称单元测试题· · · · 14题 B DC 第11题A B EDCA第12题 LL AB · · CPDB A·一.填空题(每题2分)1.在照镜子时,小明发现其上衣右上部有一个口袋,则小明上衣上的口袋应在________.2.观察下列图形:其中是轴对称图形的有________个.3.下列图形:①角;②线段;③等边三角形;④有一个角为30°的直角三角形中是轴对称图形的有(填序号)________. 4. 请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.5. 等腰三角形的两个内角之比是1∶2,那么这个等腰三角形的顶角度数为___________. 6.等腰三角形的底角与顶角之比是2:1,则各内角的度数为______7.如图1,∆ABC 中,DE 是边AC 的垂直平分线,AC=6cm ,∆ABD 的周长为13cm , 则∆ABC 的周长为______cm .(1)ED CBA(2)8. 等腰三角形中有一个角为52°,则它的一条腰上的高与底边的夹角为 度。
9.若等腰三角形的一个外角为120°,一边长为2cm ,则另外两边长为 。
10. 若等腰三角形的顶角为120°,则腰上的高与底边的夹角为 度。
11. 如图2,在△ABC 中,∠A=90°,BD 是∠ABC 的平分线,DE 是BC 的垂直平分线, 则∠C=________. 12. 写出一个生活中应用轴对称性质的实际例子:___________________________________二.选择题(每题3分)1.在下列三角形中是轴对称图形的是( )A .锐角三角形B .直角三角形C .等腰三角形D .不等边三角形 2.下列说法中,正确的个数有( ) A.1个 B.2个 C.3个 D.4个 ①等边三角形有三条对称轴; ②四边形有四条对称轴;③等腰三角形的一边长为4,另一边长为9,则它的周长为17或22; ④一个三角形中至少有两个锐角. 3.一个等腰三角形,其角平分线,中线和高的条数共为( )A .3条B .7条C .9条D .3条或7条 4.在等腰三角形ABC 中,AB=AC ,BE 、CD 分别是底角 的平分线,DE ∥BC ,图中等腰三角形的个数有( ) A .3个 B .4个 C .5个 D .6个5.已知等腰三角形的周长为10cm ,那么当三边为正整数时,它的边长为( ) A .2,2,6 B .3,3,4 C .4,4,2 D .3,3,4或4,4,2 6.下列说法中,正确的有几个?( )①两个对称图形对应点连线的垂直平分线就是它们的对称轴;②两个图形关于某直线对称,对称点一定在直线的两旁;③有三条对称轴的三角形是等边三角形。
A .0个B .1个C .2个D .3个EDCBA7.如图,∠BAC=130°,若MP 和QN 分别垂直平分AB 和AC,则∠PAQ 等于 ( )A.50°B.75°C.80°D.105°8.如图,L1、L2、L3表示三条公路相互交叉,现要建一个货物 中转站,要求它到三条公路的距离相等,则可供选的地方有几处( )A.1B.2C.3D.4 三.作图题(5分+6分)1.已知:如图,求作△ABC 关于对称轴L 的轴对称图形△A ′B ′C ′NMCBNP OM F EBA2 1 2 12.如图,两个班的学生分别在M 、N 处参加植树劳动,现在要在道路AB 、AC 的交叉处设一个茶水供应站,使点P 到AB 、AC 的距离相等,且P 到M 处,P 到N 处的距离也相等,一个同学说:“只要作出角的平分线,线段MN 的垂直平分线,它们的交点处设茶水供应站就可以.”你认为他的做法对吗?如果对,请画出P 点位置,如果不对,请说明理由.四.解答题(5分+6分+6分+8分+8分+8分)1.如图,P 在∠AOB 内;点M ,N 分别是点P 关于AO ,BO 的对称点,且与AO 、BO 相交点E 、F ,若∆PEF 的周长为15,求MN 的长. 2.如图(5)所示,在△ABC 中,∠C=90°,DE 垂直平分AB ,交AB 于E ,交 BC 于D ,∠1=21∠2,求∠B 的度数。
3.等腰△ABC 的腰长AB=10cm ,AB 的垂直平分线交另一腰AC 于D ,△BCD 的周长为26cm ,则底边BC 的长是多少?OF E CBANMDC BA4 5 64.如图,∆ABC 中,AB=AC ,BO ,CO 分别为∠ABC ,∠ACB 的平分线,交点为O ,过O 作,E ,F 平行于BC 交AB ,AC 于F ,E ,探索BF+CE 与FE 的关系,说明理由.5.如图,在∆ABC 中,AD ⊥BC 于D ,点M ,N 分别在BC 所在 的直线上,且BM=CN . (1)AB=AC ,试判断∆AMN 的形状,并说明理由 (2)若AM=AN ,则∠ABC=∠ACB 成立吗?为什么?lCBAl 3l 2l 1M Q APNCB6.已知:图A、图B,分别是6×6正方形网格上的两个轴对称图形(阴影部分),其面积分别为S A、S B,(网格中最小的正方形面积为一个平方单位)。