放射治疗技术第二章物理学基础(ppt)

合集下载

放射物理学PPT课件

放射物理学PPT课件
第29页/共47页
立体定向适形放射治疗 立体定向适形放射治疗是一种精确的放射治疗技术,
在肿瘤靶体积受到高剂量照射的同时,其肿瘤靶体 积以外的正常组织则受到较低剂量的照射。
CT扫描机激光 定位系统
第30页/共47页
适形治疗(Conformal Therapy)是一种提高治疗增益的较为有效的物理措施。适形放射治 疗为一种治疗技术,使得:高剂量区的形状在三维方向上与靶区(病变)的形状一致。 从这个意义上讲,学术界将它称为三维适形放射治疗(3DCRT)
A第射32野页形/共状47适页 形
B射野内强度调节
适形放射治疗的分类 经典适形放射治疗 (Classical Conformal Radiation Therapy) 只满足第一个必要条件 调强适形放射治疗 (Intensity--Modulated Radiation Therapy, IMRT) 同时满足两个必要条件
第1页/共47页
➢ 约60-70%的恶性肿瘤病人在病程中的某一阶段要使用放疗。 ➢ 放疗疗效肯定,据1998年WHO统计, 目前有45%的恶性肿瘤可以治愈(手术
治愈22%,放疗治愈18%,化疗治愈5%)。
第2页/共47页
✓ 口咽、舌根、扁桃体癌的放疗治愈: 37%~53%,
✓ 上颌窦、鼻腔筛窦癌:
• 晚期癌症病人有明显的恶病质,如消瘦、脱水、营养状 况极差,无法进行放疗者可作为绝对禁忌证。
• 食管癌已穿孔,腔内合并大量积液,肺癌合并大量癌性 胸水,肝癌合并大量腹水等均应作为禁忌证。
• 对放射线不敏感的肿瘤,如软组织肉瘤:纤维肉瘤、平 滑肌肉瘤、横纹肌肉瘤、脂肪肉瘤、滑膜肉瘤、成骨肉 瘤、神经纤维肉瘤及黑色素瘤等应视为相对的禁忌证。 一般不做放疗。

第二章-X射线成像的物理基础

第二章-X射线成像的物理基础

特征辐射
高速电子流轰击阳 极靶,将某些内层电子 击出,转移到外部壳层 或击出原子之外。
轨道电子从外层跃迁 到内层。放出特征X射 线光子。
1. 连续辐射(韧致辐射):如果被靶阻挡的电子的能量,不越过一 定限度时,只发射连续光谱的辐射。这种辐射叫做轫致辐射。 连续光谱的性质和靶材料无关。
2. 特征辐射(标识辐射):当电子的能量超过一定的限度时,可以 发射一种不连续的,它只有几条特殊的线状光谱,这种发射 线状光谱的辐射叫做特征辐射。 特征光谱和靶材料有关,不同的材料有不同的特征光谱这就是 为什么称之为“特征”的原因。
在压产生X射 线的时间
X射线的量:管电流×曝光时间(mA×s)
穿透物质 的能力
X射线的质:管电压(kV)
X射线的质/线质一般用于表示X射线的硬度(hardness of X-ray)
X射线的三个参量:
管电压(kVp) 管电流(mA) 曝光时间(s)
名称
极软X射线
X射线谱, 波长大致介于70~0.01 nm范围内的电磁
辐射,X射线谱由连续谱和标识谱两部分组成,标识谱重
叠在连续谱背景上。连续谱是由于高速电子受靶极阻挡而
产生的轫致辐射,其短波极限λ0由加速电压V决定:
0
=
hc eV
为普朗克常数,e为电子电量,c为真空中的光速。 标识谱是由一系列线状谱组成,它们是因靶元素内层
第二章 X线成像物理基础
章节目录
第1节 X线的本质 第2节 X射线的产生和影响因素 第3节 X线的各种作用 第4节 X射线与物体原子间相互作用 第5节 X线的量与质
我们视而不见的光亮,对于我们就是黑 暗。当我们清醒时,曙光才会破晓。来日方 长,太阳只是启明星。

放射治疗技术ppt课件

放射治疗技术ppt课件
颅外各系统恶性肿瘤:如鼻咽癌、肺癌、肺转移 癌、肝癌、胰腺癌、腹、盆腔单发转移癌等。
有些病变可单独采用FSRT给予肿瘤根治,多数 肿瘤需要与常规外照射配合,作为对肿瘤靶区追 加剂量的一种有效手段。
立体定向放疗的局限性
受肿瘤体积、形状限制 靶区边缘定位的精确度尚待提高 靶区周围重要组织放射耐受性有限
IMRT比常规治疗多保护15%~20%的正常组织, 同时可增加20%~40%的靶区肿瘤剂量。
促使 IMRT 得以实现的最重要的技术突破是强大 的计算机程序,这种高精度的放疗技术使肿瘤放 射治疗跨入了新时代。
普通放疗
调强放疗
乳腺癌
115% 110% 105% 100% 95% 90%
Wedges
调强放射治疗可以做到给肿瘤内不同区域以 不同的剂量(物理调强)。
目前影像学还不能提供上述细胞生物活动的 信息,随着影像学的发展,如PET、fMRI、 MRS、分子显像、基因显像等技术的出现,将 为今后肿瘤“生物调强”放射治疗奠定基础。
生物靶区示意图
在不远的将来,“生物调强”放疗技术 将使肿瘤放射治疗迈上新的台阶。
三维适形放射治疗(3DCRT)是立体定向放射治 疗技术的扩展。
利用多叶光栅或适形挡铅技术、将照射野的形状 由普通放疗的方形或矩形调整为肿瘤的形状。
使照射的高剂量区在人体内的三维立体空间上与 肿瘤的实际形状相一致。
提高了肿瘤的照射剂量,保护了肿瘤周围的正常 组织,降低放射性并发症,提高肿瘤的控制率。
44调强放疗普通放疗451151101051009590imrtwedges46前列腺癌4748igrtigrt是一种四维放射治疗技术它在三维放疗技术的基础上加入了时间因数的概念充分考虑了解剖组织在治疗过程中的运动和分次治疗间的位移误差在患者进行治疗过程中利用影像设备对肿瘤及正常器官进行实时监控并根据器官位置的变化调整治疗条件使照射野紧紧追随靶区使之能做到真正意义上的精确治疗

放射物理学基础一(ppt)

放射物理学基础一(ppt)
内或人体天然腔内进行照射.
优点
可获得准确照射. 工作人员隔室操作,比较安全. 放射源微型化. 高活度放射源形成高剂量率治疗. Hale Waihona Puke 微机控制.放射治疗物理学基础
➢ 近距离后装治疗机
组成:①放射源 ②施源器 ③源室及放射源驱动元 ④治疗计划系统
放射治疗物理学基础
➢ 体内照射与体外照射的区别
放射源强度
放射治疗物理学基础
➢钴 - 60 治 疗 机
结构:①放射源
②源客器及防护机头
③遮线照装置
④准直器
⑤支持系统及其附属电子设备
钴-60γ线的特点:
与深部x线机(200~400kv)相比的优点: ①穿透力强 ②保护皮肤 ③骨和软组织有同等的吸收剂量 ④旁向散射小 ⑤经济可靠
钴 - 60 半 影 问 题
放射治疗物理学基础
三种常见体外照射设备的特点比较
能量 穿透力 皮肤剂量 骨吸收剂量 旁向散射 经济、维修
照射野 防护
X线机
低 弱 高 高 大 价格低 维护方便 小 容易
6 0CO远距离治疗机
高,单能 较强
低 和软组织相同
较小 价格较低 维护方便
中等 定期换源 防护难
直线加速器
高,可调 强 低
和软组织基本相同 小
几何半影 穿射半影 散射半影
放射治疗物理学基础
➢ 加速器
X线和电子束的产生
电源
脉冲调制器
电子枪 磁控管
加速管
偏转磁铁 电子束 打靶 高能X线
放射治疗物理学基础
➢ 加速器
分类 电子感应加速器 电子直线加速器 电子回旋加速器
放射治疗物理学基础
➢ 电子直线加速器的特点
能量高,可调控,剂量率高. 穿透力强. 皮肤剂量低:6MvX最大剂量点在皮下1.5cm. 骨和软组织吸收基本相等. 旁向散射小. 价格昂贵. 维护难,对水、电、湿度要求高. 射野可以较大,可达40×40cm.

放射ppt课件

放射ppt课件
• 一、粒子治疗的物理生物特性
带电粒子辐射在介质中的能量转移本领可以用 传能线密度LET表示。LET定义为射线粒子在单位 厚度的介质中能量损失、转移的大小。
完整最新版课件
18
(一)重粒子射线物理学特性
• 1.高LET射线由于其在与介质作用时产生强烈的电
离、激发效应,射线粒子的穿透力低,在组织中 的射程短。
完整最新版课件
13
三、医用电子直线加速器
• 为适应现代肿瘤放射治疗的需要,采用医用电子
直线加速器产生高能X射线和电子线来实施治疗更
有利。
• 原理:利用微波电厂,沿直线加速电子到较高能
量,从而获得高能X射线或电子线的放射治疗装置。
• 基本机构:主要由加速管、微波功率源、微波传
输系统、电子枪、束流系统、真空系统、恒伟冷
完整最新版课件
15
五、放射治疗模拟定位机
• 模拟定位机是用模拟加速器或60Co治疗机治疗条件的专
用X射线成像系统。
• (一)普通模拟定位机的工作原理与结构
普通模拟定位机的成像原理与一般X射线摄影用X射线机 进本相同。其基本结构由X射线管、影像增强器、X射线电 视、旋转机架、诊断床及控制台组成。
其不同于一般X射线成像系统之处在于其与加速器、 60Co治疗机一致的旋转机架及射线准直器系统。
3.137Cs(137铯):在近距离治疗中作为I镭源替
代物使用,适用于做中、低剂量率的射线
源,其剂量计算比较困难。半衰期为33.0年,
能量为0.662MeV。
完整最新版课件
10
4.192Ir(192铱):适用于做高剂量率近距离放射治疗的 放射源。半衰期为74.0天,平均能量为0.38MeV.
5.198Au(198金):半衰期为2.7天, γ射线能量为 0.412MeV,其射线能量低,易于屏蔽,曾作为 222Rn(222氡)的替代源广泛用于肿瘤的种植放射 治疗。

肿瘤放射治疗PPT课件【可编辑全文】

肿瘤放射治疗PPT课件【可编辑全文】
放射生物学
37
细胞照射后的存活曲线-氧效应
38
正常组织和肿瘤细胞在分次照射 中的4个变化(4R)
肿瘤细胞放射损伤的修复(Repair)
致死性损伤
亚致死性损伤
潜在致死性损伤
肿瘤细胞的再增殖(Regeneration)
残存细胞加速再增殖、G0期细胞进入增殖周期
细胞周期再分布(Redistribution) G2



电子

中子
粒子辐射
质子
加 速

负π介子
重粒子LETຫໍສະໝຸດ LET远距离治疗 低
近距离治疗
射 线

远距离治疗
射 线
11
放射物理学及放疗设备
1. 电离辐射与物质作用 2. 放射源与放射治疗设备 3. 放射剂量单位 4. 放射治疗剂量学四原则
12
一.电离辐射和物质作用
能够使物质发生电离的射线称为电离辐射线 电离是射线引起物质物理、化学变化及生物效 应的主要机制。 带电粒子辐射: α粒子、β粒子等 非带电粒子辐射:X射线、 γ射线、中子等
疗程时间 影响大
影响大
影响小
总剂量
影响大
影响大
影响大
放疗原则:以较小的分割剂量、在尽可能短的总疗
程内给予一定的总剂量。
照射(重要器官的保护)
Cancer Center 26 SUMS
三 高能电子束临床剂量学特点
射程深度与能量成正比; 一定深度内剂量分布较 均匀,超过一定深度后 剂量迅速下降; 骨、脂肪、肌肉对电子 线吸收差别不显著; 可用单野作浅表或偏心 部位肿瘤的照射。
电子束深度剂量曲线
放射物理学
27

放射物理学ppt课件

放射物理学ppt课件

间接致电离辐射在放射治疗中主要指X(γ)辐 射,X(γ)光子进入介质ቤተ መጻሕፍቲ ባይዱ经与介质相互作用 损失能量,分为两步。 如图(a)入射光子将其部分或全部能量转移给 介质而释放出次级电子; 其次如图(b)获得光子转移能量的大部分次级 电子再与介质原子中的电子作用,以使原子电离 或激发的形式损失其能量,即被介质所吸收;而 少数次级电子与介质原子的原子核作用,发生轫 致辐射产生X射线。
热释光材料的剂量响应与其受辐照和加热历史 有关,在使用前必须退火。如LiF在照射前要经 过1小时400℃高温和24小时80℃低温退火。它 的剂量响应,一般在10Gy以前呈线性变化,大 于10Gy则出现超线性现象。其灵敏度基本不依 赖于X(γ)射线光子的能量,但对于低于10MeV的 电子束,灵敏度下降5%~10%。热释光材料的 剂量响应依赖于许多条件,因此校准要在相同条 件,如同一读出器,近似相同的辐射质和剂量水 平下进行,经过严格校准和对热释光材料的精心 筛选,测量精度可达到95%~97%。
吸收剂量(Absorbed dose) 吸收剂量 Dd E dm 即电离辐射给予质量为dm的介质的平均授 予能。 单位为J/kg,专用名为戈瑞Gray(Gy)。 1 Gy=1 J/kg 1Gy=100cGy 拉德(rad), 1Gy=100 rad
比释动能(kinetic energy released per unit mass,Kerma) 比释动能 K dE tr dm 即不带电粒子在质量为dm的介质中释放的 全部带电粒子的初始动能之和。 K的单位为J/kg,专用名戈瑞(Gy)。
同体积的半导体探测器,要比空气电离室 的灵敏度高18000倍左右。这样的半导体 探头可以做得 非常小(0.3—0.7mm3),除 常规用于测量剂量梯 度比较大的区域, 如剂量建成区、半影区的剂量分布和用于 小野剂量分布的测量外,近十年来,半导 体探测器越来越被广泛用于患者治疗过程 中的剂量监测

临床放射物理学基础PPT课件

临床放射物理学基础PPT课件
(肿瘤深度 )
❖ 百分深度剂量 ❖ 建成效应 ❖ 等剂量曲线
❖ 半影 ❖ 几何半影 ❖ 穿射半影 ❖ 散射半影
精选ppt课件最新
8
放射源(S)
射线源
在没有特别说明的情况下,一 般指放射源的前表面的中心,或 产生射线的靶面中心。
精选ppt课件最新
9
射野中心轴/射线中心轴
射线束的中心对称轴线。
临床上一般用放射源S穿过照 射野中心的连线作照射野中心 轴。
❖ 射线能量高,皮肤剂量低,最大剂量点(Dm)深度 大约为该射线能量值的1/4。
❖ 随着射线能量增加,Dm点的位置下移,皮肤表面 剂量下降,深部剂量增加。
❖ 放射源与皮肤距离固定时,百分深度剂量随射线 能量、照射野面积的增大而增大。
❖ 固定野照射时,应将病灶前缘放在Dm点之后,限 束器距照射野皮肤表面应>5cm。
17
等剂量曲线
等剂量曲线
❖射线束在一定组织深部中心轴处的剂量最高,远离中心轴则逐渐减弱, 把不同深度但相同剂量的各点连成一线称为等剂量曲线。 ❖模体中百分深度剂量相同的点连接起来即成等剂量曲线。 ❖射线能量越高,等剂量曲线越趋平坦,对治疗有利。 ❖用来描述吸收剂量的二维或三维分布。 ❖能够直观地给出整个照射野在二维方向上模体对放射线的吸收情况。
❖ 靶皮距(FSD):靶面到皮肤的距离(肿瘤深度 )。
精选ppt课件最新
13
放射源
射 野 中 心 轴 照 射野
肿瘤中心点
源 皮 距
源 瘤 距
靶 皮 距
❖ 放射源(S) ❖ 射野中心轴(SA) ❖ 照射野(A) ❖ 参考点 ❖ 校准点 ❖ 肿瘤中心点(C) ❖ 源皮距 (SSD) ❖ 源瘤距 (STC) ❖ 源轴距 (SAD) ❖ 靶皮距 (Dc)

放射物理学基础ppt课件

放射物理学基础ppt课件
7
模拟定位机
• X线模拟定位机:是用来模拟加速器或60Co治 疗机机械性能的专用X线诊断机。
• 作用:模拟各类治疗机实施治疗时的照射部位 及范围,进行治疗前定位。
• CT模拟机:是利用CT获取患者图像并进行三 维重建,同时将图像传给放射治疗计划系统, 进而对肿瘤实现精确定位的专用CT机。
8
近距离后装治疗机
• 现代后装治疗机主要包括:治疗计划系 统和治疗系统。
• 现代近距离治疗的特点: • 放射源微型化,程控步进电机驱动; • 高活度放射源形成高剂量率治疗; • 微机计划设计。
9
*辐射源种类和照射方式 辐射源种类
1.放射性同位素放出的α、β、γ射线 2.X 线治疗机和各类加速器产生的不同 能量的 X 线 3.各类加速器产生的电子束、质子束、 中子束、负π介子束以及其他重粒子束。
14
康普顿效应:
• 随着入射光子能量
的增加 ( 200kV-2
MV),光子与轨道
上电子相撞,光子
将部分能量转移给
电子,使电子快速
前进(反冲电子),
而光子本身则以减
低之能量,改变方
向,继续前进(散射
光子),这种现象叫
做康普顿效应。
15
电子对效应:
• 入射光子能量大 于1.02MV时, 光子可以与原子 核相互作用,使 入射光子的全部 能量转化成为具 有一定能量的正 电子和负电子, 这就是电子对效 应。
如60Coγ射线。
21
• *半价层 (Half Value layer,HVL):是指置 于X射线束通过的路径上,使其照射量减少 一半所需某种物质的厚度。
• *照射野:射线束经准直器后垂直通过模体 的范围,用模体表面的截面大小表示照射野 的面积。临床剂量学规定,模体内50%同等 剂量曲线的延长线交于模体表面的区域定义 为照射野的大小。

(推荐课件)放疗技术PPT学习幻灯片

(推荐课件)放疗技术PPT学习幻灯片

.
4
是一门研究肿瘤病因、预防、治疗,特别是放 射治疗的临床学学科,研究独立使用放射线或联合 手术、药物、氧和热等对肿瘤进行治疗的方法。
放射肿瘤学是建立在放射生物学、放射物理学、 临床肿瘤学和放疗技术学基础上的学科。随着肿瘤 学的发展,它和外科肿瘤学、内科肿瘤学组成了治 疗恶性肿瘤主要手段。
.
5
是以放射物理学和放射生物学知识为基础,
.
14
.
15
定位尺
.
16
我们通过模拟机或者CT模拟机获取更多病人的
体部数据,以便进行精确的计划设计和电脑剂量计
算。医生会根据病人的各项检查及化验结果,通过
放疗专用计划系统在收集到的影像数据上做精确地
定位与肿瘤靶区勾画工作。
在这个过程中患者需要配合:躺卧在治疗床上
时,放松心情,保持呼吸平稳,为保证精确性,不
患者要做的准备工作有:在治疗部位以及周围保持皮 肤干爽、更换合适的衣服、除去不必要的饰品以及其他可 能造成体位变化的因素(例如:需要做头部热塑面膜固定 的患者,需剪齐耳短发等)。
.
8
.
9
在CT模拟机上 放固定架
.
10
病人躺在固定 架上进行固定
.
11
标记照射区域
.
12
.
13
进行照射区 的CT扫描
在治疗室拍摄验证片确定无误后即可开始进行治疗。为了保证病 人的放疗计划的质量,我们会进行一系列的措施,这包括:对每个治 疗计划进行讨论复核、剂量验证等。另外我们会定期检查维护机器设 备,使其维持在最佳的工作状态。
.
19
上述准备工作全部完成且核对无误,才可实施真正的放射治疗。任何 一个环节出现超过允许程度的误差,医生、物理师、技师还要寻找原因, 予以纠正,保证准确无误后方可继续治疗。

放射治疗物理学基础

放射治疗物理学基础

2020/1/21
国家医学考试中心
4
电磁辐射
电磁辐射有那些: X射线,射线,光波,无线电波,紫外线,
红外线,雷达波,电视波,电场波 能量与频率的关系:正比
频率越高,能量越大; 波长越小,能量越大。
E=h•
2020/1/21
国家医学考试中心
5
质能关系
质量和能量可以互相转化,一定的质量反映 它具有一定的能量
3、射野设计应尽量提高治疗区域内的剂量,降低 照射区正常组织受量
4、保护肿瘤周围重要器官免受照射,至少不能使 它们接受超过其耐受量的范围。
2020/1/21
国家医学考试中心
25
靶区 (gross target volume,GTV)
靶区:要治疗的肿瘤区,指肿瘤的临床灶,为一 般的诊断手段(CT/MRI)能够诊断出的可见 的具有一定形状和大小的恶性病变的范围,包 括转移的淋巴结和其他转移的病变。
2020/1/21
国家医学考试中心
41
9、适形放射治疗
2020/1/21
国家医学考试中心
42
10、 X(r)线立体定向治疗
SRS, SRT 小野集束照射 剂量分布特点
2020/1/21
国家医学考试中心
43
SRT实现方式
瑞典Elekta r刀装置使用201个钴-60源(30Ci), 分布于头顶部北半球的不同纬度和经度上,经准 直后聚焦以一点(焦点),源到焦点的距离为 39.5cm,焦点处射野大小为4,8,14,18 mm
t
0
N N 0



00
te t
d0t

1

t

X线放射物理与防护第二章PPT课件

X线放射物理与防护第二章PPT课件

.
4
X线具有微粒性,X线的波动性可以成功地解释X线 的干涉与衍射现象,但却不能解释X线的光电效应、 荧光作用、电离作用等,这些只能用X线的粒子性 做出圆满的解释。即X线是由一个个微粒即X光子组 成的。
.
5
.
6
X线是一种电磁波,它具有电磁波的共同属性。此外,由于X线的能 量大、波长短,它还具有以下几方面的特有性质。
• 荧光的强弱与X线的量成正比
.
8
• 5.电离作用
• X线虽然不带电,但它具有足够能量的X线光子能够撞击原子 中的轨道电子,使之脱离原子产生一次电离。被击脱的电子仍有 足够能量,去电离更多的原子。X线的电离作用主要是它的次级 电子的电离作用。X线在气体中产生的正、负离子,在电场力的 作用下很容易收集起来。通常就是利用空气中电离电荷(或电流) 的多少来测定X线的照射量。多种测定X线剂量仪器的探头,如 电离室、盖革弥勒计数管等都是根据这个原理制造的。
.
14
1.电子源:电子源能提供所需数量的电子。
2.高速运动的电子流:要使电子成为高速运动的电子流需要两个条件; (1)有一个给电子加速的高压场,在高压场的作用下,电
子获得足够大的动能。 (2)有一个高真空的空间,是电子在高压场作用下而加
速运动的过程中,免遭气体分子的阻挡而降低能量。
3.阳极靶:一个能经受的住的高速电子撞击而产生的X射线的靶。
.
23
• 固定阳极X线管
• 由于焦点面受温的限制,功率不能太大,若功率太大,温度过高, 靶面会融化,使靶面凹凸不平,在工作中产生大量的额散射线, 影像图像质量,增加了射线的环境污染和防护难度。降了X线 管的使用寿命。、
第二章 X线的产生和性质
.
1

放射物理学.ppt

放射物理学.ppt

2、吸收剂量 (absorbed dose, D) 吸收剂量 D等于dE除以dm的商。即电离 辐射给予质量为dm介质的平均能量dE。
D = dE / dm 单位:焦耳/千克 (J/kg)。 专用名 Gray(Gy),1 Gy = 1 J/kg; 原用单位rad,1rad = 1cGy
3、百分深度剂量
放射物理学
——放射治疗常用放射源及其 物理特性
ludows
临床放射物理学: ① 放疗设备的结构、性能; ② 各种射线的物理特性、在人体内的分布规律; ③ 探讨提高肿瘤剂量,降低正常组织受量的物
理方法。
一、放射源的种类
① γ、 β射线———放射性同位素
② 普通X射线(KV级)——X线治疗机。 高能X射线(MV级)——加速器。
(3)碰撞损失与辐射损失
碰撞损失:由电离激发而引起,用单位长 度的能量损失来量度(dE/dx),在低能时发 生,主要产生热。
辐射损失:由特征辐射和韧致辐射引起的, 在高能范围发生,主要产生X射线,γ射 线
损失比=碰撞损失/辐射损失=816mev/T.Z
T-电子动能,Z—原子序数
2、光子射线与物质的相互作用
光电效应:光子高速前 进,在物质中与原子 的内层电子相撞,光 子将全部能量用于击 出电子,并赋予电子 高速前进的动能,这 种现象叫做光电效应。 与原子序数有关。 (光电效应主要发生 在低kV级的 X线,骨 吸收高于肌肉和脂肪)
康普顿效应:随着入
射光子能量的增加 ( 200kV-7 MV),光子与 轨道上外层电子相撞 ,光子将部分能量转 移给电子,使电子快 速前进(反冲电子),而 光子本身则以减低之 能量,改变方向,继 续前进(散射光子),这 种现象叫做康普顿效 应。与原子序数无关

放射治疗物理学基础

放射治疗物理学基础

第三章放射治疗物理学基础放射治疗物理是研究放射治疗设备、技术、剂量测量及剂量学、治疗计划设计、质量保证和质量控制、模室技术、特殊放射治疗方法学及学科前沿的新技术、新业务的分支学科,它必须直接为放射治疗临床服务。

放射物理学对推动放疗专业的发展都起着举足轻重的作用,一个医院的放疗科,如果没有一个强有力的放射物理人才和设备技术的合理配置,要走在本专业学科发展的前沿是不可能的。

放射治疗设备、质量保证和质量控制、模室技术等内容将有专门的章节进行介绍,本章就核物理基础知识、放射治疗剂量学和剂量测量等作一介绍。

第一节原子结构和核衰变自然界中的所有物质都由分子和原子构成。

分子保持着物质的基本属性和化学性质,分子由原子组成,目前己知的原子(也称元素)有109种,原子又有着它自己的结构。

了解原子的结构对于我们认识放射线的产生及其与物质的相互作用是十分必要的.因为这些过程都发生在原子的范围内。

一、原子结构原子由原子核和核外电子组成。

原子的中心是带正电荷的原子核,核外是带有等量负电荷的电子,这些电子沿着一定的轨道绕着原子核高速旋转。

早在1913年英国物理学家卢瑟福用散射实验证实原子的结构类似太阳系。

带负电的电子围绕带正电的原子核转动,正像行星绕着太阳旋转一样(图3-1-1)。

原子是很小的结构,其直径约为10-8cm。

图3-1-1 原子模型原子核由质子和中子组成,都是基本粒子,统称核子。

它们数目的总和就是原子量。

原子核小而紧密,其直径约为10-14cm,但集中了几乎整个原子的质量。

1961年后,国际上统一用12C原子量的1/12作为原子质量单位,其符号为amu。

原子质量和原子质量数是不同的概念,前者是指原子的实际质量,后者则是指原子核中核子的总数。

原子核内的电荷与周围电子的总电荷相等(核内质子数等于核外的电子数),故整个原子显中性。

电子或质子的数目,即门捷列夫元素周期表中所列的顺序数,称为原子序数。

标记方法:A Z X,X代表元素符号;A 为原子的质量数,即核内质子和中子总数;Z为原子序数,即核内质子数,显然,核内中子数应等于A—Z。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提高表面剂量
1、放射线的临床剂量学原则 2、高能X射线的百分深度剂量及影响因

3、60钴γ射线的百分深度剂量及影响因 素
4、高能电子线的临床剂量学 5、等剂量曲线的分布及影响因素 6、人体曲面和不均匀组织的修正 7、临床处方剂量的计算方法

临床处方剂量的计算
1MU=1cGy
戈瑞(符号:Gy):是用于衡量由电离辐射导致 的能量吸收剂量(简称吸收剂量)的物理单位, 它描述了单位质量物体吸收电离辐射能量的大小。 一戈瑞﹙1 Gy﹚表示每公斤物质吸收了一焦耳的 辐射能量。
放射治疗技术第二 章物理学基础(ppt)
优选放射治疗技术第 二章物理学基础
第二章
临床放射物理学基础
学习要点
掌握内容:高能X射线、Co60γ射线、 高能电子线的物理特性以及在临床 中的应用
熟悉内容:各类射线的剂量分布特 点及影响因素
了解内容:剂量计算方法及修正因 素
一、常用放射线的物理特性 二、放射线射野剂量学
1Gy=100cGy
(三)骨和软组织具有同等吸收
(四)旁向散射小
(五)经济、可靠
(六)缺点:
1、能量单一 2、深度剂量偏低 3、半衰期短,需定期更换放射源 4、放射性核素不断有射线释放,防护复杂,
工作人员受量相对较大 5、存在半影问题,使野外的正常组织受一
定的剂量影响
常用的放射线:
1、高能X射线 2、Co60γ射线 3、高能电子线 4、质子射线 5、中子射线 6、其他重离子射线
1、放射线的临床剂量学原则 2、高能X射线的百分深度剂量及影响因

3、60钴γ射线的百分深度剂量及影响因 素
4、高能电子线的临床剂量学 5、等剂量曲线的分布及影响因素 6、人体曲面和不均匀组织的修正 7、临床处方剂量的计算方法
高能X射线相关概念
放射源 照射野中心轴 照射野 参考点 源皮距(SSD) 源轴距(SAD)
1、放射线的临床剂量学原则 2、高能X射线的百分深度剂量及影响因

3、60钴γ射线的百分深度剂量及影响因 素
4、高能电子线的临床剂量学 5、等剂量曲线的分布及影响因素 6、人体曲面和不均匀组织的修正 7、临床处方剂量的计算方法
不均匀组织的修正
组织补偿
修正射线倾斜 修正身体弯曲 修正组织不均匀 改善剂量分布
高能电子线
优点:高剂量治疗暴露的病灶、表浅或偏 心性肿瘤和浸润的淋巴结,有效保证靶区 后方深部组织剂量,保护正常组织。
电子束限光筒
常用的放射线:
1、高能X射线 2、Co60γ射线 3、高能电子线 4、质子射线 5、中子射线 6、其他重离子射线
质子射线
优点:靶区前剂量很低,靶区 后剂量等于零。
剂量梯度变陡
X射线污染↑
1、放射线的临床剂量学原则 2、高能X射线的百分深度剂量及影响因

3、60钴γ射线的百分深度剂量及影响因 素
4、高能电子线的临床剂量学 5、等剂量曲线的分布及影响因素 6、人体曲面和不均匀组织的修正 7、临床处方剂量的计算方法
物理半影
80%和20%等剂量曲线间的侧向距离
4、高能电子线的临床剂量学 5、等剂量曲线的分布及影响因素 6、人体曲面和不均匀组织的修正 7、临床处方剂量的计算方法
几何半影、穿射半影、散射半影
主要由散射半影造成,部分为穿射半影
1、放射线的临床剂量学原则 2、高能X射线的百分深度剂量及影响因

3、60钴γ射线的百分深度剂量及影响因 素
百分深度剂量
定义:照射野中心轴上,体模内深度d处的 吸收剂量率Dd与参考深度do处的吸收剂量率 Ddo之比。
建成效应:从机体表面到最大剂量深度区 域称为剂量建成区域。
影响因素:射线质、射野面积、源皮距。
1、放射线的临床剂量学原则 2、高能X射线的百分深度剂量及影响因

3、60钴γ射线的百分深度剂量及影响因 素
(二)电离作用
X射线损伤和治疗的物理基础
(三)荧光作用
X射线透视的物理基础
常用的放射线:
1、高能X射线 2、Co60γ射线 3、高能电子线 4、质子射线 5、中子射线 6、其他重离子射线
(一)穿透力强
(二)保护皮肤
剂量建成效应:百分深度剂量 在体模内存在吸收剂量最大值, 这种现象称之为剂量建成效应 。
4、高能电子线的临床剂量学 5、等剂量曲线的分布及影响因素 6、人体曲面和不均匀组织的修正 7、临床处方剂量的计算方法
高能电子线的临床剂量学
剂量建成区 高剂量坪区 剂量跌落区 X射线污染区
影响电子线百分深度剂量的因素
能量↓
散射↑
射野面积↓ 散射↑
源皮距↑ 表面剂量↓
最大剂量点深移

3、60钴γ射线的百分深度剂量及影响因 素
4、高能电子线的临床剂量学 5、等剂量曲线的分布及影响因素 6、人体曲面和不均匀组织的修正 7、临床处方剂量的计算方法
临床剂量学四原则 1、肿瘤剂量准确 2、剂量分布均匀 3、提高治疗剂量 4、降低周围剂量
耐受剂量 产生临床可接受的综 合征的剂量
常用的放射线:
1、高能X射线 2、Co60γ射线 3、高能电子线 4、质子射线 5、中子射线 6、其他重离子射线
高能X射线的物理特性
一、高能X射线的物理特性 (一)穿透作用 (二)电离作用 (三)荧光作用 (四)热作用 (五)干涉、衍射、反射、折射作用
(一)穿透作用
X射线透视和摄影的物理基础
质子治疗计划设计与执行中应 注意的环节。P21
重离子射线的物理特性
高 高 LET值(线性能量传输)造成 RBE 低 值(相对生物学效应)和 OER (氧增
强比)
一、常用放射线的物理特性 二、放射线射野剂量学
常用射线的物理剂量特性
1、放射线的临床剂量学原则 2、高能X射线的百分深度剂量及影响因
相关文档
最新文档