第11章数的开方测试题

合集下载

第11章 数的开方 华东师大版八年级数学上册素养综合检测试卷(含答案)

第11章 数的开方 华东师大版八年级数学上册素养综合检测试卷(含答案)

2022-2023学年度华东师大版八年级数学上册素养综合检测第11章 数的开方(满分100分,限时60分钟)一、选择题(每小题3分,共30分)1.(2022河南邓州期中)有理数8的立方根是( )A.2B.-2C.4D.±22.(2022广东深圳民治中学期中)下列说法正确的是( )A.64的立方根是±4B.0.04的平方根是0.2C.a2一定有平方根D.-2表示2的算术平方根3.(2022河北邯郸永年期中)-27的立方根与81的平方根之和是( )A.6或-6B.0或-6C.6或-12D.0或64.(2022湖南衡阳田家炳实验中学期中)如果一个数的平方根与它的立方根相同,那么这个数是( )A.±1B.0C.1D.0或15.(2022广东河源和平期中)下列说法正确的是( )A.有理数只是有限小数B.无理数是无限不循环小数C.无限小数是无理数D.π3是分数6.(2021福建中考)在实数2,12,0,-1中,最小的数是( )A.-1B.0C.12D.27.(2022河南南阳西峡期中)计算的结果是( )A.514B.-514C.15D.9148.已知|a+b-1|+2a +b -2=0,则(a-b)2 021的值为( )A.2 021B.-1C.1D.-2 0219.(2022四川内江隆昌一中期中)已知x 为实数,3x -3-32x +1=0,则x 2+x-3的平方根为( )A.3B.-3C.3和-3D.2和210.(2022广东揭阳揭东月考)已知|a|=5,b 2=7,且|a+b|=a+b,则a-b 的值为( )A.2或12B.2或-12C.-2或12D.-2或-12二、填空题(每小题3分,共24分)11.16的算术平方根是 .12.在实数8116、-33、39、2.101 001 000 1…(每相邻两个1之间0的个数依次加1)、-337、|-12|中,无理数共有 个. 13.2-6的相反数是 ,绝对值是 .14.(2022福建泉州科技中学月考)写出一个比3大且比4小的无理数: .15.若a,b 互为相反数,c,d 互为倒数,则a 2-b 2+3cd = .16.(2021四川成都锦江月考)比较大小:3-52 12(填“>”“<”或“=”).17.(2022独家原创)如图,点B 表示的数是10,点B 到表示数1的点的距离与点A 到原点的距离相等,则点A 表示的数是 .18.用“※”表示一种新运算:对于任意正实数a,b,都有a ※b=b +a,例如:4※9=9+4=3+4=7,那么5※289= .三、解答题(共46分)19.(2021江苏无锡宜兴期中)(6分)把下列各数填在相应的大括号里.1.4,2 020,-2,0.··31,1.303 003 000 3…(每相邻两个3之间0的个数依次加1),0,3-8,-π,-32.(1)整数:{ …};(2)分数:{ …};(3)无理数:{ …}.20.(8分)计算:(1)(2022吉林长春绿园期末)(-4)2-1-3-0.125-|-6|;4(2)(2022吉林长春新区期末) (-2)2+|2-1|-9+38.21.(6分)解下列方程:(1)(2x-1)2=16;(2)(x-1)3+27=0.22.(8分)先阅读材料,再回答问题:13=12=1,13+23=32=3,13+23+33=62=6,13+23+33+43=102=10,……(1)请根据以上规律写出第六个等式;(2)若一个等式的结果是55,请写出这个等式;(3)根据以上规律,写出第n个等式.(用含n的式子表示,n为整数,且n≥1)23.(2022江西吉安期中)(8分)已知x+3的立方根为2,3x+y-1的平方根为±4,求3x+5y的算术平方根.24.(10分)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示-2,设点B所表示的数为m.(1)实数m的值是 ;(2)求|m+1|+|m-1|的值;(3)在数轴上还有C,D两点分别表示实数c和d,且有|2c+d|与d2-16互为相反数,求2c-3d的平方根.答案全解全析1.A ∵23=8,∴8的立方根是2.故选A.2.C 64的立方根是4,A错误;0.04的平方根是±0.2,B错误;a2是一个非负数,一定有平方根,C正确;2的算术平方根是2,D错误.故选C.3.B -27的立方根是-3,81=9,故81的平方根是±3,-3+3=0或-3-3=-6,故选B.4.B 1的平方根是±1,1的立方根是1,0的平方根、立方根均为0,-1没有平方根,-1的立方根是-1,∴平方根与立方根相同的数是0,故选B.5.B A.无限循环小数也是有理数,故本选项中说法错误;B.无理数是无限不循环小数,故本选项中说法正确;C.无限不循环小数是无理数,无限循环小数是有理数,故本选项中说法错误;D.π3是无理数,故本选项中说法错误.故选B.6.A ∵-1<0<12<2,∴最小的数是-1,故选A.7.A 原式=|1-4849-12|=|149-12|=|17-12|=514.故选A.8.C ∵|a+b-1|+2a+b-2=0,∴a+b-1=0, 2a+b-2=0.解得a=1, b=0.∴(a-b)2 021=1.故选C.9.C ∵x为实数,3x-3-32x+1=0,∴x-3=2x+1,解得x=-4,∴x2+x-3=16-4-3=9,∵±9=±3,∴x2+x-3的平方根为±3,故选C.10.D 根据|a|=5,b 2=7,得a=±5,b=±7,因为|a+b|=a+b,所以a+b≥0,所以a=±5,b=7,所以a-b 的值为5-7=-2或-5-7=-12.故选D.11.216=4,4的算术平方根是2,16的算术平方根是2.12.3解析 8116=94,|-12|=12,-337是有理数,∴无理数是-33,39,2.101 001 000 1…(每相邻两个1之间0的个数依次加1),∴无理数有3个.13.6-2;6-22-6的相反数是-(2-6)=6-2,因为2-6<0,所以|2-6|=6-2.14.14(答案不唯一)解析 ∵32=9,42=16,∴大于3且小于4的无理数的平方可以是14,14.15.1解析 ∵a,b 互为相反数,∴a 2=b 2,∴a 2-b 2=0.∵c,d 互为倒数,∴cd=1,∴a 2-b 2+3cd =0+1=1.16.<解析 ∵2<5<3,∴-3<-5<-2,∴0<3-5<1,∴0<3-52<12,故填<.17.1-10解析 点B 到表示数1的点的距离是10-1,故点A 到原点的距离是10-1,且点A 在原点的左侧,故点A 表示的数是-(10-1)=1-10.18.22解析 5※289=289+5=17+5=22.19.解析 (1)整数:{2 020,0,3-8,…};(2)分数:1.4,0.··31,-32,…;(3)无理数:{-2,1.303 003 000 3…(每相邻两个3之间0的个数依次加1),-π,…}.20.解析 (1)原式=4-12+0.5-6=-2.(2)(-2)2+|2-1|-9+38=4+(2-1)-3+2=4+2-1-3+2=2+2.21.解析 (1)由原方程得2x-1=±4,∴x=52或x=-32.(2)由原方程得(x-1)3=-27,∴x-1=3-27,∴x-1=-3,∴x=-2.22.解析 (1)13+23+33+43+53+63=212=21.(2)13+23+33+43+53+63+73+83+93+103=552=55.(3)13+23+33+43+53+63+…+n 3==n (n +1)2.23.解析 ∵x+3的立方根为2,∴x+3=23,解得x=5.∵3x+y-1的平方根为±4,∴3x+y-1=(±4)2,∴15+y-1=16,解得y=2.3x+5y=3×5+5×2=25=5,即3x+5y的算术平方根是5.24.解析 (1)2-2.(2)∵m=2-2,∴m+1>0,m-1<0,∴|m+1|+|m-1|=m+1+1-m=2.(3)∵|2c+d|与d2-16互为相反数,∴|2c+d|+d2-16=0,∴2c+d=0,d2-16=0,解得c=-2,d=4或c=2,d=-4.①当c=-2,d=4时,2c-3d=-16,2c-3d没有平方根.②当c=2,d=-4时,2c-3d=16,∴2c-3d的平方根是±4.。

华师大版八年级数学上册单元测试《第11章 数的开方》(解析版)

华师大版八年级数学上册单元测试《第11章 数的开方》(解析版)

《第11章数的开方》一、选择题1.25的平方根是()A.±5 B.5 C.﹣5 D.±252.8的立方根是()A.±2 B.2 C.﹣2 D.3.二次根式有意义的条件是()A.x≤3 B.x<3 C.x≥3 D.x>34.下列实数中,是无理数的是()A.B.C.D.5.下列等式中,正确的是()A.B. C.D.6.一个数的平方根是2m﹣1和m+1,则这个数是()A.2 B.﹣2 C.4 D.17.下列说法中正确的是()A.无理数是无限不循环小数B.无理数是开不尽方的数C.无理数是含量有根号的数D.无理数是含有π的数8.的算术平方根是()A.4 B.±4 C.2 D.±29.3a+5b+2的平方根是±3,2a﹣3b﹣3的立方根是2,则b a的值是()A.1 B.﹣1 C.4 D.﹣4二、填空题10.计算: = , = , = .11.比较大小:,﹣2,.12.已知,则x﹣y= .13. 1﹣的相反数为;绝对值为.14.若,则x﹣y= .15.若,则m的取值范围是.三、解答题(55分)16.解下列方程或不等式(1)(2)(3)(4)(5)(6)(x﹣2)2﹣81=0.17.已知:x2=9,y3=﹣8,求x﹣y的值.18.在等式y=kx+b中,当x=1时y=﹣2;当x=﹣1时y=﹣4.求k,b的值.19.如图,已知l1∥l2,∠A=40°,∠1=60°,求∠2的度数.20.为了抓住保国寺建寺1000年的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?《第11章数的开方》参考答案与试题解析一、选择题1.25的平方根是()A.±5 B.5 C.﹣5 D.±25【考点】平方根.【分析】如果一个数x的平方等于a,那么x是a是平方根,根据此定义即可解题.【解答】解:∵(±5)2=25∴25的平方根±5.故选:A.【点评】本题主要考查了平方根定义,关键是注意一个非负数有两个平方根.2.8的立方根是()A.±2 B.2 C.﹣2 D.【考点】立方根.【分析】依据立方根的定义求解即可.【解答】解:∵23=8,∴8的立方根是2.故选:B.【点评】本题主要考查的是立方根的定义,掌握立方根的定义是解题的关键.3.二次根式有意义的条件是()A.x≤3 B.x<3 C.x≥3 D.x>3【考点】二次根式有意义的条件.【专题】计算题.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:根据二次根式有意义,得:x﹣3≥0,解得:x≥3.故选C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.下列实数中,是无理数的是()A.B.C.D.【考点】无理数;立方根.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:、,是有理数,是无理数,故选:D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…下列等式中,正确的是()A.B. C.D.【考点】立方根;平方根;算术平方根.【分析】根据立方根,即可解答.【解答】解:A、=2,故本选项错误;B、=±3,故本选项错误;C、,正确;D、=4,故本选项错误;故选:C.【点评】本题考查了立方根,解决本题的关键是熟记立方根.6.一个数的平方根是2m﹣1和m+1,则这个数是()A.2 B.﹣2 C.4 D.1【考点】平方根.【专题】计算题;实数.【分析】根据一个正数的平方根有两个,且互为相反数,求出m的值,即可确定出这个数.【解答】解:根据题意得:2m﹣1+m+1=0,解得:m=0,则这个数是1.故选:D.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.7.下列说法中正确的是()A.无理数是无限不循环小数B.无理数是开不尽方的数C.无理数是含量有根号的数D.无理数是含有π的数【考点】实数.【分析】根据无理数的定义,开方开不尽的数,与π有关的数,没有循环规律的无限小数都是无理数.【解答】解:A、无理数是无限不循环小数,正确;B、无理数是开不尽方的数,不正确,应该为开不尽方的数是无理数C、无理数不一定是含量有根号的数,如π,故本选项错误;D、无理数不一定是含有π的数,如,故本选项错误;故选A.【点评】此题考查了无理数的定义,掌握无理数的定义是本题的关键,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.8.的算术平方根是()A.4 B.±4 C.2 D.±2【考点】算术平方根.【分析】先计算的值,再根据算术平方根的定义求解.【解答】解: =4,4的算术平方根2,故选:C.【点评】本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.9.3a+5b+2的平方根是±3,2a﹣3b﹣3的立方根是2,则b a的值是()A.1 B.﹣1 C.4 D.﹣4【考点】立方根;平方根.【专题】计算题.【分析】首先根据3a+5b+2的平方根是±3,可得3a+5b+2=9,然后根据2a﹣3b﹣3的立方根是2,可得2a﹣3b﹣3=8,据此求出a、b的值各是多少,即可求出b a的值是多少.【解答】解:∵3a+5b+2的平方根是±3,∴3a+5b+2=(±3)2=9…(1);∵2a﹣3b﹣3的立方根是2,∴2a﹣3b﹣3=23=8…(2);解得a=4,b=﹣1,∴b a=(﹣1)4=1.故选:A.【点评】此题主要考查了平方根、立方根的含义和求法,要熟练掌握,解答此题的关键是分别求出a、b的值各是多少.二、填空题10.计算: = ±1.5 , = , = ﹣0.7 .【考点】立方根;平方根;算术平方根.【专题】计算题.【分析】根据平方根、算术平方根、立方根的含义和求法求解即可.【解答】解: =±1.5, =, =﹣0.7.故答案为:±1.5,,﹣0.7.【点评】此题主要考查了平方根、立方根的概念的运用,要熟练掌握.11.比较大小:<,>﹣2,<.【考点】实数大小比较.【分析】根据实数的大小比较解答即可.【解答】解:∵5<7,∴;∵<2,∴>﹣2;∵,∴6﹣<6﹣.故答案为:<,>,<.【点评】本题主要考查实数大小的比较,掌握被开方数越大,其算术平方根越大是解决此题的关键.12.已知,则x﹣y= 4 .【考点】解二元一次方程组;非负数的性质:算术平方根.【专题】计算题;一次方程(组)及应用.【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出x﹣y的值.【解答】解:∵ +=0,∴,解得:,则x﹣y=5﹣1=4,故答案为:4【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.1﹣的相反数为﹣1 ;绝对值为﹣1 .【考点】实数的性质.【专题】计算题.【分析】求1﹣的相反数,根据a的相反数就是﹣a,即可求解;求1﹣的绝对值时,首先判断1﹣的正负情况,根据绝对值的性质:正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0,去掉绝对值符号即可.【解答】解:1﹣的相反数是﹣(1﹣)=﹣1;∵1<∴1﹣<0∴1﹣绝对值为﹣1.故答案是:和.【点评】此题主要考查了相反数的确定绝对值的性质,去掉绝对值符号时,要先确定绝对值符号中代数式的正负再去绝对值符号.14.若,则x﹣y= ﹣2 .【考点】二次根式有意义的条件.【分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答】解:∵,∴x=3,则y=5,故x﹣y=3﹣5=﹣2.故答案为:﹣2.【点评】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.15.若,则m的取值范围是m≤4 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质,可得答案.【解答】解:,得4﹣m≥0,解得m≤4,故答案为:m≤4.【点评】本题考查了二次根式的性质,熟记二次根式得性质是解题关键.三、解答题(55分)16.(30分)解下列方程或不等式(1)(2)(3)(4)(5)(6)(x﹣2)2﹣81=0.【考点】解一元一次不等式组;平方根;解一元一次方程;解二元一次方程组;解三元一次方程组;解一元一次不等式.【分析】(1)先去分母,再去括号、移项、合并同类项,把x的系数化为1即可.(2)先去分母,再去括号、移项、合并同类项,把x的系数化为1即可;(3)把第一个方程乘以3,第二个方程乘以2,利用减法消元先消去x,求出y的值,再把y的值代入第一个方程求出x的值,即可得解.(4)先求出各不等式的解集,再求出两个不等式的公共部分即可.(5)先消掉y,再组成关于x、z的方程组,求出x、z,代入即可求出y的值;(6)移项,直接开平方即可求解.【解答】解:(1)去分母得,12﹣3(3x+2)=4(4﹣x),去括号得,12﹣9x﹣6=16﹣4x,移项得,﹣9x+4x=16+6﹣12,合并同类项得,﹣5x=10,把x的系数化为1得,x=﹣2;(2)去分母得,5(5﹣x)﹣15≥3(4﹣x),去括号得,25﹣5x﹣15≥12﹣3x,移项得,﹣5x+3x≥12+15﹣25,合并同类项得,﹣2x≥2,把x的系数化为1得,x≤﹣1;(3),3得,6x+9y=366x+8y=34④,③×3﹣④×2得,﹣5y=4解得y=﹣,把y=﹣代入①得,2x+=8,解得x=,所以,方程组的解是;(4)∵解不等式①得:x <﹣,解不等式②得:x ≥3,∴不等式组无解.(5),由①+②×2,得5x+z=11④由③+②,得3x ﹣2z=4⑤由④×2+⑤,解得x=2.把x=2代入④,得z=1.把x=2,z=1代入③得到:y=﹣1所以原方程组的解为:;(6)移项得,(x ﹣2)2=81,开平方得,x ﹣2=±9,所以x 1=11,x 2=﹣7.【点评】本题考查了解一元一次方程、解一元一次不等式(组)、解三元一次方程组以及解一元二次方程,熟练掌握解一元一次方程、解一元一次不等式(组)、解三元一次方程组以及解一元二次方程的方法是本题的关键.17.已知:x2=9,y3=﹣8,求x﹣y的值.【考点】立方根;平方根.【分析】根据根式的性质即可求出答案.【解答】解:由题意可知:x=±3,y=﹣2,∴x﹣y=5或﹣1;【点评】本题考查平方根与立方根,涉及代入求值.18.在等式y=kx+b中,当x=1时y=﹣2;当x=﹣1时y=﹣4.求k,b的值.【考点】解二元一次方程组.【专题】计算题.【分析】本题的实质是将两组未知数的数值代入等式,转化为关于未知系数的二元一次方程组来解答.【解答】解:把x=1时y=﹣2和x=﹣1时y=﹣4,分别代入y=kx+b得:,解之得:k=1,b=﹣3.【点评】现设出某些未知的系数,然后根据已知条件求出这些系数,此法叫待定系数法,以后求函数解析式时经常用到.19.如图,已知l1∥l2,∠A=40°,∠1=60°,求∠2的度数.【考点】平行线的性质.【分析】先根据平行线的性质去除∠AC的度数,再由三角形外角的性质即可得出结论.【解答】解:∵l1∥l2,∠1=60°,∴∠ABC=∠1=60°.∵∠A=40°,∴∠2=∠A+∠ABC=40°+60°=100°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.20.为了抓住保国寺建寺1000年的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)关系式为:A种纪念品8件需要钱数+B种纪念品3件钱数=950;A种纪念品5件需要钱数+B种纪念品6件需要钱数=800;(2)关系式为:用于购买这100件纪念品的资金不少于7500元,但不超过7650元,得出不等式组求出即可.【解答】解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组得:,解方程组得:,∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元;(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,∴,解得:50≤x≤53,∵x 为正整数,x=50,51,52,53∴共有4种进货方案,分别为:方案1:商店购进A种纪念品50个,则购进B种纪念品有50个;方案2:商店购进A种纪念品51个,则购进B种纪念品有49个;方案3:商店购进A种纪念品52个,则购进B种纪念品有48个;方案4:商店购进A种纪念品53个,则购进B种纪念品有47个.【点评】此题主要考查了二元一次方程组的应用以及一元一次方程的应用,找到相应的关系式是解决问题的关键,注意第二问应求得整数解.。

华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案

华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案

华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分) 1.化简 |1−√2|+1的结果是 ( )A.2−√2B.2+√2C.√2D.22.计算:-64 的立方根与16的平方根的和是 ( )A.0B. -8C.0或-8D.8或-83.下列实数中,最小的是 ( )A.3 B √2 C √3 D.04.已知 m =√4+√3,则以下对m 的估算正确的是 ( )A.2<m<3B.3<m<4C.4<m<5D.5<m<65.下列说法正确的是 ( ) A.18的立方根是 ±12 B. -49 的平方根是±7C.11的算术平方根是 √11D.(−1)²的立方根是-16.下列各组数中互为相反数的是 ( )A. -2 与 √(−2)2B. -2 与 √−83C. -2 与 −12 D.2 与|-2|7.一个正数的两个平方根分别是2a-1与-a+2,则a 的值为 ( )A.1B. -1C.2D. -28.下列各数:3.14 π3 √16 2.131 331 333 1…(相邻两个1之3的个数逐次多1) 2321,√−93.其中无理数的个数为 ( )A.2个B.3个C.4个D.5个9.实数a、b、c在数轴上的对应点的位置如图所示,则正确的结论是 ( )A.|a|>4B. c-b>0C. ac>0D. a+c>010.已知min(√x,x2,x)表示取三个数中最小的那个数,例如:当x=9时min(√x,x2,x)=min(√9,92,9)=3,则当min(√x,x2,x)=116时,x的值为 ( )A.116B.18C.14D.12二、填空题(每小题3分,共15分)11.计算:(−1)2+√9= .12.已知a、b满足(a−1)2+√b+2=0,则a+b= .13.已知a2=16,√b3=2且 ab<0,则√a+b= .14.我们知道√a≥0,所√aₐ有最小值.当x= 时2+√3x−2有最小值.15.请你观察思考下列计算过程:∴112=121 ∴√121=11;∵1112=12321,∴√12321=111⋯⋯由此猜想:√12345678987654321= .三、解答题(本大题共9个小题,满分75分)16.(6分)计算:(1)|−2|+√−83−√16;(2)6×√19−√273+(√2)2.17.已知(x−7)²=121,(y+1)³=−0.064求代数式√x−2−√x+10y+√245y3的值.18.(6分)求下列各式中的x的值:(1)(x+1)²−1=0;(2)23(x+1)3+94=0.19.(8分)阅读材料:如果xⁿ=a,那么x叫做a的n次方根.例如:因为2⁴=16,(−2)⁴=16,所以2和-2都是16的4次方根,即16的4次方根是2和-2,记作±√164=±2.根据上述材料回答问题:(1)求81 的4次方根和32 的5 次方根;(2)求10°的n次方根.20.(9分)求下列代数式的值.(1)如果a²=4,b的算术平方根为3,求a+b的值;(2)已知x是25的平方根,y是16的算术平方根,且.x<y,求x-y的值.x−y21.(9分)如图是一个无理数筛选器的工作流程图.(1)当x为16时,y= ;(2)是否存在输入有意义的x值后,却始终输不出y值? 如果存在,写出所有满足要求的x值,如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况;(4)当输出的y值√3₃时,判断输入的x值是否唯一,如果不唯一,请出其中的两个.22.(10分)阅读下面的文字,解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此、√2的小数部分我们不可能全部地写出来,于是小明用√2−1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:√4<√7<√9,即2<√7<3∴√7的整数部分为2,小数部分为√7−2.请解答:(1)√57的整数部分是,小数部分是;(2)如果√11的小数部分为a,√7的整数部分为b,求|a−b|+√11的值;(3)已知:9+√5=x+y,其中x是整数,且0<y<1,求x-y的相反数.x−y23.(10分)小丽想用一块面积为400cm²的正方形纸片,沿着边的方向裁出一块面积为300cm²的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗? 若能,请帮小丽设计一种裁剪方案;若不能,请简要说明理由.24.(11分)如图1,长方形OABC 的边OA 在数轴上,点O 为原点,长方形OABC 的面积为12,OC 边的长为3.(1)数轴上点 A 表示的数为 ;(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为( O ′A ′B ′C ′,移动后的长方形(O ′A ′B ′C ′与原长方形OABC 重叠部分(如图2 中阴影部分)的面积记为S.①当S 恰好等于原长方形OABC 面积的一半时,求数轴上点. A ′表示的数;②设点A 的移动距离 AA ′=x.i 当S=4时,求x 的值;ii 点 D 为线段 AA'的中点,点 E 在线段0O ′上,且 OE =12OO ′,当点D 、E 表示的数互为相反数时,求x 的值. 参考答案1. C2. C3. D4. B5. C6. A7. B8. B9. B 10. C11.4 12. -1 13.214 2315.111 1111116.解: (1)|−2|+√−83−√16=2−2−4=−4.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.17.解: :(x −7)²=121,∴x −7=±11, 则x=18 或x= -4 又∵x -2≥0 ∴x≥2 ∴x=18.∵(y+1)³= -0.064 ∴y+1= -0.4 ∴y= -1.4 ∴√x −2 - √x +10y + 245y =√18−2−√18+10×(−1.4)−√245×(−1.4)3=√16−√4+√−3433 =4-2-7 = -5.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.18.解: (1)∵(x +1)²−1=0,∴(x +1)²=1,∴x +1=±1,解得x=0或x=-2.(2)∵23(x +1)3+94=0,∴8(x +1)3+27=0,∴(x +1)3=−278,∴x +1=−32,解得 x =−52.19.解:(1)因为 3⁴=81,(−3)⁴=81,所以3 和-3 都是81的4次方根,即81的4次方根是±3;因为 2⁵=32,所以32的5次方根是2.(2)当n 为奇数时 10" 的n 次方根为10;当n 为偶数时 10" 的n 次方根为±10.20.解:(1)∵a²=4 ∴a=±2 ∵b 的算术平方根为3 ∴b=9 ∴a+b=-2+9=7或a+b=2+9=11.(2)∵x 是25的平方根 ∴x=±5.∵y 是16的算术平方根 ∴y=4.∵x<y ∴x= -521.解:(1 √2(2)存在.当x=0,1时,始终输不出y 值.理由:0,1的算术平方根是0,1,一定是有理数.(3)当x<0时,筛选器无法运行.(4)x 值不唯一 x=3或x=9.(答案不唯一)22.解: (1)7√57−7(2 )∵3<√11<4,∴a =√11−3,∴2<√7<3,∴b =2,∴|a −b|+√11=|√11 - 3−2|+√11=5−√11+√11=5.(3)∵2<√5<3,∴11<9+√5<12,∵9+√5=x +y,其中x 是整数 且0<y<1 ∴x =11,y =9+√5−11=√5−2,∴x −y =11−(√5−2)=13−√5∴x -y 的相反数为 √5−13.23.解:(1)设面积为400 cm² 的正方形纸片的边长为a cm∴a²=400.又∵a>0 ∴a=20.又∵要裁出的长方形面积为300 cm²∴若以原正方形纸片的边长为长方形的长,则长方形的宽为300÷20=15( cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形.(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm 则宽为2x cm∴6x²=300,∴x²=50.又∵ x >0,∴x =√50∴长方形纸片的长为 3√50.又∵ √50>√49=7,∴3√50>21>20∴ 小丽不能用这块纸片裁出符合要求的纸片.24.解:(1)4(2)①∵S 等于原长方形OABC 面积的一半 ∴S=6 ∴12-3×AA'=6 解得. AA ′=2.当向左运动时,如图1,( OA ′=OA −AA ′=4−2=2,∴点A'表示的数为2;当向右运动时,如图2,∵ ∴OA ′=OA +AA ′=4+2=6,.∴ 点A'表示的数为6.所以点 A'表示的数.为2 或6.②i 左移时,由题意得O C ⋅OA ′=4,∵OC =3,∴OA ′=43,∴:x =OA −OA ′=4−43= 83;同法可得,右移时, x =83,故当S=4时x =83.ii 如图1,当原长方形OABC 向左移动时,点 D 表示的数为 4−12x,点 E 表示的数为 −12x,由题意可得方程 4−12x +(−12x)=0,解得x=4; 如图2,当原长方形OABC 向右移动时,点D 、E 表示的数都是正数,不符合题意.综上所述,x 的值为4.。

华东师大版八年级上册第11章《数的开方》单元测试卷(原卷版)

华东师大版八年级上册第11章《数的开方》单元测试卷(原卷版)

华东师大版八年级上册第11章《数的开方》单元测试卷本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。

题号 一 二 三全卷总分总分人 17 18 19 20 21 22 得分注意事项:1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。

一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。

)1 2 3 4 5 6 7 8 9 10 11 121、16的平方根是( ) A 、4B 、4±C 、16D 、16±2、下列各数中,无理数是( )A 、3−B 、18C 、3.14D 、25 3、下列叙述错误的是( )A 、4−是16的算术平方根B 、5是25的算术平方根C 、3是9的算术平方根D 、0.04的算术平方根是0.24、一个正数的平方根分别为:62+a 与3−a ,则这个正数是( )A 、1B 、4C 、9D 、165、若a 、b 为实数,且满足012=−+−b a ,则ba的值为( ) A 、2− B 、21 C 、2 D 、21−6、下列说法中错误的是( )A 、3.0−是0.09的一个平方根B 、16的平方根是4±C 、0的立方根是0D 、1−的立方根是1−7、下列选项正确的是( ) A 、39±= B 、()22− C 、51253−=− D 、416=±8、估算340−的值在( ) A 、2到3之间B 、3到4之间C 、4到5之间D 、5到6之间9、下列说法:①无限小数是无理数;②负数的立方根仍是负数;③9的平方根是3±;④1的平方根与立方根都是1;⑤互为相反数的两个数的立方根仍为相反数。

其中正确的有( )学校: 考号: 姓名: 班级:密 封 线 内 不 要 答 题密封线A 、4 个B 、3 个C 、2 个D 、1 个10、若252=a ,9=b b ,则=+b a ( ) A 、8B 、8±C 、8或2−D 、2或8−11、若n m n m A −++=3是3++n m 的算术平方根,322+−+=n m n m B 是n m 2+的立方根,则AB −的立方根是( )A 、1B 、1−C 、0D 、无法确定12、对于有理数a 、b ,定义{}b a ,min 的含义为:当b a <时,{}a b a =,min ,例如:{}221min −=−,.已知{}a a =,31min ,{}3131min =b ,,且a 和b 为两个连续正整数,则()231−ab 的立方根为( )A 、1−B 、1C 、2−D 、2二、填空题(本大题共4个小题,每小题4分,共16分)13、2−x 的平方根是3±,72−+y x 的立方根是2,则22y x +的平方根是______; 14、若33113+−+−=x x y ,则xy的算术平方根是_________; 15、25的算术平方根是________;36的平方根是________;16、已知:75−的整数部分是a ,75+的小数部分是b ,则=+b a _________. 三、解答题(本大题6个小题,共56分。

2022-2023学年华东师大版八年级数学上册《第11章数的开方》同步练习题(附答案)

2022-2023学年华东师大版八年级数学上册《第11章数的开方》同步练习题(附答案)

2022-2023学年华东师大版八年级数学上册《第11章数的开方》同步练习题(附答案)一、选择题(12×3分=36分)1.的平方根是()A.9B.±9C.3D.±32.在下列实数,0.31,,,,1.21212221…(相邻两个1之间依次多一个2)中,无理数的个数为()A.1B.2C.3D.43.若a=,b=,c=2,则a,b,c的大小关系为()A.b<c<a B.b<a<c C.a<c<b D.a<b<c4.下列结论正确的是()A.64的平方根是±4B.﹣没有立方根C.算术平方根等于本身的数是0D.5.下列计算正确的是()A.=±5B.﹣|﹣3|=3C.=3D.﹣32=﹣9 6.若8x m y与6x3y n的和是单项式,则(m+n)3的平方根为()A.4B.8C.±4D.±87.下列判断正确的是()A.若|x|=|y|,则x=y B.若()2=,则x=yC.若|x|=()2,则x=y D.若x=y,则=8.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是()A.1+B.2+C.2﹣1D.2+19.已知x是整数,当|x﹣5|取最小值时,x的值是()A.6B.7C.8D.910.如图,若数轴上两点M,N所对应的实数分别为m,n,则m+n的值可能是()A.2B.1C.﹣1D.﹣211.若+(y+2)2=0,则(x+y)2021的值为()A.﹣1B.1C.32021D.﹣3202112.将一组数,2,,,…,,按下列方式进行排列:,2,,,,,4,,…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)二、填空题(8×3分=24分)13.﹣的相反数是;﹣的绝对值是;﹣2的相反数是.14.(﹣3+8)的相反数是;的平方根是.15.若x+3是4的平方根,则x=,若﹣8的立方根为y﹣1,则y=.16.若两个连续整数x、y满足x<+1<y,则x+y的值是.17.已知≈2.284,则≈;若≈0.02284,则x≈.18.若6+的整数部分是a,小数部分是b,则代数式a(2b+4)=.19.若a、b均为整数,且a>,b>,则a+b的最小值是.20.如果y=,则2x+y的值是.三、解答题(共60分)21.求满足下列各式的x的值.(1)169x2=100;(2)8(x﹣1)3=﹣;(3)4(2x+1)2=9.22.(1)已知一个数的平方根是3a+1和a+11,求这个数的立方根;(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x²+y2的算术平方根.23.计算:(1)﹣+;(2)﹣+;(3)﹣12022+﹣+|1﹣|;(4)++|﹣2|﹣.24.已知+|x﹣1|=0.(1)求x与y的值;(2)求x+y的平方根.25.先计算,再猜想:(1)=;(2)=;(3)=;猜想:=.26.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化,铸成一个长方体钢铁,此长方体的长、宽、高分别为160cm,80cm和40cm,求原来每个立方体钢铁的棱长.27.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫作虚数单位,把形如a+bi (a,b为实数)的数叫作复数,其中a叫作这个复数的实部,b叫作这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i.根据以上信息,回答下列问题:(1)填空:i3=,i4=;(2)计算:(1+i)×(3﹣4i);(3)计算:i+i2+i3+ (i2022)参考答案一、选择题(36分)1.解:∵=9,∴的平方根是±3,故选:D.2.解:0.31是有限小数,属于有理数;是分数,属于有理数;,是整数,属于有理数;无理数有,,1.21212221…(相邻两个1之间依次多一个2),共有3个.故选:C.3.解:∵<<,∴1<<2,即1<a<2,又∵2<<3,∴2<b<3,∴a<c<b,故选:C.4.解:A、64的平方根是±8,故A错误;B、﹣有立方根,故B错误;C、算术平方根等于本身的数是0和1,故C错误;D、=﹣=﹣3,故D正确.故选:D.5.解:A、=5,故本选项错误;B、﹣|﹣3|=﹣3,故本选项错误;C、=3,故本选项错误;D、﹣32=﹣9,故本选项正确;故选:D.6.解:由8x m y与6x3y n的和是单项式,得m=3,n=1.(m+n)3=(3+1)3=64,64的平方根为±8.故选:D.7.解:A、若|x|=|y|,则x=y或x=﹣y,故A不符合题意;B、若()2=,则x=y或y=﹣x,故B不符合题意;C、若|x|=()2,则x=y或x=﹣y,故C不符合题意;D、若x=y,则=,故D符合题意.故选:D.8.解:设点C所对应的实数是x.则有x﹣=﹣(﹣1),解得x=2+1.故选:D.9.解:∵<5<,∴7<5<8,且与5最接近的整数是7,∴当|x﹣5|取最小值时,x的值是7,故选:B.10.解:∵M,N所对应的实数分别为m,n,∴﹣3<m<﹣2,0<n<1,∴﹣3<m+n<﹣1,∴m+n的值可能是﹣2.故选:D.11.解:∵+(y+2)2=0,≥0,(y+2)2≥0,∴x﹣1=0,y+2=0,解得:x=1,y=﹣2,则(x+y)2021=(﹣1)2021=﹣1,故选:A.12.解:这组数据可表示为:…...∴被开方数均为连续的偶数,且每5个数为一组,19×2=38,∵19÷5=3……4,∴为第4行,第4数字.∴这个数的位置记为(4,4).故选:B.二、填空题(24分)13.解:﹣的相反数是;﹣的绝对值是;﹣2的相反数是:2﹣.故答案为:,,2﹣.14.解:﹣3+8=5,5的相反数是﹣5;=4,4的平方根是±2.故答案为:﹣5;±2.15.解:根据题意得:(x+3)2=4解得x=﹣1或﹣5;根据题意得(y﹣1)3=﹣8解得y=﹣1.故答案为:﹣1或﹣5,﹣1.16.解:∵,∴,∵x<+1<y,∴x=3,y=4,∴x+y=3+4=7.故答案为:7.17.解:∵≈2.284,∴≈0.2284;若≈0.02284,则x≈0.0005217.故答案为:0.2284;0.0005217.18.解:∵4<5<9,∴2<<3,∴,∴a=8,b=,∴a(2b+4)=8×(﹣4+4)=8×=.故答案为:.19.解:∵a>,b>,∴a>3,b>2,又∵a,b均为正整数,故a最小为4,b最小为3,∴a+b的最小值为7,故答案为:720.解:由题意得,x2﹣4≥0,4﹣x2≥0,∴x2=4,解得x=±2,y=1,∴2x+y=2×2+1=4+1=5,或2x+y=2×(﹣2)+1=﹣4+1=﹣3,综上所述,2x+y的值是5或﹣3.故答案为:5或﹣3.三、解答题(共60分)21.解:(1)169x2=100,x2=,x=±.(2)8(x﹣1)3=﹣,(x﹣1)3=,x﹣1=﹣,x=.(3)4(2x+1)2=9,(2x+1)2=,2x+1=±,2x+1=或2x+1=﹣,x=或x=﹣.22.解:(1)∵一个数的平方根是3a+1和a+11,∴3a+1+a+11=0,解得:a=﹣3,则3a+1=﹣8,故这个数为:(﹣8)2=64,则这个数的立方根为:4;(2)由x﹣2的平方根是±2,2x+y+7的立方根是3,得x﹣2=4,2x+y+7=27,解得x=6,y=8.∴x2+y2=100,∴x2+y2的算术平方根是10.23.解:(1)原式=0.5﹣2+2=0.5.(2)原式===.(3)原式==.(4)原式===.24.解:(1)∵+|x﹣1|=0,∴x﹣1=0,x+2y﹣7=0,解得:x=1,y=3.(2)x+y=1+3=4.∵4的平方根为±2,∴x+y的平方根为±2.25.解:∵=3;=33;=333;…,∴可得到规律:当被开方数中有2n个1减去n个2时,算术平方根为n个3,即=.故答案为:3,33,333,.26.解:根据题意得:==(cm),则原来正方体钢铁的棱长为cm.27.解:(1)i3=i2•i=(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,故答案为:﹣i,1;(2)(1+i)×(3﹣4i)=3﹣4i+3i﹣4i2=3﹣i﹣4×(﹣1)=3﹣i+4=7﹣i;(3)i+i2+i3+…+i2022=i+(﹣1)+(﹣i)+1+...+i+(﹣1)=i﹣1.。

华师大版 八年级上册第11章 数的开方达标测试题

华师大版 八年级上册第11章 数的开方达标测试题

2 题图
A. a>0
B. a>b
C. a<b
D. a < b
3.实数 3 (−1)2 的立方根是( )
A.-1
B.0
C.1
4. (2020 黑龙江绥化市)化简 2 − 3 的结果正确的是(
D.±1 )
A. 2 -3
B. - 2 -3 C. 2 +3
D. 3- 2
5. (2020 福建省)如图,数轴上两点 M,N 所对应的实数分别为 m,n,则 m-n 的 结果可能是( )
A. a2 +1
B. a2 +1
C. a +1
二、填空题:(每题 3 分,共 30 分)
D. a +1
1/6
11. (2020 四川遂宁市)下列各数 3.1415926, 9 ,1.212212221…, 1 ,2﹣π, 7
﹣2020, 3 4 中,无理数的个数有
个.
12.(2020 浙江宁波市)实数 8 的立方根是
a−b
3−2
20.请你认真观察、分析下列计算过程:
(1)∵112=121,∴ 121=11;
(2)∵1112=12 321,∴ 12 321=111;
(3)∵1 1112=1 234 321,∴ 1 234 321=1 111;…
由此可得: 12 345 678 987 654 321=______________________.

13.写出一个比 2 大比 3 小的无理数(用含根号的式子表示)

14.在 3 5 ,π,-4,0 这四个数中,最大的数是________.
15.4+ 3的整数部分是 5,小数部分是________.

数的开方(有答案)

数的开方(有答案)

(华师大版)巩固复习-第十一章数的开方一、单选题1.下列计算中,正确的是()A. B. C. D.2.已知0<x<1,则x2、x、大小关系是()A. x2<x<B. x<x2<C. x<<x2D. <x<x23.一个数的立方等于它本身,这个数是().A. 0B. 1C. -1,1D. -1,1,04.估计的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.一个正方形的面积为21,它的边长为a,则a﹣1的边长大小为()A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间6.下列说法中正确的有()①±2都是8的立方根,②,③的立方根是3,④=2.A. 1个B. 2个C. 3个D. 4个7.与4﹣最接近的整数是()A. 0B. 1C. 2D. 38.﹣8的立方根是()A. -2B. 2C. ±2D. 49.7-2的算术平方根是A. B. 7 C. D. 410.64的算术平方根是()A. ±8B. 8C. -8D.11.的算术平方根是()A. B. C. D.二、填空题12.若实数a、b满足|a+2|+3 =0,则的平方根________.13.﹣8的立方根是________,36的平方根是________.14.已知=2.493,=7.882,则=________.15.计算:|﹣3|+=________16.比较大小(填“>”或“<”):________1.4;________ .17.9的平方根是________,9的算术平方根是________.18.在下列语句中:①实数不是有理数就是无理数;②无限小数都是无理数;③无理数都是无限小数;④根号的数都是无理数;⑤两个无理数之和一定是无理数;⑥所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数.正确的是________(填序号).19.比较实数的大小:3________ (填“>”、“<”或“=”).三、计算题20.计算:|﹣|﹣2﹣1+21.计算:.四、解答题22.已知a+b﹣5的平方根是±3,a﹣b+4的立方根是2.求3a﹣b+2的值.23.2cos45°﹣(π+1)0++()﹣1.五、综合题24.求下列x的值.(1)(x﹣1)2=4(2)3x3=﹣81.25.已知x﹣2的平方根是±2,5y+32的立方根是﹣2.(1)求x3+y3的平方根.(2)计算:|2﹣|- 的值.答案解析部分一、单选题1.【答案】A【考点】算术平方根,立方根【解析】【分析】根据算术平方根、立方根的性质依次分析各选项即可作出判断。

第11章《数的开方》测试卷

第11章《数的开方》测试卷

三、解答题(共 66 分) 19. (8 分)已知:在实数-34,-1. 4·2·,-π3,3. 1416, 23,0,42,(-1)2n(n 为正整数),-1. 4242242224…(每两 个 4 之间依次多 1 个 2)中, (1)写出所有有理数; (2)写出所有无理数; (3)把这些数按由小到大的顺序排列起来,并用符号 “<”连接.
解:∵h=4. 9t2,∴把 h=21-1. 4=19. 6(m )代入, 得玻璃杯下落所需时间为 t1=± 149.9.6=±2(-2 舍 去), 声音传到楼下所需时间为 t2=1394.06≈0. 058. ∵0. 058<2, ∴学生能立即躲开.
解:-3Δ 2=-3× 2+3+1=-3 2+4, 2Δ(-3)= 2×(-3)- 2+1=-4 2+1,
∵-3 2+4-(-4 2+1)= 2+3>0, ∴-3Δ 2> 2Δ(-3).
25. (10 分)自由下落的物体的下落距离 h(米)与下落 时间 t(秒)的关系为 h=4. 9t2. 有一学生不慎让一个玻璃 杯从 21 米高的楼上自由下落,刚好另有一高为 1. 4 米的 学生,站在与下落的玻璃杯同一直线的地面上,在玻璃 杯下落的同时,楼上的学生惊叫了一声.问:这时楼下 的学生能在听到叫声后立即躲开吗?(声音的速度为 340 米/秒)
(2)已知 y= x-8+ 8-x+17,求 x+y 的算术平方 根.
解:∵x-8≥0,8-x≥0,∴x≥8 且 x≤8, ∴x=8,y=17,∴x+y=8+17=25, ∴x+y 的算术平方根是 5.
23. (10 分)已知 P 是满足不等式- 3<x< 6的所有整 数 x 的和,Q 是满足不等式 x≤ 372-2的最大整数,求 P +Q 的平方根.

华师大版八年级上册数学第11章 数的开方含答案(名校卷)

华师大版八年级上册数学第11章 数的开方含答案(名校卷)

华师大版八年级上册数学第11章数的开方含答案一、单选题(共15题,共计45分)1、实数a,b,c,d在数轴上的对应点的位置如图所示,则正确结论是()A.ac>0B.|b|<|c|C.a>﹣dD.b+d>02、在,0,-1,1这些数中最小的数是()A.-1B.0C.1D.3、9的平方根是()A.3B.C.D.4、下列计算不正确的是()A. =±2B. = =9C. =0.4D.=﹣65、有下列说法:①任何无理数都是无限小数;②数轴上的点与有理数一一对应;③绝对值等于本身的数是0;④0除以任何数都得0;⑤一个数的平方根等于它本身的数是0,1.其中正确的个数是()A.1B.2C.3D.46、计算的结果是()A. B.0 C. D.7、计算:| ﹣4|﹣﹣()﹣2的结果是()A.2 ﹣8B.0C.﹣2D.﹣88、下列说法错误的是()A. B. C.2的平方根是± D.-81的平方根是±99、的值等于()A. B.-3 C.3 D.10、已知=-1,=1,=0,则abc的值为()A.0B.-1C.D.11、若0<m<1, 则m、m2、的大小关系是()A.m<m 2<B.m 2<m<C. <m<m 2D. <m 2<m12、若0<a<1,则a,,a2从小到排列正确的是(&nbsp; )A.a 2<a<B.a < < a 2C. <a< a 2D.a < a 2 <13、估计的值应在()A.-1和0之间B.0和1之间C.1和2之间D.2和3之间14、下列说法中:① 若a<0时,a3=-a3;② 若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;③ 若a、b互为相反数,则;④ 当a≠0时,|a|总是大于0;⑤ 如果a=b,那么,其中正确的说法个数是()A.1B.2C.3D.415、与实数最接近的整数是()A.2B.3C.4D.5二、填空题(共10题,共计30分)16、的算术平方根是________,的立方根是________,的绝对值是________,的倒数是________.17、点A在数轴上所表示的数为﹣1,若,则点B在数轴上所表示的数为________.18、﹣(2﹣)0+(﹣)﹣1=________.19、如图,将三个数、、表示在数轴上,则被图中表示的解集包含的数是________.20、的平方根=________.21、 ________.22、若,且,则________.23、已知a,b,c在数轴上的位置如图所示,则=________24、已知、为两个连续的整数,且<<,则________.25、若为正整数,且,则的最小值为 ________ .三、解答题(共5题,共计25分)26、计算.27、在数轴上表示下列各数,π,|﹣4|,0,﹣,并把这些数按从小到大的顺序进行排列.28、国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下这个正方形客厅的边长x是不是有理数?如果误差要求小于0.01米,那么边长x的最大取值是多少(精确到0.001)?29、己知:2m+2的平方根是±4;3m+n的立方根是-1,求:2m-n的算术平方根30、2a-1和3a-4是一个数的平方根, b的立方根是-2,求a-b的算术平方根.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、A5、A6、D7、C8、D9、C10、C11、B12、A13、C14、A15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

华师大八年级数学上《第11章数的开方》单元测试含答案解析.doc

华师大八年级数学上《第11章数的开方》单元测试含答案解析.doc

第11章数的开方一、选择题1.在-3, 0, 4,低这四个数中,最大的数是()A.在1到2之间B.在2到3之间C.在3到4之间D. 8. 在已知实数:・1, 0,吉,・2中,最小的一个实数是 A. - 1 B. 0 C. £ D. - 2 29. 下列四个实数中,绝对值最小的数是( )A.・5B. -忑C. 1D. 410. 在・2, 0, 3,頁这四个数中,最大的数是( )A. - 2B. 0C. 3D. ^611. 在1, -2, 4,逅这四个数中,比0小的数是( A. -2 B. 1C. A /3D. 412. 四个实数・2, 0, -V2,1中,最大的实数是( A. -2 B. 0 C. - V2D. 113. 与无理数阿最接近的整数是( )A. 4B. 5C. 6D. 7A. -3B. 0C. 4D.后2.下列实数中,最小的数是( )A. -3B. 30.1D. 03.在实数1、0、-1、-2中,最小的实数是( )A ・・2 B.・1 C. 1 D. 04.实数 1, - 1, -寺,0,四个数中,最小的数是(A. 0B. 1C. - 1 一 'I5.在实数-2, 0, 2, 3中 ,最小的实数是()A. -2B. 0C. 2D. 36. a, b 是两个连续整数, 若a<V7<b,则a, b 分别是A. 2, 3B. 3, 2C. 3, 4D. 6, 8 7.估算、‘悩・2的值( )()在4到5之间 ( )14. 如图,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3 - <5的点P应落在线15. 估计匹尸介于( )A. 0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0. 7与0. 8之间16. 若m=^-X ( -2),则有( )2A. 0<m<1B. - 1<m<0C. - 2<m< - 1D. - 3<m< - 217. 如图,表示衙的点在数轴上表示时,所在哪两个字母之间( )A B C D~6 1 ~~2~;5 3 "A. C 与DB. A 与BC. A 与CD. B 与C18. 与1+頁最接近的整数是( )A. 4B. 3C. 2D. 119. 在数轴上标注了四段范围,如图,则表示旋的点落在( )/ Y V *、、,2^3^A.段①B.段②C.段③D.段④20. 若a= ( -3) ,3 - ( - 3) 14, b= ( -0. 6) ,2 - ( - 0. 6) 14, c= ( - 1.5) 11 - ( - 1.5) 13,则下列有关a、b、c的大小关系,何者正确?( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a21. 若k<V90<k+1 (k 是整数),则k二()A. 6B. 7C. 8D. 922. 估计舟履的运算结果应在哪两个连续自然数之间()A. 5 和6B. 6 和7C. 7 和8D. 8 和923. 估计用的值在( )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间二、填空题24. 把7的平方根和立方根按从小到大的顺序排列为_.25. 若a<V6<b,且a、b是两个连续的整数,贝lj申二_.26. 若两个连续整数x、y满足x<{j+1Vy,则x+y的值是J___ £(用“〉”、“二”填空)27. 黄金比妬28. 请将2、舟、码这三个数用“〉”连结起来—.29. 它元的整数部分是—.30. 实数履・2的整数部分是_・第11章数的开方参考答案与试题解析一、选择题1.在・3, 0, 4,頁这四个数中,最大的数是()A. -3B. 0C. 4D. V6【考点】实数大小比较.【分析】根据有理数大小比较的法则进行判断即可.【解答】解:在-3, 0, 4,真这四个数中,-3<0<V6<4,最大的数是4.故选C.【点评】本题考查了有理数大小比较的法则,解题的关键是牢记法则,正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小是本题的关键.2. 下列实数中,最小的数是()A. -3B. 3C. 4-D. 0 3【考点】实数大小比较.【分析】在数轴上表示出各数,再根据数轴的特点即可得出结论.【解答】解:如图所示:故选A.【点评】本题考查的是实数的大小比较,利用数形结合求解是解答此题的关键.3. 在实数1、0、-1、-2中,最小的实数是()A. -2B. -1C. 1D. 0【考点】实数大小比较.【分析】先在数轴上表示出各数,再根据数轴的特点进行解答即可.【解答】解:如图所示:• • ------ •0 ------- >■2 0 1 2・・•由数轴上各点的位置可知,- 2在数轴的最左侧,・••四个数中-2最小.故选A.【点评】本题考查的是实数的大小比较,熟知数轴上的任意两个数,右边的数总比左边的数大是解答此题的关键.4. 实数1,・1,・寺,0,四个数中,最小的数是()A. 0B. 1C. - 1D.-吉2【考点】实数大小比较.【专题】常规题型.【分析】根据正数>o>负数,几个负数比较大小时,绝对值越大的负数越小解答即可.【解答】解:根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小,可得1 >0> - *> - 1, 所以在1, -1, -寺,0中,最小的数是-1.故选:C.【点评】此题主要考查了正、负数、0和负数间的大小比较.几个负数比较大小时,绝对值越大的负数越小,5. 在实数-2, 0, 2, 3中,最小的实数是()A. -2B. 0C. 2D. 3【考点】实数大小比较.【专题】常规题型.【分析】根据正数大于0, 0大于负数,可得答案.【解答】解:-2<0<2<3,最小的实数是・2,故选:A.【点评】本题考查了实数比较大小,正数大于0, 0大于负数是解题关键.6. a, b是两个连续整数,若a<V7<b,则a, b分别是()A. 2, 3B. 3, 2C. 3, 4D. 6, 8【考点】估算无理数的大小.【分析】根据A/4<V7<V9,可得答案.【解答】解:根据题意,可知五<百<肩,可得a二2, 23.故选:A.【点评】本题考查了估算无理数的大小,V4<V7<V9是解题关键.7. 估算、历_2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【考点】估算无理数的大小.【分析】先估计何的整数部分,然后即可判断何・2的近似值.【解答】解:・・・5<何<6,A3<V27- 2<4,故选C.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8. 在已知实数:-1, 0,寺,-2中,最小的一个实数是()A. -1B. 0C. |D. -2【考点】实数大小比较.【专题】常规题型.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小, 由此可得出答案.【解答】解:-2、-1、0、1中,最小的实数是-2.故选:D.【点评】本题考查了实数的大小比较,属于基础题,掌握实数的大小比较法则是关键.9. 下列四个实数中,绝对值最小的数是()A. - 5B.-伍C. 1D. 4【考点】实数大小比较.【分析】计算出各选项的绝对值,然后再比较大小即可.【解答】解:I -5|二5; | - *可也,|1|二1,⑷二4,绝对值最小的是1.故选C.【点评】本题考查了实数的大小比较,属于基础题,注意先运算出各项的绝对值.10. 在-2, 0, 3,頁这四个数中,最大的数是()A. -2B. 0C. 3D.【考点】实数大小比较.【专题】常规题型.【分析】根据正数大于0, 0大于负数,可得答案.【解答】解:-2V0V低V3,故选:C.【点评】本题考查了实数比较大小,血<3是解题关键.11•在1, -2, 4, 这四个数中,比0小的数是()A. -2B. 1C. V3D. 4【考点】实数大小比较.【专题】常规题型.【分析】根据有理数比较大小的法则:负数都小于0即可选出答案.【解答】解:・2、1、4、yW这四个数中比0小的数是・2,故选:A.【点评】此题主要考查了有理数的比较大小,关键是熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12. 四个实数-2, 0, -V2, 1中,最大的实数是()A・・ 2 B. 0 C.・ V2D. 1【考点】实数大小比较.【分析】根据正数大于0, 0大于负数,正数大于负数,比较即可.【解答】解:J -2<-伍V0V1,・・・四个实数中,最大的实数是1.故选:D.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.13. 与无理数何最接近的整数是()A. 4B. 5C. 6D. 7【考点】估算无理数的大小.【分析】根据无理数的意义和二次根式的性质得出履无転,即可求出答案.【解答】解:・・•履<俑<负,・••何最接近的整数是仮,V36=6,故选:C.【点评】本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道负在5和6之间,题目比较典型.14. 如图,已知数轴上的点A、B、C、D分别表示数・2、1、2、3,则表示数3 ■爸的点P应落在线段()4 9 兮9 £,-3 -1 0 ^2 3 4A. A0±B. 0B±C. BC±D. CD ±【考点】估算无理数的大小;实数与数轴.【分析】根据估计无理数的方法得出0<3-丽<1,进而得出答案.【解答】解:・・・2<馅<3,A0<3 - V5<b故表示数3 -頁的点P应落在线段OB上.故选:B.【点评】此题主要考查了估算无理数的大小,得出后的取值范围是解题关键.15. 估计茫1丄介于( )A. 0.4与0.5之间B. 0.5与0.6之间C. 0. 6与0. 7之间D. 0. 7与0. 8之间【考点】估算无理数的大小.【分析】先估算旋的范围,再进一步估算圣丄,即可解答・【解答】解:V2. 22=4. 84, 2. 32=5, 29,:.2, 2<V5<2. 3,2.2-1 2.3-1・.・一-—=0. 6, ―-— =0. 65, 2 2V5 _ 1AO. 6<———<0. 65.2A/E _ 1所以' 7介于0. 6与0. 7之间.£故选:C.【点评】本题考查了估算有理数的大小,解决本题的关键是估算、‘用的大小.16. 若( -2),则有( )2A. 0<m<1B. - 1<m<0C. - 2<m< - 1D. - 3<m< - 2【考点】估算无理数的大小.【分析】先把m化简,再估算任大小,即可解答.【解答】解;m半X ( -2)二■伍,・・・1<V2<2,A■ 2< -近 V - 1,故选:C.【点评】本题考查了公式无理数的大小,解决本题的关键是估算迈的大小.17. 如图,表示衙的点在数轴上表示时,所在哪两个字母之间()一 4 B C D0 1 ~L5~2~25 3A. C 与DB. A 与BC. A 与CD. B 与C【考点】估算无理数的大小;实数与数轴.【专题】计算题.【分析】确定出7的范围,利用算术平方根求出的范围,即可得到结果.【解答】解:V6.25<7<9,・・・2. 5<A/7<3,则表示听的点在数轴上表示时,所在C和D两个字母之间.故选A【点评】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.18. 与1朋最接近的整数是()A. 4B. 3C. 2D. 1【考点】估算无理数的大小.【分析】由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个完全平方数,再估算与1+葩最接近的整数即可求解.【解答】解:・・・4<5<9,A2<V5<3.又5和4比较接近,・・・葩最接近的整数是2,・••与1+真最接近的整数是3,故选:B.【点评】此题主要考查了无理数的估算能力,估算无理数的时候,“夹逼法”是估算的一般方法,也是常用方法.19. 在数轴上标注了四段范围,如图,则表示近的点落在()「②、: Y V 7、、,22―2728~Z9 VA.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2. 6^6. 76, 2. 72=7. 29, 2. 82=7. 84, 2. 92=8. 41, 32=9,V7. 84<8<8.41,・・・2・8<V8<2. 9,・•・仮的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.20. 若a二(・3)"・(・ 3) ", b二(・0. 6) 12・(・ 0. 6) 14, c=(・ 1.5) 11・(-1.5) 13,则下列有关a、b、c的大小关系,何者正确?( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a【考点】实数大小比较.【分析】分别判断出a・b与c・b的符号,即可得出答案.【解答】解:Ta - b二(-3) ” - ( -3) 14 - ( -0. 6) 12+ ( -0.6) 14= - 313 - 314 -些寻V0,5 5a < b,•/c - b=(・ 1.5) 11 - (- 1.5) 13・(・ 0.6) 12+ (・ 0.6) 14=(・ 1.5) n+1.5,3・ 0. 61Jo. 6“>0,・ \ c > b,c > b > a.故选D.【点评】此题考查了实数的大小比较,关键是通过判断两数的差,得出两数的大小.21 ・若k<V90<k+1 (k 是整数),则k二( )A. 6B. 7C. 8D. 9【考点】估算无理数的大小.【分析】根据勺示9, {而二10,可知9<価<10,依此即可得到k的值.【解答】解:TkvJ亦Vk+1 (k是整数),9<A/90<10,・•・k=9.故选:D.【点评】本题考查了估算无理数的大小,解题关键是估算的取值范围,从而解决问题.22. 估计后需+伍的运算结果应在哪两个连续自然数之间()A. 5 和6B. 6 和7C. 7 和8D. 8 和9【考点】估算无理数的大小;二次根式的乘除法.【分析】先把各二次根式化为最简二次根式,再进行计算.占 +届=2 后平+3逅二2+3個【解答】解:••・・6V2+3@V7,•I、矽養应的运算结果在6和7两个连续自然数之间,故选:B.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.最后估计无理数的大小.23. 估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【专题】计算题.【分析】由于9<11<16,于是翻<届<岳,从而有3<VTi<4.【解答】解:V9<11<16,/. Va< V T L< V16,A3<V11<4.故选c.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.二、填空题24. 把7的平方根和立方根按从小到大的顺序排列为_ -街<需<听_.【考点】实数大小比较.【专题】计算题.【分析】先分别得到7的平方根和立方根,然后比较大小.【解答】解:7的平方根为-衍,^7; 7的立方根为2厅,所以7的平方根和立方根按从小到大的顺序排列为-听<需<衔.故答案为:■衔<齿<衔.【点评】本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.25. 若a<V6<b,且a、b是两个连续的整数,贝I] J二8 .【考点】估算无理数的大小.【分析】先估算出航的范围,即可得出a、b的值,代入求出即可.【解答】解:・・・2<低V3,3—2, b—3,r.a b=8.故答案为:&【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出、用的范围.26. 若两个连续整数x、y满足xV徧1Vy,则x+y的值是7 .【考点】估算无理数的大小.【分析】先估算的范围,再估算叮g+1,即可解答.【解答】解:・・・2<妬<3,・・・3<岳+1<4,Vx<V5+Ky,x—3, y—4,A x+y=3+4=7.故答案为:7.【点评】本题考查了估算无理数的大小,解决本题的关键是估算的范围.A/R - 1 127. 黄金比一> 4 (用“〉”、y“二”填空)2【考点】实数大小比较.【分析】根据分母相同,比较分子的大小即可,因为2<^5<3,从而得出伍-1>1,即可比较大小.【解答】解:・・・2<爸<3,A 1 < V5 ・ 1<2,•后1、1■■I• •r "八'2 2故答案为:>.【点评】本题考查了实数的大小比较,解题的关键是熟练掌握、用在哪两个整数之间,再比较大小.28. 请将2、号、低这三个数用“〉”连结起来号”斥>2・【考点】实数大小比较.【专题】存在型.【分析】先估算出馅的值,再比较出其大小即可.【解答】解:・・・、念2.236, "1=2.5, ••寺 >后>2.故答案为:-|>V5>2.【点评】本题考查的是实数的大小比较,熟记A/5^2. 236是解答此题的关键.29. 皿的整数部分是3 .【考点】估算无理数的大小.【分析】根据平方根的意义确定负的范围,则整数部分即可求得.【解答】解:V9<13<16,/.V13的整数部分是3.故答案是:3.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.30. 实数728-2的整数部分是3 .【考点】估算无理数的大小.【分析】首先得出姮的取值范围,进而得出姬・2的整数部分.【解答】解:・・・5<履<6,AV28 - 2的整数部分是:3.故答案为:3.【点评】此题主要考查了估计无理数大小,得出履的取值范围是解题关键.。

数的开方基础过关测试卷(附参考答案和评分标准)

数的开方基础过关测试卷(附参考答案和评分标准)

第11章 数的开方基础过关测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 计算327的结果是 【 】 (A )3± (B )3 (C )33± (D )332. 下列实数中无理数是 【 】 (A )4 (B )8 (C )722(D )327 3. 估算324+的值 【 】 (A )在5和6之间 (B )在6和7之间 (C )在7和8之间 (D )在8和9之间4. 下列计算结果正确的是 【 】 (A )636±= (B )()332-=-(C )()233-=- (D )3355-=-5. 下列各组数中,是互为相反数的是 【 】 (A )2-与38- (B )2-与()22-(C )2-与21(D )2-与2 6. 比较91.3---、、π的大小,正确的是 【 】 (A )1.39-<-<-π (B )91.3-<-<-π (C )91.3-<-<-π (D )1.39-<-<-π7. 下列说法中,正确的是 【 】 (A )立方根等于1-的实数是1- (B )27的立方根是3± (C )带根号的数都是无理数 (D )()26-的平方根是6-8. 化简ππ--3得 【 】(A )3 (B )3- (C )32-π (D )π23-9. 计算3825--的结果是 【 】 (A )3 (B )7- (C )7 (D )3-10. 若一个正数的两个平方根分别是12-a 和8-a ,则这个正数是 【 】 (A )3 (B )6 (C )9 (D )25二、填空题(每小题3分,共30分)11. 如果某数的一个平方根是5-,那么这个数是_________. 12. 下列各数: π , 4-, 75, 0. 010010001中,是无理数的是_________. 13.81的平方根是_________.14. 在实数41,0,2,1--中,最小的实数是_________.15. 若021=-++y x ,则y x 的值为_________.16. 设b a ,是一个等腰三角形的两边长,且满足094=-+-b a ,则该三角形的周长是_________. 17. 计算:()=-+--+3128923_________.18. 若单项式n m y x +-45与2y x n m -是同类项,则n m 7-的算术平方根是_________. 19. 实数a 在数轴上的位置如图所示,则化简=-3a _________.20. 若32-x 与321y -互为相反数,则y x 2-的值为_________.三、解答题(共60分)21. 计算:(每小题5分,共10分)(1)()⎪⎭⎫⎝⎛-÷+-+--324227523; (2)()338211+-+-.22.(8分)求下列各式中的x :(1)()032222=--x ; (2)()2713=+x .23.(8分)正数x 的两个平方根分别为a -3和72+a . (1)求a 的值;(2)求x -44这个数的立方根.24.(8分)已知1-x 的平方根为3±,13-+y x 的立方根为4,求162+-y x 的平方根.25.(8分)已知正数x 的两个平方根分别是12-a 和5-a ,且3--y x 的立方根为3.(1)填空:__________________,_________,===a y x ; (2)求a y x 3+-的平方根.26.(8分)观察表格,然后回答问题:(1)__________________,==y x ;(2)从表格中探究a 与a 数位的规律,并利用这个规律解决下面两个问题: ①已知16.310≈,则≈1000_________;②已知973.8=m ,若3.897=b ,用含m 的代数式表示b ,则=b _________.27.(10分)如图①,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长; (3)把正方形ABCD放到数轴上,如图②,使得点A与1重合,求点D在数轴上表示的数.①②第11章 数的开方基础过关测试卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11. 25 12. π 13. 3± 14. 2- 15. 1 16. 22 17.23+ 18. 10 19. a -3 20. 1三、解答题(共60分) 21. 计算:(每小题5分,共10分) (1)0 ; (2)2 . 22.(8分)求下列各式中的x : (1)()032222=--x ;解:()32222=-x()1622=-x∴42=-x 或42-=-x ∴6=x 或2-=x ; (2)()2713=+x .解:32713==+x ∴2=x .23.(8分)正数x 的两个平方根分别为a -3和72+a .(1)求a 的值;(2)求x -44这个数的立方根. 解:(1)由题意可知:0723=++-a a解之得:10-=a ;……………………………………3分 (2)由(1)可知:()131033=--=-a ∴169132==x……………………………………5分 ∴1251694444-=-=-x……………………………………6分 ∵51253-=-∴x -44这个数的立方根为5-. ……………………………………2分 24.(8分)已知1-x 的平方根为3±,13-+y x 的立方根为4,求162+-y x 的平方根.解:由题意可知:⎩⎨⎧==-+=-64413913y x x 解之得:⎩⎨⎧==3510y x……………………………………4分 ∴811635101622=+-=+-y x9=……………………………………6分 ∴162+-y x 的平方根为3±. ……………………………………8分 25.(8分)已知正数x 的两个平方根分别是12-a 和5-a ,且3--y x 的立方根为3. (1)填空:____________,______,===a y x ;(2)求a y x 3+-的平方根. 解:(1)9 , 21- , 2 ;……………………………………3分 (2)由(1)可知:()36232193=⨯+--=+-a y x ……………………………………5分 ∵636±=±∴a y x 3+-的平方根为6±. ……………………………………8分 26.(8分)解:(1)0. 1 , 10 ;……………………………………2分 (2)31. 6 ;……………………………………5分 (3)m 10000.……………………………………8分 27.(10分)如图①,这是由8个同样大小的立方体组成的魔方,体积为64. (1)求出这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长; (3)把正方形ABCD 放到数轴上,如图②,使得点A 与1-重合,求点D 在数轴上表示的数.①②解:(1)∵4643= ∴这个魔方的棱长为4;……………………………………3分 (2)由(1)可知每个小立方体的棱长为2.∴阴影部分的面积为:842221=⨯⨯⨯……………………………………5分 ∵阴影部分为正方形 ∴阴影部分的边长为8; (或写成22)……………………………………7分 (3)设原点为点O 由(2)可知:8=AD ∴81+=+=AD OA OD∴点D 在数轴上表示的数是81--. ……………………………………10分。

数的开方单元试题(含答案)

数的开方单元试题(含答案)

第11章 数的开方 检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.(2015·呼伦贝尔)25的算术平方根是( A ) A .5 B .-5 C .±5 D. 5 2.下列说法错误的是( C )A .0的平方根是0B .1的算术平方根是1C .(-4)2的平方根是-4D .9的平方根是±33.实数327,0,-π,16,13,5,0.101 001 000 1…(相邻两个1之间依次多一个0),其中无理数有( B )A .2个B .3个C .4个D .5个4.若一个正数的算术平方根是8,则这个数的相反数的立方根是( D ) A .±8 B .±4 C .4 D .-45.若a ,b 为实数,且(a +1)2=-b -1,则(ab)99的值是( C )A .0B .1C .-1D .±16.下列说法:①无限小数是无理数;②无理数是无限小数;③带根号的数是无理数;④0有平方根,但0没有算术平方根;⑤负数没有平方根,但有立方根;⑥一个正数有两个平方根,它们的和为0.其中正确的有( B )A .2个B .3个C .4个D .5个 7.(2015·资阳)如图,已知数轴上的点A ,B ,C ,D 分别表示数-2,1,2,3,则表示数3-5的点P 应落在线段( B )A .AO 上B .OB 上C .BC 上D .CD 上 8.一个底面为正方形的水池,池深2 m ,容积为11.52 m 3,则此水池的底面边长为( C ) A .9.25 m B .13.52 m C .2.4 m D .4.2 m9.如图,数轴上A ,B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( A )A .-2- 3B .-1- 3C .-2+ 3D .1+ 310.已知,0<x <1,则x ,x 2,1x,x 的大小关系为( B )A .x 2>x >1x >x B.1x >x >x >x 2 C.1x >x >x >x 2 D.x >x >x 2>1x二、填空题(每小题3分,共24分) 11.81的平方根是__±3__. 12.计算:-36+214+327=__-32__. 13.(2015·自贡)若两个连续整数x ,y 满足x <5+1<y ,则x +y 的值是__7__.14.已知2x +1的平方根是±5,则5x +4的立方根是__4__.15.下列说法:①0的平方根是0,0的算术平方根也是0;②-127的立方根是±13;③(-2)2的平方根是±2;④-64的立方根是-2;⑤(-4)2的算术平方根是4;⑥若一个实数的算术平方根和立方根相等,则这个数是0.其中正确的有__①③④__.(填序号)16.将实数-π,-3,-7用“<”连接起来为. 17.已知|a|=5,b 2=3,且ab >0,则a +b 的值为__±8__. 18.仔细观察下列等式:1-12=12,2-25=225,3-310=3310,4-417=4417,….按此规律,第n 个等式是. 三、解答题(共66分) 19.(10分)计算:(1)|-364|+16-3-8-|-25|; (2)53+5-32+|3-2|.解:(1)5 解:(2)565-323+220.(10分)求下列各式中的x.(1)4(x +2)2-8=0; (2)2(x -1)3-54=0. 解:(1)x =-2±2 解:(2)x =421.(7分)已知x -1的平方根是±3,x -2y +1的立方根是3,求x 2-y 2的算术平方根. 解:x 2-y 2=622.(7分)已知一个正数的两个平方根是2m +1和3-m ,求这个正数. 解:这个正数是4923.(7分)若x ,y 均为实数,且x -2+6-3x +2y =8,求xy +1的平方根.解:依题意得⎩⎨⎧x -2≥0,6-3x ≥0,解得x =2,∴y =4,∴±xy +1=±324.(8分)规定新运算“⊗”的运算法则为:a ⊗b =ab +4,试求(2⊗6)⊗8的值. 解:625.(8分)“欲穷千里目,更上一层楼”说的是登得高看得远.如图,若观测点的高度为h ,观测者能看到的最远距离为d ,则d ≈2hR ,其中R 是地球半径(通常取6400 km ).小丽站在海边一块岩石上,眼睛离地面的高度为20 m ,她观测到远处一艘船刚露出海平面,此时该船离小丽约有多少千米?解:16千米26.(9分)已知a,b分别是6-13的整数部分和小数部分,求2a-b的值.解:∵3<13<4,∴-4<-13<-3,2<6-13<3,∴a=2,b=6-13-2=4-13,∴2a-b=13。

(完整版)第11章数的开方单元测试题含答案

(完整版)第11章数的开方单元测试题含答案

第11章数的开方单元测试题姓名: ;成绩: ;一、选择题(4分×12=48分)1、16的算术平方根是( )A、±4 B、4 C、±2 D、22、下列各数一定是无理数的是( )A、2(-2) B、3π C、23() D、2549 3、下列各式计算正确的是( ) A 、366=± B 、416±=± C 、5)5(2-=- D 、10100=- 4、关于的叙述不正确的是( )A .=2B .面积是8的正方形的边长是C .是有理数D .在数轴上可以找到表示的点5、a 是一个无理数,则a 一定是一个( )A、非负实数 B、负实数 C、正有理数 D、非完全平方数6、若<a <,则下列结论中正确的是( )A .1<a <3B .1<a <4C .2<a <3D .2<a <4 7、下列各组中一定互为相反数的是( )272(-7) B、27()和27() C、1771- 3737-8、若a =-2+2×(-3), 23b =-,2c =--,则a , b , c 的大小关系是( )A、 a >b >c B、b >a >c C、c >a >b D、a >c >b9 4.3 2.0736≈,43 6.5574≈,下列运算正确的是( )0.430.65574≈ 43065.574≈430020.736≈ 430002073.6≈10、若2m ﹣4与3m ﹣1是同一个数的平方根,则m 的值是( )A .﹣3B .﹣1C .1D .﹣3或111、下列说法中错误的是( ) A .是0.25的一个平方根 B .正数a 的两个平方根的和为0C .的平方根是D .当x ≠0时,﹣x 2没有平方根 12、下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数; ③a 2的算术平方根是a ;④(π﹣4)2的算术平方根是π﹣4;⑤算术平方根不可能是负数,其中,不正确的有( )A .2个B .3个C .4个D .5个二、填空题(4分×6=24分)13、1-3的相反数是 ,绝对值是 ;14、平方根是本身的数有________,立方根是本身的数有_______;15、7的整数部分是__________,小数部分是_________;16、(a+2)2+|b -1|+c -3=0,则a +b +c = 。

八年级数学上册 第11章 数的开方 单元测试卷

八年级数学上册   第11章  数的开方 单元测试卷

八年级数学上册第11章 《数的开方》 单元测试卷一、选择题:1.下列算式正确的是( ) A .2(3)3-=-B .2(6)36=C 164=±D .3644=2.64的立方根为( ) A .8 B .﹣8 C .4 D .﹣4 3.若m 的立方根是2,则m 的值是( ) A .4B .8C .4±D .8±4.关于8 )A .8是无理数B .面积为8的正方形边长是8C .8的立方根是2D .在数轴上可以找到表示8的点 5.下列说法正确的有( )(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1; (3)﹣a 一定没有平方根; (4)实数与数轴上的点是一一对应的; (5)两个无理数的差还是无理数. A .1个B .2个C .3个D .4个 6.将边长分别为2和4的长方形如图剪开,拼成一个正方形,则该正方形的边长最接近整数( )A .1 B .2C .3D .47.已知实数a ,b 在数轴上对应点的位置如图所示,则a |a |+b|b |的值是( )A .-2B .-1C .0D .28.现在规定一种新的运算“※”:a ※b =b a 9※2=93,则-127※3等于( ) A .13B .3C .-13D .-39.下列等式中:①11168= ,①()332-=2,① 2(4)- =4,①610-=0.001,①3273644-=-,①3388-=-,①()25-=25.其中正确的有( )个. A .2 B .3 C .4 D .5积分别为9和5,则下列关于m 和n 的说法,正确的是( )A .m 为有理数,n 为无理数B .m 为无理数,n 为有理数C .m ,n 都为有理数D .m ,n 都为无理数二、填空题:11.16________.的平方根是 12.64的相反数的立方根是 .13.估算比较大小:(1)-10 -3.2;(2)3130 5. 14.已知实数a 、b 满足2130a b a --+-=,则ab 的值为 .15.计算398+-= .16.若两个连续整数x 、y 满足x <5+1<y ,则x +y 的值是________. 17.已知2a ﹣1的平方根是±3,3a +b +10的立方根是3,求a +b 的算术平方根 .18.设 a 、b 是有理数,且满足等式2322152a b b ++=-,则a+b= . 三、解答题:19.计算:﹣22+36327-﹣52|.20.若321a -313b -a b的值.21.已知:a 与2b 互为相反数,-a b 的算术平方根是3,求a 、b 的值;22.已知32a +的立方根是1-,31a b +-的算术平方根是3,c 11分.(1)求a ,b ,c 的值; (2)求3a b c +-的平方根.23.已知()1x -的算术平方根是3,()21x y -+的立方根是3,求22x y -的平方根.24.在学习《实数》这节内容时,我们通过“逐步逼近”的方法来估算出一系列越来越接近2的近似值,请回答如下问题:(1)我们通过“逐步逼近”的方法来估算出1.42 1.5<<,请用“逐步逼近”的方11在哪两个近似数之间(精确到0.1);(2)大家知道2是无理数,而无理数是无限不循环小数,因此2分我们不可能全部地写出来,可以用21-来表示2的小数部分. 又例如:∵479<<,即273<<, ∴7的整数部分为2,小数部分为()72-.请解答:①19 ,小数部分是 ;②6的小数部分为a 13b ,求6a b + ③若x 是211y 是211(211xy 的平方根.。

华师大版八年级上册数学第11章 数的开方含答案(典型题)

华师大版八年级上册数学第11章 数的开方含答案(典型题)

华师大版八年级上册数学第11章数的开方含答案一、单选题(共15题,共计45分)1、4的平方根是()A.2B.﹣2C.16D.±22、下列各式中,正确的是()A. B. C. D.3、如图,点A在数轴上表示的实数为a,则|a﹣2|等于()A.a﹣2B.a+2C.﹣a﹣2D.﹣a+24、若x,y为实数,且|x+2|+=0,则的值是()A.-2B.2C.-1D.15、对于有理数x,的值是()A. B.2020 C.-2020 D.06、若一元二次方程x2+x﹣1=0的较大根是m,则()A.m>2B.m<﹣1C.1<m<2D.0<m<17、(-5)2的平方根是()A.±5B.±C.5D.-58、下列各式中,正确的是 ( )。

A. B. C. D.9、有一个数值转换器,原理如下:当输入的x=64时,输出的值是()A.2B.8C.D.10、如图,数轴上点P表示的数可能是()A. B. C. D. ﹣211、实数a,b,在数轴上大致位置如图,则a,b,的大小关系是()A.a<0<bB.b<a<0C.0<b<aD.a>0>b12、若2m﹣4与3m﹣1是同一个数的平方根,则这个数可能是()A.2B.﹣2C.4D.113、在实数0,,,中,最小的数是( )A. B. C.0 D.14、实数a,b在数轴上的位置如图所示,以下说法正确的是()A.|b|<|a|B.b<aC.ab>0D.a+b=015、无理数的估算值为()A.20< <30B.4< <5C.5< <6D.6< <7二、填空题(共10题,共计30分)16、若,则的立方根是________.17、已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,则a+b+c的值为________.18、已知是25的算术平方根,是8的立方根,则的值为________.19、化简:=________.20、计算:________.21、如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是________.22、比较大小:-4 ________-3 .23、﹣27的立方根为________,的平方根为________.24、的算术平方根是________;-64的立方根是________.25、大于且小于的所有整数的和是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11章数的开方测试卷 班级 姓名
一、选择题:(每小题5分,共30分)
1、16的平方根是 ( )
A、8± B、4± C、2± D、8±
2、下列说话正确的是( )
A 、0.008的立方根是±2
B 、0.27的立方根是0.3
C 、-641的立方根是-4
1 D 、64的平方根是8 3、下列各数中,无理数的个数有( )
10.1010017231642
π---, , , , , 0, - A 、1 B 、2 C 、3 D 、4
4、下列说法正确的是 ( )
A、两个正无理数之和一定还是正无理数 B、两个无理数之间没有有理数
C、无理数分为正无理数、负无理数和零 D、无理数可以用数轴上的点表示
5、估算452-的值. ( )
A、在5和6之间 B、在6和7之间
C、在7和8之间 D、在8和9之间
6、312-x +385+x =0,则x 的值是( )
A .﹣3
B .﹣1
C .0.5
D .无选项
7、化简1|21|+-的结果是( )
A 、22-
B 、22+
C 、2
D 、2
8、对于任意不相等的两个数a 、b ,定义一种运算
如下:a ※b =a +b a -b

如3※2=3+23-2
= 5 ,那么12※4的结果是( ) A .±2 B .2 C .±12 D .12
9.下列各式中正确的是( )
A .9 =±3
B .(-3)2 =-3
C .39 =3
D .3-8 =-2
10.如图,数轴上A ,B 两点对应的实数分别为1和 3 ,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为( )
A.2 3 -1 B .1+ 3 C .2+ 3 D .2 3 +1
二、填空题:(每小题3分,共15分)
11、平方根等于本身的数是________;立方根等于本身的数是_______
1211___________.
13、若519x +的立方根为4,则27x +的平方根是______.
14.已知5+3与5-3的小数部分分别是a ,b ,则 (a+b)2017= .
15.规定:用符号[x]表示一个不大于实数x 的最大整数,例如
[3.69]=3,[13+]=2,[-2.56]=-3,[-3]=-2,按这个规定,[ 113--]=
三、解答题:
16.解方程:(每小题5分,共15分)
(1)02732=-x (2)016)2(2=--x (3)(x +1)3
=27.
17.计算:(每小题5分,共10分)
(1)﹣++. ()97
125.016921623-+÷⨯-
18.(6分)在数轴上表示下列各数,并用“>”号连结起来:-(-3),-︱-2.5︱,0,4
1,(-1)2,364-.
19、(6分)一个正数有两个的平方根分别是3x-10和2x-5,求这个正数
20、(6分)已知实数,,a b c 满足2112()022
a b b c c -+++-=,求()a b c +的值.
21、(6分)若y=9-a +a -9+7,求a+y 的平方根及立方根
23. (6分)仔细阅读下面的例题,然后解答后面的问题.
例题: 比较24-与22+的大小
解: 2224)22(24---=+-- =)21(2-
又12> ,021<-∴,即0)21(2<-,
所以: 2224+<-
不求值试比较232+与323+的大小
24. (7分)已知A=342--+b a a 是a+2的算术平方根,B=9232-+-b a b 是2-b 的立方根,求A+B 的立方根.
25. (7分)已知,,a b c 实数在数轴上的对应点如图所示,化简c b a c b a a -+-+--。

相关文档
最新文档