高等数学作业本第三章参考答案
高中数学人教A版必修三课时作业第3章概率3.3.2含答案
![高中数学人教A版必修三课时作业第3章概率3.3.2含答案](https://img.taocdn.com/s3/m/ecc95b74b52acfc789ebc986.png)
课时目标
在正方形围栏内均匀撒米粒,食,此刻小鸡正在正方形的内切圆中的概率是
.如图所示,在一个边长为3 cm的正方形内部画一个边长为的正方形,向大正方形内随机投点,用随机模拟的方法求所投的点落入小正方形内的概率.
所投点落入小正方形内}.
[0,1]上的均匀随机数,
经过平移和伸缩平移变换,a=3a1-1.5
计用随机模拟的方法估计他能赶上车的概率的步骤?
解:能赶上车的条件是到达乙地时汽车没有出发,我们可以用两组均匀随机数x 和y 来表示到达乙地的时间和汽车从乙地出发的时间,当x ≤y 时能赶上车.
设事件A :“他能赶上车”.
①利用计算器或计算机产生两组[0,1]上的均匀随机数,x 1=RAND ,y 1=RAND.
②经过变换x =0.5x 1+9.5,y =0.5y 1+9.75.
③统计出试验总次数N 和满足条件x ≤y 的点(x ,y )的个数N 1.
④计算频率f n (A )=N 1N ,则N 1N 即为概率P (A )的近似值.
能力提升
12.将[0,1]内的均匀随机数转化为[-3,4]内的均匀随机数,需实施的变换为( )
答案:C
解析:根据伸缩平移变换
13.利用模拟的方法计算如图,由y =1和y =x 2所围成的部分M
的面积.
解:(1)用计算机产生两组[0,1]内均匀随机数a 1=RAND( ),b
=RAND( ).
(2)经过平移和伸缩变换,a =(a 1-0.5)*2.
(3)数落在区域内(即满足0<b <1,且b -a 2>0)的样本点数N 1计算S 阴影=2N 1N (N 代表落在矩形中的点(a ,b )的个数).。
高数阶段练习第三章参考答案
![高数阶段练习第三章参考答案](https://img.taocdn.com/s3/m/4e010c8ca58da0116c174981.png)
第三章 微分中值定理及导数的应用一、选择题1. 若30sin(6)()lim 0x x xf x x →+= ,则206()lim x f x x→+为( ) A. 0 B. 6 C. 36 D. ∞2. 设在][1,0上,0)(>''x f ,则下列不等式成立的是( )A . )0()0()1()1(f f f f '>->' B. )0()1()0()1(f f f f ->'>'C . )0()1()0()1(f f f f '>'>- D. )0()1()0()1(f f f f '>->'3. 设2()()lim 1()x a f x f a x a →-=--,则在x a =处( ) A. ()f x 的导数存在 B. ()f x 取得极大值C . ()f x 取得极小值 D. ()f x 的导数不存在4. 设k 为任意实数,则方程33x x k -+在[1,1]-上( )A. 一定没有实根B. 最多只有一个实根C. 最多有两个互异实根D. 最多有三个互异实根5. 设(),()f x g x 在0x 的某个去心邻域内可导,()0g x '≠,且适合0lim ()0x x f x →=,0lim ()0x x g x →=,则0()lim ()x x f x g x λ→=是0'()lim '()x x f x g x λ→=的: A. 充分非必要条件 B. 必要非充分条件C. 充分必要条件D. 既非充分又非必要条件。
6. 设()f x 在区间(a,b)内二阶可导,0(,)x a b ∈,且00()0,()=0f x f x '''≠,则()f x ( )A. 在0x x =处不取极值, 但00(,())x f x 是其图形的拐点B. 在0x x =处不取极值,但00(,())x f x 可能是其图形的拐点C. 在0x x =处可能取极值, 00(,())x f x 也可能是其图形的拐点D. 在0x x =处不取极值00(,())x f x 也不是其图形的拐点。
高等数学李伟版课后习题答案第三章
![高等数学李伟版课后习题答案第三章](https://img.taocdn.com/s3/m/ae2d509b690203d8ce2f0066f5335a8102d2668c.png)
⾼等数学李伟版课后习题答案第三章习题3—1(A )1.判断下列叙述是否正确,并说明理由:(1)函数的极值与最值是不同的,最值⼀定是极值,但极值未必是最值;(2)函数的图形在极值点处⼀定存在着⽔平的切线;(3)连续函数的零点定理与罗尔定理都可以⽤来判断函数是否存在零点,⼆者没有差别;(4)虽然拉格朗⽇中值公式是⼀个等式,但将()f ξ'进⾏放⼤或缩⼩就可以⽤拉格朗⽇中值公式证明不等式,不过这类不等式中⼀定要含(或隐含)有某函数的两个值的差.答:(1)不正确.最值可以在区间端点取得,但是由于在区间端点处不定义极值,因此最值不⼀定是极值;⽽极值未必是最值这是显然的.(2)不正确.例如32x y =在0=x 点处取极值,但是曲线在点)00(,却没有⽔平切线.(3)不正确.前者是判断)(x f 是否有零点的,后者是判断)(x f '是否有零点的.(4)正确.⼀类是明显含有)()(a f b f -的;另⼀类是暗含着)()(0x f x f -的. 2.验证函数2)1(e x y -=在区间]20[,上满⾜罗尔定理,并求出定理中的ξ.解:显然2)1(e x y -=在闭区间]20[,上连续,在开区间)20(,内可导,且e )2()0(==y y ,于是函数2)1(ex y -=在区间]20[,上满⾜罗尔定理的条件,2)1(e )1(2)(x x x y ---=',由0)(='ξy ,有0e )1(22)1(=---ξξ,得1=ξ,∈ξ)20(,,所以定理的结论也成⽴.3.验证函数1232-+=x x y 在区间]11[,-上满⾜拉格朗⽇中值定理,并求出公式中的ξ.解:显然1232-+=x x y 在闭区间]11[,-连续,在开区间)11(,-内可导,于是函数1232-+=x x y 在区间]11[,-上满⾜拉格朗⽇中值定理的条件,26)(+='x x y ,2)1(1)1()1(=----y y ,由)()1(1)1()1(ξy y y '=----,有226=+ξ,得0=ξ,∈ξ)11(,-,所以定理的结论也成⽴.4.对函数x x x f cos )(+=、x x g cos )(=在区间]20[π,上验证柯西中值定理的正确性,并求出定理中的ξ.解:显然函数x x x f cos )(+=、x x g cos )(=在闭区间]20[π,上连续,在开区间)20(π,内可导,且x x f sin 1)(-=',x x g sin )(-=',在区间)20(π,内0)(≠'x g ,于是函数x x x f cos )(+=、x x g cos )(=在区间]20[π,上满⾜柯西定理的条件,⼜21)0()2/()0()2/(πππ-=--g g f f ,由)()()0()2/()0()2/(ξξππg f g g f f ''=--,有ξξπsin sin 121--=-,即πξ2sin =,由于∈ξ)20(π,,得πξ2arcsin=,所以定理的结论也成⽴.5.在)(∞+-∞,内证明x x cot arc arctan +恒为常数,并验证2cot arc arctan π≡+x x .证明:设x x x f cot arc arctan )(+=,显然)(x f 在)(∞+-∞,内可导,且-+='211)(x x f 0112≡+x,由拉格朗⽇定理的推论,得在)(∞+-∞,内x x cot arc arctan +恒为常数,设C x f ≡)(,⽤0=x 代⼊,得2π=C ,所以2cot arc arctan π≡+x x .6.不求出函数2()(4)f x x x =-的导数,说明0)(='x f 有⼏个实根,并指出所在区间.解:显然2()(4)f x x x =-有三个零点20±==x x ,,⽤这三点作两个区间]20[]02[,、,-,在闭区间]02[,-上)(x f 连续,在开区间)02(,-内)(x f 可导,⼜0)0()2(==-f f 于是)(x f 在]02[,-满⾜罗尔定理,所以⾄少有∈1ξ)02(,-,使得0)(1='ξf ,同理⾄少有∈2ξ)20(,,使得0)(2='ξf ,所以0)(='x f ⾄少有两个实根.⼜因为)(x f 是三次多项式,有)(x f '时⼆次多项式,于是0)(='x f 是⼆次代数⽅程,由代数基本定理,得0)(='x f ⾄多有两个实根.综上,0)(='x f 恰有两个实根,且分别位于区间)02(,-与)20(,内.7.证明下列不等式:(1)对任何实数b a ,,证明cos cos a b a b -≤-;(2)当0>x 时,x x xx<+<+)1ln(1.证明:(1)当b a =时,cos cos a b a b -≤-显然成⽴.当b a <时,取函数x x f cos )(=,显然)(x f 在闭区间][b a ,上连续,在开间)(b a ,内可导,由拉格朗⽇定理,有∈ξ)(b a ,,使得))(()()(b a f b f a f -'=-ξ,即)(sin cos cos b a b a -?-=-ξ,所以)()(sin cos cos b a b a b a -≤-?-=-ξ.当b a >时,只要将上⾯的区间][b a ,换为][a b ,,不等式依然成⽴.所以,对任何实数b a ,,都有cos cos a b a b -≤-.(2)取函数)1ln()(t t f +=,当0>x 时,函数)1ln()(t t f +=在闭区间]0[x ,上连续,在开区间)0(x ,内可导,根据拉格朗⽇定理,有∈ξ)0(x ,,使得ξξ+='1)(xf .因为x <<ξ0,则x xx x x =+<+<+0111ξ,所以x x x x <+<+)1ln(1. 8.若函数)(x f 在区间),(b a 具有⼆阶导数,且)()()(321x f x f x f ==,其中21x x a <<b x <<3,证明在区间)(3,1x x 内⾄少有⼀点ξ,使得0)(=''ξf .证明:根据已知,函数)(x f 在区间][21x x ,及][32x x ,上满⾜罗尔定理,于是有∈1ξ)(21x x ,,∈2ξ)(32x x ,(其中21ξξ<),所得0)(1='ξf ,0)(2='ξf .再根据已知及)()(21ξξf f '=',函数)(x f '在区间][21ξξ,上满⾜罗尔定理,所以有∈ξ)(21ξξ,?)(3,1x x ,所得0)(=''ξf ,即在区间)(3,1x x 内⾄少有⼀点ξ,使得0)(=''ξf .习题3—1(B )1.在2004年北京国际马拉松⽐赛中,我国运动员以2⼩时19分26秒的成绩夺得了⼥⼦组冠军.试⽤微分中值定理说明她在⽐赛中⾄少有两个时刻的速度恰好为18. 157km/h (马拉松⽐赛距离全长为42.195km ).解:设该运动员在时刻t 时跑了)(t s s =(km ),此刻才速度为)()(t s t v v '==(km/h ),为解决问题的需要,假定)(t s 有连续导数.设起跑时0=t ,到达终点时0t t =,则3238888889.20≈t ,对函数)(t s 在区间]0[0t ,上⽤拉格朗⽇定理,有00t <<ξ,所得)()(0)0()(00ξξv s t s t s ='=--,⽽15706.183238888889.2195.420)0()(00≈=--t s t s km/h ,所以157.1815706.18)(>≈ξv .对)(t v 在区间]0[ξ,及][0t ,ξ上分别使⽤连续函数的介值定理(注意,0)0(=v0)(0=t v ,则数值18. 157分别介于两个区间端点处函数值之间),于是有)0(1ξξ,∈,)0(2,ξξ∈,使得157.18)(1=ξv ,157.18)(2=ξv,这表明该运动员在⽐赛中⾄少有两个时刻的速度恰好为18. 157km/h .2.若函数)(x f 在闭区间][b a ,上连续,在开区间),(b a 内可导,且0)(>'x f ,证明⽅程0)(=x f 在开区间),(b a 内⾄多有⼀个实根.证明:采⽤反证法,若⽅程0)(=x f 在开区间),(b a 有两个(或两个以上)不同的实根21x x <,即0)()(21==x f x f ,根据已知函数)(x f 在][21x x ,上满⾜罗尔定理,于是有∈ξ)()(21b a x x ,,?,使得0)(='ξf ,与在开区间),(b a 内0)(>'x f ⽭盾,所以⽅程0)(=x f 在开区间),(b a 内⾄多有⼀个实根.(注:本题结论也适⽤于⽆穷区间) 3.证明⽅程015=-+x x 只有⼀个正根.证明:设1)(4-+=x x x f ()(∞+-∞∈,x ),则014)(4>+='x x f ,根据上题结果,⽅程015=-+x x 在)(∞+-∞,内⾄多有⼀个实根.取闭区间]10[,,函数1)(4-+=x x x f 在]10[,上连续,且01)0(<-=f ,01)1(>=f ,由零点定理,有)10(,∈ξ,使得0)(=ξf ,从⽽⽅程015=-+x x 在)0(∞+,内⾄少有⼀个实根.综上,⽅程015=-+x x 只有⼀个正根,且位于区间)10(,内. 4.若在),(+∞-∞内恒有k x f =')(,证明b kx x f +=)(.证明:(⽅法1)设函数kx x f x F -=)()(,则0)()(≡-'='k x f x F ,根据拉格朗⽇定理的推论)(x F 恒为常数,设C kx x f x F ≡-=)()(,⽤0=x 代⼊,得)0(f C =,记b f =)0(,则b C kx x f x F ==-=)()(,所以b kx x f +=)(.(⽅法2)记b f =)0(,∈?x ),(+∞-∞,若0=x ,则满⾜b kx x f +=)(;若0≠x ,对函数)(t f 以x t t ==,0为端点的闭区间上⽤拉格朗⽇定理,则有ξ介于0与x 之间,使得)0)(()0()(-'=-x f f x f ξ,即kx b x f =-)(,所以b kx x f +=)(.5.若函数)(x f 在区间)0(∞+,可导,且满⾜0)()(2≡-'x f x f x ,1)1(=f ,证明x x f =)(.证明:设函数xx f x F )()(=(∈x )0(∞+,),则xx x f x f x x x x f x x f x F 2)()(22/)()()(-'=-'=',由0)()(2≡-'x f x f x ,得0)(≡'x F ,根据拉格朗⽇定理的推论)(x F 恒为常数,设C xx f x F ==)()(,⽤1=x 代⼊,且由1)1(=f ,得1=C ,所以1)()(==xx f x F ,即x x f =)(.6.证明下列不等式(1)当0>x 时,证明x x+>1e ;(2)对任何实数x ,证明x x arctan ≥.证明:(1)取函数t t f e )(=(]0[x t ,∈)显然函数)(t f 在区间]0[x ,上满⾜拉格朗⽇定理,则有∈ξ)0(x ,,使得)0)(()0()(-'=-x f f x f ξ,即x xξe 1e =-,所以 x x x+>+=1e 1e ξ.(2)当0=x 时,显然x x arctan ≥.当0≠x 时,取函数t t f arctan )(=,对)(t f 在以x t t ==,0为端点的闭区间上⽤拉格朗⽇定理,则有ξ介于0与x 之间,使得)0)(()0()(-'=-x f f x f ξ,即21arct an ξ+=xx ,所以x x x <+=21arctan ξ.综上,对任何实数x ,都有x x arctan ≥.7.若函数)(x f 在闭区间[1-,1]上连续,在开区间(1-,1)内可导,M f =)0((其中0>M ),且M x f <')(.在闭区间[1-,1]上证明M x f 2)(<.证明:对∈?x [1-,1],当0=x 时,M M f 2)0(<=,.不等式成⽴.当0≠x 时,根据已知,函数)(t f 在以x t t ==,0为端点的区间上满⾜拉格朗⽇定理,则有ξ介于0与x 之间,使得)0)(()0()(-'=-x f fx f ξ,即x f M x f )()(ξ'=-,所以,M x f x f +'=)()(ξ,从⽽M M f M x f M x f x f 2)()()()(<+'≤+'≤+'=ξξξ.综上,在闭区间[1-,1]上恒有M x f 2)(<.8.若函数)(x f 在闭区间]0[a ,上连续,在开区间)0(a ,内可导,且0)(=a f ,证明在开区间)0(a ,内⾄少存在⼀点ξ,使得0)()(='+ξξξf f .证明:设函数)()(x xf x F =(∈x ]0[a ,),则0)(0)0(==a F F ,,再根据已知,函数)(x F 在区间],0[a 满⾜罗尔定理,则有∈ξ)0(a ,,使得0)(='ξf .⽽)()()(ξξξξf f f '+=',于是0)()(='+ξξξf f .所以,在开区间)0(a ,内⾄少存在⼀点ξ,使得0)()(='+ξξξf f .习题3—2(A )1.判断下列叙述是否正确?并说明理由(1)洛必达法则是利⽤函数的柯西中值定理得到的,因此不能利⽤洛必达法则直接求数列极限;(2)凡属“00”,“∞∞”型不定式,都可以⽤洛必达法则来求其的极限值;(3)型如””,“”,“”,“”,““0100∞∞-∞∞?∞型的不定式,要想⽤洛必达法则,需先通过变形.⽐如“0?∞”型要变型成为“00”,“∞∞”型,”,”,““00∞-∞””,““01∞∞型要先通过变型,转化为“0?∞”型的不定式,然后再化为基本类型.答:(1)正确.因为数列是离散型变量,对它是不能求导的,要想对数列的“不定式”极限使⽤洛必达法则,⾸先要根据“海涅定理”将数列极限转换为普通函数极限,然后再使⽤洛必达法则.(2)不正确.如0sin 1sinlim 20=→xx x x (00型)、1cos sin lim -=-+∞→x x x x x (∞∞型)、11lim 2=++∞→x x x (∞∞型)都不能⽤洛⽐达法则求得极限值.(3)正确.可参见本节3.其他类型的不定式极限的求法,但是“∞-∞”型通常是直接化为“00”,“∞∞”型. 2.⽤洛必达法则求下列极限:(1)x x x --→e 1ln lim e ;(2)11lim 1--→n m x x x (0≠mn );(3)x x x 5tan 3sin limπ→;(4)2e e cos 1lim 0-+--→x x x x;(5)1sec tan 2lim0-→x x x x ;(6)xxx 3tan tan lim 2/π→;(7)x x x 2cot lim 0→;(8)x x x cot arc lim +∞→;(9))sin 11(lim 0x x x -→;(10)111lim()ln 1x x x →--;(11)xx x tan 0lim +→;(12))1ln(1)(lim x x x ++∞→;(13)21)(cos lim x x x →;(14)nn n ln lim∞→;解:(1)e11/1lim e 1ln lime e -=-=--→→x x x x x .(2)==----→→1111lim 11lim n m x nm x nx mx x x nm.(3)=-?-==→→22)1(535sec 53cos 3lim 5tan 3sin limx x x x x x ππ53-.(4)=+=-=-+--→-→-→x x x x x x x x x x x x e e cos lim e e sin lim 2e e cos 1lim00021.(5)===-=-→→→→xxx x x x x x x x x x x x tan 4lim tan sec 4lim 1sec 2lim 1sec tan 2lim002004. (6) =---=-=?=→→→→x xx x xx x x x x x x x x sin 3sin 3lim cos 3cos lim )cos 3cos 3sin sin (lim 3tan tan lim2/2/2/2/ππππ3.(7)===→→→x x x x x x x x 2sec 21lim 2tan lim 2cot lim 200021.(8)=+=-+-==+∞→+∞→+∞→+∞→22221lim /1)1/(1lim 1/cot arc lim cot arc lim xx x x x x x x x x x x 1.(9)=-=-=-=-=-→→→→→2sin lim 21cos lim sin lim sin sin lim )sin 11( lim 002000xx x x x x x x x x x x x x x x x 0.(10)xx x x x x x x x x x x x /)1(ln /11lim ln )1(ln 1lim )11ln 1(lim 111-+-=---=--→→→=+=-+-=→→2ln 1lim 1ln 1lim11x x x x x x x 21.(11)设xxy tan =,则x x y ln tan ln =,因为0lim /1/1lim /1ln lim ln lim ln tan lim ln lim 0200=-=-====++++++→→→→→→x xxx x x x x x y x x x x x x ,所以, ==+→0tan 0e lim xx x 1.(12)设)1ln(1)(x x y +=,则)1ln(ln 21)1ln(ln ln x xx x y +=+=,因为 21)11(lim 21)1/(1/1lim 21)1ln(ln lim 21ln lim =+=+=+= +∞→+∞→+∞→+∞→x x x x x y x x x x ,所以 ==++∞→21)1ln(1e )(lim x x x e .(13)设21)(cos x x y =,则2cos ln ln x xy =,因为 21cos 2sin lim cos ln lim ln lim 0200-=-==→→→x x x x x y x x x ,所以==-→2 110e )(cos lim 2x x x e1.(14)根据海涅定理,====+∞→+∞→+∞→∞→xxx xx nn x x x n 2lim2/1/1limln limln lim0.3.验证极限xx xx x cos 2sin 2lim -+∞→存在,并说明不能⽤洛必达法则求得.解:=-+=-+=-+∞→∞→0102/)cos 2(1/)(sin 2lim cos 2sin 2limx x x x x x x x x x 2.因为极限xxx x x x x x sin 21cos 2lim )cos 2()sin 2(lim++='-'+∞→∞→不存在,因为此极限不能⽤洛必达法则求得.4.验证极限x x x x sin )/1sin(lim 20→存在,并说明不能⽤洛必达法则求得.解:=?=?=→→→011sin lim sin lim sin )/1sin(lim0020xx x x x x x x x x 0.因为极限xx x x x x x x x cos )/1sin()/1sin(2lim)(sin ])/1sin([lim 020-=''→→不存在,因为此极限不能⽤洛必达法则求得.习题3—2(B )1.⽤洛必达法则求下列极限:(1)311lnarctan 2limx x xx x -+-→;(2)xx x x 30sin arcsin lim -→(3))tan 11(lim 220xx x -→;(4)]e )11[(lim -+∞→xx x x ; (5) 260)sin (lim x x xx →;(6)n n nn b a )2(lim +∞→(00>>b a ,).解:(1)原式30)1ln()1ln(arctan 2limx x x x x -++-=→=--=--+-+=→→)1(34lim 3111112lim 40220x x x x x x x 34-.(2)原式2220220301311lim 31/11lim arcsin lim xx x x x x x x x x x ---=--=-=→→→=-=--=→→22022032/lim 311lim xx x x x x 61-.(3)原式30022220tan lim tan lim tan tan lim xxx x x x x x x x x x x -?+=-=→→→ ==-=-=→→→22022030tan lim 3231sec lim 2tan lim 2x x xx x x x x x x 32.(4)令t x 1=,则原式21010)1ln()1()1(lim e )1(lim tt t t t t t t t tt ++-+=-+→→ =+-=-+-=++-=→→→t t t t t t t t t t t )1ln(lim 2e 21)1ln(1lim e )1ln()1(lim e 002 02 e -.(5)令6)sin (x x x y =,则2sin ln 6ln x x xy =,因为 30200sin cos lim 3)sin cos 2sin /6(lim ln lim xxx x x x x x x x x y x x x -=-?=→→→ 13sin lim 320-=-=→x x x x ,所以==-→160e )sin (lim x x xx e 1.(6)令=n x nn nb a )2(+,则]2ln )[ln(ln -+=n n n b a n x ,再令x t 1=,因为 tb a b a x x t t t xx x n n 2ln )ln(lim ]2ln )[ln(lim ln lim 011-+=-+=→+∞→∞→ ab b a ba b b a a t t t t t ln 2ln ln ln ln lim 0=+=++=→,所以==+∞→abnn nn b a ln e )2(lim ab .2.当0→x 时,若)(e )(2c bx ax x f x ++-=是⽐2x ⾼阶的⽆穷⼩,求常数c b a 、、.解:根据已知,有0)(e lim220=++-→x c bx ax x x ,由分母极限为零,则有分⼦极限也为零,于是01)]([e lim 2x =-=++-→c c bx ax x ,得1=c ,此时02)2(e lim )(e lim 0220=+-=++-→→x b ax x c bx ax x x x x ,再由分⼦极限为零,同样得1=b ,进⽽022122e lim 2)12(e lim )(e lim 00220=-=-=+-=++-→→→a a x ax x c bx ax x x x x x x ,得21=a ,所以1121===c b a ,,时,当0→x 时,)(e )(2c bx ax x f x ++-=是⽐2x ⾼阶的⽆穷⼩.3.若函数)(x f 有⼆阶导数,且2)0(,1)0(,0)0(=''='=f f f ,求极限2)(limxxx f x -→.解:1)0(210)0()(lim 2121)(lim )(lim002=''=-'-'=-'=-→→→f x f x f x x f x x x f x x x .(注:根据题⽬所给条件,不能保证)(x f ''连续,所以只能⽤⼀次洛⽐达法则,再⽤⼆阶导数的分析定义)习题3—3(A )1.判断下列叙述是否正确?并说明理由:(1)只要函数在点0x 有n 阶导数,就⼀定能写出该函数的泰勒多项式.⼀个函数的泰勒多项式永远都不会与这个函数恒等,⼆者相差⼀个不恒为零的余项;(2)⼀个函数在某点附近展开带有拉格朗⽇余项的n 阶泰勒公式是它的n 次泰勒多项式加上与该函数的n 阶导数有关的所谓拉格朗⽇型的余项;(3)在应⽤泰勒公式时,⼀般⽤带拉格朗⽇型余项的泰勒公式⽐较⽅便.答:(1)前者正确,其根据是泰勒多项式的定义;后者不正确.当)(x f 本⾝是⼀个n 次多项式时,有0)(≡x R n ,这时函数的泰勒多项式恒等于这个函数.(2)不正确.拉格朗⽇型的余项与函数)(x f 的1+n 阶导数有关.(3)不正确.利⽤泰勒公式求极限时就要⽤带有⽪亚诺余项的泰勒公式,⼀般在对余项进⾏定量分析时使⽤带拉格朗⽇型余项的泰勒公式,在对余项进⾏定性分析时使⽤带⽪亚诺型余项的泰勒公式.2.写出函数x x f arctan )(=的带有佩亚诺型余项的三阶麦克劳林公式.解:因为211)(x x f +=',)1(2)(2x x x f +-='',322)1(62)(x x x f ++-=''',于是 2)0(0)0(1)0(0)0(-='''=''='=f f f f ,,,,代⼊到)(!3)0(!2)0()0()0()(332x o x f x f x f f x f +'''+'+'+=中,得 )(3arctan 33x o x x x +-=. 3.按1-x 的乘幂形式改写多项式1)(234++++=x x x x x f .解:因为1234)(23+++='x x x x f ,2612)(2++=''x x x f ,624)(+='''x x f ,24)()4(=x f ,更⾼阶导数都为零,于是,,,20)1(10)1(5)1(=''='=f f f 30)1(='''f ,24)0()4(=f ,将其带⼊到)()1(!4)1()1(!3)1()1(!2)1()1)(1()1()(44)4(32x R x f x f x f x f f x f +-+-'''+-'+-'+=中,得 432)1()1(5)1(10)1(105)(-+-+-+-+=x x x x x f(其中5)5(4)1(!5)()(-=x f x R ξ恒为零). 4.将函数1)(+=x xx f 在1x =点展开为带有佩亚诺型余项的三阶泰勒公式.解:因为111)(+-=x x f ,则2)1(1)(+='x x f ,3)1(2)(+-=''x x f ,4)1(6)(+='''x x f ,于是83)1(41)0(41)1(21)1(='''-=''='=f f f f ,,,,将其带⼊到 ))1(()1(!3)1()1(!2)1()1)(1()1()(332-+-'''+-'+-'+=x o x f x f x f f x f 中,得))1((16)1(8)1(41211332-+-+---+=+x o x x x x x . 5.写出函数xx x f e )(=的带有拉格朗⽇型余项的n 阶麦克劳林公式.解:因为)(e )()(k x x f x k +=(1321+=n n k ,,,,,)(参见习题2.5(B )3),于是,k fk =)0()((n k ,,,,210=),=+=++1)1()!1()()(n n n x n x f x R θ1)!1(e )1(++++n x x n x n θθ,将其带⼊到)(!)0(!2)0()0()0()()(2x R x n f x f x f f x f n nn +++'+'+= ,得 132)!1(e )1()!1(!2e +++++-++++=n x n xx n x n n x x x x x θθ )10(<<θ.6.将函数xx f 1)(=按(1)x +的乘幂展开为带有拉格朗⽇型余项的n 阶泰勒公式.解:因为1)(!)1()(+-=k k k xk x f,于是!)1()(k f k -=-(13210+=n n k ,,,,,,), 1211211)1()1()1()1()!1()!1()1()1()!1()()(+++++++++-=+++-=++=n n n n n n n n n x x n n x n f x R ξξξ,将其代⼊到中)()1(!)1()1(!2)1()1)(1()1()()(2x R x n f x f x f f x f n n n ++-+++-'++-'+-= ,得2112)1()1()1()1()1(11++++-++--+-+--=n n n nx x x x x ξ(ξ介于1-与x 之间).习题3—3(B )1.为了修建跨越沙漠的⾼速公路,测量员测量海拔⾼度差时,必须考虑地球是⼀个球体⽽表⾯不是⽔平,从⽽对测量的结果加以修正.(1)如果R 表⽰地球的半径,L 是⾼速公路的长度.证明修正量为R RLR C -=sec . (2)利⽤泰勒公式证明3422452R L R L C +≈.(3)当⾼速公路长100公⾥时,⽐较(1)和(2)中两个修正量(地球半径取6370公⾥).证明:(1)由αR L =,有R L =α,⼜在直⾓三⾓形ODB 中,CR R+=αcos ,于是R C R L+==1s e cs e c α,由此得R RLR C -=sec .(2)先将x x f sec )(=展开为4阶麦克劳林公式,为此求得x x x f tan sec )(=',x x x x f 32s e c t a n s e c )(+='',x x x x x f tan sec 5tan sec )(33+=''',x x x x x x f5234)4(s e c 5t a n s e c 18tan sec )(++=,,,,,,5)0(0)0(1)0(0)0(1)0()4(=='''=''='=f f f f f 于是 )(245211sec 442x R x x x +++=;当1<2245211sec x x x ++≈,取R L x =,得442224521sec RL R L R L ++≈,于是≈-=R R L R C sec 3422452R L R L +.(3)按公式R RLR C -=sec计算,得修正量为785010135.0)1(≈C ,按公式3422452RL R L C +≈计算,得修正量为785009957.0)2(≈C ,它们相差⼤约为000000178.0)2()1(≈-C C .2.写出函数212e)(x x f -=的带佩亚诺型余项的n 2阶麦克劳林公式.解:由)(!!3!21e 32nn tt o n t t t t ++++++= ,令22x t -=,得 )]2(!2)1(!62!42!221[e eee223624222122n n n nn x x x o n x x x x +?-++?-?+?-==--)(]!)!2()1(!!6!!4!!21[e 22642n n n x o n x x x x +-++-+-= ,按规律,由于nx2项的后⼀项为22+n x,所以余项也可以⽤)(12+n xo .3.写出函数x x f 2sin )(=的带⽪亚诺型余项的m 2阶麦克劳林公式.解:x x 2cos 2121sin 2-=)2()!2()2()1(!6)2(!4)2(!2)2(1[2121222642m m mn x o m x x x x +-++-+--=)()!2(2)1(4523122121642m m m m x o x m x x x +-+-+-=-- ,同上⼀题,余项也可以⽤)(12+m x o .(注意:像2、3题⽤变量代换写泰勒公式的⽅法只使⽤于带有佩亚诺型余项的泰勒公式,不适⽤带有拉格朗⽇型余项的泰勒公式,否则得到的余项不再是拉格朗⽇型余项) 4.应⽤三阶泰勒公式计算下列各数的近似值,并估计误差:(1)330;(2)18sin .解:(1)取函数31)(x x f +=,展开为三阶麦克劳林公式,有31154323)1(3108159311)(x xx x x x x f θ+?-+-+=+=,3339/11332730+?=+=,现取9/1=x ,)59049572912711(3303+-+≈,误差为54431089.19310-?R , 10725.3)000085.0001372.0037037.01(3)59049572912711(3303=+-+≈+-+≈;(2)⽤x sin 的麦克劳林公式,取1018π==x ,得53)10(!5)cos()10(!311018sin πθππx +-=,则3)10(!311018sin ππ-≈,误差为5531055.2)10(!51-?≈<≤πR3090.030899.000517.031416.018sin ≈=-≈.5.利⽤泰勒公式求下列极限:(1)642/012/e cos lim 2x x x x x +--→;(2)x x x x x x x sin )1(sin e lim 20+-→.解:(1)原式64636426 642012/)](!32821[)](!62421[lim xx x o x x x x o x x x x ++?-+--+-+-=→ 3607)(360/7lim 6660=+=→x x o x x .(2)原式3233220)](6/)][(2/1[lim x x x x o x x x o x x x --+-+++=→ 31)(3/lim3330=+=→x x o x x .6.设函数)(x f 在区间][b a ,上有⼆阶连续导数,证明:有)(b a ,∈ξ使得)(4)()2(2)()(2ξf a b b a f b f a f ''-=+-+.证明:将函数)(x f y =在20ba x +=点展开为⼀阶泰勒公式,有 20000)(!2)())(()()(x x f x x x f x f x f -''+-'+=η.(η介于x 与0x 之间)分别⽤b x a x ==、代⼊上式,得 201000)(!2)())(()()(x a f x a x f x f a f -''+-'+=η 4)(!2)(2)2()2(21b a f b a b a f b a f -''+-+'++=η(21b a a +<<η),202000)(!2)())(()()(x b f x b x f x f b f -''+-'+=η 4)(!2)(2)2()2(22a b f a b b a f b a f -''+-+'++=η(b b a <<+22η),上两式相加,得]2)()([4)()2(2)()(212ηηf f a b b a f b f a f ''+''-++=+,由)(x f ''连续,根据习题1-7(B )4,得)(2)()(21ξηηf f f ''=''+''()(b a ,∈ξ),于是,)(4)()2(2)()(2ξf a b b a f b f a f ''-++=+,所以,有)(b a ,∈ξ使得)(4)()2(2)()(2ξf a b b a f b f a f ''-=+-+. 7.若函数)(x f 有⼆阶导数,0)(>''x f ,且1)(lim=→xx f x ,⽤泰勒公式证明x x f ≥)(. 证明:由函数)(x f 可导,及1)(lim=→xx f x ,得1)0(0)0(='=f f ,,将)(x f 展开为⼀阶麦克劳林公式,有22)()(x f x x f ξ''+=(ξ介于0与x 之间),由0)(>''x f ,得x x f x x f ≥''+=22)()(ξ.8.设函数)(x f 在区间]20[,上⼆次可微,)2()0(f f =,且M x f ≤'')(,对任何]20[,∈x ,证明M x f ≤')(.证明:对任何∈x ]20[,,将函数)(t f y =在x t =点展开为⼀阶泰勒公式,有 2)(!2)())(()()(x t f x t x f x f t f -''+-'+=ξ.(ξ介于x 与t 之间)分别⽤20==t t 、代⼊上式,得 21!2)()()()0(x f x x f x f f ξ''+'-=,(x <<10ξ)(1) 22)2(!2)()2)(()()2(x f x x f x f f -''+-'+=ξ,(22<<ξx )(2)(2)-(1),并由条件)2()0(f f =,有 ])()2)(([21)(202122x f x f x f ξξ''--''+'=,即])()2)(([41)(2122x f x f x f ξξ''--''-=',所以M x x M x x M x f =+-?≤+-≤'222])2[(4])2[(4)(.习题3—4(A )1.下列叙述是否正确?并按照你的判断说明理由:(1)设函数()f x 在区间[,]a b 上连续,在(,)a b 内可导,那么()f x 在区间[,]a b 上单调增加(减少)的充分必要条件是对任意的(,)x a b ∈,0)(>'x f (0)(<'x f );(2)函数的极⼤值点与极⼩值点都可能不是唯⼀的,并且在其驻点与不可导点处均取得极值;(3)判定极值存在的第⼀充分条件是根据驻点两侧导数的符号来确定该驻点是否为极值点,第⼆充分条件是根据函数在其驻点处⼆阶导数的符号来判定该驻点是否为极值点;(4)在区间I 上连续的函数,其最⼤值点或最⼩值点⼀定是它的极值点.答:(1)不正确.如3x y =在]11[,-上单调增加,⽽032≥='x y .(2)前者正确,后者不正确.驻点与不可导点是取得极值必要条件不是充分条件,如函数3x y =有驻点0=x ,⽽3x y =在0=x 点不取极值;⼜如函数3x y =有不可导点0=x ,⽽3x y =在0=x 点也不取极值.(3)前者不正确,后者正确.第⼀充分条件对连续函数的不可导点也适⽤.(4)不正确.函数的最⼤(⼩)值点可以是闭区间端点,这时的最值点就不是极值点. 2.证明函数x x x f arcsin )(-=在]11[,-上单调减少.解:在开区间)11(,-内,0111)(2≤--='xx f ,且等号只在0=x 点成⽴,所以)(x f 在开区间)11(,-内单调减少,⼜因为函数x x x f arcsin )(-=在区间]11[,-的左、右端点处分别右连续、左连续,所以x x x f arcsin )(-=在]11[,-上单调减少. 3.求下列函数的单调区间和极值:(1)323y x x =-;(2)xx y 12+=;(3)3232x x y +?=;(4)2exy x =;(5)x x y -+=)1ln(;(6))1ln(2-=x y .解:(1)定义域为)(∞+-∞,,)2(3632-=-='x x x x y ,由0='y ,得驻点0=x ,2=x ,函数没有不可导点.单增区间为:)2[]0(∞+-∞,、,,单减区间为:]20[,,极⼤值为:0)0(=y ,极⼩值为:4)2(-=y .(2)定义域为)0()0(∞+-∞,,,221xx y -=',由0='y ,得驻点1±=x ,在定义域内函数没有不可导点.单增区间为:)1[]1(∞+--∞,、,,单减区间为:]10()01[,、,-,极⼤值为:2)1(-=-y ,极⼩值为:2)1(=y .(3)定义域为)(∞+-∞,,2233)1(2xx y ?+=',由0='y ,得驻点1-=x ,不可导点0=x .单增区间为:)1[∞+-,,单减区间为:]1(--∞,,⽆极⼤值,极⼩值为:1)1(-=-y .(4)定义域为)0()0(∞+-∞,,,3)2(e xx y x -=',由0='y ,得驻点2=x ,在定义域内函数没有不可导点.单增区间为:、,)0(-∞)2[∞+,,单减区间为:]20(,,⽆极⼤值,极⼩值为:4/e )2(2=y .(5)定义域为)1(∞+-,,xxy +-='1,由0='y ,得驻点0=x ,在定义域内函数没有不可导点.单增区间为:]01(,-,单减区间为:)0[∞+,,极⼤值为:0)0(=y ,⽆极⼩值.(6)定义域为)1()1(∞+--∞,,,122-='x xy ,在定义域内0≠'y ,且没有不可导点.单增区间为:)1(∞+,,单减区间为:)1(--∞,,既⽆极⼤值,也⽆极⼩值.4.求下列函数在指定区间的最⼤值M 和最⼩值m :(1)163)(24+-=x x x f ,]20[,∈x ;(2)11)(+-=x x x f ,]40[,∈x .解:(1))1(121212)(23-=-='x x x x x f ,由0)(='x f ,得1=x (10-==x x ,都不在)20(,内),⽐较数值25)2(2)1(1)0(=-==f f f ,,,得163)(24+-=x x x f 在。
高等数学第三册教材答案
![高等数学第三册教材答案](https://img.taocdn.com/s3/m/7fe6dc1a302b3169a45177232f60ddccda38e627.png)
高等数学第三册教材答案第一章:函数与极限1. 函数的概念与性质2. 极限的概念与性质3. 数列极限4. 函数极限第二章:导数与微分1. 导数的概念与性质2. 基本导数公式3. 高阶导数4. 微分的概念与性质第三章:一元函数微分学1. 可导函数与连续函数的关系2. 导数的运算法则3. 高阶导数的应用4. 幂指函数的微分第四章:函数的积分学1. 定积分的意义与性质2. 不定积分3. 积分的运算法则4. 牛顿-莱布尼茨公式第五章:定积分的应用1. 几何应用2. 物理应用3. 统计应用4. 应用题解析技巧第六章:多元函数微分学1. 多元函数的极限与连续2. 偏导数与全微分3. 隐函数与参数方程的微分4. 多元函数的极值与条件极值第七章:多元函数积分学1. 二重积分的概念与性质2. 三重积分的概念与性质3. 曲线与曲面的积分4. 应用题解析技巧第八章:无穷级数1. 数项级数2. 幂级数3. 函数项级数4. 序列与函数项级数的收敛性第九章:常微分方程1. 方程与解的概念2. 一阶常微分方程3. 二阶常微分方程4. 齐次与非齐次常微分方程第十章:高级数学的应用1. 现实生活中的数学模型2. 数学在科学与工程中的应用3. 数学在经济学中的应用4. 数学在物理学中的应用以上是《高等数学第三册教材》的答案概述,涵盖了每个章节的主要内容和重点。
这些答案有助于学生巩固对每个主题的理解,并通过实际的应用题目来提高解题能力。
希望这份答案可以帮助你更好地掌握高等数学知识。
高中数学必修三第三章几何概型-校本作业有答案-精校打印版
![高中数学必修三第三章几何概型-校本作业有答案-精校打印版](https://img.taocdn.com/s3/m/280e54f049649b6648d747a9.png)
编写人 审稿人 201 年 月 日XX 中学高一数学校本作业(12)几何概型班级:__________ 姓名:__________ 成绩:__________1(2012湖北文10)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。
在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )(A)112-π (B)1π (C )21-π (D )2π2(2012北京文3)与(2012·北京高考理科·T2)相同设不等式组表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )(A )4π (B )22π- (C )6π (D )44π-3(2012辽宁文11)在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20cm 2的概率为( ) (A)16 (B)13 (C)23 (D)454(2012辽宁理10)在长为12cm 的线段AB 上任取一点C.现作一矩形,领边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为( ) (A) 16 (B) 13 (C) 23 (D) 455(2013陕西理5)如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是 ( )A . 14π- B. 12π- C . 22π- D. 4π 6 (2013湖南文9).已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为21,则AD AB=( ) A.12 B.14C.2D.47.(2012湖北理8)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。
高等数学课后习题及答案(共11单元)03导数的应用
![高等数学课后习题及答案(共11单元)03导数的应用](https://img.taocdn.com/s3/m/fdbb3fe059eef8c75ebfb3d1.png)
习题3-11.验证下列函数在指定区间上是否满足拉格朗日中值定理: (1)25)(23-+-=x x x x f ,]1,0[∈x ; (2)x x f ln )(=,],1[e x ∈; (3)32)(x x f =,]2,1[-∈x ; (4)22)(xxx f -=,]1,1[-∈x . 答案:(1)25)(23-+-=x x x x f ,]1,0[∈x解 函数25)(23-+-=x x x x f 在闭区间]1,0[上连续,在开区间()10,内可导,并且312501)0()1(-=---=--)()(f f .由于1103)(2+-='x x x f ,所以令311032-=+-x x ,解此方程得3135±=x ,这说明在)1,0(内有3135-=ξ,使得3)(-='ξf .(2)x x f ln )(=,],1[e x ∈解函数x x f ln )(=在闭区间]1[e ,上连续,在开区间()e ,1内可导,并且111011)1()(-=--=--e e e f e f .由于x x f 1)(=',所以令111-=e x ,解此方程得1-=e x ,这说明在),1(e 内有1-=e ξ,使得11)(-='e f ξ.(3)32)(x x f =,]2,1[-∈x解 函数32)(x x f =在闭区间]2,1[-上连续,在开区间()21,-内可导,并且314)1(2)1()2(3-=----f f .由于332)(x x f =',所以令3143233-=x ,解此方程得33)142(-=x ,这说明在)2,1(-内有33)142(-=x ,使得314)(3-='ξf .(4)22)(x xx f -=,]1,1[-∈x 解 函数22)(x x x f -=在闭区间]1,1[-上不连续,所以22)(x xx f -=在]1,1[-不满足拉格朗日中值定理.2.用洛必达法则求下列极限:(1)bx axx sin tan lim 0→; (2)x e e x x x sin lim 0-→;(3)ax ax a x --→sin sin lim ; (4)23)3ln(lim 222+--→x x x x ;(5)x x x ln 1lim1-→; (6)x x x 3cos sin 21lim 6-→π;(7)xx x 1sin arctan 2lim -∞→π; (8)xx x 1arctan 2lim 0-+→π;(9)x x x ln lim+∞→; (10)xxx cot ln lim 0→;(11)xx x sin ln ln lim 0+→; (12)ax b x e x ∞→lim (a ,0>b ).答案:(1)bx axx sin tan lim0→解 这是0型未定式,所以应用洛必达法则得ba bxb ax a bx ax x x ==→→cos sec lim sin tan lim 200. (2)xe e x x x sin lim 0-→解 这是型未定式,所以应用洛必达法则得 2111cos lim sin lim 00=+=+=--→-→x e e x e e x x x x x x . (3)a x ax a x --→sin sin lim解 这是0型未定式,所以应用洛必达法则得a x x a x a x a x a x a x cos cos lim 010cos lim sin sin lim ==--=--→→→. (4)23)3ln(lim 222+--→x x x x解 这是型未定式,所以应用洛必达法则得 41122)32)(3(2lim 23)3ln(lim 22222=⨯⨯=--=+--→→x x x x x x x x . (5)x x x ln 1lim 1-→解 这是00型未定式,所以应用洛必达法则得1lim 11lim ln 1lim 111===-→→→x xx x x x x . (6)x xx 3cos sin 21lim6-→π解 这是型未定式,所以应用洛必达法则得 33132323sin 3cos 2lim 3cos sin 21lim 66=⨯-⨯-=--=-→→xx x x x x ππ. (7)xx x 1sin arctan 2lim -∞→π解 这是型未定式,所以应用洛必达法则得 limx→∞π2−arctan x sin1x=limx→∞−11+x 2−1x 2cos1x=lim x→∞x 21+x 2∙lim x→∞1cos 1x=1×1=1 (8)xx x 1arctan 2lim 0-+→π解 这是型未定式,所以应用洛必达法则得 111lim 1)1()1(11lim 1arctan 2lim 202200=+=-⋅+-=-+++→→→x x x x x x x x π (9)x xx ln lim +∞→解 这是∞∞型未定式,所以应用洛必达法则得01lim 11lim ln lim ===+∞→+∞→+∞→xx x x x x x . (10)x xx cot ln lim 0→解 这是∞∞型未定式,所以应用洛必达法则得01cos sin 2lim sin lim csc 1lim cot ln lim 020200=-=-=-=→→→→x x x x x x x x x x x x . (11)x xx sin ln ln lim 0+→解 这是∞∞型未定式,所以应用洛必达法则得1sec lim tan lim sin cos 1lim sin ln ln lim 20000====++++→→→→x xx xx x x x x x x x . (12)ax bx ex ∞→lim (a ,0>b )解 这是∞∞型未定式,所以应用洛必达法则得 0!lim )1(lim lim lim 221===-==∞→-∞→-∞→∞→ax b x axb x ax b x ax b x e a b e a x b b ae bx e x . 3.用洛必达法则求下列极限:(1))11ln 1(lim 1--→x x x ; (2))1(cot lim 0xx x -→;(3))111(lim 0--→x x e x ; (4)x x x 2cot lim 0→;(5)2120lim x x e x →; (6)xx x sin 0lim →;(7)xx x-→111lim ; (8)xx x 2tan 4)(tan lim π→;(9)xx x ln 10)(cot lim +→.答案: (1))11ln 1(lim 1--→x x x解 这是∞-∞型未定式,先变形化为型的未定式,再应用洛必达法则得 xxx x x x x x x x x x x ln 111lim )1(ln ln 1lim )11ln 1(lim 111+--=---=--→→→ =limx→1x−1x−1+x ln x=limx→111+1+ln x=12.(2))1(cot lim 0xx x -→解 这是∞-∞型未定式,先变形化为型的未定式,再应用洛必达法则得 2000sin cos limsin sin cos lim )1(cot lim x xx x x x x x x x x x x x -=-=-→→→ 02sin lim 2cos sin cos lim 00=-=--=→→x x x x x x x x . (3))111(lim 0--→x x e x解 这是∞-∞型未定式,先变形化为0型的未定式,再应用洛必达法则得xx x x x x x x x xe e e e x x e e x +--=---=--→→→11lim )1(1lim )111(lim 000 21021lim 0=+=++=→x x x x x xe e e e . (4)x x x 2cot lim 0→解 这是0⋅∞型未定式,先变形化为0型的未定式,再应用洛必达法则得212cos 21lim 2sec 21lim 2tan lim2cot lim 202000====→→→→x x x x x x x x x x .(5)212lim x x e x →解 这是0⋅∞型未定式,先变形化为∞∞型的未定式,再应用洛必达法则得 ∞==--==→→→→222210313021012lim 1212lim 1lim lim x x xx x x x x e x e x x e ex .(6)xx xsin 0lim →解 这是00型未定式,利用对数恒等式有x x x e e xln sin ln sinx sin x ==,而0)(lim 11lim 1ln lim ln lim ln sin lim 020000=-=-===→→→→→x xx x xx x x x x x x x x , 所以1lim 0sin 0==→e xxx .(7)xx x-→111lim解 这是∞1型未定式,利用对数恒等式有x xx ee xln 11ln x-1111x-==-,而11lim 11lim 1ln lim 111-=-=-=-→→→xx x x x x x 所以ee xxx 1lim 1111==--→.(8)xx x 2tan 4)(tan lim π→解 这是∞1型未定式,有)ln(tan 2tan )ln(tan tan2x2tan tanx)x x x e e x==(,而x xx x x x x x x x 2csc 2sec tan 1lim 2cot )ln(tan lim )ln(tan 2tan lim 22444-==→→→πππ 1)2sin (lim 4-=-=→x x π所以ee x xx 1)(tan lim 12tan 4==-→π.(9)xx x ln 10)(cot lim +→解 这是0∞型未定式,有xxx xee co xln cot ln )ln(cot ln 1ln 1tx )==(,而x x x x x xx x xx x x x x 2sin 2lim sin cos lim 1)csc (cot 1lim ln cot ln lim 00200-=-=-=++++→→→→12cos 1lim 0-=-=+→x x所以e e x xx 1)(cot lim 1ln 10==-→+.4.求下列函数的极限: (1)x x xx x cos sin 2lim-+∞→; (2)xx x x sin 1sinlim20→;(3)xx xx x ln ln lim 2++∞→; (4)x x x x x e e e e --+∞→-+lim .答案: (1)xx xx x cos sin 2lim-+∞→解 20102cos 1sin 2lim cos sin 2lim =-+=-+=-+∞→∞→xx x xx x x x x x . (2)xx x x sin 1sinlim20→ 解 x xx x x x x x x x x x x x x sin lim 1sinlim sin 1sin lim sin 1sin lim00020→→→→== 0101sin 1lim ===∞→xxx .(3)xx xx x ln ln lim 2++∞→解 xx x x x x x x x x x x x x 1lim ln lim )1ln (lim ln ln lim2+∞→+∞→+∞→+∞→+=+=+ +∞==+=+∞→+∞→x xx x lim 011lim.(4)xx xx x e e e e --+∞→-+lim解101011111limlim 22=-+=-+=-++∞→--+∞→x x x xxxx x ee e e e e . 习题3-21.判定下列函数在指定区间内的单调性: (1)x x x f -=arctan )(,),(+∞-∞∈x ; (2)x x x f cos )(+=,]2,0[π∈x ; (3)x x f tan )(=,)2,2(ππ-∈x . 答案:(1)x x x f -=arctan )(,),(+∞-∞∈x解 因为2221111)(x x x x f +-=-+='在指定区间),(+∞-∞内恒为负值, 所以x x x f -=arctan )(在),(+∞-∞内是单调减少的. (2)x x x f cos )(+=,]2,0[π∈x解 因为x x f sin 1)(-='在指定区间]2,0[π内恒为正值, 所以x x x f cos )(+=在]2,0[π内是单调增加的. (3)x x f tan )(=,)2,2(ππ-∈x解 因为x x f 2sec )(='在指定区间)2,2(ππ-内恒为正值, 所以x x f tan )(=在)2,2(ππ-内是单调增加的. 2.求下列函数的单调区间:(1)x x f ln )(=; (2)24)(+-=x x f ;(3)71862)(23---=x x x x f ; (4)x x x f ln 2)(2-=;(5)xe x xf -=)(; (6)22)(x x x f -=.答案:(1)x x f ln )(=解 函数)(x f 的定义域为),0(+∞,xx f 1)(=',在定义区间内0)(>'x f , 所以函数)(x f 的单调增加区间是),0(+∞. (2)24)(+-=x x f解 函数)(x f 的定义域为),(+∞-∞,4)(-='x f ,在定义区间内0)(<'x f , 所以函数)(x f 的单调减少区间是),(+∞-∞.(3)71862)(23---=x x x x f解 函数)(x f 的定义域为),(+∞-∞,18126)(2--='x x x f ,令0)(='x f ,得11-=x ,32=x .列表讨论如下:所以函数)(x f 的单调增加区间是)1,(--∞和),3(+∞,单调减少区间是]3,1[-. (4)x x x f ln 2)(2-=解 函数)(x f 的定义域为),0(+∞,x x x x x f 1414)(2-=-=',令0)(='x f ,得21=x .所以函数)(x f 的单调增加区间是),21[+∞,单调减少区间是]21,0(. (5)xe x xf -=)(解 函数)(x f 的定义域为),(+∞-∞,xe xf -='1)(,令0)(='x f ,得0=x .列表讨论如下:所以函数)(x f 的单调增加区间是]0,(-∞,单调减少区间是),0[+∞. (6)22)(x x x f -=解 函数)(x f 的定义域为]2,0[,22212222)(xx x xx x x f --=--=',令0)(='x f ,得所以函数)(x f 的单调增加区间是]1,0[,单调减少区间是]2,1[. 3.求下列函数的极值点和极值:(1)263423+--=x x x y ; (2)1)1(22--=x y ; (3))1ln(x x y +-=; (4)213xxy +=; (5)xxe e y --=2; (6)x x y tan +=.答案:(1)263423+--=x x x y 解 函数)(x f 的定义域为),(+∞-∞;)1)(12(66612)(2-+=--='x x x x x f ,令0)(='x f ,解得驻点211-=x 、12=x ,另)(x f '不存在的点没有;因此,函数)(x f 的极大值点为2-=x ,极大值为4)1(=-f ;极小值点为1=x ,极小值为3)3(-=f .(2)1)1(22--=x y解 函数)(x f 的定义域为),(+∞-∞;)1(444)(23-=-='x x x x x f ,令0)(='x f ,解得驻点11-=x 、02=x 、13=x ,另)(x f '不存在的点没有;列表讨论如下:因此,函数)(x f 的极小值点为1-=x 、1=x ,极小值为1)1(-=-f 、1)1(-=f ;极大值点为0=x ,极大值为0)0(=f .(3))1ln(x x y +-=解 函数)(x f 的定义域为),1(+∞-; xxx x f +=+-='1111)(,令0)(='x f ,解得驻点01=x ,另)(x f '不存在的点没有;列表讨论如下:因此,函数)(x f 的极小值点为0=x ,极小值为0)0(=f . (4)213xxy +=解 函数)(x f 的定义域为),(+∞-∞;2222222)1()1(3)1(6)1(3)(x x x x x x f +-=+-+=',令0)(='x f ,解得驻点11-=x 、12=x ,另)(x f '不存在的点没有;列表讨论如下:因此,函数)(x f 的极小值点为1-=x ,极小值为2)1(-=-f ;极大值点为1=x ,极大值为23)1(=f . (5)xxee y --=2解 函数)(x f 的定义域为),(+∞-∞;xx xx ee ee xf 122)(2+=+='-,在定义区间内0)(>'x f ,)(x f 单调增加; 因此,函数)(x f 无极值点. (6)x x y tan +=解 函数)(x f 的定义域为)(2Z k k x ∈+≠ππ;x x f 2sec 1)(+=',在定义区间内0)(>'x f ,)(x f 单调增加;因此,函数)(x f 无极值点.习题3-31.求下列函数在给定区间上的最值: (1))2(422-=x x y ,]2,2[-∈x ; (2)7186223---=x x x y ,]4,1[∈x ; (3)x x y +=,]4,0[∈x ;(4)12+=x xy ,],0[+∞∈x ;(5)322)2(x x y -=,]3,0[∈x ; (6)xxy +-=11arctan ,]1,0[∈x . 答案:(1))2(422-=x x y ,]2,2[-∈x 解 )1(161616)(23-=-='x x x x x f ,令0)(='x f ,在]2,2[-上得驻点11-=x 、02=x 、13=x ; 驻点处的函数值为4)1(-=-f 、0)0(=f 、4)1(-=f , 端点处的函数值为32)2(=-f 、32)2(=f ;所以,函数在]2,2[-上的最大值为32)2()2(==-f f ,最小值为4)1()1(-==-f f . (2)7186223---=x x x y ,]4,1[∈x 解 )3)(1(618126)(2-+=--='x x x x x f ,令0)(='x f ,在]4,1[上得驻点3=x ; 驻点处的函数值为61)3(-=f ,端点处的函数值为29)1(-=f 、47)4(-=f ;所以,函数在]2,2[-上的最大值为29)1(-=f ,最小值为61)3(-=f . (3)x x y +=,]4,0[∈x 解 0211)(>+='xx f ,因此函数)(x f 在区间]4,0[上单调增加; 所以,函数在]4,0[上的最大值为6)4(=f ,最小值为0)0(=f . (4)12+=x xy ,],0[+∞∈x 解 2222222)1(1)1(21)(+-=+-+='x x x x x x f , 令0)(='x f ,在),0[+∞上得驻点1=x ;驻点处的函数值为21)1(=f ,端点处的函数值为0)0(=f ;所以,函数在),0[+∞上的最大值为21)1(=f ,最小值为0)0(=f . (5)322)2(x x y -=,]3,0[∈x 解 323223)1(4)22(232)(xx x x xx x f --=-⨯-=',令0)(='x f ,在]3,0[上得驻点1=x ;驻点处的函数值为1)1(=f ,端点处的函数值为0)0(=f 、39)3(=f ; 所以,函数在]3,0[上的最大值为39)3(=f ,最小值为0)0(=f .(6)x xy +-=11arctan,]1,0[∈x 解 0)1()1(2)1(2)11(11)(2222<-++-=+-⨯+-+='x x x xx x f ,因此函数)(x f 在区间]1,0[上单调减少;所以,函数在]4,0[上的最大值为4)0(π=f ,最小值为0)1(=f .2.证明:(1)面积一定的矩形中,正方形周长最短;(2)周长一定的矩形中,正方形面积最大. (1)证明:设面积为S 的矩形长为x ,则其宽为x S ,矩形周长)(2xS x A +=; 因22222)(2224xS x x S x x A -=--=',令0='A ,得S x =; 所以长S x =的矩形周长A 最小,即:面积一定的矩形中,正方形周长最短.(2)证明:设周长为A 的矩形长为x ,则其宽为22x A -,矩形面积2)2(x A x S -=; 因24x A S -=',令0='S ,得4Ax =; 所以长4Ax =的矩形面积S 最大,即:周长一定的矩形中,正方形面积最大.3.设22221)()()(n a x a x a x S -++-+-= ,问x 取多大时,S 最小? 解 由22221)()()(n a x a x a x S -++-+-= 知)(22)22()22()22(121n n a a nx a x a x a x S ++-=-++-+-=' ,令0='S ,得na a a x n+++=21;所以当na a a x n+++= 21时,S 最小.4.某企业生产每批产品x 单位的总成本x x C +=3)((万元),得到的总收入26)(x x x R -=(万元),为了提高经济效益,每批生产产品多少单位,才能使总利润最大?解 总利润35)3()6()()()(22-+-=+--=-=x x x x x x C x R x F ,52)(+-='x x F ,令0)(='x F ,得25=x ; 所以每批生产产品25单位,才能使总利润最大.5.某厂生产一种自行车,每月固定成本3万元.而每生产1千辆,要增加成本5万元,大批量生产时,可节约部分开支,当每月生产x 千辆时,可以节约成本326001407x x -万元.问x 为多大时,其成本最低?(6030<<x )解 总成本32600140753)(x x x x F +-+=, 52072001)(2+-='x x x F ; 令0)(='x F ,得函数0)(=x F 在)60,30(内唯一驻点50=x ;所以50=x 千辆时,其成本最低.6.甲船以6千米/小时的速度向东航行,乙船在甲船北16千米处,以8千米/小时的速度向南航行,问何时两船距离最近?解 设x 小时后,两船距离y 千米256256100)816()6(222=-=-+=x x x x y ,256200-='x y ,令0='y ,得28.1=x ;所以1.28小时后两船距离最近.习题3-41.求下列曲线的凹凸性和拐点:(1)24x x y -=; (2)1323+-=x x y ;(3)5224-+=x x y ; (4)xx y 12+=; (5)32x x y =; (6))1ln(2x y +=; (7)xey arctan =; (8))7ln 12(4-=x x y .答案:(1)24x x y -=解 函数的定义域为),(+∞-∞,42+-='x y ,02<-=''y ;因此,函数在区间),(+∞-∞内是凸的,无拐点. (2)1323+-=x x y解 函数的定义域为),(+∞-∞,x x y 632-=',66-=''x y ; 令0=''y ,解得定义区间内的实根1=x ;所以列表讨论如下:因此,函数在区间)1,(-∞内是凸的、在区间),1(+∞内是凹的,拐点为)1,1(-. (3)5224-+=x x y解 函数的定义域为),(+∞-∞,x x y 443+=',04122>+=''x y ;因此,函数在区间),(+∞-∞内是凹的,无拐点. (4)xx y 12+= 解 函数的定义域为),0()0,(+∞-∞ ,212xx y -=',3322x x y +='';令0=''y ,解得定义区间内的实根1-=x ;所以列表讨论如下:因此函数在区间)1,(--∞和),0(+∞内是凹的、在区间)0,1(-内是凸的,拐点为)0,1(-. (5)32x x y =解 函数的定义域为),(+∞-∞,3235x y =',331910910xx y ==''-; 0=''y 无解,y ''不存在的点0=x ;所以列表讨论如下:因此,函数在区间)0,(-∞内是凸的、在区间),0(+∞内是凹的,拐点为)0,0(.(6))1ln(2x y +=解 函数的定义域为),(+∞-∞,212xx y +=',222)1()1(2x x y +-=''. 令0=''y ,解得定义区间内的实根1±=x ;所以列表讨论如下:因此,函数在区间)1,(--∞和),1(+∞内是凸的、在区间)1,1(-内是凹的,拐点为)2ln ,1(-和)2ln ,1(.(7)xey arctan =解 函数的定义域为),(+∞-∞,2arctan 1xe y x +=',22arctan )1)21(x x e y x +-=''(; 令0=''y ,解得定义区间内的实根1=x ;所以列表讨论如下:因此,函数在区间),21(+∞内是凸的、在区间)21,(-∞内是凹的,拐点为),21(21arctan e .(8))7ln 12(4-=x x y解 函数的定义域为),0(+∞,3316ln 48x x x y -=',x x y ln 1442=''; 令0=''y ,解得定义区间内的实根1=x ;所以列表讨论如下:因此,函数在区间)1,0(内是凸的、在区间),1(+∞内是凹的,拐点为)7,1(-. 2.已知曲线4923+-+=x ax x y 在1=x 处有拐点,试确定系数a ,并求出曲线的凹凸区间和拐点.解 由4923+-+=x ax x y 知9232-+='ax x y ,a x y 26+=''; 因为曲线在1=x 处有拐点,所以0216=+⨯a ,得3-=a ;可知曲线方程为49323+--=x x x y ,9632--='x x y ,66-=''x y ;因此,函数在区间)1,(-∞内是凸的、在区间),1(+∞内是凹的,拐点为点)7,1(-. 3.a 、b 为何值时,点)3,1(为曲线23bx ax y +=的拐点? 解 由曲线方程23bx ax y +=知bx ax y 232+=',b ax y 26+=''; 令0=''y ,解得ab x 3-=; 又因为点)3,1(为曲线23bx ax y +=的拐点,所以3=+b a 、13=-ab; 联立方程组,求解得:23-=a ,29=b 4.试证明曲线112+-=x x y 有位于同一直线上的三个拐点(提示:证明任意两个拐点的连线斜率相等).证明 因为曲线方程为112+-=x x y ,定义域为),(+∞-∞;222)1(12+++-='x x x y ,322)1()14)(12++-+=''x x x x y (; 令0=''y ,解得11-=x 、322-=x 、323+=x ;所以曲线拐点为)1,1(--A 、)34831,32(---B 、)34831,32(+++C ; 因为9624132134831=+-+--=--=A B A B ABx x y y k 、9624=--=A C A C AC x x y y k ; AC AB k k =,所以曲线三个拐点位于同一直线上.习题3-51.求下列曲线的渐近线: (1)211x y -=; (2)2)3(361++=x y ;(3)11-=xe y ; (4)xx y 12+=. 答案: (1)211xy -=解 由于函数211x y -=的定义域为),1()1,1()1,(+∞---∞ , 且011lim 2=-∞→x x ,∞=--→2111lim x x 、∞=-→2111lim x x ; 因此直线0=y 为曲线的水平渐近线,直线1-=x 、1=x 为曲线的垂直渐近线. (2)2)3(361++=x y 解 由于函数2)3(361++=x y 的定义域为),3()3,(+∞---∞ , 且lim x→∞[1+36(x+3)2]=1,lim x→−3[1+36(x+3)2]=∞; 因此直线y =1为曲线的水平渐近线,直线3-=x 为曲线的垂直渐近线. (3)11-=xe y解 由于函数11-=xe y 的定义域为),0()0,(+∞-∞ , 且0)1(lim 1=-∞→xx e ,lim x→0+(e 1x −1)=+∞; 因此直线0=y 为曲线的水平渐近线,直线0=x 为曲线的垂直渐近线. (4)xx y 12+= 解 由于函数xx y 12+=的定义域为),0()0,(+∞-∞ , 且)1(lim 2x x x +∞→不存在,∞=+→)1lim 20xx x (; 因此直线0=x 为曲线的垂直渐近线,曲线无水平渐近线.2.作出下列函数的图像:(1)3210710x x x y -++=; (2)2)2)(1(-+=x x y ; (3))1ln(+-=x x y ; (4)x x y 2cos 21+=,)20(π≤≤x ; (5)xxe y -=; (6)x x y arctan +=答案:(1)3210710x x x y -++= 解 函数的定义域为),(+∞-∞,)7)(13(+-+='x x y ,令0='y 得311-=x 、72=x ;206+-=''x y ,令0=''y 得3103=x ;取辅助点)12,1(-,)10,0(,)26,1(,)134,4(,)194,8(;根据以上讨论,做出函数3210710x x x y -++=的图像如图所示图3-1(2)2)2)(1(-+=x x y 解 函数的定义域为),(+∞-∞,)2(3-='x x y ,令0='y 得01=x 、22=x ; 66-=''x y ,令0=''y 得13=x ;x)0,(-∞)1,0(1)2,1(2),2(+∞y '+ 0 - - - 0 + y ''- - - 0 + + + y╭极大值4 ╮拐点)2,1( ╰极小值╯取辅助点)0,1(-,)827,21(,)85,23(,)4,3(; 根据以上讨论,做出函数2)2)(1(-+=x x y 的图像如图所示图3-2(3))1ln(+-=x x y 解 函数的定义域为),1(+∞-,1+='x xy ,令0='y 得01=x ; 2)11+=''x y (,令0=''y ,无解; 列表讨论如下:x)0,1(-),0(+∞y '- 0 + y ''+ + + y╰极小值0╯取辅助点)2ln 21,21(+--,)2ln 1,1(-; 根据以上讨论,做出函数)1ln(+-=x x y 的图像如图所示图3-3(4)x x y 2cos 21+=,)20(π≤≤x 解 函数的定义域为]2,0[π, x y 2sin 211-=',令0='y ,无解;x y 2cos -='',令0=''y 得41π=x 、432π=x 、453π=x 、474π=x ; 列表讨论如下:x )4,0(π4π)43,4(ππ 43π )45,43(ππ 45π)47,45(ππ47π )2,47(ππ y '+ + + + + + + + + y ''- 0 + 0 - 0 + 0 - y╭拐点╯拐点╭拐点╯拐点╭拐点)41,4(+ππ、拐点)413,43(+ππ、拐点)415,45(+ππ、拐点)417,47(+ππ 取辅助点)21,0(,)2,2(ππ,)21,(+ππ,)23,23(ππ,)212,2(+ππ; 根据以上讨论,做出函数x x y 2cos 21+=的图像如图所示图3-4(5)xxey -=解 函数的定义域为),(+∞-∞,)1(x e y x -='-,令0='y 得11=x ; )2(x e y x +-=''-,令0=''y 得22=x ;x)1,(-∞1)2,1(2),2(+∞y '+ 0 - - - y ''---0 +y╭ 极大值e1╮拐点)2,2(2e╰0=y 为水平渐近线;取辅助点)0,0(,)3,3(3e;根据以上讨论,做出函数xxey -=的图像如图所示图3-5(6)x x y arctan +=解 函数的定义域为),(+∞-∞,奇函数, 2212x x y ++=',令0='y ,无解;22)12+-=''x x y (,令0=''y 得01=x ; x)0,(-∞),0(+∞y '+ + + y ''+ 0- y╯拐点)0,0( ╭取辅助点)41,1(π---,)41,1(π+;根据以上讨论,做出函数x x y arctan +=的图像如图所示图3-6习题3-61.求下列曲线在指定点处的曲率:(1)24x x y -=在其顶点处; (2)x x y cos =在原点处; (3)32x y =在点)8,4(处; (4)x y sin =在点)1,2(π处.答案:(1)24x x y -=在其顶点处解 由24x x y -=得42+-='x y ,2-=''y ; 代入计算公式得:曲线曲率为232)17164(2+-=x x K ;曲线顶点为2=x ,所以顶点处曲率为22==x K .(2)x x y cos =在原点处解 由x x y cos =得x x x y sin cos -=',x x x y cos sin 2--='', 代入计算公式得:曲线曲率为23222)1sin 2sin (cos cos sin 2++---=x x x x x xx x K ;所以原点处曲率为00==x K.(3)32x y =在点)8,4(处解 由32x y =得23x y =,知2123x y =',2143-=''x y ;代入计算公式得:曲线曲率为2321)491(43x x K +=-;所以点)8,4(处曲率为8001034==x K . (4)x y sin =在点)1,2(π处解 由x y sin =得x y cos =',x y sin -=''; 代入计算公式得:曲线曲率为232)cos 1(sin x x K +-=;所以点)1,2(π处曲率为14==x K.2.求下列曲线在指定点处的曲率半径:(1)4=xy 在点)2,2(处; (2))0(42>=p px y 在点)2,(p p 处; (3)x y ln =在点21=x 处; (4)x y cos =在点0=x 处;(5)x y tan =在点)1,4(π处; (6)x x y 44cos sin -=在点)1,0(-处.答案:(1)4=xy 在点)2,2(处解 由4=xy 得14-=x y ,知24--='x y ,38-=''x y ;代入计算公式得:曲线曲率为2343)161(8--+=x x K ;所以点)2,2(处曲率半径为22122====x X K R .(2))0(42>=p px y 在点)2,(p p 处解 由)0(42>=p px y 得212x p y =(所讨论的点为)2,(p p ), 知21-='x p y ,2321--=''xp y ;代入计算公式得:曲线曲率为23123)1(21--+=px xp K ;所以点)2,(p p 处曲率半径为R |X=p =1K |x=p=252p =4√2p .(3)x y ln =在点21=x 处解 由x y ln =得xy 1=',21x y -='';代入计算公式得:曲线曲率为2322)11(1xx K +=; 所以点21=x 处曲率半径为23312121====x x KR . (4)x y cos =在点0=x 处解 由x y cos =得x y sin -=',x y cos -=''; 代入计算公式得:曲线曲率为232)sin 1(cos x x K +=;所以点0=x 处曲率半径为1111====x x K R . (5)x y tan =在点)1,4(π处解 由x y tan =得x y 2sec =',x x y tan sec 22='';代入计算公式得:曲线曲率为2342)sec 1(tan sec 2x x x K +=;所以点)1,4(π处曲率半径为545144====ππx x KR . (6)x x y 44cos sin -=在点)1,0(-处解 由x x y 44cos sin -=得x x x y 2sin 2cos sin 4==',x x x y 2cos 4sin 4cos 422=-='';代入计算公式得:曲线曲率为232)2sin 41(2cos 4x x K +=;所以点)1,0(-处曲率半径为41100====x x K R .复习题三1.填空题:(1)如果函数)(x f 在],[b a 上连续,在),(b a 内可导,则在),(b a 内至少尊在一点ξ,使得=')(ξf ____________________.(2)设函数)(x f 在),(b a 内可导,如果0)(>'x f ,则函数)(x f 在),(b a 内_______________;如果0)(<'x f ,则函数)(x f 在),(b a 内_______________;如果0)(≡'x f ,则函数)(x f 在),(b a 内____________________.(3)函数x x x f -=sin )(在定义域内单调_______________.(4)曲线xxe y =在区间______________内是凹的,在区间_______________内是凸的. (5)函数xxy ln =在区间_______________内单调递增,在区间_______________内单调递减,在区间_______________内是凹的,在区间_______________内是凸的.(6)函数xxy ln =的极值点是_______________,拐点是_______________,渐近线为____________________.(7)函数)1ln(2x y +=在区间]2,1[-上的最大值为_______________,最小值为_______________.答案:(1)如果函数)(x f 在],[b a 上连续,在),(b a 内可导,则在),(b a 内至少存在一点ξ,使得=')(ξf ____________________.解ab a f b f --)()(;(2)设函数)(x f 在),(b a 内可导,如果0)(>'x f ,则函数)(x f 在),(b a 内_______________;如果0)(<'x f ,则函数)(x f 在),(b a 内_______________;如果0)(≡'x f ,则函数)(x f 在),(b a 内____________________.解 单调增加,单调减少,是常数;(3)函数x x x f -=sin )(在定义域内单调_______________. 解 减少;(提示:01cos )(<-='x x f )(4)曲线xxe y =在区间____________内是凹的,在区间___________内是凸的.解 ),2(+∞-,)2,(--∞;(提示:)2x e y x+=''(,拐点为2-=x )(5)函数xxy ln =在区间_______________内单调递增,在区间_______________内单调递减,在区间_______________内是凹的,在区间_______________内是凸的.解 ),0(e ,),(+∞e ,),(23+∞e ,),0(23e ;(提示:2ln 1x x y -=',驻点为e x =;3ln 23xxy +-='',拐点为23e x =) (6)函数xxy ln =的极值点是________,拐点是_________,渐近线为__________. 解 e x =,)23,(2323-e e ,直线0=x ,直线0=y ;(提示:∞==→→x x x x x 1lim ln lim00,01lim ln lim ==∞→∞→xx x x x )(7)函数)1ln(2x y +=在区间]2,1[-上的最大值为________,最小值为_________. 解 5ln )2(=f ,0)0(=f . (提示:212x xy +=',驻点为0=x ;0)0(=f ,2ln )1(=-f ,5ln )2(=f ) 2.选择题:(1)设函数22)4(-=x y ,则在区间)0,2(-和),2(+∞内此函数分别为( ) A .单调递增,单调递增; B .单调递增,单调递减;C .单调递减,单调递增;D .单调递减,单调递减. (2)函数)1ln(x x y +-=的单调递减区间是( ) A .),1(+∞-; B .)0,1(-; C .),0(+∞; D .)1,(--∞.(3)设函数232+-=x x y ,则( )A .y 有极小值41,但无极大值; B .y 有极小值0,但无极大值; C .y 有极小值0,极大值41; D .y 有极大值41,但无极小值.(4)设函数4322x x x y +-=,则在区间)2,1(和)4,2(内,曲线分别为( ) A .凸的,凸的; B .凸的,凹的;C .凹的,凸的;D .凹的,凹的. (5)函数xex y -=2在区间)2,1(内是( )A .单调递增且是凸的;B .单调递增且是凹的;C .单调递减且是凸的;D .单调递减且是凹的. 答案:(1)设函数22)4(-=x y ,则在区间)0,2(-和),2(+∞内此函数分别为() A .单调递增,单调递增; B .单调递增,单调递减; C .单调递减,单调递增; D .单调递减,单调递减. 解A ;(提示:)4(42-='x x y )(2)函数)1ln(x x y +-=的单调递减区间是() A .),1(+∞-; B .)0,1(-; C .),0(+∞; D .)1,(--∞.解B ;(提示:定义域为),1(+∞-,xxy +='1) (3)设函数232+-=x x y ,则()A .y 有极小值41,但无极大值; B .y 有极小值0,但无极大值; C .y 有极小值0,极大值41; D .y 有极大值41,但无极小值.解C ;(提示:由图像分析可知)(4)设函数4322x x x y +-=,则在区间)2,1(和)4,2(内,曲线分别为() A .凸的,凸的; B .凸的,凹的;C .凹的,凸的;D .凹的,凹的. 解D ;(提示:)112-=''x x y () (5)函数xex y -=2在区间)2,1(内是()A .单调递增且是凸的;B .单调递增且是凹的;C .单调递减且是凸的;D .单调递减且是凹的. 解A (提示:)2(x xe y x-='-,)42(2x x e y x+-=''-) 3.求下列极限:(1)2233lim a x a x a x --→; (2)30arctan lim xxx x -→; (3)x x x 4sin 1tan lim 4-→π; (4)x x e x 3lim +∞→;(5)xx xx x ln ln lim 2++∞→; (5))1(lim 1-+∞→x x e x .答案:(1)2233lim a x a x a x --→解 这是型未定式,所以应用洛必达法则得 a x x x a x a x a x a x a x 2323lim 23lim lim 22233===--→→→. (2)3arctan lim xxx x -→ 解 这是型未定式,所以应用洛必达法则得 31)1(31lim 3111lim arctan lim202203=+=+-=-→→→x x x x xx x x x .(3)xx x 4sin 1tan lim4-→π解 这是型未定式,所以应用洛必达法则得 21424cos 4sec lim 4sin 1tan lim 244-=-==-→→xx x x x x ππ. (4)x x ex 3lim +∞→解 这是∞∞型未定式,所以应用洛必达法则得06lim 6lim 3lim lim 23====+∞→+∞→+∞→+∞→x x x x x x x x ee x e x e x . (5)xx x x x ln ln lim 2++∞→解 这是∞∞型未定式,所以应用洛必达法则得 xx x x x xx x x x x x 112lim ln 112lim ln ln lim 22-=++=++∞→+∞→+∞→ ∞==-=+∞→+∞→x xx x x 4lim 12lim 2. (6))1(lim 1-+∞→xx e x解 这是0⋅∞型未定式,先变形化为00型的未定式,再应用洛必达法则得11lim 1lim )1(lim 001==-=-→→+∞→xx x x xx e xe e x . 4.求下列函数的单调区间: (1)149323+--=x x x y ; (2)x ex y -=2;(3)x x y sin 2-=,]2,0[π∈x . 答案:(1)149323+--=x x x y解 函数y 的定义域为),(+∞-∞,9632--='x x y , 令0='y ,得11-=x ,32=x ;列表讨论如下:所以函数y 的单调增加区间是)1,(--∞和),3(+∞,单调减少区间是)3,1(-. (2)xex y -=2解 函数y 的定义域为),(+∞-∞,)2(x xe y x-='-, 令0='y ,得01=x ,22=x ;列表讨论如下:所以函数y 的单调减少区间是)0,(-∞和),2(+∞,单调增加区间是)2,0(. (3)x x y sin 2-=,]2,0[π∈x 解x y cos 21-=',]2,0[π∈x , 令0='y ,得1π=x ,52π=x ;列表讨论如下:所以函数y 的单调减少区间是)3,0(π和)2,35(ππ,单调增加区间是)35,3(ππ. 5.求下列函数的极值:(1)43+=x xy ; (2)x x y 2ln =;(3)221xx y +=; (4)x x y 33cos sin +=; (5)32)1(23+-=x y ; (6))1ln(21arctan 2x x y +-=.答案: (1)43+=x xy 解 函数y 的定义域为),(+∞-∞,233)4()2(2+--='x x y ;令0='y ,解得驻点32=x ,另y '不存在的点没有;列表讨论如下:因此,函数43+=x x y 的极大值为62323==x y .(2)xxy ln =解 函数y 的定义域为),0(+∞,2ln 1x xy -='; 令0='y ,解得驻点e x =,另y '不存在的点没有;列表讨论如下:因此,函数x y =的极大值为e y e x ==. (3)221xx y +=解 函数y 的定义域为),0()0,+∞∞- (,34)12x x y -='(; 令0='y ,解得驻点1±=x ,另y '不存在的点没有;列表讨论如下:因此,函数22x x y +=的极小值为21=±=x y . (4)x x y 33cos sin +=解 )cos (sin cos sin 3x x x x y -=',]2,0[π∈x , 令0='y ,得01=x 、42π=x 、23π=x 、234π=x 、455π=x ;列表讨论如下:因此,函数x x y 33cos sin +=的极小值为224==πx y 和123-====ππx x y y , 极大值为120====πx x y y 和2245-==πx y . (5)32)1(23+-=x y解 函数y 的定义域为),(+∞-∞,3134+-='x y ;令0='y ,无解,另y '不存在的点为1-=x ;列表讨论如下:因此,函数32)1(23+-=x y 的极大值为31=-=x y . (6))1ln(21arctan 2x x y +-= 解 函数y 的定义域为),(+∞-∞,211xxy +-='; 令0='y ,解得驻点1=x ,另y '不存在的点没有;列表讨论如下:因此,函数y 的极大值为2ln 241-==x y .6.求下列函数在指定区间上的最值:(1)2211x x x x y -++-=,]1,0[∈x ; (2)x x y 2tan tan 2-=,]3,0[π∈x . 答案:(1)2211xx x x y -++-=,]1,0[∈x 解 221)122)((x x x y -+-=',令0='y ,在]1,0[上得驻点21=x ; 驻点处的函数值为5321==x y ,端点处的函数值为110====x x y y ; 所以,函数在]1,0[上的最大值为110====x x y y ,最小值为5321==x y . (2)x x y 2tan tan 2-=,]3,0[π∈x解 )tan 1(sec 22x x y -=',令0='y ,在]3,0[π上得驻点4π=x ;驻点处的函数值为14==πx y ,端点处的函数值为00==x y ,3323-==πx y ;所以,函数在]3,0[π上的最大值为14==πx y ,最小值为00==x y .7.求下列函数的凹凸区间和拐点:(1)1323+-=x x y ; (2))7ln 12(4-=x x y .答案:(1)1323+-=x x y解 函数的定义域为),(+∞-∞,x x y 632-=',66-=''x y ; 令0=''y ,解得定义区间内的实根1=x ;所以列表讨论如下:因此,函数在区间)1,(-∞内是凸的、在区间),1(+∞内是凹的,拐点为点)1,1(-. (2))7ln 12(4-=x x y解 函数的定义域为),0(+∞,)1ln 3(163-='x x y ,x x y ln 1442=''; 令0=''y ,解得定义区间内的实根1=x ;所以列表讨论如下:因此,函数在区间)1,0(内是凸的、在区间),1(+∞内是凹的,拐点为点)7,1(-. 8.作出下列函数的图像: (1)23x x y -=; (2)115-+=x y ; (3)2xx e e y -+=; (4)32)1(x x y -=.答案: (1)23x xy -=解 函数的定义域为),3()3,3()3,(∞+---∞ ,222)3(3x x y -+=',令0='y ,无解;322)3)92x x x y -+=''((,令0=''y 得0=x ;0=y 为水平渐近线,3±=x 为垂直渐近线;取辅助点)21,3(-,)2,2(-,)21,1(--,)21,1(,)4,2(-,)21,3(-;。
高中数学人教A版必修三课时作业:第3章 概率 3.1.2 Word版含答案
![高中数学人教A版必修三课时作业:第3章 概率 3.1.2 Word版含答案](https://img.taocdn.com/s3/m/df1be45f336c1eb91a375d80.png)
答案:530.53
9.掷一颗骰子,骰子落地时向上的数是偶数但不是3的倍数的概率是________.
答案:
解析:由题意,骰子落地时向上的点数为2,4,占全部结果的 = .
3.1.2概率的意义
课时目标
1.能够正确地理解概率的意义,会用概率的观点解释某些自然或社会现象.
2.能够正确认识概率思想在决策中的指导意义.
识记强化
概率的正确理解
随机事件在一次试验中发生与否是随机的,但随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.
课时作业
3
4
5
6
7
2点
3
4
5
6
7
8
3点
4
5
6
7
8
9
4点
5
6
7
8
9
10
5点
6
7
8
9
10
11
6点
7
8
9
10
11
12
由表格可以看出:两个骰子的点数相加之和为7的情形有6种,而两个骰子的点数相加之和为9的情形只有4种,所以小王赢的概率大.
11.在孟德尔豌豆试验中,若用纯黄色圆粒和纯绿色皱粒作为父本进行杂交,试求子一代结果中性状分别为黄色圆粒、黄色皱粒、绿色圆粒和绿色皱粒的比例约为多少?
A.0.53 B.0.5
C.0.47 D.0.37
答案:A
解析:取到号码为奇数Байду номын сангаас次数为10+8+6+18+11=53.∴f= =0.53.
高等代数第三章答案
![高等代数第三章答案](https://img.taocdn.com/s3/m/df474a752bf90242a8956bec0975f46527d3a7f3.png)
第三章 线性方程组习题解答1.用消元法解下列方程组:⑴⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-++=-++-=--+--=+-++=-++12343212231453543215432154321543214321x x x x x x x x x x x x x x x x x x x x x x x x ⑵⎪⎪⎩⎪⎪⎨⎧=+-+-=+-+-=-+--=+-+2521669972543223312325432154321543215421x x x x x x x x x x x x x x x x x x x⑶⎪⎪⎩⎪⎪⎨⎧-=++-=++-=+-=-+-33713344324324214324321x x x x x x x x x x x x x ⑷⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x ⑸⎪⎪⎩⎪⎪⎨⎧=-+--=+-+=-+-=+++43212523223124321432143214321x x x x x x x x x x x x x x x x ⑹⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=-++=+++=-++=-++225512221321231323214321432143214321x x x x x x x x x x x x x x x x x x x 解:⑴对它的增广矩阵作初等行变换:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----------00101000000000020*********1001001110000000000200212300101201001110007770005750212300104531213410215470213450212300104531111121311141311121112231104531即⎪⎪⎩⎪⎪⎨⎧=+-=--=+=-0022214235441x x x x x x x ,得⎪⎪⎩⎪⎪⎨⎧--====+=k x x k x x k x 220153421 k 为任意常数 ⑵无解⑶0,6,3,84321===-=x x x x⑷任意43432431,,17201719,1713173x x x x x x x x -=-=⑸无解 ⑹651,671,651434241x x x x x x +=-=+=2.把向量β表成4321αααα,,,的线性组合:⑴()()()()()1,1-1-11-1,1-11-1-,1,11,1,1,111,2,14321,,,,,,,,,,=====ααααβ ⑵()()()()()1-1-1,00,0,1,11,3,1,21,0,1,11,0,0,04321,,,,,,=====ααααβ 解:⑴令44332211ααααβk k k k +++=得方程组⎪⎪⎩⎪⎪⎨⎧=+--=-+-=--+=+++,1,1,2,14321432143214321k k k k k k k k k k k k k k k k 解得,41,41,41,454321-=-===k k k k 所以432141414145ααααβ--+=⑵仿上,可得31-ααβ=3.证明:如果向量组r ααα,,, 21线性无关,而βααα,21r ,,, 线性相关,则向量β可由r ααα,,, 21线性表出。
高等数学课后习题答案第三章
![高等数学课后习题答案第三章](https://img.taocdn.com/s3/m/f0fd5c0d76c66137ee061915.png)
习题三1(1)解:所给函数在定义域(,)−∞+∞内连续、可导,且2612186(1)(3)y x x x x ′=−−=+−可得函数的两个驻点:121,3x x =−=,在(,1),(1,3),(3,)−∞−−+∞内,y ′分别取+,–,+号,故知函数在(,1],[3,)−∞−+∞内单调增加,在[1,3]−内单调减少.(2)解:函数有一个间断点0x =在定义域外,在定义域内处处可导,且282y x ′=−,则函数有驻点2x =,在部分区间(0,2]内,0y ′<;在[2,)+∞内y ′>0,故知函数在[2,)+∞内单调增加,而在(0,2]内单调减少.(3)解:函数定义域为(,)−∞+∞,0y ′=>,故函数在(,)−∞+∞上单调增加.(4)解:函数定义域为(,)−∞+∞,22(1)(21)y x x ′=+−,则函数有驻点:11,2x x =−=,在1(,]2−∞内,0y ′<,函数单调减少;在1[,)2+∞内,0y ′>,函数单调增加.(5)解:函数定义域为[0,)+∞,11e e e ()n x n x x n y nx x x n x −−−−−′=−=−函数的驻点为0,x x n ==,在[0,]n 上0y ′>,函数单调增加;在[,]n +∞上0y ′<,函数单调减少.(6)解:函数定义域为(,)−∞+∞,πsin 2, [π,π], ,2πsin 2, [π,π], .2x x x n n n y x x x n n n ⎧+∈+∈⎪⎪=⎨⎪−∈−∈⎪⎩Z Z 1)当π[π,π]2x n n ∈+时,12cos 2y x ′=+,则1π0cos 2[π,π23y x x n n ′≥⇔≥−⇔∈+;πππ0cos 2[π,π]232y x x n n ′≤⇔≤−⇔∈++.2)当π[π,π]2x n n ∈−时,12cos 2y x ′=−,则1ππ0cos 2[π,π]226y x x n n ′≥⇔≤⇔∈−−1π0cos 2[π,π]26y x x n n ′≤⇔≥⇔∈−.综上所述,函数单调增加区间为πππ[,)223k k k z +∈,函数单调减少区间为ππππ[,)2322k k k z ++∈.(7)解:函数定义域为(,)−∞+∞.4453345(2)(21)4(2)(21)2(21)(1811)(2)y x x x x x x x ′=−++−+⋅=+−−函数驻点为123111,,2218x x x =−==,在1(,]2+∞−内,0y ′>,函数单调增加,在111[,]218−上,0y ′<,函数单调减少,在11[,2]18上,0y ′>,函数单调增加,在[2,)+∞内,0y ′>,函数单调增加.故函数的单调区间为:1(,]2−∞−,111[,218−,11[,)18+∞.2.(1)证明:令()sin tan 2,f x x x x =−−则22(1cos )(cos cos 1)()cos x x x f x x −++′=,当π02x <<时,()0,()f x f x ′>为严格单调增加的函数,故()(0)0f x f >=,即sin 2tan 2.x x x −>(2)证明:令2()=e sin 12xx f x x −+−−,则()=e cos xf x x x −′−+−,()=e sin 1e (sin 1)0x x f x x x −−′′−−=−+<,则()f x ′为严格单调减少的函数,故()(0)0f x f ′′<=,即()f x 为严格单调减少的函数,从而()(0)0f x f <=,即2e sin 1.2xx x −+<+3.证明:设()sin f x x x =−,则()cos 10,f x x =−≤()f x 为严格单调减少的函数,因此()f x 至多只有一个实根.而(0)0f =,即0x =为()f x 的一个实根,故()f x 只有一个实根0x =,也就是sin x x =只有一个实根.4.(1)解:22y x ′=−,令0y ′=,得驻点1x =.又因20y ′′=>,故1x =为极小值点,且极小值为(1)2y =.(2)解:266y x x ′=−,令0y ′=,得驻点120,1x x ==,126y x ′′=−,010,0x x y y ==′′′′<>,故极大值为(0)0y =,极小值为(1)1y =−.(3)解:2612186(3)(1)y x x x x ′=−−=−+,令0y ′=,得驻点121,3x x =−=.1212y x ′′=−,130,0x x y y =−=′′′′<>,故极大值为(1)17y −=,极小值为(3)47y =−.(4)解:1101y x ′=−=+,令0y ′=,得驻点0x =.201,0(1)x y y x =′′′′=>+,故(0)0y =为极大值.(5)解:32444(1)y x x x x ′=−+=−,令0y ′=,得驻点1231,0,1x x x =−==.210124, 0,0,x x y x y y =±=′′′′′′=−+<>故(1)1y ±=为极大值,(0)0y =为极小值.(6)解:1y ′=,令0y ′=,得驻点13,4x =且在定义域(,1]−∞内有一不可导点21x =,当34x >时,0y ′<;当34x <时,0y ′>,故134x =为极大值点,且极大值为35()44y =.因为函数定义域为1x ≤,故1x =不是极值点.(7)解:y ′=,令0y ′=,得驻点125x =.当125x >时,0y ′<;当125x <,0y ′>,故极大值为12()5y =.(8)解:2131x y x x +=+++,22(2)(1)x x y x x −+′=++,令0y ′=,得驻点122,0x x =−=.2223(22)(1)2(21)(2)(1)x x x x x x y x x −−+++++′′=++200,0x x y y =−=′′′′><,故极大值为(0)4y =,极小值为8(2)3y −=.(9)解:e (cos sin )x y x x ′=−,令0y ′=,得驻点ππ (0,1,2,)4k x k k =+=±±⋯.2e sin x y x ′′=−,ππ2π(21)π440,0x k x k y y =+=++′′′′<>,故2π2π 4k x k =+为极大值点,其对应的极大值为π2π42()k k y x +=;21π(21)π 4k x k +=++为极小值点,对应的极小值为π(21)π421()k k y x +++=.(10)解:11211ln (ln )xxxy x x x x x −′′==,令0y ′=,得驻点e x =.当e x >时,0y ′<,当e x <时,0y ′>,故极大值为1e(e)e y =.(11)解:2e e x xy −′=−,令0y ′=,得驻点ln 22x =−.ln 222e e ,0x x x y y −=−′′′′=+>,故极小值为ln 2()2y −=.(12)解:y ′=,无驻点.y 的定义域为(,)−∞+∞,且y 在x =1处不可导,当x >1时0y ′<,当x <1时,0y ′>,故有极大值为(1)2y =.(13)解:y ′=无驻点.y 在1x =−处不可导,但y ′恒小于0,故y 无极值.(14)解:21sec 0y x ′=+>,y 为严格单调增加函数,无极值点.5.证明:232y ax bx c ′=++,令0y ′=,得方程2320ax bx c ++=,由于22(2)4(3)4(3)0b a c b ac ∆=−=−<,那么0y ′=无实数根,不满足必要条件,从而y 无极值.6.解:f (x )为可导函数,故在π3x =处取得极值,必有π3π0()(cos cos3)3x f a x x =′==+,得a =2.又π3π0((2sin 3sin 3)3x f x x =′′=<=−−,所以π3x =是极大值点,极大值为π()3f =7.(1)解:y 的定义域为(,0)−∞,322(27)0x y x +′==,得唯一驻点x =-3且当(,3]x ∈−∞−时,0y ′<,y 单调递减;当[3,0)x ∈−时,0y ′>,y 单调递增,因此x =-3为y 的最小值点,最小值为f (-3)=27.又lim ()x f x →−∞=+∞,故f (x )无最大值.(2)解:10y ′==,在(5,1)−上得唯一驻点34x =,又53,(1)1,(5)544y y y ⎛⎞==−=−⎜⎟⎝⎠ ,故函数()f x 在[-5,1]上的最大值为545−.(3).解:函数在(-1,3)中仅有两个驻点x =0及x =2,而y (-1)=-5,y (0)=2,y (2)=-14,y (3)=11,故在[-1,3]上,函数的最大值是11,最小值为-14.8.解:20y ax b ′=+=得2b x a =−不可能属于以0和ba 为端点的闭区间上,而22(0)0,b b y y a a ⎛⎞==⎜⎟⎝⎠,故当a >0时,函数的最大值为22b b y a a ⎛⎞=⎜⎟⎝⎠,最小值为(0)0y =;当a <0时,函数的最大值为(0)0y =,最小值为22b b y a a ⎛⎞=⎜⎟⎝⎠.9.解:令y =,y ′===令0y ′=得x =1000.因为在(0,1000)上0y ′>,在(1000,)+∞上0y ′<,所以x =1000为函数y的极大值点,也是最大值点,max (1000)y y ==.故数列的最大项为1000a =.10.证明:11,01111(),01111,11x x x a f x x ax x a x a x x a ⎧+<⎪−−+⎪⎪=+≤≤⎨+−+⎪⎪+>⎪++−⎩当x <0时,()()2211()011f x x x a ′=+>−−+;当0<x <a 时,()()2211()11f x x x a ′=−++−+;此时令()0f x ′=,得驻点2a x =,且422a f a ⎛⎞=⎜⎟+⎝⎠,当x >a 时,()()2211()011f x x x a ′=−−<++−,又lim ()0x f x →∞=,且2(0)()1a f f a a +==+.而()f x 的最大值只可能在驻点,分界点,及无穷远点处取得故{}max 242(),,0121a af x a a a++==+++.11.解:设圆柱体的高为h ,,223πππ4V h r h h =⋅=−令0V ′=,得.h =即圆柱体的高为3r 时,其体积为最大.12.解:由题设知21π22x xy a⎛⎞+⋅=⎜⎟⎝⎠得21π18π8a x a y x x x −==−截面的周长212112π()2πππ,2424π2()1,4a a l x x y x x x x x x x x al x x=++⋅=+−+=++′=+−令()0l x ′=得唯一驻点x =,即为最小值点.即当x =.13.解:所需电线为()(03)()L x x L x =<<′=在0<x <3得唯一驻点x =1.2(km),即变压器设在输电干线离A 处1.2km 时,所需电线最短.14.解:设小正方形边长为x 时方盒的容积最大.232222(2)44128V a x x x ax a xV x ax a =−⋅=−+′=−+令0V ′=得驻点2a x =(不合题意,舍去),6a x =.即小正方形边长为6a时方盒容积最大.15.(1)解:42,20y x y ′′′=−=−<,故知曲线在(,)−∞+∞内的图形是凸的.(2)解:cosh ,sinh .y x y x ′′′==由sinh x 的图形知,当(0,)x ∈+∞时,0y ′′>,当(,0)x ∈−∞时,0y ′′<,故y =sinh x 的曲线图形在(,0]−∞内是凸的,在[0,)+∞内是凹的.(3)解:23121,0y y x x ′′′=−=>,故曲线图形在(0,)+∞是凹的.(4)解:2arctan 1x y x x ′=++,2220(1)y x ′′=>+故曲线图形在(,)−∞+∞内是凹的.16.(1);解:23103y x x ′=−+610y x ′′=−,令0y ′′=可得53x =.当53x <时,0y ′′<,故曲线在5(,)3−∞内是凸弧;当53x >时,0y ′′>,故曲线在5[,)3+∞内是凹弧.因此520,327⎛⎞⎜⎟⎝⎠是曲线的唯一拐点.(2)解:(1)e , e (2)x xy x y x −−′′′=−=−令0y ′′=,得x =2当x >2时,0y ′′>,即曲线在[2,)+∞内是凹的;当x <2时,0y ′′<,即曲线在(,2]−∞内是凸的.因此(2,2e -2)为唯一的拐点.(3);解:324(1)e , e 12(1)0x x y x y x ′′′=++=++>故函数的图形在(,)−∞+∞内是凹的,没有拐点.(4)解:222222(1), 1(1)x x y y x x −′′′==++令0y ′′=得x =-1或x =1.当-1<x <1时,0y ′′>,即曲线在[-1,1]内是凹的.当x >1或x <-1时,0y ′′<,即在(,1],[1,)−∞−+∞内曲线是凸的.因此拐点为(-1,ln2),(1,ln2).(5);解:arctan arctan 222112e ,e1(1)x xx y y x x −′′′==++ 令0y ′′=得12x =.当12x >时,0y ′′<,即曲线在1[,)2+∞内是凸的;当12x <时,0y ′′>,即曲线在1(,]2−∞内是凹的,故有唯一拐点1arctan 21(,e )2.(6)解:函数y 的定义域为(0,+∞)且在定义域内二阶可导.324(12ln 4),144ln .y x x y x x ′′′=−= 令0y ′′=,在(0,+∞),得x =1.当x >1时,0y ′′>,即曲线在[1,)+∞内是凹的;当0<x <1时,0y ′′<,即曲线在(0,1]内是凸的,故有唯一拐点(1,-7).17.(1);证明:令()nf x x =12(),()(1)0n n f x nx f x n n x −−′′′==−> ,则曲线y =f (x )是凹的,因此,x y R +∀∈,()()22f x f y x y f ++⎛⎞<⎜⎟⎝⎠,即1()22nn n x y x y +⎛⎞<+⎜⎟⎝⎠.(2);证明:令f (x )=e x()e ,()e 0x x f x f x ′′′==> .则曲线y =f (x )是凹的,,,x y R x y∀∈≠ 则()()22f x f y x y f ++⎛⎞<⎜⎟⎝⎠即2e e e2x yx y ++<.(3)证明:令f (x )=x ln x (x >0)1()ln 1,()0(0)f x x f x x x′′′=+=>> 则曲线()y f x =是凹的,,x y R +∀∈,x ≠y ,有()()22f x f y x y f ++⎛⎞<⎜⎟⎝⎠即1ln (ln ln )222x y x y x x y y ++<+,即ln ln ()ln2x y x x y y x y ++>+.18.(1)解:22223d 33d 3(1),d 2d 4y t y t xt x t +−==令22d 0d yx =,得t =1或t =-1则x =1,y =4或x =1,y =-4当t >1或t <-1时,22d 0d yx >,曲线是凹的,当0<t <1或-1<t <0时,22d 0d yx <,曲线是凸的,故曲线有两个拐点(1,4),(1,-4).(2)解:32d 22sin cos 2sin cos d 2(csc )y a xa θθθθθ⋅⋅==−⋅−222442222d 11(6sin cos 2sin )sin cos (3tan )d 2(csc )y x a a θθθθθθ=−+⋅=⋅−−令22d 0d y x =,得π3θ=或π3θ=−,不妨设a >0tan θ>>时,即ππ33θ−<<时,22d 0d y x >,当tan θ>或tan θ<π3θ<−或π3θ>时,22d 0d y x <,故当参数π3θ=或π3θ=−时,都是y的拐点,且拐点为3,2a ⎞⎟⎠及3,2a ⎛⎞⎜⎟⎝⎠.19.证明:22221(1)x x y x −++′=+,y ′′=令0y ′′=,得1,22x x x =−=+=−当(,1)x ∈−∞−时,0y ′′<;当(1,2x ∈−时0y ′′>;当(22x ∈−+时0y ′′<;当(2)x ∈++∞时0y ′′>,因此,曲线有三个拐点(-1,-1),(2−+.因为111212−−+因此三个拐点在一条直线上.20.解:y′=3ax 2+2bx ,y″=6ax +2b 依题意有3620a b a b +=⎧⎨+=⎩解得39,22a b =−=.21.解:令f (x )=ax 3+bx 2+cx +d联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0可解得a =1,b =-3,c =-24,d =16.22.解:224(3),12(1)y kx x y k x ′′′=−=− 令0y ′′=,解得x =±1,代入原曲线方程得y =4k ,只要k ≠0,可验证(1,4k ),(-1,4k )是曲线的拐点.18x k y =±′=±,那么拐点处的法线斜率等于18k ∓,法线方程为18y x k =∓.由于(1,4k ),(-1,4k )在此法线上,因此148k k =±,得22321, 321k k ==−(舍去)故8k ==±.23.答:因00()()0f x f x ′′′==,且0()0f x ′′′≠,则x =x 0不是极值点.又在0(,)U x δ�中,000()()()()()()f x f x x x f x x f ηη′′′′′′′′′′=+−=−,故()f x ′′在0x 左侧与0()f x ′′′异号,在0x 右侧与0()f x ′′′同号,故()f x 在x =x 0左、右两侧凹凸性不同,即00(,())x f x 是拐点.24.(1);解:函数的定义域为(-∞,+∞),且为奇函数,2222222223121(1)(1)2(3)(1)x x x y x x x x y x +−−′==++−′′=+令0y ′=,可得1x =±,令0y ′′=,得x =0,,当x→∞时,y→0,故y=0是一条水平渐近线.函数有极大值1(1)2f=,极小值1(1)2f−=−,有3个拐点,分别为,⎛⎜⎝(0,0),,作图如上所示.(2)解:函数定义域为(-∞,+∞),且为奇函数,2222114(1)yxxyx′=−+′′=+令y′=0,可得x=±1,令y″=0,可得x=0.列表讨论如下:x0(0,1)1(1,∞)y′-0+y″0++y0极小又()2lim lim(1arctan)1x xf xxx x→∞→∞=−=且lim[()]lim(2arctan)πx xf x x x→+∞→+∞−=−=−故πy x=−是斜渐近线,由对称性知πy x=+亦是渐近线.函数有极小值π(1)12y=−,极大值π(1)12y−=−.(0,0)为拐点.作图如上所示.(3);解:函数的定义域为,1x R x∈≠−.22232(1)(2)(1)(1)(1)2(1)x x x x xy xx xyx+−+′==≠−++′′=+令y′=得x=0,x=-2当(,2]x∈−∞−时,0,()y f x′>单调增加;当[2,1)x∈−−时,0,()y f x′<单调减少;当(1,0]x∈−时,0,()y f x′<单调减少;当[0,)x∈+∞时,0,()y f x′>单调增加,故函数有极大值f(-2)=-4,有极小值f(0)=0又211lim()lim1x xxf xx→−→−==∞+,故x=-1为无穷型间断点且为铅直渐近线.又因()lim1xf xx→∞=,且2lim(())lim11x xxf x x xx→∞→∞⎡⎤−==−−⎢⎥+⎣⎦,故曲线另有一斜渐近线y=x-1.综上所述,曲线图形为:(4)解:函数定义域为(-∞,+∞).22(1)(1)22(1)e e 2(241)x x y x y x x −−−−′=−−′′=⋅−+令0y ′=,得x =1.令0y ′′=,得1x =±.当(,1]x ∈−∞时,0,y ′>函数单调增加;当[1,)x ∈+∞时,0,y ′<函数单调减少;当(,1[1)x ∈−∞−++∞∪时,0y ′′>,曲线是凹的;当[1,122x ∈−+时,0y ′′<,曲线是凸的,故函数有极大值f (1)=1,两个拐点:1122(1,e ),(1,e )22A B −−−+,又lim ()0x f x →∞=,故曲线有水平渐近线y =0.图形如下:25.(1)解:2e ()0(1e )cxcx Ac g x −−′=>+,g (x )在(-∞,+∞)内单调增加,222244e e 2(1e )e e (1e )()(1e )(1e )cx cx cx cx cx cx cx cx Ac Ac Ac g x −−−−−−−−−+⋅+⋅−−′′==++当x >0时,()0,()g x g x ′′<在(0,+∞)内是凸的.当x <0时,()0,()g x g x ′′>在(-∞,0)内是凹的.当x =0时,()2A g x =.且lim ()0,lim ()x x g x g x A→−∞→+∞==.故曲线有两条渐近线y =0,y =A .且A 为该种动物数量(在特定环境中)最大值,即承载容量.如图:(2)解:()()1e 1e cx cxA Ag x g x A −−+=+=++.(3)证明:∵()1e 1e e c x T cx cT A Ay B B −+−−==++取e1cTB −=,得ln B T c =即曲线1e cx A y B −=+是对g (x )的图像沿水平方向作了ln B T c =个单位的平移.26.解:324d π,π,.3d r V r A r v t === 2d d d 4πd d d d d d 8πd d d V V rr v t r t A A r r v t r t=⋅=⋅=⋅=⋅27.解:d d de e .d d d a a r r a a t t ϕϕϕωωϕ=⋅=⋅⋅=28.解:22cos 2cos sin sin 2x a y a a ϕϕϕϕ⎧=⎨==⎩d d d 22cos (sin )2sin 2,d d d d d d 2cos 22cos .d d d x x a a t t y y a a t t ϕϕϕωωϕϕϕϕωωϕϕ=⋅=⋅⋅−⋅=−=⋅=⋅=29.解:方程22169400x y +=两边同时对t 求导,得d d 32180d d x yx y t t⋅+⋅=由d d d d x y tt −=.得161832,9y x y x == 代入椭圆方程得:29x =,163,.3x y =±=±即所求点为1616,3,3,33⎛⎞⎛⎞−−⎜⎟⎜⎟⎝⎠⎝⎠.30.解:当水深为h时,横截面为212s h ==体积为22212V sh h ′====d d 2d d V hh t t=⋅当h =0.5m 时,31d 3m min d Vt −=⋅.故有d 320.5d ht =⋅,得d d h t =(m 3·min -1).31.解:设t 小时后,人与船相距s公里,则d d s s t ===且120d 8.16d t st ==≈(km ·h-1)32.解:d d d 236.d d d y y xx x t x t=⋅=⋅=当x =2时,d 6212d yt =×=(cm ·s -1).33.证明:如图,设在t 时刻,人影的长度为y m.则53456y y t=+化简得d 7280,40,40d yy t y t t ===(m ·min -1).即人影的长度的增长率为常值.34.解:y =-(x -2)2+4,故抛物线顶点为(2,4)当x =2时,0,2y y ′′′==− ,故23/22.(1)y k y ′′==′+35.解:sinh ,cosh .y x y x ′′′== 当x =0时,0,1y y ′′′== ,故23/21.(1)y k y ′′==′+36.解:cos ,sin y x y x ′′′==−.当π2x =时,0,1y y ′′′==− ,故23/21.(1)y k y ′′==′+37.解:2tan ,sec y x y x ′′′== 故223/223/2sec cos (1)(1tan )y x k x y x ′′===′++1sec R x k ==.38.解:22d d 3sin cos d tan d d 3cos sin d y y a t t t t x x a t tt ===−−,22224d d d(tan )1sec 1(tan )d d d d 3cos sin 3sin cos d y t t t x x x ta t t a t t t −−=−=⋅==−,故423/2123sin cos [1(tan )]3sin 2a t t k t a t==+−且当t =t 0时,23sin 2k a t =.39.解:cos ,sin y x y x ′′′==− .23/223/2(1cos )1sin ,sin (1cos )x x R k x R x +===+ 显然R 最小就是k 最大,225/22cos (1sin )(1cos )x x k x +′=+令0k ′=,得π2x =为唯一驻点.在π0,2⎛⎞⎜⎟⎝⎠内,0k ′>,在π,π2⎛⎞⎜⎟⎝⎠内,0k ′<.所以π2x =为k 的极大值点,从而也是最大值点,此时最小曲率半径为23/2π2(1cos )1sin x x R x=+==.40.解:由ln 0y x y =⎧⎨=⎩解得交点为(1,0).1112111,11.x x x x y x y x ====′==′′=−=−故曲率中心212(1,0)(1)312x y y x y y y y αβ=⎧′′⎡⎤+==−⎪⎢′′⎣⎦⎪⎨′⎡⎤+⎪==−+⎢⎥⎪′′⎣⎦⎩曲率半径为R =.故曲率圆方程为:22(3)(2)8x y −++=.41.解:0010,5000x x y y ==′′′==,23/2(1)5000y R y ′+==′′飞行员在飞机俯冲时受到的向心力22702005605000mv F R ⋅===(牛顿)故座椅对飞行员的反力560709.81246F =+×=(牛顿).42.解:(1)边际成本为:()(300 1.1) 1.1.C q q ′′=+=(2)利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=−=−−′=−令()0L q ′=,得650q =即为获得最大利润时的产量.(3)盈亏平衡时:R (q )=C (q )即 3.9q -0.003q 2-300=0q 2-1300q +100000=0解得q =1218(舍去),q =82.43.解:(1)利润函数为32322()70.010.6130.010.66()0.03 1.26L q q q q q q q qL q q q =−+−=−+−′=−+−令()0L q ′=,得231206000q q −+=即2402000q q −+=得20q =−(舍去)2034.q =+≈此时,32(34)0.01340.63463496.56L =−×+×−×=(元)(2)设价格提高x 元,此时利润函数为2()(7)(342)(34)220379.44L x x x C x x =+−−=−++令()0L x′=,得5x=(5)121.5696.56L=>故应该提高价格,且应提高5元.44.(1)解:y′=a即为边际函数.弹性为:1Ey axa xEx ax b ax b =⋅⋅=++,增长率为:yaax b γ=+.(2)解:边际函数为:y′=ab e bx弹性为:1eebxbxEyab x bx Ex a=⋅⋅=,增长率为:eebxy bxabbaγ==.(3)解:边际函数为:y′=ax a-1.弹性为:11aaEyax x a Ex x−=⋅⋅=,增长率为:1.ay aax ax x γ−==45.解:因弹性的经济意义为:当自变量x变动1%,则其函数值将变动% EyEx⎛⎞⎜⎟⎝⎠.故当价格分别提高10%,20%时,需求量将分别提高0.8×10%=8%,0.8×20%=16%.46.解:人均收入年增长率=国民收入的年增长率-人口增长率=7.1%-1.2%=5.9%.。
高中数学人教A版必修三课时作业第3章概率3.1.1含答案
![高中数学人教A版必修三课时作业第3章概率3.1.1含答案](https://img.taocdn.com/s3/m/8afdf0a3ce2f0066f433227e.png)
3.1.1 随机事件的概率课时目标1.了解随机事件、必然事件、不可能事件的概念,体会确定性现象与随机现象的含义. 2.理解概率及频率与概率的区别及联系.识记强化1.事件的概念 (1)必然事件:在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件. (2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件. (3)确定事件:必然事件与不可能事件统称为相对于条件S 的确定事件. (4)随机事件在条件S 下,可能发生也可能不发生的事件,叫做相对于条件S 的随机事件. 2.频数与频率在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率.3.概率对于给定的事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A )稳定在[0,1]中的某一个常数上,把这个常数记作P (A ),称为事件A 的概率.课时作业一、选择题1.将一根长为a 的铁丝随意截成三段,构成一个三角形,此事件是( ) A .必然事件 B .不可能事件 C .确定事件 D .随机事件 答案:D解析:只有任意两段长度之和大于第三段长度时,才能构成三角形,故此事件为随机事件.2.下列说法正确的是( )①频数和频率都反映一个对象在实验总次数中出现的频繁程度; ②每个实验结果出现的频数之和等于实验总次数; ③每个实验结果出现的频率之和不一定等于1; ④概率就是频率. A .① B.①②④ C .①② D.③④ 答案:C3.在n +2件同类产品中,有n 件是正品,2件是次品,从中任意抽出3件产品的必然事件是( )A .3件都是次品B .3件都是正品C .至少有一件是次品D .至少有一件是正品 答案:D4.下列说法正确的是( ) A .任何事件的概率总是在(0,1)之间 B .频率是客观存在的,与试验次数无关C .随着试验次数增加,频率一般会越来越接近概率D .概率是椭机的,在试验前不能确定 答案:C 5.下列说法:①频率反映随机事件的频繁程度,概率反映随机事件发生的可能性大小; ②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率mn就是事件的概率; ③频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,而概率是频率的稳定值.其中正确的个数是( )A.1 B.2C.3 D.4答案:C解析:由概率的统计定义可知①、③、④是正确的.6.抛掷一枚硬币出现“正面向上”的概率为0.5是指( )A.正面向上的可能性是50%B.在100次抛掷中恰有50次正面向上C.无论抛掷多少次,总有50次正面向上D.以上说法都不正确答案:A二、填空题7.把一对骰子掷一次,可能出现________种不同结果.答案:36解析:会用列举法列出各种不同的情况.每枚骰子都会出现6种不同的情况,故共有6×6=36种不同的结果.8.下列事件是随机事件的有________.①连续两次掷一枚硬币,两次都出现正面朝上;②异性电荷,相互吸引;③在标准大气压下,水在1℃时结冰.答案:①9.①某地3月6日下雨;②函数y=a x(a>0且a≠1)在定义域上是减函数;③实数的绝对值小于0;④a,b∈R,若a+b=0,则a2=b2;⑤某人射击8次恰有4次中靶.其中必然事件是________,不可能事件是________,随机事件是________.答案:④③①②⑤解析:①是随机事件,某地3月6日可能下雨,也可能不下雨;②是随机事件,函数y=a x(a>1且a≠0)在a>1时为增函数,在0<a<1时为减函数,未给出a值之前很难确定给的a值是大于1还是小于1的;③是不可能事件,任意实数a,总有|a|≥0,故|a|<0不可能发生;。
2018版必修一课后作业:第三章 指数函数、对数函数和
![2018版必修一课后作业:第三章 指数函数、对数函数和](https://img.taocdn.com/s3/m/ad826d5b168884868762d6bb.png)
3.1.1分数指数幂第1课时根式学习目标 1.理解n次实数方根、n次根式的概念.2.正确运用根式运算性质化简、求值.3.体会分类讨论思想、符号化思想的作用.知识点一n次实数方根,n次根式思考若x2=3,这样的x有几个?x叫做3的什么?怎么表示?答案这样的x有2个,它们都称为3的平方根,记作±3.梳理(1)n次实数方根的概念(2)根式的概念式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数. 知识点二 根式的性质思考 我们已经知道,若x 2=3,则x =±3,那么(3)2等于什么?32呢?(-3)2呢? 答案 把x =3代入方程x 2=3,有(3)2=3; 32=9,9代表9的正的平方根即3. (-3)2=9=3. 梳理 根式的性质(1)n0=0(n ∈N *,且n >1); (2)(na )n =a (n ∈N *,且n >1); (3)na n =a (n 为大于1的奇数); (4)na n=|a |=⎩⎪⎨⎪⎧a (a ≥0)-a (a <0)(n 为大于1的偶数).类型一 根式的意义例1 求使等式(a -3)(a 2-9)=(3-a )a +3成立的实数a 的取值范围. 解(a -3)(a 2-9)=(a -3)2(a +3)=|a -3|a +3,要使|a -3|a +3=(3-a )a +3成立,需⎩⎪⎨⎪⎧a -3≤0,a +3≥0,解得a ∈[-3,3]. 反思与感悟 对于na ,当n 为偶数时,要注意两点 (1)只有a ≥0才有意义.(2)只要n a 有意义,na 必不为负.跟踪训练1 若a 2-2a +1=a -1,求a 的取值范围. 解 ∵a 2-2a +1=|a -1|=a -1, ∴a -1≥0,∴a ≥1.类型二 利用根式的性质化简或求值 例2 化简: (1)4(3-π)4; (2)(a -b )2(a >b );(3)(a -1)2+(1-a )2+3(1-a )3. 解 (1)4(3-π)4=|3-π|=π-3. (2)(a -b )2=|a -b |=a -b .(3)由题意知a -1≥0,即a ≥1.原式=a -1+|1-a |+1-a =a -1+a -1+1-a =a -1. 反思与感悟 n 为奇数时⎝⎛⎭⎫n a n =n a n =a ,a 为任意实数均可;n 为偶数且a ≥0时,⎝⎛⎭⎫n a n 才有意义,且⎝⎛⎭⎫n a n =a ;而a 为任意实数n a n 均有意义,且n a n =|a |. 跟踪训练2 求下列各式的值. (1)7(-2)7; (2)4(3a -3)4(a ≤1); (3)3a 3+4(1-a )4. 解 (1)7(-2)7=-2.(2)4(3a -3)4=|3a -3|=3|a -1|=3-3a . (3)3a 3+4(1-a )4=a +|1-a |=⎩⎪⎨⎪⎧1,a ≤1,2a -1,a >1.类型三 有限制条件的根式的化简例3 设-3<x <3,求x 2-2x +1-x 2+6x +9的值. 解 原式=(x -1)2-(x +3)2=|x -1|-|x +3|, ∵-3<x <3, ∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2; 当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎪⎨⎪⎧-2x -2,-3<x <1,-4,1≤x <3.引申探究例3中,若将“-3<x <3”变为“x ≤-3”,结果又是什么? 解 原式=(x -1)2-(x +3)2=|x -1|-|x +3|. ∵x ≤-3,∴x -1<0,x +3≤0, ∴原式=-(x -1)+(x +3)=4.反思与感悟 当n 为偶数时,na n 先化为|a |,再根据a 的正负去绝对值符号. 跟踪训练3 已知x ∈[1,2],化简(4x -1)4+6(x 2-4x +4)3=________. 答案 1解析 ∵x ∈[1,2],∴x -1≥0,x -2≤0, ∴(4x -1)4+6(x 2-4x +4)3 =x -1+6(x -2)6 =x -1-(x -2) =1.1.已知x 5=6,则x 等于________. 答案562.m 是实数,则下列式子中可能没有意义的是________. ①4m 2;②3m ;③6m ;④5-m . 答案 ③3.(42)4运算的结果是________. 答案 24.3-8的值是________. 答案 -25.化简(1-2x )2(2x >1)的结果是________. 答案 2x -11.根式的概念:如果x n =a ,那么x 叫做a 的n 次实数方根,其中n >1,且n ∈N *.n 为奇数时,x =n a ,n 为偶数时,x =±na (a >0);负数没有偶次方根,0的任何次方根都是0.2.掌握两个公式:(1)(na )n=a ;(2)n 为奇数,n a n =a ,n 为偶数,n a n=|a |=⎩⎪⎨⎪⎧a , a ≥0,-a ,a <0.3.一个数到底有没有n 次实数方根,我们一定要先考虑被开方数到底是正数还是负数,还要分清n 为奇数还是偶数这两种情况.课时作业一、填空题1.已知m 10=2,则m =________. 答案 ±102解析 ∵m 10=2,∴m 是2的10次方根.又∵10是偶数,∴2的10次方根有两个,且互为相反数. ∴m =±102. 2.给出下列各式:①na n=a ;②a a =34a (a >0);③3-3=6(-3)2. 其中正确的为________. 答案 ② 解析 ①na n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |,n 为偶数,∴①错;②a a =(a a )12=(aa 12)12=(a 32)12=a 34,∴②正确;③3-3=-33,6(-3)2=632=33,∴③错. 3.化简3-8125的值是________. 答案 -25解析3-8125=3(-25)3=-25. 4.化简(e -1+e )2-4等于________. 答案 e -e -1解析(e -1+e )2-4=e -2+2e -1e +e 2-4=e -2-2+e 2=(e -1-e )2 =|e -1-e|=e -e -1.5.若2<a <3,化简(2-a )2+4(3-a )4的结果是________.答案 1解析 ∵2<a <3,∴a -2>0,a -3<0,∴(2-a )2+4(3-a )4=|2-a |+|3-a |=a -2+3-a =1. 6.5-26的平方根是________. 答案 ±(3-2)解析 ±5-26=±3-26+2=±(3-2)2 =±(3-2).7.化简(π-4)2+3(π-4)3的结果为________. 答案 0解析 原式=|π-4|+π-4=4-π+π-4=0. 8.若x <0,则|x |-x 2+x 2|x |=________.答案 1解析 ∵x <0,∴原式=-x -(-x )+-x-x=-x +x +1=1. 9.3-223+22=________.答案 3-2 2 解析 方法一3-223+22=(2-1)2(2+1)2=2-12+1=(2-1)2(2+1)(2-1)=3-2 2. 方法二 3-223+22=(3-22)2(3+22)(3-22)=3-2 2.10.把a-1a根号外的a 移到根号内等于________. 答案 --a 解析 要使-1a有意义,需a <0. ∴a -1a=-|a |-1a=-|a |2·(-1a)=--a .二、解答题11.求3(-6)3+4(5-4)4+3(5-4)3的值. 解 ∵3(-6)3=-6, 4(5-4)4=|5-4|=4-5, 3(5-4)3=5-4,∴原式=-6+4-5+5-4=-6.12.设f (x )=x 2-4,若0<a ≤1,求f (a +1a ).解 f (a +1a )=(a +1a)2-4=a 2+1a2-2=(a -1a )2=|a -1a|,因为0<a ≤1,所以a ≤1a ,故f (a +1a )=1a-a .13.化简x 2-2xy +y 2+7(y -x )7. 解 原式=(x -y )2+y -x =|x -y |+y -x . 当x ≥y 时,原式=x -y +y -x =0; 当x <y 时,原式=y -x +y -x =2(y -x ).∴原式=⎩⎪⎨⎪⎧0,x ≥y ,2(y -x ),x <y .三、探究与拓展 14.化简(1-a )·41(a -1)3=________. 答案 -4a -1解析 要使函数有意义需a -1>0. (1-a )41(a -1)3=(1-a )(a -1)-34 =-(a -1)(a -1)-34=-4a -1.15.计算: (1)614-3338+30.125;(2)3(-8)3+4(3-2)4-3(2-3)3. 解 (1)原式=254-3278+318=52-32+12=32. (2)原式=-8+|3-2|-(2-3) =-8+2-3-2+ 3 =-8.。
【人教A版】高中数学必修5第三章课后习题解答
![【人教A版】高中数学必修5第三章课后习题解答](https://img.taocdn.com/s3/m/27411ec928ea81c758f578e7.png)
新课程标准数学必修5第三章课后习题解答第三章 不等式3.1不等关系与不等式 练习(P74)1、(1)0a b +≥; (2)4h ≤; (3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>; (2)<; (3)>; (4)<;习题3.1 A 组(P75)1、略.2、(1)24<; (2>.3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)02x +>>,所以12x+>4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥ 即,2100n ≥.习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++ (2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+> 所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd >于是0a bd c>>>3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以 352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥ 所以28x ≥,且30x ≤所以 2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少. 3.2一元二次不等式及其解法 练习(P80) 1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤; (2)R ; (3){}2x x ≠; (4)12x x ⎧⎫≠⎨⎬⎩⎭; (5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或; (6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或; (7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x的集合是1⎧⎪⎨⎪⎪⎩⎭;使2362y x x =-+的值大于0的x的集合为11x x x ⎧⎪<>⎨⎪⎪⎩⎭或;使2362y x x =-+的值小于0的x的集合是11x x ⎧⎪<<+⎨⎪⎪⎩⎭.(2)使225y x =-的值等于0的x 的集合{}5,5-; 使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或. (3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点 所以使2+610y x x =+的等于0的集合为∅; 使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R. (4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅;使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠. 习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或; (2)x x ⎧⎪<<⎨⎪⎪⎩⎭;(3){}2,5x x x <->或; (4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以y R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x =所以y {}3x x =3、{33m m m <-->-+或;4、R.5、设能够在抛出点2 m 以上的位置最多停留t 秒. 依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)52x ⎧+⎪<<⎨⎪⎪⎩⎭; (2){}37x x <<; (3)∅; (4)113x x ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为3322x x x ⎧⎪<-<+⎨⎪⎪⎩⎭或.4、设风暴中心坐标为(,)a b ,则a =22450b +<,即150150b -<<151)13.72=≈(h ),3001520=.所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3二元一次不等式(组)与简单的线性规划问题 练习(P86) 1、B . 2、D . 3、B .4解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤. 类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为 1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.(2)目标函数为35z x y =+,可行域如图所示,作出直线35z x y =+ 可知,直线经过点B 时,Z 取得最大值. 直线经过点A 时,Z 取得最小值. 解方程组 153y x x y =+⎧⎨-=⎩,和15315y x x y =+⎧⎨+=⎩(第1题)可得点(2,1)A --和点(1.5,2.5)B .所以max 3 1.55 2.517z =⨯+⨯=,min 3(2)5(1)11z =⨯-+⨯-=-2、设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是 2400250000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y =+当直线经过点A 时,z 取得最大值. 解方程组 24002500x y x y +=⎧⎨+=⎩可得点(200,100)A ,z 的最大值为800000元. 习题3.3 A 组(P93)1、画图求解二元一次不等式:(1)2x y +≤; (2)22x y ->; (3)2y -≤; (4)3x ≥2、3(第2题)解:设每周播放连续剧甲x 次,播放连续剧乙y目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+= 答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率. 4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y--台,产值为z . 则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B 组(P93)1、画出二元一次不等式组 231223600x y x y x y +⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y +--+>表示的区域.3、设甲粮库要向A 镇运送大米x 吨、向B 镇运送大米y 吨,总运费为z . 则乙粮库要向A 镇运送大米(70)x -吨、向B 镇运送大米(110)y -吨,目标函数(总运费)为122025101512(70)208(110)60z x y x y x y =⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++. 所以,题目中包含的限制条件为 100(70)(110)800700x y x y x y +⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y ==时,总运费最省 min 37100z =(元) 所以当0,100x y ==时,总运费最不合理 max 39200z =(元)使国家造成不该有的损失2100元.答:甲粮库要向A 镇运送大米70吨,向B 镇运送大米30吨,乙粮库要向A 镇运送大米0吨,向B 镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A 镇运送大米0吨,向B 镇运送大米100吨,乙粮库要向A 镇运送大米70吨,向B 镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.42a b+练习(P100)1、因为0x >,所以12x x +≥当且仅当1x x =时,即1x =时取等号,所以当1x =时,即1x x+的值最小,最小值是2. 2、设两条直角边的长分别为,a b ,0,a >且0b >,因为直角三角形的面积等于50.即 1502ab =,所以20a b +==≥,当且仅当10a b ==时取等号.答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20.(第2题)3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b +=所以 2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是 222324()32323264S ab bc ac a b =++=+++=+=≥ 当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少. 习题3.4 A 组(P100) 1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以 12a b +==≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m . 3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=. 所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x=123600312006800580048000012480058000z y x x x⨯=⨯+⨯+=+++=≥ 当且仅当1236004800x x⨯=时,即3x =时,z 有最小值,最低总造价为34600元. 习题3.4 B 组(P101)1、设矩形的长AB 为x ,由矩形()ABCD AB AD >的周长为24,可知,宽12AB x =-. 设PC a =,则DP x a =-所以 222(12)()x x a a -+-=,可得21272x x a x -+=,1272x DP x a x-=-=.所以ADP ∆的面积 211272187272(12)66[()18]2x x x S x x x x x--+-=-=⨯=⨯-++ 由基本不等式与不等式的性质6[18]6(18108S ⨯-=⨯-=-≤ 当72x x=,即x =m 时,ADP ∆的面积最大,最大面积是(108-2m . 2、过点C 作CD AB ⊥,交AB 延长线于点D .设BCD α∠=,ACB β∠=,CD x =.在BCD ∆中,tan b c x α-=. 在ACD ∆中,tan()a cxαβ-+= 则tan()tan tan tan[()]1tan()tan αβαβαβααβα+-=+-=++⋅()()1a c b ca b x x a c b c a c b c x x x x----==----+⋅+))c =当且仅当()()a cbc x x--=,即x =tan β取得最大,从而视角也最大.第三章 复习参考题A 组(P103)1<2、化简得{}23A x x =-<<,{}4,2B x x x =<->或,所以{}23A B x x =<<3、当0k <时,一元二次不等式23208kx kx +-<对一切实数x 都成立,即二次函数2328y kx kx =+-在x 轴下方,234(2)()08k k ∆=--<,解之得:30k -<<.当0k >时,二次函数2328y kx kx =+-开口朝上一元二次不等式23208kx kx +-<不可能对一切实数x 都成立,所以,30k -<<. 4、不等式组438000x y x y ++>⎧⎪<⎨⎪<⎩表示的平面区域的整点坐标是(1,1)--.5、设每天派出A 型车x 辆,B 型车y 辆,成本为z .所以 070494860360x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≤≤≤≤≤≥,目标函数为160252z x y =+把160252z x y =+变形为40163252y x z =-+,得到斜率为4063-,在y 轴上的截距为1252z ,随z 变化的一族平行直线. 在可行域的整点中,点(5,2)M 使得z 取得最小值. 所以每天派出A 型车5辆,B 型车2辆,成本最小,最低成本为1304元.6、设扇形的半径是x ,扇形的弧长为y ,因为 12S xy =扇形的周长为2Z x y =+≥ 当2x y =,即x =y =Z可以取得最小值,最小值为. 7、设扇形的半径是x ,扇形的弧长为y ,因为2P x y =+扇形的面积为221112(2)()244216x y P Z xy x y +===≤当2x y =,即4P x =,2P y =时,Z 可以取得最大值,半径为4P时扇形面积最大值为216P .8、设汽车的运输成本为y , 2()s say bv a sbv v v=+⨯=+当sasbv v=时,即v =c 时,y 有最小值.2sa y sbv v =+=≥2c 时,由函数sa y sbv v =+的单调性可知,v c =时y 有最小值,最小值为sa sbc c+. 第三章 复习参考题B 组(P103)1、D2、(1)32264x x x x ⎧⎫<--<<>⎨⎬⎩⎭或或 (2)⎧⎨⎩3、1m =4、设生产裤子x 条,裙子y 条,收益为z .则目标函数为2040z x y =+,所以约束条件为 10210600x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥人教A 版高中数学课后习题解答答案11 5、因为22x y +是区域内的点到原点的距离的平方所以,当240330x y x y -+=⎧⎨--=⎩ 即2,3A A x y ==时,22x y +的最大值为13. 当4525x y ⎧=⎪⎪⎨⎪=⎪⎩时,22x y +最小,最小值是45. 6、按第一种策略购物,设第一次购物时的价格为1p ,购n kg ,第二次购物时的价格为2p ,仍购n kg ,按这种策略购物时两次购物的平均价格为121222p n p n p p n ++=. 若按第二种策略购物,第一次花m 元钱,能购1m p kg 物品,第二次仍花m 元钱,能购2m p kg 物品,两次购物的平均价格为12122211m m m p p p p =++ 比较两次购物的平均价格:221212121212121212121222()4()011222()2()p p p p p p p p p p p p p p p p p p p p +++---=-==++++≥ 所以,第一种策略的平均价格高于第二种策略的平均价格,因而,用第二种策略比较经济. 一般地,如果是n 次购买同一种物品,用第二种策略购买比较经济.。
高等数学 线性代数 习题答案第三章
![高等数学 线性代数 习题答案第三章](https://img.taocdn.com/s3/m/3f8e3669be1e650e52ea99b0.png)
第三章习题3-11. 设s =12gt 2,求2d d t s t=.解:22221214()(2)2lim lim 22t t t g g ds s t s dt t t t →→=-⨯-==-- 21lim (2)22t g t g →=+= 2. 设f (x )=1x,求f '(x 0) (x 0≠0). 解:1211()()()f x x x x--'''===00201()(0)f x x x '=-≠ 3.试求过点(3,8)且与曲线2y x =相切的直线方程。
解:设切点为00(,)x y ,则切线的斜率为002x x y x ='=,切线方程为0002()y y x xx -=-。
由已知直线过点(3,8),得 00082(3)y x x -=- (1)又点00(,)x y 在曲线2y x =上,故200y x = (2)由(1),(2)式可解得002,4x y ==或004,16x y ==,故所求直线方程为44(2)y x -=-或168(4)y x -=-。
也即440x y --=或8160x y --=。
4. 下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么:(1) 0limx ∆→00()()f x x f x x-∆-∆=A ;(2) f (x 0)=0, 0limx x →0()f x x x-=A ; (3) 0limh →00()()f x h f x h h+--=A .解:(1)0000000()()[()]()limlim ()x x f x x f x f x x f x f x x x→-→--+--'=-=--0()A f x '∴=- (2)00000()()()limlim ()x x x x f x f x f x f x x x x x →→-'=-=---0()A f x '∴=-(3)000()()limh f x h f x h h→+--00000[()()][()()]lim h f x h f x f x h f x h→+----=000000()()[()]()lim lim h h f x h f x f x h f x h h→-→+-+--=+-000()()2()f x f x f x '''=+= 02()A f x '∴=5. 求下列函数的导数: (1) y (2) y ;(3) y 322x .解:(1)12y x x ==11221()2y x x -''∴=== (2)23y x -=225133322()33y x x x ----''∴==-=-=(3)2152362y xx xx -==15661()6y x x-''∴===6. 讨论函数y x =0点处的连续性和可导性. 解:30lim 0(0)x x f →==000()(0)0lim lim 0x x x f x f x x →→→-===∞-∴函数y =0x =点处连续但不可导。
同济大学版高等数学课后习题答案第3章
![同济大学版高等数学课后习题答案第3章](https://img.taocdn.com/s3/m/4b4990e1f61fb7360b4c65a6.png)
习题3-11. 验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性.解 因为y =ln sin x 在区间]65 ,6[ππ上连续, 在)65 ,6(ππ内可导, 且)65()6(ππy y =,所以由罗尔定理知, 至少存在一点)65 ,6(ππξ∈, 使得y '(ξ)=cot ξ=0.由y '(x )=cot x =0得)65 ,6(2πππ∈.因此确有)65 ,6(2πππξ∈=, 使y '(ξ)=cot ξ=0.2. 验证拉格朗日中值定理对函数y =4x 3-5x 2+x -2在区间[0, 1]上的正确性. 解 因为y =4x 3-5x 2+x -2在区间[0, 1]上连续, 在(0, 1)内可导, 由拉格朗日中值定理知, 至少存在一点ξ∈(0, 1), 使001)0()1()(=--='y y y ξ. 由y '(x )=12x 2-10x +1=0得)1 ,0(12135∈±=x .因此确有)1 ,0(12135∈±=ξ, 使01)0()1()(--='y y y ξ.3. 对函数f (x )=sin x 及F (x )=x +cos x 在区间]2 ,0[π上验证柯西中值定理的正确性.解 因为f (x )=sin x 及F (x )=x +cos x 在区间]2 ,0[π上连续, 在)2 ,0(π可导, 且F '(x )=1-sin x 在)2 ,0(π内不为0, 所以由柯西中值定理知至少存在一点)2 ,0(πξ∈, 使得)()()0()2()0()2(ξξππF f F F f f ''=--. 令)0()2()0()2()()(F F f f x F x f --=''ππ, 即22sin 1cos -=-πx x . 化简得14)2(8si n 2-+-=πx . 易证114)2(802<-+-<π, 所以14)2(8si n 2-+-=πx 在)2 ,0(π内有解, 即确实存在)2 ,0(πξ∈, 使得 )()()0()2()0()2(ξξππF f F F f f ''=--. 4. 试证明对函数y =px 2+qx +r 应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间.证明 因为函数y =px 2+qx +r 在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 由拉格朗日中值定理, 至少存在一点ξ∈(a , b ), 使得y (b )-y (a )=y '(ξ)(b -a ), 即 (pb 2+qb +r )-(pa 2+qa +r )=(2p ξ+q )(b -a ). 化间上式得p (b -a )(b +a )=2p ξ (b -a ), 故2b a +=ξ.5. 不用求出函数f (x )=(x -1)(x -2)(x -3)(x -4)的导数,说明方程f '(x )=0有几个实根, 并指出它们所在的区间.解 由于f (x )在[1, 2]上连续, 在(1, 2)内可导, 且f (1)=f (2)=0, 所以由罗尔定理可知, 存在ξ1∈(1, 2), 使f '(ξ1)=0. 同理存在ξ2∈(2, 3), 使f '(ξ2)=0; 存在ξ3∈(3, 4), 使f '(ξ3)=0. 显然ξ1、ξ2、ξ 3都是方程f '(x )=0的根. 注意到方程f '(x )=0是三次方程, 它至多能有三个实根, 现已发现它的三个实根, 故它们也就是方程f '(x )=0的全部根.6. 证明恒等式: 2arccos arcsin π=+x x (-1≤x ≤1).证明 设f (x )= arcsin x +arccos x . 因为 01111)(22≡---='x x x f , 所以f (x )≡C , 其中C 是一常数.因此2arccos arcsin )0()(π=+==x x f x f , 即2arccos arcsin π=+x x .7. 若方程a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x =0有一个正根x 0, 证明方程 a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0必有一个小于x 0的正根.证明 设F (x )=a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x , 由于F (x )在[0, x 0]上连续, 在(0, x 0)内可导, 且F (0)=F (x 0)=0, 根据罗尔定理, 至少存在一点ξ∈(0, x 0), 使F '(ξ)=0, 即方程 a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0 必有一个小于x 0的正根.8. 若函数f (x )在(a , b )内具有二阶导数, 且f (x 1)=f (x 2)=f (x 3), 其中a <x 1<x 2<x 3<b , 证明:在(x 1, x 3)内至少有一点ξ, 使得f ''(ξ)=0.证明 由于f (x )在[x 1, x 2]上连续, 在(x 1, x 2)内可导, 且f (x 1)=f (x 2), 根据罗尔定理, 至少存在一点ξ1∈(x 1, x 2), 使f '(ξ1)=0. 同理存在一点ξ2∈(x 2, x 3), 使f '(ξ2)=0. 又由于f '(x )在[ξ1, ξ2]上连续, 在(ξ1, ξ2)内可导, 且f '(ξ1)=f '(ξ2)=0, 根据罗尔定理, 至少存在一点ξ ∈(ξ1, ξ2)⊂(x 1, x 3), 使f ''(ξ )=0. 9. 设a >b >0, n >1, 证明: nb n -1(a -b )<a n -b n <na n -1(a -b ) .证明 设f (x )=x n , 则f (x )在[b , a ]上连续, 在(b , a )内可导, 由拉格朗日中值定理, 存在ξ∈(b , a ), 使f (a )-f (b )=f '(ξ)(a -b ), 即a n -b n =n ξ n -1(a -b ). 因为 nb n -1(a -b )<n ξ n -1(a -b )< na n -1(a -b ), 所以 nb n -1(a -b )<a n -b n < na n -1(a -b ) . 10. 设a >b >0, 证明: bb a b a a b a -<<-ln .证明 设f (x )=ln x , 则f (x )在区间[b , a ]上连续, 在区间(b , a )内可导, 由拉格朗日中值定理, 存在ξ∈(b , a ), 使f (a )-f (b )=f '(ξ)(a -b ), 即)(1ln ln b a b a -=-ξ.因为b <ξ<a , 所以)(1ln ln )(1b a b b a b a a -<-<-, 即b b a b a a b a -<<-ln .11. 证明下列不等式: (1)|arctan a -arctan b |≤|a -b |; (2)当x >1时, e x >e ⋅x .证明 (1)设f (x )=arctan x , 则f (x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在ξ∈(a , b ), 使f (b )-f (a )=f '(ξ)(b -a ), 即)(11arctan arctan 2a b a b -+=-ξ,所以||||11|arctan arctan |2a b a b a b -≤-+=-ξ, 即|arctan a -arctan b |≤|a -b |.(2)设f (x )=e x , 则f (x )在区间[1, x ]上连续, 在区间(1, x )内可导, 由拉格朗日中值定理, 存在ξ∈(1, x ), 使f (x )-f (1)=f '(ξ)(x -1), 即 e x -e =e ξ (x -1). 因为ξ >1, 所以e x -e =e ξ (x -1)>e (x -1), 即e x >e ⋅x . 12. 证明方程x 5+x -1=0只有一个正根.证明 设f (x )=x 5+x -1, 则f (x )是[0, +∞)内的连续函数.因为f (0)=-1, f (1)=1, f (0)f (1)<0, 所以函数在(0, 1)内至少有一个零点, 即x 5+x -1=0至少有一个正根.假如方程至少有两个正根, 则由罗尔定理, f '(x )存在零点, 但f '(x )=5x 4+1≠0, 矛盾. 这说明方程只能有一个正根.13. 设f (x )、g (x )在[a , b ]上连续, 在(a , b )内可导, 证明在(a , b )内有一点ξ, 使)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.解 设)()()()()(x g a g x f a f x =ϕ, 则ϕ(x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在ξ∈(a , b ), 使 ϕ(b )-ϕ(a )=ϕ'(ξ)(b -a ), 即⎥⎦⎤⎢⎣⎡''+''-=-)()()()()(])([)(])([)()()()()()()()()(ξξξξg a g f a f g a g f a f a b a g a g a f a f b g a g b f a f . 因此)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.14. 证明: 若函数.f (x )在(-∞, +∞)内满足关系式f '(x )=f (x ), 且f (0)=1则f (x )=e x .证明 令x ex f x )()(=ϕ, 则在(-∞, +∞)内有 0)()()()()(2222≡-=-'='xx x x ee xf e x f e e x f e x f x ϕ, 所以在(-∞, +∞)内ϕ(x )为常数.因此ϕ(x )=ϕ(0)=1, 从而f (x )=e x .15. 设函数y =f (x )在x =0的某邻域内具有n 阶导数, 且f (0)=f '(0)= ⋅ ⋅ ⋅ =f(n -1)(0)=0, 试用柯西中值定理证明:!)()()(n x f xx f n n θ= (0<θ<1).证明 根据柯西中值定理111)(0)0()()(-'=--=n n n f x f x f x x f ξξ(ξ1介于0与x 之间),2221111111)1()(0)0()()(-----''=⋅-'-'='n n n n n n f n n f f n f ξξξξξξ(ξ2介于0与ξ1之间), 3332222222)2)(1()(0)1()1()0()()1()(------'''=⋅---''-''=-''n n n n n n n f n n n n f f n n f ξξξξξξ(ξ3介于0与ξ2之间),依次下去可得!)(02 )1(2 )1()0()(2 )1()()(1)1(1)1(11)1(n f n n n n f f n n f n n n n n n n n n ξξξξξ=⋅⋅⋅⋅--⋅⋅⋅⋅--=⋅⋅⋅⋅--------(ξn 介于0与ξn -1之间),所以!)()()(n f xx f n n n ξ=.由于ξn 可以表示为ξn =θ x (0<θ<1), 所以!)()()(n x f xx f n n θ= (0<θ<1).习题3-21. 用洛必达法则求下列极限:(1)xx x )1ln(lim 0+→;(2)xe e xx x sin lim 0-→-;(3)ax a x a x --→sin sin lim ;(4)xx x 5tan 3sin lim π→;(5)22)2(sin ln lim x x x -→ππ;(6)n n m m a x ax ax --→lim ;(7)xx x 2tan ln 7tan ln lim 0+→;(8)xx x 3tan tan lim 2π→;(9)x arc x x cot )11ln(lim++∞→; (10)xx x x cos sec )1ln(lim 20-+→;(11)x x x 2cot lim 0→;(12)2120lim x x ex →;(13))1112(lim 21---→x x x ;(14)x x x a )1(lim +∞→;(15)x x x sin 0lim +→;(16)x x xtan 0)1(lim +→. 解 (1)111lim 111lim )1ln(lim000=+=+=+→→→x x xx x x x . (2)2cos lim sin lim00=+=--→-→xe e x e e x x x x x x .(3)a x ax a x a x a x cos 1cos lim sin sin lim ==--→→.(4)535sec 53cos3lim 5tan 3sin lim 2-==→→x x x x x x ππ. (5)812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x x x x x πππππ. (6)n m n m n m a x n n m m a x a n m namx nx mx a x a x -----→→===--1111lim lim .(7)22sec 2tan 177sec 7tan 1lim 2tan ln 7tan ln lim 2200⋅⋅⋅⋅=+→+→x xx x x x x x177s e c 22s e c l i m 277t a n 2t a n l i m 272200=⋅⋅==+→+→x x x x x x . (8)x x x x x x x x x 2222222cos 3cos lim 3133sec sec lim 3tan tan lim πππ→→→=⋅= )s i n (c o s 23)3s i n (3c o s 2lim 312x x x x x -⋅-=→πxx x c o s 3c o s l i m2π→-= 3s i n3s i n 3l i m2=---=→x x x π. (9)22221lim 11)1(111lim cot arc )11ln(lim xx x xx x x x x x x ++=+--⋅+=++∞→+∞→+∞→122lim 212lim ==+=+∞→+∞→x x x x .(10)x x xx x x x x x x x 22022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→1s i n lim )sin (cos 22lim00==--=→→x x x x x x x . (注: cos x ⋅ln(1+x 2)~x 2) (11)2122sec 1lim 2tan lim2cot lim 2000=⋅==→→→x x x x x x x x .(12)+∞====+∞→+∞→→→1lim lim 1limlim 21012022tt t t x x x x e t e x e ex (注: 当x →0时, +∞→=21xt . (13)2121lim 11lim 1112lim 12121-=-=--=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x . (14)因为)1ln(lim )1(lim x ax x x x exa +∞→∞→=+, 而 221)(11lim 1)1ln(lim )1(ln(lim xx a x ax x a x a x x x x --⋅+=+=+∞→∞→∞→a a a x ax x x ==+=∞→∞→1lim lim ,所以 a x ax x x x e e xa ==++∞→∞→)1l n (l i m )1(l i m. .(15)因为x x x x x e x ln sin 0sin 0lim lim +→+→=,而 x x x x x x x x x x c o tc s c 1lim csc ln lim ln sin lim 000⋅-==+→+→+→c o s s i n l i m 20=-=+→xx x x ,所以 1lim lim 0ln sin 0sin 0===+→+→e e x x x x x x .(16)因为x x x x e xln tan tan 0)1(lim -+→=, 而 xx x x x x x x x 2000c s c 1limcot ln lim ln tan lim -==+→+→+→ 0s i n l i m 20=-=+→xx x ,所以 1l i m )1(l i m 0ln tan 0tan 0===-+→+→e e x x x x x x .2. 验证极限x x x x sin lim +∞→存在, 但不能用洛必达法则得出.解 1)s i n 1(l i m s i n l i m =+=+∞→∞→x x x x x x x , 极限x x x x sin lim +∞→是存在的. 但)cos 1(lim 1cos 1lim )()sin (limx x x x x x x x +=+=''+∞→∞→∞→不存在, 不能用洛必达法则. 3. 验证极限xx x x sin 1sin lim20→存在, 但不能用洛必达法则得出. 解 0011sin sin lim sin 1sin lim020=⋅=⋅=→→xx x x x x x x x , 极限x x x x sin 1sin lim 20→是存在的. 但xx x x x x x x x cos 1cos 1sin 2lim )(sin )1sin (lim020-=''→→不存在, 不能用洛必达法则. 4. 讨论函数⎪⎪⎩⎪⎪⎨⎧≤>+=-0 0])1([)(2111x e x ex x f x x 在点x =0处的连续性. 解 21)0(-=e f ,)0(lim)(lim 21210f e e x f x x ===---→-→,因为]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x x x x x x x x e ex x f ,而 200)1l n (l i m]1)1l n (1[1l i m x xx x x x x x -+=-++→+→ 21)1(21lim 2111lim 00-=+-=-+=+→+→x x x x x ,所以]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x x x x x x x x e ex x f)0(21f e ==-.因此f (x )在点x =0处连续. 习题3-31. 按(x -4)的幂展开多项式x 4-5x 3+x 2-3x +4. 解 设f (x )=x 4-5x 3+x 2-3x +4. 因为 f (4)=-56,f '(4)=(4x 3-15x 2+2x -3)|x =4=21, f ''(4)=(12x 2-30x +2)|x =4=74, f '''(4)=(24x -30)|x =4=66, f (4)(4)=24, 所以4)4(32)4(!4)4()4(!3)4()4(!2)4()4)(4()4()(-+-'''+-''+-'+=x f x f x f x f f x f =-56+21(x -4)+37(x -4)2+11(x -4)3+(x -4)4.2. 应用麦克劳林公式, 按x 幂展开函数f (x )=(x 2-3x +1)3. 解 因为f '(x )=3(x 2-3x +1)2(2x -3),f ''(x )=6(x 2-3x +1)(2x -3)2+6(x 2-3x +1)2=30(x 2-3x +1)(x 2-3x +2), f '''(x )=30(2x -3)(x 2-3x +2)+30(x 2-3x +1)(2x -3)=30(2x -3)(2x 2-6x +3), f (4)(x )=60(2x 2-6x +3)+30(2x -3)(4x -6)=360(x 2-3x +2), f (5)(x )=360(2x -3), f (6)(x )=720;f (0)=1, f '(0)=-9, f ''(0)=60, f '''(0)=-270, f (4)(0)=720, f (5)(0)=-1080, f (6)(0)=720, 所以6)6(5)5(4)4(32!6)0(!5)0(!4)0(!3)0(!2)0()0()0()(x f x f x f x f x f x f f x f +++'''+''+'+= =1-9x +30x 3-45x 3+30x 4-9x 5+x 6.3. 求函数x x f =)(按(x -4)的幂展开的带有拉格朗日型余项的3阶泰勒公式. 解 因为24)4(==f , 4121)4(421=='=-x x f , 32141)4(423-=-=''=-x x f ,328383)4(425⋅=='''=-x x f , 27)4(1615)(--=x x f , 所以 4)4(32)4(!4)()4(!3)4()4(!2)4()4)(4()4(-+-'''+-''+-'+=x f x f x f x f f x ξ 4732)4()]4(4[1615!41)4(5121)4(641)4(412--+⋅--+---+=x x x x x θ(0<θ<1). 4. 求函数f (x )=ln x 按(x -2)的幂展开的带有佩亚诺型余项的n 阶泰勒公式. 解 因为f '(x )=x -1, f ''(x )=(-1)x -2, f '''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ ,nn nn x n x n x f )!1()1()1( )2)(1()(1)(--=+-⋅⋅⋅--=--;kk k k f 2)!1()1()2(1)(--=-(k =1, 2, ⋅ ⋅ ⋅, n +1),所以])2[()2(!)2( )2(!3)2()2(!2)2()2)(2()2(ln )(32n n n x o x n f x f x f x f f x -+-+⋅⋅⋅+-'''+-''+-'+= ])2[()2(2)1( )2(231)2(221)2(212ln 13322n n n n x o x n x x x -+-⋅-+⋅⋅⋅--⋅+-⋅--+=-. 5. 求函数x x f 1)(=按(x +1)的幂展开的带有拉格朗日型余项的n 阶泰勒公式.解 因为f (x )=x -1, f '(x )=(-1)x -2, f ''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ , 1)1()(!)1()( )2)(1()(++--=-⋅⋅⋅--=n n n n xn xn x f;!)1(!)1()1(1)(k k fk k k -=--=-+(k =1, 2, ⋅ ⋅ ⋅, n ),所以 )1(!3)1()1(!2)1()1)(1()1(132⋅⋅⋅++-'''++-''++-'+-=x f x f x f f x 1)1()()1()!1()()1(!)1(++++++-+n n nn x n f x n f ξ 12132)1()]1(1[)1(])1( )1()1()1(1[++++++--+++⋅⋅⋅+++++++-=n n n nx x x x x x θ (0<θ<1).6. 求函数f (x )=tan x 的带有拉格朗日型余项的3阶麦克劳林公式. 解 因为 f '(x )=sec 2x ,f ''(x )=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x ,f '''(x )=4sec x ⋅sec x ⋅tan 2x +2sec 4x =4sec 2x ⋅tan 2x +2sec 4x ,f (4)(x )=8sec 2x ⋅tan 3x +8sec 4x ⋅tan x +8sec 4x ⋅tan x xx x 52cos )2(sin sin 8+=;f (0)=0, f '(0)=1, f ''(0)=0, f '''(0)=2,所以 4523)(c o s 3]2)()[s i n s i n (31t a n x x x x x x x θθθ+++=(0<θ<1). 7. 求函数f (x )=xe x 的带有佩亚诺型余项的n 阶麦克劳林公式. 解 因为 f '(x )=e x +xe x ,f ''(x )=e x +e x +xe x =2e x +xe x , f '''(x )=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅, f (n )(x )=ne x +xe x ;f (k )(0)=k (k =1, 2, ⋅ ⋅ ⋅, n ),所以 )(!)0( !3)0(!2)0()0()0()(32n n n xx o x n f x f x f x f f xe ++⋅⋅⋅⋅+'''+''+'+= )()!1(1 !2132n n x o x n x x x +-⋅⋅⋅+++=.8. 验证当210≤≤x 时, 按公式62132x x x e x +++≈计算e x 的近似值时, 所产生的误差小于0.01, 并求e 的近似值, 使误差小于0.01.解 因为公式62132xx x e x+++≈右端为e x 的三阶麦克劳林公式, 其余项为43!4)(x e x R ξ=,所以当210≤≤x 时,按公式62132x x x e x+++≈计算e x 的误差01.00045.0)21(!43|!4||)(|42143<≈≤=x e x R ξ.645.1)21(61)21(212113221≈⋅+⋅++≈=e e .9. 应用三阶泰勒公式求下列各数的近似值, 并估计误差: (1)330; (2)sin18︒.解 (1)设3)(x x f =, 则f (x )在x 0=27点展开成三阶泰勒公式为2353233)27)(2792(!21)27(273127)(-⋅-⋅+-⋅+==--x x x x f4311338)27)(8180(!41)27)(272710(!31--⋅+-⋅⋅+--x x ξ(ξ介于27与x 之间).于是33823532333)272710(!313)2792(!21327312730⋅⋅⋅+⋅⋅-⋅+⋅⋅+≈---10724.3)3531311(31063≈+-+≈, 其误差为5114311431131088.13!4803278180!41|3)8180(!41||)30(|---⨯=⋅=⋅⋅⋅<⋅-⋅=ξR .(2) 已知43!4s i n !31s i nx x x x ξ+-=(ξ介于0与x 之间), 所以 sin 18︒3090.0)10(!311010sin 3≈-≈=πππ,其误差为44431003.2)10(!46sin |)10(!4sin ||)10(|-⨯=<=πππξπR . 10. 利用泰勒公式求下列极限: (1))23(lim 434323x x x x x --++∞→;(2))]1ln([cos lim222x x x e x x x -+--→;(3)2220sin )(cos 1211lim 2x e x x x x x -+-+→. 解 (1)tt t xx x x x x x t x x 430434343232131lim 12131lim)23(lim --+=--+=--++→+∞→+∞→.因为)(1313t o t t ++=+,)(211214t o t t +-=-, 所以23])(23[lim )](211[)](1[lim)23(lim 00434323=+=+--++=--++→+→+∞→t t o t t o t t o t x x x x t t x . (2)])1ln(1[)](41!21211[)](!41!211[lim)]1ln([cos lim1344244202202x x xx x xx o x x x o x x x x x e x -++⋅+--++-=-+-→-→ 010)1l n (1)(121lim 11340=+=-++-=-→ex x x o x xx .(3)2442442442202220))](!211())(!41!211[()](!43!211[211lim sin )(cos 1211lim 2xx o x x x o x x x o x x x x e x x x x x x +++-++-+-+-+=-+-+→→ 12123!43)(241123)(!43lim )(241123)(!43lim 2424404264440-=-=+--+=⋅+--+=→→x x o x x x o x o x x x x o x x x . 习题3-41. 判定函数f (x )=arctan x -x 单调性.解 因为011111)(22≤+-=-+='xx x f , 且仅当x =0时等号成立, 所以f (x )在(-∞,+∞)内单调减少.2. 判定函数f (x )=x +cos x (0≤x ≤2π)的单调性.解 因为f '(x )=1-sin x ≥0, 所以f (x )=x +cos x 在[0, 2π]上单调增加. 3. 确定下列函数的单调区间: (1) y =2x 3-6x 2-18x -7; (2)xx y 82+=(x >0);(3)x x x y 6941023+-=;(4))1ln(2x x y ++=; (5) y =(x -1)(x +1)3;(6))0())(2(32>--=a x a a x y ; (7) y =x n e -x (n >0, x ≥0); (8)y =x +|sin 2x |.解 (1) y '=6x 2-12x -18=6(x -3)(x +1)=0, 令y '=0得驻点x 1=-1, x 2=3. 列表得x (-∞, -1) -1 (-1, 3) 3 (3, +∞) y ' + 0 - 0 + y↗↘↗可见函数在(-∞, -1]和[3, +∞)内单调增加, 在[-1, 3]内单调减少.(2) 0)2)(2(28222=+-=-='x x x x y ,令y '=0得驻点x 1=2, x 2=-2(舍去).因为当x >2时, y >0; 当0<x <2时, y '<0, 所以函数在(0, 2]内单调减少, 在[2, +∞)内单调增加. (3)223)694()1)(12(60x x x x x y +----=', 令y '=0得驻点211=x , x 2=1, 不可导点为x =0. 列表得x (-∞, 0) 0 (0, 21) 21 (21, 1) 1 (1, +∞)y ' - 不存在 - 0 + 0 - y↘↘↗↘可见函数在(-∞, 0), ]21 ,0(, [1, +∞)内单调减少, 在]1 ,21[上单调增加.(4)因为011)1221(11222>+=++++='x x x x x y , 所以函数在(-∞, +∞)内单调增加.(5) y '=(x +1)3+3(x -1)(x +1)22)1)(21(4+-=x x . 因为当21<x 时, y '<0; 当21>x 时,y '>0, 所以函数在]21 ,(-∞内单调减少, 在) ,21[∞+内单调增加.(6)32)()2(3)32(x a a x a x y ----=', 驻点为321a x =, 不可导点为22a x =, x 3=a .列表得x )2 ,(a -∞2a )32 ,2(a a 32a ) ,32(a aa (a , +∞) y ' + 不存在 + 0 - 不存在 + y↗↗↘↗可见函数在)2 ,(a -∞, ]32 ,2(a a , (a , +∞)内单调增加, 在) ,32[a a 内单调减少.(7)y '=e -x x n -1(n -x ), 驻点为x =n . 因为当0<x <n 时, y '>0; 当x >n 时, y '<0, 所以函数在[0, n ]上单调增加, 在[n , +∞)内单调减少.(8)⎪⎩⎪⎨⎧+<<+-+≤≤+=πππππππk x k x x k x k x x y 2 2sin 2 2sin (k =0, ±1, ±2, ⋅ ⋅ ⋅),⎪⎩⎪⎨⎧+<<+-+≤≤+='πππππππk x k x k x k x y 2 2cos 212 2cos 21(k =0, ±1, ±2, ⋅ ⋅ ⋅).y '是以π为周期的函数, 在[0, π]内令y '=0, 得驻点21π=x , 652π=x , 不可导点为23π=x .列表得x )3 ,0(π3π )2,3(ππ 2π)65 ,2(ππ 65π ) ,65(ππ y ' + 0 - 不存在+ 0 - y↗↘↗↘根据函数在[0, π]上的单调性及y '在(-∞, +∞)的周期性可知函数在]32 ,2[πππ+k k 上单调增加, 在]22 ,32[ππππ++k k 上单调减少(k =0, ±1, ±2, ⋅ ⋅ ⋅).4. 证明下列不等式: (1)当x >0时, x x +>+1211;(2)当x >0时, 221)1ln(1x x x x +>+++; (3)当20π<<x 时, sin x +tan x >2x ;(4)当20π<<x 时, 331tan x x x +>;(5)当x >4时, 2x >x 2;证明 (1)设x x x f +-+=1211)(, 则f (x )在[0, +∞)内是连续的. 因为x x f +-='12121)(01211>+-+=xx , 所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01211>+-+x x , 也就是 x x +>+1211.(2)设221)1ln(1)(x x x x x f +-+++=, 则f (x )在[0, +∞)内是连续的. 因为0)1l n (1)11(11)1l n ()(22222>++=+-++⋅++⋅+++='x x x x x x x x x x xx f ,所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01)1l n (122>+-+++x x x x , 也就是 221)1l n (1x x x x +>+++.(3)设f (x )=sin x +tan x -2x , 则f (x )在)2,0[π内连续,f '(x )=cos x +sec 2x -2xx x x 22cos ]cos )1)[(cos 1(cos ---=.因为在)2,0(π内cos x -1<0, cos 2x -1<0, -cos x <0, 所以f '(x )>0, 从而f (x )在)2 ,0(π内单调增加, 因此当20π<<x 时, f (x )>f (0)=0, 即 sin x +tan x -2x >0, 也就是 sin x +tan x >2x .(4)设331tan )(x x x x f --=, 则f (x )在)2 ,0[π内连续,))(t a n (t a n t a n 1s e c )(2222x x x x x x x x x f +-=-=--='.因为当20π<<x 时, tan x >x , tan x +x >0, 所以f '(x )在)2 ,0(π内单调增加, 因此当20π<<x 时, f (x )>f (0)=0, 即031t a n 3>--x x x ,也就是 231t a n x x x +>.(5)设f (x )=x ln2-2ln x , 则f (x )在[4, +∞)内连续, 因为 0422ln 224ln 22ln )(=->-=-='e x x x f ,所以当x >4时, f '(x )>0, 即f (x )内单调增加.因此当x >4时, f (x )>f (4)=0, 即x ln2-2ln x >0, 也就是2x >x 2. 5. 讨论方程ln x =ax (其中a >0)有几个实根?解 设f (x )=ln x -ax . 则f (x )在(0, +∞)内连续, x ax a x x f -=-='11)(, 驻点为ax 1=.因为当a x 10<<时, f '(x )>0, 所以f (x )在)1 ,0(a 内单调增加; 当ax 1>时, f '(x )<0,所以f (x )在) ,1(∞+a内单调减少. 又因为当x →0及x →+∞时, f (x )→-∞, 所以如果011ln )1(>-=a a f , 即e a 1<, 则方程有且仅有两个实根; 如果011ln )1(<-=aa f , 即e a 1>, 则方程没有实根. 如果011ln )1(=-=a a f , 即e a 1=, 则方程仅有一个实根. 6. 单调函数的导函数是否必为单调函数?研究下面这个例子: f (x )=x +sin x .解 单调函数的导函数不一定为单调函数.例如f (x )=x +sin x 在(-∞,+∞)内是单调增加的, 但其导数不是单调函数. 事实上,f '(x )=1+cos x ≥0,这就明f (x )在(-∞, +∞)内是单调增加的. f ''(x )=-sin x 在(-∞, +∞)内不保持确定的符号, 故f '(x )在(-∞, +∞)内不是单调的.7. 判定下列曲线的凹凸性: (1) y =4x -x 2 ; (2) y =sh x ; (3)xy 11+=(x >0);(4) y =x arctan x ; 解 (1)y '=4-2x , y ''=-2,因为y ''<0, 所以曲线在(-∞, +∞)内是凸的. (2)y '=ch x , y ''=sh x . 令y ''=0, 得x =0.因为当x <0时, y ''=sh x <0; 当x >0时, y ''=sh x >0, 所以曲线在(-∞, 0]内是凸的, 在[0, +∞)内是凹的.(3)21xy -=', 32x y =''.因为当x >0时, y ''>0, 所以曲线在(0, +∞)内是凹的.(4)21arctan xx x y ++=',22)1(2x y +=''. 因为在(-∞, +∞)内, y ''>0, 所以曲线y =x arctg x 在(-∞, +∞)内是凹的.8. 求下列函数图形的拐点及凹或凸的区间: (1).y =x 3-5x 2+3x +5 ; (2) y =xe -x ; (3) y =(x +1)4+e x ; (4) y =ln(x 2+1); (5) y =e arctan x ; (6) y =x 4(12ln x -7),解 (1)y '=3x 2-10x +3, y ''=6x -10. 令y ''=0, 得35=x .因为当35<x 时, y ''<0; 当35>x 时, y ''>0, 所以曲线在]35 ,(-∞内是凸的, 在) ,35[∞+内是凹的, 拐点为)2720 ,35(. (2)y '=e -x -xe -x , y ''=-e -x -e -x +xe -x =e -x (x -2). 令y ''=0, 得x =2.因为当x <2时, y ''<0; 当x >2时, y ''>0, 所以曲线在(-∞, 2]内是凸的, 在[2, +∞)内是凹的, 拐点为(2, 2e -2).(3)y '=4(x +1)3+e x , y ''=12(x +1)2+e x .因为在(-∞, +∞)内, y ''>0, 所以曲线y =(x +1)4+e x 的在(-∞, +∞)内是凹的, 无拐点.(4)122+='x x y , 22222)1()1)(1(2)1(22)1(2++--=+⋅-+=''x x x x x x x y . 令y ''=0, 得x 1=-1, x 2=1. 列表得 可见曲线在(-∞, -1]和[1, +∞)内是凸的, 在[-1, 1]内是凹的, 拐点为(-1, ln2)和(1, ln2).(5)2arctan 11x e y x+⋅=',)21(12arctan x x e y x -+=''. 令y ''=0得, 21=x . 因为当21<x 时, y ''>0; 当21>x 时, y ''<0, 所以曲线y =e arctg x 在]21 ,(-∞内是凹的,在) ,21[∞+内是凸的, 拐点是) ,21(21arctane. (6) y '=4x 3(12ln x -7)+12x 3, y ''=144x 2⋅ln x . 令y ''=0, 得x =1.因为当0<x <1时, y ''<0; 当x >1时, y ''>0, 所以曲线在(0, 1]内是凸的, 在[1, +∞)内是凹的, 拐点为(1, -7).9. 利用函数图形的凹凸性, 证明下列不等式:(1) nn n y x y x )2()(21+>+(x >0, y >0, x ≠y , n >1); (2))(22y x e e e yx y x ≠>++;(3)2ln)(ln ln yx y x y y x x ++>+ (x >0, y >0, x ≠y ). 证明 (1)设f (t )=t n , 则f '(t )=nt n -1, f ''(t )=n (n -1)t n -2. 因为当t >0时, f ''(t )>0, 所以曲线f (t )=t n 在区间(0, +∞)内是凹的. 由定义, 对任意的x >0, y >0, x ≠y 有)2()]()([21yx f y f x f +>+, x (-∞, -1) -1 (-1, 1) 1 (1, +∞) y '' - 0 + 0 - y⋂ln2 拐点⋃ln2 拐点⋂即 nn n y x y x )2()(21+>+. (2)设f (t )=e t , 则f '(t )=e t , f ''(t )=e t . 因为f ''(t )>0, 所以曲线f (t )=e t 在(-∞, +∞)内是凹的. 由定义, 对任意的x , y ∈(-∞, +∞), x ≠y 有)2()]()([21yx f y f x f +>+, 即)(22y x e e e yx y x ≠>++.(3)设f (t )=t ln t , 则 f '(t )=ln t +1, tt f 1)(=''.因为当t >0时, f ''(t )>0, 所以函数f (t )=t ln t 的图形在(0, +∞)内是凹的. 由定义, 对任意的x >0, y >0, x ≠y 有)2()]()([21yx f y f x f +>+, 即 2ln )(ln ln yx y x y y x x ++>+.10. 试证明曲线112+-=x x y 有三个拐点位于同一直线上.证明 222)1(12+++-='x x x y , 323223)1()]32()][32()[1(2)1(2662++---+=++--=''x x x x x x x x y . 令y ''=0, 得x 1=-1, 322-=x , 323+=x . 例表得 x (-∞. -1) -1 )32 ,1(-- 32- )32 ,32(+-32+ ) ,32(∞++y ' - 0 + 0- 0+ y⋂-1⋃)32(431--⋂)32(431++ ⋃可见拐点为(-1, -1), ))32(431 ,32(---, ))32(431 ,32(+++. 因为41)1(32)1()32(431=-------, 41)1(32)1()32(431=--+--++,所以这三个拐点在一条直线上.11. 问a 、b 为何值时, 点(1, 3)为曲线y =ax 3+bx 2的拐点?解 y '=3ax 2+2bx , y ''=6ax +2b . 要使(1, 3)成为曲线y =ax 3+bx 2的拐点, 必须y (1)=3且y ''(1)=0, 即a +b =3且6a +2b =0, 解此方程组得23-=a , 29=b .12. 试决定曲线y =ax 3+bx 2+cx +d 中的a 、b 、c 、d , 使得x =-2处曲线有水平切线, (1, -10)为拐点, 且点(-2, 44)在曲线上. 解 y '=3ax 2+2bx +c , y ''=6ax +2b . 依条件有⎪⎩⎪⎨⎧=''=-'-==-0)1(0)2(10)1(44)2(y y y y , 即⎪⎩⎪⎨⎧=+=+--=+++=+-+-02604121044248b a c b a d c b a d c b a .解之得a =1, b =-3, c =-24, d =16.13. 试决定y =k (x 2-3)2中k 的值, 使曲线的拐点处的法线通过原点. 解y '=4kx 3-12kx , y ''=12k (x -1)(x +1). 令y ''=0, 得x 1=-1, x 2=1.因为在x 1=-1的两侧y ''是异号的, 又当x =-1时y =4k , 所以点(-1, 4k )是拐点. 因为y '(-1)=8k , 所以过拐点(-1, 4k )的法线方程为)1(814+-=-x k k y . 要使法线过原点, 则(0, 0)应满足法线方程, 即kk 814-=-, 82±=k .同理, 因为在x 1=1的两侧y ''是异号的, 又当x =1时y =4k , 所以点(1, 4k )也是拐点.因为y '(1)=-8k , 所以过拐点(-1, 4k )的法线方程为)1(814-=-x k k y . 要使法线过原点, 则(0, 0)应满足法线方程, 即kk 814-=-, 82±=k .因此当82±=k 时, 该曲线的拐点处的法线通过原点.14. 设y =f (x )在x =x 0的某邻域内具有三阶连续导数, 如果f ''(x 0)=0, 而f '''(x 0)≠0, 试问 (x 0, f (x 0))是否为拐点?为什么?解 不妨设f '''(x 0)>0. 由f '''(x )的连续性, 存在x 0的某一邻域(x 0-δ, x 0+δ), 在此邻域内有f '''(x )>0. 由拉格朗日中值定理, 有f ''(x )-f ''(x 0)=f '''(ξ)(x -x 0) (ξ介于x 0与x 之间), 即 f ''(x )=f '''(ξ)(x -x 0).因为当x 0-δ<x <x 0时, f ''(x )<0; 当x 0<x <x 0+δ 时, f ''(x )>0, 所以(x 0, f (x 0))是拐点.习题3-51. 求函数的极值: (1) y =2x 3-6x 2-18x +7; (2) y =x -ln(1+x ) ; (3) y =-x 4+2x 2 ; (4)x x y -+=1; (5)25431xx y ++=;(6)144322++++=x x x x y ;(7) y =e x cos x ;(8)xx y 1=;(9)31)1(23+-=x y ;(10) y =x +tan x .解 (1)函数的定义为(-∞, +∞), y '=6x 2-12x -18=6(x 2-2x -3)=6(x -3)(x +1), 驻点为x 1=-1, x 2=3. 列表x (-∞, -1) -1 (-1, 3) 3 (3, +∞) y ' + 0 - 0 + y↗17极大值↘-47极小值↗可见函数在x =-1处取得极大值17, 在x =3处取得极小值-47. (2)函数的定义为(-1, +∞), xxx y +=+-='1111, 驻点为x =0. 因为当-1<x <0时, y '<0; 当x >0时, y '>0, 所以函数在x =0处取得极小值, 极小值为y (0)=0. (3)函数的定义为(-∞, +∞),y '=-4x 3+4x =-4x (x 2-1), y ''=-12x 2+4, 令y '=0, 得x 1=0, x 2=-1, x 3=1.因为y ''(0)=4>0, y ''(-1)=-8<0, y ''(1)=-8<0, 所以y (0)=0是函数的极小值, y (-1)=1和y (1)=1是函数的极大值.(4)函数的定义域为(-∞, 1], )112(1243121121211+---=---=--='x x x xx xy ,令y '=0, 得驻点43=x .因为当43<x 时, y '>0; 当143<<x 时, y '<0, 所以45)1(=y 为函数的极大值.(5)函数的定义为(-∞, +∞), 32)54()512(5x x y +--=', 驻点为512=x . 因为当512<x 时, y '>0; 当512>x 时, y '<0, 所以函数在512=x 处取得极大值, 极大值为10205)512(=y . (6)函数的定义为(-∞, +∞), 22)1()2(+++-='x x x x y , 驻点为x 1=0, x 2=-2.列表x (-∞, -2) -2(-2, 0) 0 (0, +∞) y ' - 0+ 0 - y↘38极小值 ↗4极大值↘可见函数在x =-2处取得极小值38, 在x =0处取得极大值4.(7)函数的定义域为(-∞, +∞). y '=e x (cos x -sin x ), y ''=-e x sin x .令y '=0, 得驻点ππk x 24+=, ππ)1(24++=k x , (k =0, ±1, ±2, ⋅ ⋅ ⋅).因为0)24(<+''ππk y , 所以22)24(24⋅=++ππππk e k y 是函数的极大值.因为y ''0])1(24[>++ππk , 所以22])1(24[)1(24⋅-=++++ππππk e k y 是函数的极小值. (8)函数xx y 1=的定义域为(0, +∞),)ln 1(121x x x y x-⋅='.令y '=0, 得驻点x =e .因为当x <e 时, y '>0; 当x >e 时, y '<0, 所以ee e y 1)(=为函数f (x )的极大值.(9)函数的定义域为(-∞, +∞), 3/2)1(132+-='x y , 因为y '<0, 所以函数在(-∞, +∞)是单调减少的, 无极值.(10)函数y =x +tg x 的定义域为ππk x +≠2(k =0, ±1, ±2, ⋅ ⋅ ⋅). 因为y '=1+sec 2x >0, 所以函数f (x )无极值.2. 试证明: 如果函数y =ax 3+bx 2+cx +d 满足条件b 2 -3ac <0, 那么这函数没有极值 . 证明y '=3a x 2+2b x +c . 由b 2 -3ac <0, 知a ≠0. 于是配方得到 y '=3a x 2+2b x +c ab ac a b x a a c x a b x a 33)3(3)332(32222-++=++=,因3ac -b 2>0, 所以当a >0时, y '>0; 当a <0时, y '<0. 因此y =ax 3+bx 2+cx +d 是单调函数, 没有极值.3. 试问a 为何值时, 函数x x a x f 3sin 31sin )(+=在3π=x 处取得极值?它是极大值还是极小值?并求此极值.解 f '(x )=a cos x +cos 3x , f ''(x )=-a sin x -3 sin x . 要使函数f (x )在3π=x 处取得极值, 必有0)3(='πf , 即0121=-⋅a , a =2 . 当a =2时, 0232)3(<⋅-=''πf . 因此, 当a =2时, 函数f (x )在3π=x 处取得极值, 而且取得极大值, 极大值为3)23(=f . 4. 求下列函数的最大值、最小值:(1) y =2x 3-3x 2 , -1≤x ≤4; (2) y =x 4-8x 2+2, -1≤x ≤3 ; (3)x x y -+=1, -5≤x ≤1.解 (1)y '=6x 2-6x =6x (x -1), 令y '=0, 得x 1=0, x 2=1. 计算函数值得y (-1)=-5, y (0)=0, y (1)=-1, y (4)=80,经比较得出函数的最小值为y (-1)=-5, 最大值为y (4)=80.(2)y '=4x 3-16x =4x (x 2-4), 令y '=0, 得x 1=0, x 2=-2(舍去), x 3=2. 计算函数值得 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11,经比较得出函数的最小值为y (2)=-14, 最大值为y (3)=11.(3)xy --='1211, 令y '=0, 得43=x . 计算函数值得65)5(+-=-y , 45)43(=y , y (1)=1,经比较得出函数的最小值为65)5(+-=-y , 最大值为45)43(=y .5. 问函数y =2x 3-6x 2-18x -7(1≤x ≤4)在何处取得最大值?并求出它的最大值. 解 y '=6x 2-12x -18=6(x -3)(x +1), 函数f (x )在1≤x ≤4内的驻点为x =3. 比较函数值:f (1)=-29, f (3)=-61, f (4)=-47,函数f (x )在x =1处取得最大值, 最大值为f (1)=-29. 6. 问函数xx y 542-=(x <0)在何处取得最小值? 解 2542x x y +=', 在(-∞, 0)的驻点为x =-3. 因为 31082x y -='', 0271082)3(>+=-''y , 所以函数在x =-3处取得极小值. 又因为驻点只有一个, 所以这个极小值也就是最小值, 即函数在x =-3处取得最小值, 最小值为27)3(=-y .7. 问函数12+=x x y (x ≥0)在何处取得最大值?解 222)1(1+-='x x y . 函数在(0, +∞)内的驻点为x =1.因为当0<x <1时, y '>0; 当x >1时y '<0, 所以函数在x =1处取得极大值. 又因为函数在 (0, +∞)内只有一个驻点, 所以此极大值也是函数的最大值, 即函数在x =1处取得最大值, 最大值为f (1)=21. 8. 某车间靠墙壁要盖一间长方形小屋, 现有存砖只够砌20cm 长的墙壁, 问应围成怎样的长方形才能使这间小屋的面积最大?解 设宽为x 长为y , 则2x +y =20, y =20-2x , 于是面积为 S = xy =x (20-2x )=20x -2x 2. S '=20-4x =4(10-x ), S ''=-4.。
高中数学必修三作业本答案
![高中数学必修三作业本答案](https://img.taocdn.com/s3/m/f9e586312e60ddccda38376baf1ffc4ffe47e296.png)
⾼中数学必修三作业本答案答案与提⽰第⼀章算法初步1.1算法与程序框图1.1.1算法的概念1.C2.C3.C4.①②④5.⽅程的两边同乘以1a6.①②③7.第⼀步,计算⽅程的判别式并判断其符号:Δ=4+4×3=16>0.第⼆步,将a=1,b=-2,c=-3代⼊求根公式x=-b±b2-4ac2a.第三步,得⽅程的解为x=3,或x=-18.第⼀步,输⼊⾃变量x的值.第⼆步,进⾏判断,如果x≥0,则f(x)=x+2;否则,f(x)=x2.第三步,输出f(x)的值9.第⼀步,取x1=-2,y1=-1,x2=2,y2=3.第⼆步,得直线⽅程y-y1y2-y1=x-x1x2-x1.第三步,在第⼆步的⽅程中,令x=0,得y的值m.第四步,在第⼆步的⽅程中,令y=0,得x的值n.第五步:根据三⾓形的⾯积公式求得S=12|m|?|n|10.第⼀步,输⼊a,l.第⼆步,计算R=2?a2.第三步,计算h=l2-R2.第四步,计算S=a2.第五步,计算V=13Sh.第六步,输出V11.第⼀步,把9枚银元平均分成3堆,每堆3个银元.第⼆步,任取两堆银元分别放在天平的两边.如果天平平衡,则假银元就在第三堆中;如果天平不平衡,那么假银元就在轻的那⼀堆中.第三步,取出含假银元的那⼀堆,从中任取2个银元放在天平的两边.如果天平平衡,那么假银元就是未称的那⼀个;如果天平不平衡,那么轻的那个就是假银元程序框图与算法的基本逻辑结构1.C2.A3.B4.1205.S=S+n,n=n+26.求满⾜1×3×5×…×(i-2)≥10000的最⼩奇数i的值7.算法略,程序框图如图:(第7题)8.算法略,程序框图如图:(第8题)9.(第9题)10.(1)若输⼊的四个数为5,3,7,2,输出的结果是2(2)该程序框图是为了解决如下问题⽽设计的:求a,b,c,d四个数中的最⼩值并输出11.算法略,程序框图如图:(第11题)1.2基本算法语句1.2.1输⼊语句、输出语句和赋值语句1.A2.D3.C4.12;3+4+55.①②④6.(1)4,4(2)3,3 7.INPUT“输⼊横坐标:”;a,c x=(a+c)/2INPUT“输⼊纵坐标:”;b,d y=(b+d)/2PRINT“中点坐标:”;x,y ENDINPUT“L=”;L a=L/4 S1=a*aR=L/(2*3.14)2PRINT“正⽅形的⾯积为:”;S1PRINT“圆的⾯积为:”;S2 END1.4C/B K=-A/BPRINT“直线的斜率:”;K PRINT“x轴上的截距:”;MPRINT“y轴上的截距:”;N END1.5第⼀个输出为2,9,第⼆个输出为-7,8.程序如下:INPUT“x,y=”;x,y x=x/2 y=3*yPRINTx,yx=x-y y=y-1 PRINTx,yEND 11.INPUT“卫星⾼度:”;hv=7900*SQR(R)/SQR(R+h)m=v*SQR(2)t=C/vPRI NT“卫星速度:”;vPRINT“脱离速度:”;mPRINT“绕地球⼀周时间:”;tEND条件语句1.1.2<3),2(x=3),x2-1(x>3)INPUT“两个不同的数”;A,B IFA>BTHEN PRINTBELSEPRINTAEND IFEND1.7INPUT“x=”; xIFx<=1.1THENPRINT“免票”ELSEIFx<PRINT“半票”ELSE PRINT“全票” END IFEND IFEND1.8INPUT“x=”;x IFx<-1THEN-1ELSEELSEy=ABS(x)+1END IF ENDIF PRINT“y=”;y END 10.INPUTa,b,cIFa>0ANDb>0ANDc>0THENIFa+b>cANDa+c>bANDb+c>aTHEN p=(a+b+c)/2 S=SQR(p*(p-a)*(p-b)*(p-c))PRINTS ELSEPRINT“不能构成三⾓形”END IFELSEPRINT“不能构成三⾓形”END IF END1.9(1)超过500元⾄2000元的部分,15(2)355循环语句1.B2.B3.D4.51501.1.3 7. S=0 k=1DO S=S+1/(k*(k+1))k=k+1LOOPUNTILk>99PRINTSEND2.r=0.01P=12.9533y=2000WHILEP<=14P=P*(1+r)y=y+1 WENDPRINTyEND 9. s=0 t=1i=1 WHILEi<=20t=t*i s=s+ti=i+1WENDPRINTsEND 10.A=0 B=0C=1D=A+B+CPRINTA,B,C,DWHILED<=1000A=BB=C C=DD=A+B+CPRINTDWENDEND11.(1)2550S=S+2k k=k+1WENDPRINTSEND1.10算法案例案例1辗转相除法与更相减损术1.1.4B2.C3.B4.135.66.67.(1)84(2)43.与6497的最⼤公约数为73;最⼩公倍数为3869×649773=3443419.1212.(1)INPUTa,bWHILEa<>bIFa>bTHENa=a-b ELSEb=b-a END IFWENDPRINTb END(2)INPUTa,b r=aMOD bWHILEr<>0a=bb=rr=a MOD bWENDPRINTbEND12.=15036,334=13536,229=8036,则等价于求150,135,80的最⼤公约数,即得每瓶最多装536kg 案例2秦九韶算法1.2.2A2.C3.C4.①④5.216.-571.11f(x)=((((3x+7)x-4)x+0.5)x+1)x+18.291.1.5考察多项式f(x)=x5+x3+x2-1=x5+0?x4+x3+x2+0?x-1,则-,,得,所以x5+x3+x2-1=0在[,]之间有根1.1.6a=-3761.1.7(1)加法运算次数为n,乘法运算次数为1+2+3+…+n=n(n+1)2,所以共需n+n(n+1)2 =n(n+3)2(次)(2)加法运算次数为n次,乘法也为n次,共需2n次案例3进位制4.C2.C3.D4.575.1002(3)<11110(2)<111(5)<45(7)6.124 7.(1)379(2)10211(6)(3)342(5)8.E+D=1B,A×B=6E13.在⼗六进位制⾥,⼗进位制数71可以化为4710.13,7,21,26 11.(1)①3266(8)②11101001100101(2)(2)结论:把⼆进制数转化为⼋进制数时,只要从右到左,把3位⼆进制数字划成⼀组,然后每组⽤⼀个⼋进制数字代替即可;把⼆进制数转化为⼗六进制数时,只要从右到左,把4位⼆进制数字划成⼀组,然后每组⽤⼀个⼗六进制数字代替即可;把⼋进制数、⼗六进制数转化为⼆进制数时,只需将⼀位数字⽤3位或4位⼆进制数字代替即可.3021(4)=11001001(2),514(8)=101001100(2)单元练习13.A2.B3.D4.D5.C6.B7.B8.D9.D10.B1.2.3i>2012.S=6413.55,5314.85315.红,蓝,黄16.302(8)17.34 18.INPUT“x=”;x IFx<=0THENPRINT“输⼊错误”ELSEIFx<=2THENy=3 ELSEy=3+(x-2)*1.6 ENDIF END IFPRI NT“x=”;x,“y=”;yEND2.程序甲运⾏的结果为147,程序⼄运⾏的结果为97 20.S=0i=0WHILEi<=9i=i+1 WENDPRINTSEND1.12(1)①处应填i≤30?;②处应填p=p+i(2)i=1p=1s=0WHILEi<=30s=s+p p=p+ii=i+1 WENDPRINTs END1.1.8提⽰:abc(6)=36a+6b+c,cba(9)=81c+9b+a,故得35a=3b+80c.⼜因为35a是5的倍数,80c也是5的倍数,所以3b也必须是5的倍数,故b=0或5.①当b=0时,7a=16c,因为7,16互质,并且a,c≠0,∴c=7,a=16(舍去);②当b=5时,7a=3+16c,即c=7a-316,⼜因为a,c为六进制中的数,将a分别⽤1,2,3,4,5代⼊,当且仅当a=5时,c=2成⽴. ∴abc(6)=552(6)=212第⼆章统计5.随机抽样14.简单随机抽样(⼀)14.C2.C3.B4.9600名⾼中毕业⽣的⽂科综合考试成绩,3005.抽签法1.2.4不是简单随机抽样.因为这不是等可能抽样3.①先将20名学⽣进⾏编号,从1编到20;②把号码写在形状、⼤⼩均相同的号签上;③将号签放在某个箱⼦⾥进⾏充分搅拌,⼒求均匀,然后依次从箱⼦中抽取5个号签,从⽽抽出5名参加问卷调查的学⽣4.如果样本就是总体,抽样调查就变成普查了,尽管结论真实可靠地反映了实际情况,但这不是统计的基本思想,其可操作性、可⾏性、⼈⼒物⼒⽅⾯都会有制约的因素存在.何况有些调查是有破坏性的,如检查⽣产的⼀批玻璃的抗碎能⼒,普查就不合适了5.①将编号为1~15的号签放在同⼀个盒⼦⾥,搅拌均匀,每次抽出⼀个号签,连抽3次;②将编号为16~35的号签放在同⼀个盒⼦⾥,搅拌均匀,每次抽出⼀个号签,连抽3次;③将编号为36~47的号签放在同⼀个盒⼦⾥,搅拌均匀,每次抽出⼀个号签,连抽2次.所得的号签对应的题⽬即为其要作答的试题6.简单随机抽样的实质是逐个从总体中随机抽取,⽽这⾥只是随机确定了起始张,这时其他各张虽然是逐张起牌的,但其实各张在谁⼿⾥已被确定了,所以不是简单随机抽样简单随机抽样(⼆)1.D2.A3.B4.90%5.调整号码,使位数统⼀6.18,00,38,58,32,26,257.不是简单随机抽样.因为这是“⼀次性”抽取,⽽不是“逐个”抽取1.13①在随机数表中任选⼀个数作为开始,任选⼀个⽅向作为读数⽅向,⽐如选第2⾏第3列数7,向右读;②每次读取三位,凡不在600~999中的数跳过不读,前⾯已读过的也跳过不读,依次可得到742,624,720,607,798,973,662,656,671,797;③以上编号对应的10个零件就是要抽取的样本1.14考虑96辆汽车的某项指标这⼀总体,将其中的96个个体编号为01,02,…,96,利⽤随机数表抽取10个号码.如从随机数表中的第21⾏第7列的数字开始,往右读数(也可向左读)得到10个号码如下:13,70,55,74,30,77,40,44,22,78.将编号为上述号码的10个个体取出便得到容量为10的样本1.15⽅法1抽签法①将200名男⽣编号,号码是001,002,…,200;②将号码分别写在⼀张纸条上,揉成团,制成号签;③将得到的号签放⼊⼀个不透明的袋⼦中,并充分搅匀;④从袋⼦中逐个抽取15个号签,并记录上⾯的编号;⑤所得号码对应的男⽣就是要抽取的学⽣⽅法2随机数表法①将200名男⽣编号,号码为001,002,…,200;②在随机数表中任选⼀个数作为开始的数,任选⼀⽅向作为读数⽅向;③每次读取三位,凡不在001~200中的数跳过不读,前⾯已经读过的也跳过不读,依次得到的号码对应的男⽣就是要抽取的学⽣1.16科学地选取样本是对样本进⾏数据分析的前提.失败的原因:①抽样⽅法不公平,样本不具有代表性,样本不是从总体(全体美国公民)中随机抽取的;②样本容量相对过⼩,也是导致估计出现偏差的重要原因系统抽样1.1.9B2.C3.A4.系统抽样,00037,00137,00237,99737,99837,999376.系统抽样6.257.系统抽样;088,188,288,388,488,588,688,788,888,98815.提⽰:要⽤系统抽样⽅法抽样,⾸先要对奖品进⾏编号16.①将103个个体编号为1,2,…,103;②⽤抽签法或随机数表法,剔除3个个体,对剩下的100个重新编号;③确定个数间隔k=10,将总体分成10个部分,每⼀部分10个个体,这时第⼀部分个体编号为1,2,…,10,第⼆部分个体编号为11,12,…,20,依此类推,第⼗部分个体编号为91,92,…,100;④在第⼀部分⽤简单随机抽样⽅法确定起始的个体编号,例如是3;⑤取出号码13,23,…,93,这样得到⼀个容量为10的样本17.根据规则第7组中抽取的号码的个位数字是7+6=13的个位数字3,⼜第7组的号码的⼗位数字是6,所以第7组中抽取的号码是6318.把295名同学分成59组,每组5⼈;第1组是编号为1~5的学⽣,第2组是编号为6~10的学⽣,依此类推,第59组是编号为291~295的学⽣,然后采⽤简单随机抽样的⽅法从第1组学⽣中抽取⼀个学⽣,设编号为k(1≤k≤5),接着抽取的编号为k+5i(i=1,2, …,58).共得到59个个体分层抽样(⼀)15.B2.B3.D4.mnN5.4,15,26.2101.17⾼⼀年级应抽取70⼈,⾼⼆年级应抽取80⼈,⾼三年级应抽取40⼈1.1.10+a+200=20400,a=300,所以共有零件400+300+200=900(个)9.807.分层抽样:①将30000⼈分成5层,其中⼀个乡镇为⼀层;②按照样本容量与总体容量的⽐例及各乡镇的⼈⼝⽐例随机抽取样本,这5个乡镇应抽取的样本容量分别为60,40,100,40,60;③将这300个⼈组在⼀起,即得到⼀组样本8.抽样⽐为50050000=1100,根据抽样⽐,从持“很满意”、“满意”、“⼀般”、“不满意”态度的各类帖⼦中各抽取108,124,156,112份分层抽样(⼆)19.A2.C3.D4.60,65.1926.560016.(1)简单随机抽样(2)系统抽样(3)分层抽样17.样本容量与总体的个体数之⽐为54∶5400,故从各种鸡中抽取的样本数依次为蛋鸡15只、⾁鸡30只、草鸡9只,然后在各类鸡中采⽤随机抽样⽅法或系统抽样⽅法抽取18.不是.因为事先不知总体,抽样⽅法也不能保证每个个体被抽到的可能性相同19.(1)设登⼭组⼈数为x,游泳组中青年⼈、中年⼈、⽼年⼈所占⽐例分别为a,b,c,则有,x?10100+3xc4x=10%,解得b=50%,c=10%.故a=40%.所以游泳组中青年⼈、中年⼈、⽼年⼈所占⽐例分别为40%,50%,10%(2)游泳组中,抽取的青年⼈数为200?34?40%=60(⼈);抽取的中年⼈数为200?34?50%=75(⼈);抽取的⽼年⼈数为200?34?10%=15(⼈)20.(1)总体是⾼三年级全体学⽣的期末考试成绩,个体是每个学⽣的期末考试成绩,样本是抽出来的学⽣的考试成绩,样本容量分别是20,20,100(2)第⼀种⽅式采⽤的是简单随机抽样、第⼆种⽅式采⽤的是系统抽样或分层抽样、第三种⽅式采⽤的是分层抽样(3)第⼀种⽅式的步骤是:先⽤抽签法抽取⼀个班,再⽤抽签法或产⽣随机数法抽取20⼈第⼆种⽅法若采⽤系统抽样,则抽样步骤是:⾸先在第⼀个班中⽤简单随机抽样法抽取⼀名学⽣,⽐如编号为a,然后在其他班上选取编号为a的学⽣共19⼈,从⽽得到20个样本;若采⽤分层抽样,则分别在各班⽤简单随机抽样法抽取⼀⼈第三种⽅法采⽤分层抽样,先确定各层的⼈数,即优秀层抽15⼈,良好层抽60⼈,普通层抽25⼈,然后在各层中⽤简单随机抽样法抽取相应样本1.2.5⽤样本估计总体⽤样本的频率分布估计总体分布(⼀)7.C2.D3.C4.1995,略8.(1)(2)20 9.(1)略(2)略11.(1)略(2)略(3)⽤样本的频率分布估计总体分布(⼆)2.D2.B3.B4.13,26%5.606.19(1)甲(2)相同(3)两个图象中坐标轴的单位长度不同,因⽽造成图象的倾斜程度不同,给⼈以不同的感觉1.18(1)4+6+8+7+5+2+3+1=36(2)获奖率为5+2+3+136×100%(3)该中学参赛同学的成绩均不低于60分,成绩在80~90分数段的⼈数最多1.19略10.⼄的潜⼒⼤,图略⽤样本的频率分布估计总体分布(三)1.1.11A2.B3.B4.所有信息都可以从这个茎叶图中得到;便于记录和表⽰125245311667944950(第7题)5.96;92;⼄6.4%,519.图中分界线左边的数字表⽰⼗位数字,右边的数字表⽰个位数字.从图中可以⼤约看出,这⼀组数据分布较对称,集中程度较⾼10.茎叶图略.甲、⼄两名射击运动员的平均成绩都是环,中位数分别为9,10,众数分别为9,10.从中位数与众数上看应让⼄去;但⼄有三次在9环以下,发挥不稳定,所以从这⼀点看应让甲去11.(1)略(2)英⽂句⼦所含单词数与中⽂句⼦所含字数都分布得⽐较分散,总的来看,每句句⼦所含的字(词)数没有多⼤区别,但因为数量较多,不能给出较有把握的结论12.茎叶图略.姚明的得分集中在15~35分之间,说明姚明是⼀个得分稳定的选⼿13.(1)略(2)略(3)不能,因为叶值不确定⽤样本的数字特征估计总体的数字特征(⼀)20.,21.∵x甲⼄=,∴x甲<x⼄.∴甲班男⽣短跑⽔平⾼些22.由于每组的数据是⼀个范围,所以可以⽤组中值近似地表⽰平均数,得总体的平均数约为23.(1)5kg(2)3000kg24.男⽣的平均成绩为,中位数是73,众数有2个,分别是55和68;⼥⽣的平均成绩是,中位数是82,众数有3个,分别是73,80和82.从成绩的平均值、中位数和众数可以看出这个班级的⼥⽣成绩明显优于男⽣25.(1)甲两次购粮的平均价格为ax+aya+a=x+y2,⼄两次购粮的平均价格为a+aax+ay =2xyx+y(2)因为x≠y,所以(x+y)2>4xy,x+y2>2xyx+y.故⼄两次购粮的平均价格较低⽤样本的数字特征估计总体的数字特征(⼆)1.2.6,,26.s>s18.(1)(2)有11个⽉的销售额在(x-s,x+s),即()内9.设这5个⾃然数为n-2,n-1,n,n+1,n+2(n≥2),则这5个数的平均数为n,⽅差为15[(n-2- n)2+(n-1-n)2+(n-n)2+(n+1-n)2+(n+2-n)2]=210.(1)∵x′i=axi+b(i=1,2,…,n),∴x′1+x′2+…+x′n=a(x1+x2+…+xn)+nb,∴x′=1n(x′i+x′2+…+x′n)=a?1n(x1+x2+…+xn)+b=ax+b(2)s2x′=1n[(x′1-x′)2+(x′2-x′)2+…+(x′n-x′)2]=1n{[ax1+b-(ax+b)]2+[ax2+b-(ax+b)]2+…+[axn+b-(ax+b)]2}=1n[a2(x1-x)2+a2(x2-x)2+…+a2(xn-x)2]=a2s2x11.全班学⽣的平均成绩为90?18+80?2240=84因为第⼀组的标准差为6,所以36=118[(x21+x22+…+x218)-18?902],即36?18=x21+x22+…+x218-18?902.因为第⼆组的标准差为4,所以16=122[(x219+x220+…+x240)-22?802],即16?22=x219+x220+…+x240-22?802.所以x21+x22+…+x240=36?18+16?22+18?902+22?802=287600.所以s2=140[x21+x22+…x240-]所以全班成绩的标准差为1.20(1)x甲=7(环),x⼄=7(环),s2甲=3,s2⼄(2)因为s2甲>s2⼄,所以⼄的射击技术⽐较稳定,选派⼄参加射击⽐赛1.1.12变量间的相关关系14.变量之间的相关关系两个变量的线性相关(⼀)21.C2.D3.C4.相关关系,函数关系5.散点图6.①③④7.略26.穿较⼤的鞋⼦不能使孩⼦的阅读能⼒增强,在这个问题中实际上涉及到第三个因素——年龄,当孩⼦长⼤⼀些,他的阅读能⼒会提⾼,⽽且由于⼈长⼤脚也变⼤,所穿鞋⼦相应增⼤27.从图中可以看出两图中的点都散布在⼀条直线附近,因此两图中的变量都分别具有相关关系,其中变量A,B为负相关,变量C,D为正相关28.略29.观察表中的数据,⼤体上来看,随着年龄的增加,⼈体中脂肪含量的百分⽐也在增加.为了确定这⼀关系的细节,我们假设⼈的年龄影响体内脂肪含量,于是,以x轴表⽰年龄,以y轴表⽰脂肪含量,得到相应的散点图(图略).从图中可以看出,年龄越⼤,体内脂肪含量越⾼,图中点的趋势表明两个变量之间确实存在⼀定的关系15.两个变量的线性相关(⼆)1.2.7A2.C3.A4.x每增加1个单位,y就平均增加b个单位12.667.(1)略(2)(1)略(2)3.⽤最⼩⼆乘法估计得到的直线⽅程和⽤两点式求出的直线⽅程⼀致,都是y^=2x+6.20结论:若只有两个样本点,那么结果⼀样10.(1)略(2)-0.8571(3)要使y≤10,则- 得.∴机器的转速应控制在15转/秒以下两个变量的线性相关(三)1.B2.D3.C4.6505.10b6.y^=0.575x-14.97.散点图略,两者之间具有相关关系8.(1)略(2)y^=1.5649x+37.829(3)由回归直线⽅程系数,即,可得⾷品所含热量每增加1个百分点,⼝味评价就多9.(1)(2)估计⼉⼦的⾝⾼为1.21(1)略(2)所求的回归直线⽅程为=.估计买120m2的新房的费⽤为万元1.22(1)略(2)相关系数(3)r>,说明两变量相关性很强;回归直线⽅程(4)84分单元练习1.1.13B2.D3.A4.D5.D6.D7.C8.C9.A10.B16.5,7212.25613.42,814.np15.13,,7817.8422.分以下四个步骤:①将1003名学⽣⽤随机⽅式抽样,从总体中剔除3⼈(可⽤随机数表法);②将剩下的学⽣重新编号(编号分别为000,001,…,999),并分成20段;③在第⼀段000,001,…,049这50个编号中⽤简单随机抽样抽出⼀个(如003)作为起始号码;④将编号为003,053,103,…,953的个体抽出,组成样本23.(1)环(2)射中8环及8环以上的可能性7+1,所以每次射靶不合格的可能性为24.由条件得(x1-x)2+(x2-x)2+…+(x10-x)2=20,与原式相减得x2-6x-1=0,从⽽平均数x=3±1025.(1)略(2)略(3)因为只知分组和频数,所以应该⽤中值来近似计算平均数,所以平均数为,⽅差为26.第三章概率30.随机事件的概率随机事件的概率1.2.8C2.D3.B4.②④5.0≤m≤n6.③13.(1)必然事件(2)不可能事件(3)随机事件(4)随机事件14.从左到右依次为,,,,15.不能,因为这仅是10个计算器中次品的频率,由概率的定义知,只有在⼤量的试验中,频率才能较准确地估计概率值;但试验次数较少时,频率与概率在数值上可能差别很⼤16.(1)设平均值为m,则m=68×5+69×15+70×10+71×15+72×550=70(2)⽤频率估计概率:P=1050=1517.(1)甲、⼄两名运动员击中10环以上的频率分别为:,,,,95,;,,,,,(2)由(1)中的数据可知两名运动员击中10环以上的频率都集中在附近,所以两⼈击中10环以上的概率约为,也就是说两⼈的实⼒相当概率的意义4.D2.A3.B4.不⼀定5.236.7506.21%→(2);2%→(3);90%→(1)11.这样做体现了公平性,它使得两名运动员的先发球机会是等可能的,⽤概率的语⾔描述,就是两个运动员取得发球权的概率都是,因为任何⼀名运动员猜中的概率都是,也就是每个运动员取得先发球权的概率均为,所以这个规定是公平的1.23天⽓预报的“降⽔”是⼀个随机事件,“概率为90%”指明了“降⽔”这个随机事件发⽣的概率.我们知道:在⼀次试验中,概率为90%的事件也可能不出现.因此,“昨天没有下⾬”并不能说明“昨天的降⽔概率为90%”的天⽓预报是错误的1.24如果它是均匀的,⼀次试验中出现每个⾯的可能性都是16,从⽽连续出现10次1点的概率为,这在⼀次试验中⼏乎不可能发⽣,⽽这种结果恰好发⽣了,我们有理由认为,这枚骰⼦的质地不均匀,6点的那⾯⽐较重,原因是,在作出的这种判断下,更有可能出现10个1点1.25(1)基本事件总数为6×6=36个,即(1,1),(1,2),…,(6,6)共36种情况.相乘为12的事件有(2,6),(6,2),(3,4)和(4,3)共4种情况,所以,所求概率是P=436=19 (2)设每枚骰⼦点数分别为x1,x2,则1≤x1≤6,1≤x2≤6.由题设x1+x2≥10.①当x1+x2=12时,有⼀解(6,6).②当x1+x2=11时,有两解(5,6)和(6,5).③当x1+x2=10时,有三解(4,6),(5,5)和(6,4),故向上点数不低于10的结果有6种,所求概率为636=16概率的基本性质1.1.1455,提⽰:,17.⾄少有1件是次品7.(1)是互斥事件(2)不是互斥事件27.设事件C为“出现1点或2点”,因为事件A,B是互斥事件,由C=A∪B可得P(C)=P(A)+ P(B)=16+16=13,∴出现1点或2点的概率是1328.(1)“甲获胜”是“和棋或⼄胜”的对⽴事件,所以“甲获胜”的概率为1-12-13=16(2)解法1:设事件A为“甲不输”,看做是“甲胜”、“和棋”这两个互斥事件的并事件,所以P(A)=16+12=23;解法2:设事件A为“甲不输”,看做是“⼄胜”的对⽴事件,所以P(A)=1-13=23,∴甲不输的概率是2329.(1)(2)(3)由于,,1-,1-,故他可能乘⽕车或轮船去,也可能乘汽车或飞机去30.(1)(2)31.古典概型古典概型1.2.9C2.B3.B.提⽰:.4918.均为假命题.(1)等可能结果应为4种,还有⼀种是“⼀反⼀正”(2)摸到红球的概率为12,摸到⿊球的概率为13,摸到⽩球的概率为16(3)取到⼩于0的数字的概率为47,取到不⼩于0的数字的概率为37(4)男同学当选的概率为13,⼥同学当选的概率为1419.(1)36(2)12(3)139.1210.(1)916(2)125.设这批产品中共有m件次品,则从100件产品中依次取2件有100×99种结果,这两件都是次品有m(m-1)种结果.从⽽m(m-,即m2-m-99≤0,∴0≤m≤1+3972.⼜∴m的最⼤值为10,即这批产品中最多有10件次品(整数值)随机数(random numbers)的产⽣6.22B2.C3.D4.1,20085.随机模拟⽅法或蒙特卡罗⽅法6.1111.26利⽤计算机(器)产⽣0~9之间取整数值的随机数,我们⽤0代表不成活,1~9的数字代表成活,这样可以体现成活率是因为种植5棵,所以每5个随机数作为⼀组,可产⽣30组随机数(数略).这就相当于做了30次试验,在这些数组中,如果恰有⼀个0,则表⽰恰有4棵成活,设共有n组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率为n30,故所求的概率为0.31.27①按班级、学号顺序把学⽣档案输⼊计算机;②⽤随机函数RANDBETWEEN(1,1 200)按顺序给每个学⽣⼀个随机数(每⼈的都不同);③使⽤计算机排序功能按随机数从⼩到⼤排列,即可得到1~1200的考试序号(注:1号应为0001,2号应为0002,⽤0补⾜位数,前⾯再加上有关信息号码即可)1.28我们设计如下的模拟实验,利⽤计算机(器)或查随机数表,产⽣0~9之间的随机数,我们⽤3,6,9表⽰击中10环,⽤0,1,2,4,5,7,8表⽰未击中10环,这样就与击中10环概率为这⼀条件相吻合.因为考虑的是连续射击三次,所以每三个随机数作为⼀组.例如,产⽣20组随机数010316467430886541269187511067 443728972074606808742038568092就相当于做了20次试验.在这20组数中,3个数中恰有⼀数为3或6或9(即恰有⼀次击中10环)的有9组(标有下划线的数组),于是我们得到了所求概率的估计值为920=0 45.其实我们可以求出恰有⼀次击中10环的概率为1.29利⽤计算机(器)中的随机函数产⽣0~99之间的随机数,若得到的随机数a≤48,则视为取到红球;若a≥49视为取到⽩球,取球的过程可⽤0~99之间的随机数来刻画.⽤随机模拟⽅法可以估算取到红球的概率6905164817871540951784534064899720⽩红红红红⽩红红⽩红⽩⽩红⽩⽩⽩红以上是重复10次的具体结果,有9次取到红球,故取到红球的概率⼤致等于其实这个概率的精确值为可以看出我们的模拟答案相当接近了1.30①⽤计算机(器)产⽣3个不同的1~15之间的随机整数(如果重复,重新产⽣⼀个);②⽤计算机(器)产⽣3个不同的16~35之间的随机整数;③⽤计算机(器)产⽣2个不同的36~45之间的随机整数.由①②③就得到8道题的序号1.1.15⼏何概型⼏何概型(第8题)1.D2.C3.B4.1∶3∶55.1318.x和y分别表⽰甲、⼄两⼈到达约会地点的时间,则两⼈能够会⾯的等价条件是|x-y|≤15.建⽴如图所⽰的平⾯直⾓坐标系,则(x,y)的所有可能结果是边长为60的正⽅形,⽽可能会⾯的时间由图中的阴影部分所表⽰.这是⼀个⼏何概型问题,由等可能性知P(A)=602-452602=71619.设“灯与⽊杆两端的距离都⼤于2m”为事件A,则P(A)=9-2×29=59。
高等数学(同济第五版)课后答案 第三章
![高等数学(同济第五版)课后答案 第三章](https://img.taocdn.com/s3/m/143fc38eb9d528ea81c7797b.png)
a − b < ln a < a − b . a b b
证明 设f(x)=ln x, 则f(x)在区间[b, a]上连续, 在区间(b, a )内可导, 由拉格朗日中值定理, 存在ξ∈(b, a ), 使 f(a)−f(b)=f ′(ξ)(a−b), 即 ln a − ln b = 1 (a − b) . ξ 因为b<ξ<a, 所以
ϕ(b)−ϕ(a)=ϕ′(ξ)(b−a),
即 因此 f (a) f (b) f (a) f (a) [ f (a)]′ f (ξ ) f (a) f ′(ξ ) ⎤ . − = (b − a)⎡ + ⎢ g (a) g (b) g (a) g (a) [ ⎣ g (a)]′ g (ξ ) g (a) g ′(ξ ) ⎥ ⎦ f (a) f (b) f (a) f ′(ξ ) = (b − a) . g (a) g (b) g (a) g ′(ξ ) f ( x) , 则在(−∞, +∞)内有 ex
5. 不用求出函数 f(x)=(x−1)(x−2)(x−3)(x−4)的导数,说明方程 f ′(x)=0 有几个实根, 并指 出它们所在的区间. 解 由于 f(x) 在 [1, 2] 上连续 , 在 (1, 2) 内可导 , 且 f(1)=f(2)=0, 所以由罗尔定理可知 , 存在 ξ1∈(1, 2), 使f ′(ξ1)=0. 同理存在ξ2∈(2, 3), 使f ′(ξ2)=0; 存在ξ 3∈(3, 4), 使f ′(ξ 3)=0. 显然ξ1、ξ2、 ξ 3都是方程f ′(x)=0 的根. 注意到方程f ′(x)=0 是三次方程, 它至多能有三个实根, 现已发现它 的三个实根, 故它们也就是方程f ′(x)=0 的全部根. 6. 证明恒等式: arcsin x + arccos x = π (−1≤x≤1). 2 证明 设 f(x)= arcsin x+arccos x. 因为 f ′(x) = 1 − 1 ≡0 , 1− x 2 1− x 2
高等数学课后题答案(西工大版)第3章
![高等数学课后题答案(西工大版)第3章](https://img.taocdn.com/s3/m/8dbf0a15ba1aa8114431d981.png)
2 1− x ex + sin x
=
1 2
.
(2)
lim
ln(1 + x2 )
⎜⎛ 0 ⎟⎞
⎝0⎠
====
lim
2x 1+ x2
x→0 sec x − cos x
x→0 tan x sec x + sin x
=
lim
x→0
sin
x
⋅
1
2 +x
2
x(sec2 x
+
1)
2
= lim 1 + x 2 = 1
⎝π
⎠
⎝π
⎠
ln⎜⎛ 2 arctan x ⎟⎞
lim ln y = lim x ln⎜⎛ 2 arctan x ⎟⎞ = lim
x →+∞
x→+∞ ⎝ π
⎠ x→+∞
⎝π x −1
⎠
1 21
⎜⎛ 0 ⎟⎞
=⎝=0=⎠ = lim x →+∞
2 arctan x π 1 + x2 π
− x−2
=
−
lim
令
f
(x)
=
ex x
,
g(x)
=
1 x
,易验证
f
(x)
和
g(x)
在 [x1,
x2 ] 上满足柯西中值定理的条件,于
是存在 ξ ∈ (x1, x2 ) ,使得
f (x2 ) − f (x1 ) = f '(ξ ) , g(x2 ) − g(x1 ) g'(ξ )
e x2 − e x1
xex− ex
x2 x1 = x2