实习一 遥感影像的预处理
遥感影像预处理实验报告
遥感影像预处理实验报告实验目的:掌握遥感图像几何校正的基本方法和步骤;掌握图像拼接的原理,以及两幅图像拼接的时候需要的条件,掌握拼接技术;学习通过ERDAS进行遥感图像规则分幅裁剪,不规则分幅裁剪的实验过程,能够对一幅大的遥感图像按照要求裁剪图像;·掌握不同分辨率图像的特性,详细理解各种融合方法的原理,以及各种融合方法的优缺点,能够根据不同的应用目的合理选择融合方法,掌握融合的操作过程。
实验内容:在ERDAS软件中图像预处理模块下的图像几何校正在ERDAS软件中图像预处理模块下的图像拼接,裁剪在ERDAS软件中Interpreter模块下的图像融合实验方法和步骤:1.显示图像:在ERDAS图标面板中点击Viewer图表两次,ERDAS图表面板菜单条:Session→Title Viewers,将两个菜单平铺。
如图1-1图1-1在Viewer1中打开需要校正的Landsat图像:tmAtlanta.img在Viewer2中打开作为地理参考的校正过的SPOT图像:panAtlanta.img图1-22:启动几何校正模块(Geometric Correction Tool)Viewer1菜单条:Raster→Geometric Correction→打开Set Geometric Model对话框(2)→选择多项式几何校正模型:Polynomial→OK,如图1-3图1-3在Polynomial Model Properties对话框中,定义多项式模型参数以及投影参数:→定义多项式次方(Polynomial Order):2→定义投影参数:(PROJECTION):略→Apply→Close图1-43.在GCP Tool Referense Setup对话框(图3-5)中选择采点模式:→选择视窗采点模式:Existing Viewer→OK,如图1-5图1-5打开Viewer Selection Instructions指示器(图1-6)图1-6在显示作为地理参考图像panAtlanta.img的Viewer2中点击左键→打开reference Map Information 提示框(图1-7);→OK图1-7→此时,整个屏幕将自动变化为如图1-8所示的状态,表明控制点工具被启动,进入控制点采点状态。
遥感图像预处理实验报告
实验前准备:遥感图像处理软件认识1、实验目的与任务:①熟悉ENVI软件,主要是对主菜单包含内容的熟悉;②练习影像的打开、显示、保存;数据的显示,矢量的叠加等。
2、实验设备与数据设备:遥感图像处理系统ENVI4.4软件;数据:软件自带数据和河南焦作市影响数据。
3、实验内容与步骤:⑴ENVA软件的认识如上图所示,该软件共有12个菜单,每个菜单都附有下拉功能,里面分别包含了一些操作功能。
⑵打开一幅遥感数据选择File菜单下的第一个命令,通过该软件自带的数据打开遥感图像,可知,打开一幅遥感影像有两种显示方式。
一种是灰度显示,另一种是RGB显示。
Gray(灰度显示)RGB显示⑶保存数据①选择图像显示上的File菜单进行保存;②通过主菜单上的Save file as进行保存⑷光谱库数据显示选择Spectral > Spectral Libraries > SpectralLibrary Viewer。
将出现Spectral Library InputFile 对话框,允许选择一个波谱库进行浏览。
点击“Open Spectral Library”,选择某一所需的波谱库。
该波谱库将被导入到Spectral LibraryInput File 对话框中。
点击一个波谱库的名称,然后点击“OK”。
将出现Spectral Library Viewer对话框,供选择并绘制波谱库中的波谱曲线。
⑸矢量化数据点选显示菜单下的Tools工具栏,接着选择下面的第四个命令,之后选择第一个命令,对遥感图像进行矢量化。
点击鼠标左键进行区域选择,选好之后双击鼠标右键,选中矢量化区域。
⑹矢量数据与遥感影像的叠加与切割选择显示菜单下的Tools工具,之后点选第一个Link命令,再选择其下面的第一个命令,之后OK,结束程序。
选择主菜单下的Basic Tools 菜单,之后选择其中的第二个命令,在文件选择对话框中,选择输入的文件(可以根据需要构建任意子集),将出现Spatial Subset via ROI Parameters 对话框通过点击矢量数据名,选择输入的矢量数据。
遥感影像实习报告
实习报告:遥感影像处理与应用一、实习目的本次遥感影像实习旨在通过理论学习和实际操作,使学生掌握遥感影像的基本处理方法,提高对遥感影像的解译和分析能力,并为实际应用遥感影像提供技术支持。
实习内容包括遥感影像的预处理、裁剪、解译、分类和专题图制作等。
二、实习内容(一)遥感影像预处理1. 辐射校正:在ENVI软件中,对下载的原始遥感影像进行传感器校正、大气校正、太阳高度及地形校正等辐射校正处理,使遥感影像的辐射特性更加真实反映地物实际情况。
2. 几何校正:根据实习所用的遥感影像坐标系,选取相应的控制点,利用ENVI软件进行几何校正,纠正图像坐标系变形,提高遥感影像的地理精度。
(二)遥感影像裁剪利用ENVI软件的感兴趣区域(ROI)功能,选取实习区域范围,将预处理后的遥感影像进行裁剪,去除无关区域,提高后续处理和分析的效率。
(三)遥感影像解译根据《土地利用现状分类-GB2007》标准,对实习区域内的遥感影像地物进行初步目视解译,划分地物类别,为后续分类和专题图制作奠定基础。
(四)遥感影像分类1. 选择合适的光谱特征和纹理特征,利用ENVI软件的面向对象分类模块,对实习区域内的遥感影像进行分类。
2. 针对不同地物类别,设置规则集参数,进行分类处理,得到实习区域的土地利用类型分布。
(五)遥感影像专题图制作根据分类结果,利用ENVI软件将不同土地利用类型赋予不同的颜色,制作土地利用现状分类专题图,直观展示实习区域的土地利用状况。
三、实习成果与分析通过本次实习,我们成功完成了遥感影像的预处理、裁剪、解译、分类和专题图制作等任务。
分类结果较为准确地反映了实习区域的土地利用现状,为后续遥感影像在土地资源调查、环境监测等领域的应用提供了数据支持。
实习过程中,我们学会了使用ENVI软件进行遥感影像处理,掌握了面向对象分类方法,提高了对遥感影像的分析和解译能力。
同时,我们也认识到遥感影像处理和分析在实际应用中需要注意的问题,如数据质量、分类精度等。
遥感图像处理实验报告
遥感图像处理实验报告遥感图像处理实验报告引言:遥感图像处理是一门应用广泛的技术,它通过获取、分析和解释地球表面的图像数据,为地质勘探、环境监测、农业发展等领域提供了重要的支持。
本实验旨在探索遥感图像处理的基本方法和技术,以及其在实际应用中的价值和意义。
一、图像预处理图像预处理是遥感图像处理的第一步,它主要包括图像的去噪、增强和几何校正等操作。
在本实验中,我们使用了一张卫星图像作为样本,首先对图像进行了去噪处理,采用了中值滤波算法,有效地去除了图像中的椒盐噪声。
接着,我们对图像进行了增强处理,采用了直方图均衡化算法,使得图像的对比度得到了显著提高。
最后,我们进行了几何校正,通过对图像进行旋转和缩放,使得图像的几何形状与实际地理位置相符合。
二、图像分类图像分类是遥感图像处理的关键步骤之一,它通过对图像中的像素进行分类,将其划分为不同的地物类型。
在本实验中,我们使用了监督分类方法,首先选择了一些具有代表性的样本像素,然后通过训练分类器,将这些样本像素与不同的地物类型进行关联。
接着,我们对整个图像进行分类,将图像中的每个像素都划分为相应的地物类型。
最后,我们对分类结果进行了验证,通过与实地调查结果进行对比,验证了分类的准确性和可靠性。
三、图像融合图像融合是遥感图像处理的一项重要技术,它可以将多个不同波段或分辨率的图像融合成一幅高质量的图像。
在本实验中,我们选择了两幅具有不同波段的卫星图像,通过波段归一化和加权平均的方法,将这两幅图像融合在一起。
融合后的图像不仅保留了原始图像的颜色信息,还具有更高的空间分辨率和光谱分辨率,可以提供更全面和准确的地物信息。
四、图像变化检测图像变化检测是遥感图像处理的一项关键任务,它可以通过对多幅图像进行比较,检测出地表发生的变化情况。
在本实验中,我们选择了两幅具有不同时间的卫星图像,通过差异图像法和指数变化检测法,对这两幅图像进行了变化检测。
通过对比差异图像和变化指数图,我们可以清晰地看到地表发生的变化,如城市扩张、植被变化等,为城市规划和环境监测提供了重要的参考依据。
遥感影像数据实习报告
一、实习背景随着遥感技术的不断发展,遥感影像数据在资源调查、环境监测、城市规划等领域发挥着越来越重要的作用。
为了使同学们更好地掌握遥感影像数据处理方法,提高实际操作能力,本次实习课程以遥感影像数据为研究对象,通过实践操作,使学生了解遥感影像数据的处理流程,掌握遥感影像处理软件的使用方法。
二、实习目的1. 熟悉遥感影像数据的处理流程;2. 掌握遥感影像处理软件(如ENVI、ArcGIS等)的使用方法;3. 学会遥感影像数据的预处理、增强、分类等基本操作;4. 培养学生独立解决问题的能力,提高实际操作水平。
三、实习内容1. 遥感影像数据预处理遥感影像数据预处理是遥感影像处理的基础,主要包括辐射校正、几何校正、大气校正等。
(1)辐射校正:通过对遥感影像进行辐射校正,消除传感器噪声、大气辐射等因素对影像的影响,提高影像质量。
(2)几何校正:通过对遥感影像进行几何校正,消除由于传感器倾斜、地球曲率等因素引起的几何畸变,使影像与实际地理坐标相对应。
(3)大气校正:通过对遥感影像进行大气校正,消除大气对遥感影像的影响,提高影像的清晰度。
2. 遥感影像数据增强遥感影像数据增强是提高遥感影像质量的重要手段,主要包括对比度增强、锐化、滤波等。
(1)对比度增强:通过对遥感影像进行对比度增强,使影像中地物特征更加明显,便于后续处理。
(2)锐化:通过对遥感影像进行锐化处理,使影像中的地物边缘更加清晰,提高影像的视觉效果。
(3)滤波:通过对遥感影像进行滤波处理,消除影像中的噪声,提高影像质量。
3. 遥感影像数据分类遥感影像数据分类是将遥感影像中的地物进行分类,提取所需信息的过程。
常用的分类方法有监督分类、非监督分类等。
(1)监督分类:根据已知的地物特征,建立分类模型,对遥感影像进行分类。
(2)非监督分类:根据遥感影像自身特征,自动将遥感影像进行分类。
四、实习步骤1. 收集遥感影像数据:从遥感影像数据库中下载或获取所需的遥感影像数据。
遥感影像的实习报告
实习报告:遥感影像处理与分析实践一、实习目的与要求本次遥感影像实习旨在让学生掌握遥感影像的基本处理方法、分析技巧以及应用遥感影像进行地物分类和信息提取的能力。
实习要求学生熟练使用遥感影像处理软件,如ENVI、ArcGIS等,了解遥感影像的辐射特性和几何特性,掌握遥感影像的预处理、增强、分类和信息提取等基本技能。
二、实习内容与过程1. 遥感影像预处理在ENVI软件中,我们对下载的原始遥感影像进行了辐射校正和几何校正。
辐射校正主要包括传感器校正、大气校正、太阳高度及地形校正,以消除遥感影像中的辐射误差。
几何校正则是为了纠正图像中的几何变形,我们选取了UTMWGS84坐标系作为遥感影像的坐标系。
2. 遥感影像裁剪为了便于分析,我们使用ENVI软件的感兴趣区域(ROI)功能,选取了实习所用的区域范围,并将遥感影像进行裁剪。
裁剪后的影像更加清晰,便于后续的分析和处理。
3. 遥感影像增强在ENVI软件中,我们对裁剪后的遥感影像进行了对比度增强和色彩平衡处理,以突出地物的细节信息和纹理特征。
增强处理后的影像更加直观,便于地物的识别和分类。
4. 遥感影像分类利用ENVI软件的监督分类模块,我们选取了训练样本,对遥感影像进行了分类。
分类过程中,我们根据实际地物特征,选择了合适的波段组合和分类算法。
分类结果较好地反映了实习区域的地物分布状况。
5. 地物信息提取与分析通过对分类结果的分析,我们提取了实习区域的地物信息,包括建筑物、林地、水体等。
进一步,我们使用ArcGIS软件对提取的地物信息进行了空间分析和统计分析,探讨了地物分布的规律和特点。
三、实习成果与总结本次实习,我们成功地对实习区域的遥感影像进行了预处理、增强、分类和信息提取。
实习过程中,我们深入了解了遥感影像的处理方法和分析技巧,提高了遥感影像处理的实际操作能力。
通过实习,我们认识到遥感技术在地物监测、资源调查和环境评估等方面的重要应用价值。
总结:本次遥感影像实习让我们对遥感影像的处理和分析方法有了更深入的了解。
遥感影像数据实习报告
实习报告:遥感影像数据处理与分析一、实习目的本次遥感影像数据实习旨在通过实际操作,掌握遥感影像数据的处理、分析和应用方法,提高对遥感技术的理解和应用能力。
通过实习,要求学生能够熟练使用遥感影像处理软件,对遥感影像进行预处理、信息提取和分类,并能够根据实际需求进行遥感影像的分析和应用。
二、实习内容(一)遥感影像预处理本次实习所使用的遥感影像数据为Landsat 8卫星影像,首先需要对影像进行预处理,包括辐射定标、大气校正和地理校正等。
预处理的目的是消除遥感影像中由于大气、传感器等非目标因素引起的影响,提高影像的可用性和分析精度。
(二)遥感影像信息提取在预处理的基础上,需要对遥感影像进行信息提取,包括水体、植被、建筑用地等土地利用类型的提取。
信息提取的方法包括基于像元的分类方法和基于对象的分类方法。
通过比较不同分类方法的准确性,选择合适的分类方法进行实习任务的需求。
(三)遥感影像分类与分析对遥感影像进行分类是为了将影像中的不同地物类型进行区分,便于后续的分析和应用。
分类的方法包括监督分类、无监督分类和混合像元分解等。
在分类的基础上,可以对不同地物类型的分布、变化等进行分析,为实际应用提供依据。
(四)遥感影像应用在遥感影像分类和分析的基础上,可以进行遥感影像的应用,例如土地利用变化监测、生态环境监测等。
通过实际应用,可以进一步理解遥感影像数据的价值和应用前景。
三、实习步骤与方法(一)遥感影像预处理1. 辐射定标:将遥感影像的数字量化值(DN)转换为反射率或辐射率。
2. 大气校正:消除大气对遥感影像的影响,提高地物反射率的准确性。
3. 地理校正:纠正遥感影像的几何变形,使影像坐标与实际地理坐标对应。
(二)遥感影像信息提取1. 基于像元的分类:通过设置不同的阈值,将遥感影像中的像素分为不同的类别。
2. 基于对象的分类:利用遥感影像分割技术,将影像中的不同地物分为对象,并进行分类。
(三)遥感影像分类与分析1. 监督分类:利用已知类别的样本数据,训练分类器,对遥感影像进行分类。
遥感影像预处理的正确步骤
遥感影像预处理的正确步骤遥感影像预处理是遥感技术中的重要环节,它对于后续的遥感影像分析和应用具有至关重要的作用。
正确的预处理能够提高遥感影像的质量和准确度,为后续的数据分析提供有力支持。
下面将介绍遥感影像预处理的正确步骤。
一、获取遥感影像数据遥感影像数据可以通过卫星、飞机等遥感平台获取。
在获取数据时,需要确保数据的准确性和完整性,并且注意选择合适的数据源和分辨率。
二、辐射校正遥感影像数据在获取过程中受到了大气、地表反射等因素的影响,需要对数据进行辐射校正。
辐射校正可以消除大气散射和吸收引起的影响,使得遥感影像能够更准确地反映地物的真实特征。
三、几何校正遥感影像在获取过程中存在着不可避免的几何畸变,需要进行几何校正。
几何校正可以将遥感影像的像素位置与地理位置进行对应,使得影像能够与地理信息数据相匹配。
四、影像拼接如果获取到的遥感影像数据较大,需要进行影像拼接。
影像拼接可以将多个影像拼接成一个完整的影像,提供更广阔的地理范围和更丰富的信息。
五、影像增强影像增强是为了提高遥感影像的视觉效果和信息提取能力。
常见的影像增强方法包括直方图均衡化、滤波等。
六、去噪处理遥感影像数据中常常包含各种噪声,需要进行去噪处理。
去噪处理可以提高影像的清晰度和信息质量。
七、影像切割根据具体的需求,可以对遥感影像进行切割,提取感兴趣的区域或目标。
影像切割可以减少后续处理的数据量,提高处理效率。
八、数据格式转换根据不同的应用需求,遥感影像的数据格式可能需要进行转换。
数据格式转换可以使得遥感影像能够被不同的软件和平台所识别和使用。
九、数据融合多源遥感影像数据可以通过数据融合的方法进行融合,提供更综合、全面的信息。
常见的数据融合方法包括像素级融合、特征级融合等。
遥感影像预处理的正确步骤包括获取遥感影像数据、辐射校正、几何校正、影像拼接、影像增强、去噪处理、影像切割、数据格式转换和数据融合。
这些步骤可以保证遥感影像的质量和准确度,为后续的数据分析和应用提供有力支持。
遥感影像处理实习报告
实习报告:遥感影像处理实习一、实习目的本次遥感影像处理实习的主要目的是通过实际操作,掌握遥感影像处理的基本方法和技能,提高对遥感影像的处理和分析能力。
通过实习,我们希望能够学会使用遥感相关软件对遥感影像进行校正、裁剪等处理工作,掌握遥感野外调查的方法和注意事项,根据《土地利用现状分类-GB2007》标准,对所调查区域的遥感影像地物进行初步目视解译、划分,从而建立外业目视解译标志表,掌握对遥感影像的室内解译,同时进行小斑区划和数据库建立,根据遥感影像图,针对所调查区域制作土地利用现状分类专题图。
二、实习内容(一)遥感影像处理1、遥感影像预处理:首先我们将下载到的原始遥感图像在envis软件中进行预处理,包括辐射校正和几何校正。
辐射校正主要进行传感器校正、大气校正、太阳高度及地形校正。
几何校正是指纠正由系统或非系统因素引起的图像几何变形。
这里主要是对遥感影像坐标系进行选取,我们将实习所用到的遥感图像坐标系确定为UTMWGS84坐标系。
2、遥感影像裁剪:对预处理过的遥感影像进行裁剪,选取出本次实习的区域范围,我们选取了金洲新区大部分地区及望城区部分区域作为本次实习的区域范围。
使用envis软件中感兴趣区域选取的功能,裁剪出特定的区域范围。
(二)外业建标调查:1、建立目视解译标志:建立目视解译标志即对遥感影像上的地物进行识别和分类,根据《土地利用现状分类-GB2007》标准,对遥感影像上的地物进行初步目视解译、划分,从而建立外业目视解译标志表。
2、野外调查:根据所建立的目视解译标志,对实习区域进行野外调查,验证解译结果的准确性,并对解译过程中出现的问题进行修正。
(三)室内解译和数据库建立:1、室内解译:利用envis软件对裁剪后的遥感影像进行室内解译,根据野外调查结果和目视解译标志,对遥感影像上的地物进行详细分类和解译。
2、小斑区划和数据库建立:根据室内解译结果,对遥感影像上的地物进行小斑区划,并将小斑区数据导入数据库,建立遥感影像地物数据库。
遥感影像预处理的正确步骤
遥感影像预处理的正确步骤一、影像获取遥感影像预处理的第一步是获取原始影像数据。
通过卫星、飞机或其他遥感平台获取的影像数据,可以获得不同波段的光谱信息。
二、影像校正影像校正是为了消除由于影像获取过程中产生的各种误差,提高影像质量。
主要包括几何校正和辐射校正两个方面。
几何校正是通过对影像进行几何变换,将其与真实地物的位置和形状相对应。
这样可以消除由于视角、高程等因素引起的形变,使影像与实际地物一一对应。
辐射校正是为了消除由于大气、地表反射等因素引起的辐射差异。
通过对不同波段的辐射通量进行标定和校正,可以得到准确的辐射值。
三、影像配准影像配准是将不同时间、不同传感器或不同分辨率的影像对齐到同一坐标系统中。
通过对影像进行几何变换,使其在空间上一一对应。
这样可以实现影像的叠加和比较。
四、影像增强影像增强是为了提高影像的可视性和解译能力。
通过应用不同的滤波器、变换或增强算法,可以突出地物的特征,减少噪声和干扰,使影像更清晰、更易于分析。
五、影像分类影像分类是将影像像元划分为不同的地物类别。
根据不同的目标和需求,可以使用不同的分类方法,如基于像素的分类、基于对象的分类等。
六、影像融合影像融合是将多源、多尺度或多波段的影像融合成一幅综合影像。
通过融合可以充分利用各种影像的优势,提高地物提取和解译的精度。
七、影像制图影像制图是将处理后的影像转换为地图或图像产品。
通过对影像进行地理参考、投影变换和符号化处理,可以生成各种专题地图和影像产品。
八、影像分析影像分析是对处理后的影像进行定量和定性分析。
通过应用不同的遥感算法和模型,可以提取地物信息、监测变化和预测趋势。
九、结果验证结果验证是对影像分析结果进行验证和评估。
通过与实地调查数据进行比对,可以评估分析结果的准确性和可靠性。
总结:遥感影像预处理是遥感应用的重要环节,它涉及到影像获取、校正、配准、增强、分类、融合、制图、分析和结果验证等多个步骤。
每个步骤都有其独特的作用和意义,对于提高影像质量和分析精度具有重要意义。
完整版遥感影像预处理
遥感影像预办理预办理是遥感觉用的第一步,也是特别重要的一步。
目前的技术也特别成熟,大多数的商业化软件都具备这方面的功能。
预办理的大体流程在各个行业中有点差异,而且着重点也各有不相同。
本小节包括以下内容:数据预办理一般流程介绍预办理常闻名词讲解ENVI 中的数据预办理1、数据预办理一般流程数据预办理的过程包括几何精校正、配准、图像镶嵌与裁剪、去云及阴影处理和光谱归一化几个环节,详细流程图以下列图。
图 1 数据预办理一般流程各个行业应用会有所不相同,比方在精巧农业方面,在大气校正方面要求会高点,因为它需要反演;在测绘方面,对几何校正的精度要求会很高。
2、数据预办理的各个流程介绍(一)几何精校正与影像配准引起影像几何变形一般分为两大类:系统性和非系统性。
系统性一般有传感器自己引起的,有规律可循和可展望性,可以用传感器模型来校正;非系统性几何变形是不规律的,它可以是传感器平台自己的高度、姿态等不牢固,也可以是地球曲率及空气折射的变化以及地形的变化等。
在做几何校正前,先要知道几个看法:地理编码:把图像更正到一种一致标准的坐标系。
地理参照:借助一组控制点,对一幅图像进行地理坐标的校正。
图像配准:同一地区里一幅图像(基准图像)对另一幅图像校准影像几何精校正,一般步骤以下,( 1) GCP(地面控制点)的采用这是几何校正中最重要的一步。
可以从地形图(DRG)为参照进行控制选点,也可以野外GPS 测量获得,也许从校正好的影像中获得。
采用得控制点有以下特色:1、GCP 在图像上有明显的、清楚的点位标志,如道路交织点、河流交织点等;2、地面控制点上的地物不随时间而变化。
GCP 平均分布在整幅影像内,且要有必然的数量保证,不相同纠正模型对控制点个数的需求不相同。
卫星供应的辅助数据可建立严实的物理模型,该模型只需9 个控制点即可;对于有理多项式模型,一般每景要求很多于30 个控制点,困难地区合适增加点位;几何多项式模型将依照地形情况确定,它要求控制点个数多于上述几种模型,平时每景要求在30-50 个左右,特别对于山区应合适增加控制点。
遥感影像预处理的正确步骤
遥感影像预处理的正确步骤在遥感领域,影像预处理是遥感数据处理的重要环节,对于提高遥感影像的质量和后续分析具有重要意义。
以下是遥感影像预处理的正确步骤:一、数据获取与预处理1.数据获取:遥感影像数据来源于各种遥感卫星、航空遥感等,需要根据研究目的选择合适的数据源。
2.预处理:数据获取后,需要对数据进行预处理,以消除原始数据中的噪声、异常值等问题。
预处理方法包括去除噪声、裁剪、缩放等。
二、几何校正与图像配准1.几何校正:由于遥感影像在采集过程中可能受到传感器本身、地球曲率、大气折射等因素的影响,导致影像几何变形。
几何校正旨在消除这些变形,提高影像质量。
常见的方法有传感器模型校正、基于控制点的几何校正等。
2.图像配准:图像配准是将多幅遥感影像(如多光谱影像和单波段高分辨率影像)进行空间对齐,使其在同一坐标系统下。
配准方法有基于像素的配准、基于变换的配准等。
三、图像融合1.图像融合是将不同分辨率、不同光谱的遥感影像融合为高分辨率、多光谱的影像。
常见的图像融合方法有:(1)IHS变换融合:将高分辨率全色影像与亮度进行直方图匹配,然后去掉亮度,用预处理的高分辨率全色影像代替。
与色度H、饱和度S一起,利用逆变换式变换至RGB系统,得到融合后的影像。
(2)小波变换融合:利用人眼对局部对比度变化敏感的特性,根据一定的融合规则,在多幅原图像中选择最显著的特征(如边缘、线段等),并将这些特征保留在融合后的图像中。
四、影像增强与分割1.影像增强:通过调整亮度、对比度、色彩平衡等参数,提高遥感影像的视觉效果。
常见的增强方法有:直方图均衡化、自适应直方图均衡化、色彩空间转换等。
2.影像分割:将融合后的遥感影像划分为不同的区域,以便进行后续分析。
常见的分割方法有:基于阈值的分割、基于区域的分割、基于边缘的分割、基于深度学习的分割等。
五、特征提取与分析1.特征提取:从遥感影像中提取有意义的特征,如纹理、颜色、形状等。
常见的特征提取方法有:灰度共生矩阵、局部二值模式(LBP)、HOG特征等。
遥感影像处理实验报告(3篇)
第1篇一、实验背景与目的随着遥感技术的不断发展,遥感影像已成为获取地球表面信息的重要手段。
遥感影像处理是对遥感影像进行一系列技术操作,以提高影像质量、提取有用信息的过程。
本实验旨在通过实践操作,让学生掌握遥感影像处理的基本原理和常用方法,提高学生对遥感影像数据的应用能力。
二、实验内容与步骤本次实验主要包括以下内容:1. 数据准备:获取实验所需的遥感影像数据,包括光学影像、红外影像等。
2. 影像预处理:对原始遥感影像进行辐射校正、几何校正、图像增强等处理。
3. 影像分割:对预处理后的影像进行分割,提取感兴趣的目标区域。
4. 影像分类:对分割后的影像进行分类,识别不同的地物类型。
5. 结果分析:对分类结果进行分析,评估分类精度。
三、实验步骤1. 数据准备- 获取实验所需的遥感影像数据,包括光学影像、红外影像等。
- 确保影像数据具有较好的质量和分辨率。
2. 影像预处理- 辐射校正:对原始遥感影像进行辐射校正,消除大气、传感器等因素对影像辐射强度的影响。
- 几何校正:对原始遥感影像进行几何校正,消除地形起伏、地球曲率等因素对影像几何形状的影响。
- 图像增强:对预处理后的影像进行图像增强,提高影像对比度、清晰度等。
3. 影像分割- 选择合适的分割方法,如基于阈值分割、基于区域生长分割、基于边缘检测分割等。
- 对预处理后的影像进行分割,提取感兴趣的目标区域。
4. 影像分类- 选择合适的分类方法,如监督分类、非监督分类等。
- 对分割后的影像进行分类,识别不同的地物类型。
5. 结果分析- 对分类结果进行分析,评估分类精度。
- 分析分类结果中存在的问题,并提出改进措施。
四、实验结果与分析1. 影像预处理结果- 经过辐射校正、几何校正和图像增强处理后,遥感影像的质量得到显著提高,对比度、清晰度等指标明显改善。
2. 影像分割结果- 根据实验所采用的分割方法,成功提取了感兴趣的目标区域,分割效果较好。
3. 影像分类结果- 通过选择合适的分类方法,对分割后的影像进行分类,成功识别了不同的地物类型。
遥感技术中遥感影像的处理方法详解
遥感技术中遥感影像的处理方法详解遥感技术是利用遥感设备获取地球上的图像和数据,以了解地球表面的各种特征和现象。
遥感影像是遥感技术的核心输出,它通过对地球表面进行高分辨率的拍摄和记录,提供了丰富的地理信息。
在遥感技术中,遥感影像的处理方法至关重要。
正确的处理方法可以提取出影像中有价值的信息,帮助我们深入了解地球表面的特征和变化。
下面将详细介绍几种常用的遥感影像处理方法。
1. 遥感影像的预处理遥感影像在传输和记录过程中可能会受到一些噪声和干扰的影响,因此需要进行预处理。
预处理的目标是去除噪声、调整图像的对比度和亮度,使得影像更适合进行后续的处理和分析。
常见的预处理方法包括数字滤波、辐射定标和大气校正等。
2. 遥感影像的几何校正遥感影像获取时可能会受到地球表面形变、传感器姿态等因素的影响,导致影像出现几何失真。
几何校正的目标是将影像的几何特征恢复到真实地面情况下的状态,使得影像能够准确地反映地面特征。
常见的几何校正方法包括地面控制点的定位和影像配准等。
3. 遥感影像的分类遥感影像的分类是将影像中的像素按照一定的特征进行划分和归类的过程。
根据不同的应用需求,遥感影像的分类可以包括地物类别的划分、植被覆盖度的估计、土地利用类型的分析等。
常见的分类方法包括基于像素的分类、基于对象的分类和基于深度学习的分类等。
4. 遥感影像的变化检测遥感影像的变化检测是指比较不同时段的遥感影像,分析地表特征在时间上的变化情况。
变化检测可以用于监测自然灾害、城市扩张、森林砍伐等方面的变化。
常见的变化检测方法包括像素级变化检测和基于对象的变化检测等。
5. 遥感影像的数据融合遥感影像的数据融合是将多源、多光谱或多分辨率的遥感影像进行融合,以提高遥感影像的空间和光谱分辨率。
数据融合可以增强遥感影像的细节信息,改善遥感影像的可视化效果,提高遥感影像在各种应用中的精度和效果。
常见的数据融合方法包括主成分分析、小波变换和多尺度分析等。
6. 遥感影像的特征提取遥感影像的特征提取是从遥感影像中提取出目标物体的特征信息的过程。
简述光学遥感影像预处理的大概过程
光学遥感影像预处理是指对获取的遥感影像进行一系列的处理,以便更好地应用于后续的遥感信息提取和分析。
其大概过程可以分为以下几个步骤:1. 数据获取在光学遥感影像预处理的过程中,首先需要获取遥感影像数据。
这些数据可以来自于卫星、飞机、无人机等评台获取的遥感影像数据。
在数据获取的过程中,需要注意遥感影像的分辨率、波段数量等参数,以便后续的处理和分析。
2. 数据预处理数据预处理是光学遥感影像预处理的重要步骤之一。
在这一步中,需要对原始的遥感影像数据进行校正和去噪。
校正包括大气校正、辐射校正等,去噪则是为了减少影像中的噪声对后续分析的影响。
3. 影像配准影像配准是指将获取的多幅遥感影像数据进行配准,使得它们能够在同一坐标系下进行分析。
这一步可以通过地面控制点配准、影像匹配等方法来实现。
4. 影像切割在光学遥感影像预处理中,有时需要将大块的遥感影像数据进行切割,以便更好地应用于特定的分析需求。
影像切割可以根据不同的地物类型、研究区域等进行划分。
5. 特征提取特征提取是光学遥感影像预处理的关键环节之一。
在这一步中,需要针对特定的分析目标提取出影像中的特征信息,如植被覆盖度、土地利用类型等。
这一步可以通过图像分类、目标检测等方法来实现。
光学遥感影像预处理是遥感领域中的重要环节,它能够提高后续遥感信息提取和分析的准确性和可靠性。
通过对遥感影像数据进行一系列的处理,可以更好地挖掘出影像中蕴含的丰富信息,为地球观测和环境监测等领域提供有力的支持。
在本次文章中,我们简要介绍了光学遥感影像预处理的大概过程,包括数据获取、数据预处理、影像配准、影像切割和特征提取等步骤。
这些步骤为后续遥感信息提取和分析打下了重要的基础,同时也为遥感数据的应用提供了可靠的数据支撑。
在未来的研究和实践中,我们需要进一步深入地探讨每个环节的具体方法和技术,以更好地应对复杂的遥感数据分析需求。
希望通过本次文章的介绍,读者能够对光学遥感影像预处理有一个初步的了解,并对其重要性有所认识。
遥感图象处理Ⅰ(图像预处理)
实验二遥感图象处理Ⅰ(图像预处理)1.1 概述图像预处理包括图像几何校正,图像裁剪处理和图像镶嵌处理三个部分。
由于遥感系统空间、波谱、时间以及辐射分辨率的限制,很难精确地记录复杂地表的信息,因而误差不可避免地存在于数据获取过程中。
这些误差降低了遥感数据的质量,从而影响了图像分析的精度。
因此在实际的图像分析和处理之前,有必要对遥感原始图像进行预处理。
经过预处理工作,针对遥感图像的变换、增强、分类等工作将会变得更加得心应手。
1.2 实验目的1通过本次上机实验,掌握遥感图像几何校正、裁剪与镶嵌处理的基本方法和步骤。
2深刻理解遥感图像预处理的意义。
3熟悉ERDAS数据预处理模块。
1.3 实验原理几何校正是利用地面控制点进行,用一种数学模型来近似描述遥感图像的几何畸变过程,并利用标准图像与畸变的遥感图像之间的一些对应点(地面控制点数据对)求得这个几何畸变模型,然后利用此模型进行几何畸变的校正,这种校正不考虑畸变的具体形成原因,而只考虑如何利用畸变模型来校正遥感图像。
步骤大致包括GCP(地面控制点)的选取、多项式纠正模型的选择、重采样,内插方法的选择三个环节。
如果工作区域较小,只要一景遥感图像中的局部就可以覆盖的话,就需要进行遥感图像裁剪处理。
同时,如果用户只关心工作区域之内的数据,而不需要工作区域之外的图像,同样需要按照工作区域边界进行图像裁剪。
于是就出现规则裁剪与任意多边形裁剪等类型。
如果工作区域较大,需要用两景或者多景遥感图像才能覆盖的话,就需要进行遥感图像镶嵌处理。
遥感图像镶嵌处理即将经过几何校正的若干相邻图像拼接成一副图像或一组图像。
注意:需要拼接的输入图像必须含有地图投影信息,且必须具有相同的波段数,但是可以具有不同的投影类型,像元大小也可以不同。
在进行图像镶嵌时,需要确定一副参考图像,参考图像将作为输出镶嵌图像的基准,决定镶嵌图像的对比度匹配,以及输出图像的地图投影,像元大小和数据类型。
1.4 实验过程1.4.1 遥感图像几何校正第1步:显示图像文件首先,在ERDAS图标面板中单击Viewer图标两次,打开两个视窗(Viewer#1/Viewer#2)。
实习一:遥感数据的预处理
功 能 查阅ERDAS信用卡 打开IMAGINE视窗 启动数据输入输出模块 启动数据预处理模块 启动专题制图模块 启动图像解译模块 启动图像库管理模块 启动图像分类模块 启动空间建模工具 启动雷达图像处理模块
Vector Virtual GIS
启动矢量功能模块 启动虚拟GIS模块
3、 ERDAS 功能体系
1、软件的基本情况
ERDAS IMAGINE是美国ERDAS公司开发的遥感 图像处理系统; 具有先进的图像处理技术,友好、灵活的用户界 面和操作方式,面向广阔应用领域的产品模块, 服务于不同层次用户的模型开发工具以及高度的 RS/GIS集成功能; 代表了遥感图像处理系统未来的发展趋势;
ERDAS公司是世界上占最大市场份额的专业遥感 图像处理软件公司,全球用户遍布100多个国家, 软件套数从1996年的12000套迅速增加到目前的近 50,000 套。
菜单命令
功能图标
图标
命 令 IMAGINE Credits Start IMAGINE Viewer Import / Export Data Preparation Map Composer Image Interpreter Image Catalog Image Classification Spatial Modeler Radar
输入 栅格图像数据 矢量图形数据 文本属性数据 ERDAS IMAGINE遥感图像处理系统
视窗操作
数据输入输出 数据预处理 几何校正、拼接镶嵌 图像解译 增强处理、傅立叶变换 高光谱工具、GIS分析 矢量功能 矢栅转换、矢量编辑 雷达图像处理 倾斜调整、斑点压缩 图像分类 非监督分类、监督分类 知识工程师、专家分类 虚拟GIS 三维飞行、虚拟世界
遥感影像预处理的正确步骤
遥感影像预处理的正确步骤遥感影像预处理是遥感技术中非常重要的一步,它能够提取出影像中所需的信息并减少干扰因素,为后续的数据分析和应用提供清晰的数据基础。
下面将介绍遥感影像预处理的正确步骤。
1. 数据获取遥感影像预处理的第一步是获取原始遥感影像数据。
可以通过卫星遥感、航空遥感或无人机遥感等方式获取。
获取到的原始数据可能包含噪声、失真等问题,需要进行预处理来提高数据质量。
2. 辐射校正遥感影像中的像素值受到辐射条件的影响,辐射校正是将像素值转换为能反映地物表面特征的物理量。
辐射校正的方法包括大气校正、辐射定标等,目的是消除大气、地表反射率等因素对影像的影响。
3. 几何校正几何校正是将遥感影像的像素与地理坐标系相对应,使得像素位置准确地对应于真实地物位置。
几何校正的主要工作包括影像配准、地面控制点获取和校正模型建立等过程。
4. 噪声去除遥感影像中常常存在各种噪声,如斑点噪声、椒盐噪声等。
噪声去除的方法包括滤波、插值等,以提高影像的质量和清晰度。
5. 影像增强影像增强是通过改变影像的对比度、亮度等参数,使得地物特征更加明显。
常用的影像增强方法有直方图均衡化、滤波增强等。
6. 影像融合影像融合是将多个不同波段或不同分辨率的遥感影像融合为一幅影像,以获取更全面、准确的信息。
融合方法包括基于像素级的融合和基于特征级的融合。
7. 尺度转换遥感影像通常具有不同的空间分辨率和时间分辨率,为了方便数据分析和应用,需要进行尺度转换。
常见的尺度转换方法有降尺度和升尺度等。
8. 数据裁剪根据具体应用需求,对遥感影像进行裁剪,提取感兴趣的区域或特定的地物信息。
9. 影像格式转换遥感影像通常有多种格式,如TIFF、JPEG、ENVI等,为了方便数据存储和共享,需要将影像格式进行转换。
10. 数据存储经过预处理的遥感影像需要进行数据存储,以备后续的数据分析和应用。
遥感影像预处理的正确步骤包括数据获取、辐射校正、几何校正、噪声去除、影像增强、影像融合、尺度转换、数据裁剪、影像格式转换和数据存储等。
影像预处理实验报告
一、实验目的本次实验旨在掌握遥感影像预处理的基本方法和步骤,了解不同预处理方法对影像质量的影响,提高遥感影像在实际应用中的可靠性。
二、实验内容1. 实验环境软件:ENVI 5.3硬件:****************************,16GB RAM,NVIDIA GeForce MX150 GPU数据:Landsat 8 OLI/TIRS 影像2. 实验步骤(1)影像校正1)辐射校正:根据Landsat 8产品的用户手册,利用ENVI软件对影像进行辐射校正,包括黑体校正和大气校正。
2)几何校正:选择控制点进行几何校正,校正精度达到亚米级。
(2)影像融合1)波段选择:根据研究需求,选择影像的可见光波段进行融合。
2)融合方法:采用ENVI软件中的Brovey融合方法,提高影像的视觉效果。
(3)影像增强1)对比度增强:使用ENVI软件中的直方图均衡化方法,提高影像的对比度。
2)色彩增强:调整影像的RGB通道,使影像颜色更加自然。
三、实验结果与分析1. 影像校正经过辐射校正和几何校正,影像的辐射质量和几何质量得到显著提高。
校正后的影像在亮度、对比度等方面均优于原始影像。
2. 影像融合融合后的影像具有更高的分辨率和更丰富的信息,有利于提高遥感影像的应用价值。
3. 影像增强经过对比度增强和色彩增强,影像的视觉效果得到明显改善,有利于用户对影像信息的解读。
四、实验总结本次实验通过对遥感影像进行预处理,提高了影像的质量和视觉效果,为后续遥感影像的应用提供了有力支持。
以下是实验过程中总结的经验和体会:1. 影像校正对于提高影像质量至关重要,应选择合适的校正方法和参数。
2. 影像融合可以提高影像分辨率和丰富信息,但需根据实际需求选择合适的融合方法和参数。
3. 影像增强可以改善影像视觉效果,提高用户对影像信息的解读。
4. 实验过程中,应注重数据的处理和记录,为后续分析提供依据。
5. 遥感影像预处理是一个复杂的过程,需要根据实际情况不断调整和优化预处理方法。
如何进行遥感影像的预处理和分类
如何进行遥感影像的预处理和分类遥感影像作为一种高效的地球观测手段,发挥着日益重要的作用。
然而,在利用遥感影像进行分析和研究之前,我们通常需要对其进行预处理和分类。
本文将探讨如何进行遥感影像的预处理和分类,以提高遥感数据的质量和准确性。
1. 导言遥感影像预处理是一项关键任务,其目的是消除或降低影像中的噪声、增强影像的细节、减小数据的冗余等。
预处理的步骤主要包括辐射校正、大气校正、几何校正和影像增强。
2. 遥感影像预处理辐射校正是遥感影像预处理的重要步骤之一。
由于遥感传感器的特性以及各种外界因素的干扰,遥感影像中的辐射值往往存在偏差。
因此,我们需要对数据进行辐射校正,以消除这些偏差,使得影像数据具有可比性和可量化比较的能力。
大气校正是指对影像中的大气折射进行校正。
由于大气层的存在,遥感影像中的辐射能量会受到大气散射的影响,从而降低影像的质量。
通过大气校正,我们可以消除或减小大气散射所引起的影响,进一步提高影像的准确性和可用性。
几何校正是为了消除遥感影像中的几何畸变。
由于拍摄时的姿态变化、传感器的畸变等因素,遥感影像中常常存在几何失真。
通过将影像与地面控制点进行匹配,并利用地面控制网进行几何变换,可以实现影像的几何校正,使得影像的尺度和形状具有真实的地理意义。
影像增强是为了改善遥感影像的可视性和信息提取能力。
通过增强对比度、增强细节、增强色彩等方式,我们可以使得影像更加清晰、更具特征、更易于解译。
3. 遥感影像分类遥感影像分类是指根据图像中的像元特征,将图像划分为不同的类别。
分类的目的是为了提取地表覆盖信息,如农田、森林、水体等。
在进行分类之前,通常需要进行特征选择和样本训练。
特征选择是选择对分类有区分度的特征。
在遥感影像中,常用的特征包括光谱特征、纹理特征、形状特征等。
通过分析这些特征的统计信息和空间关系,我们可以选择具有较高区分度的特征进行分类。
样本训练是指用已知类别的样本数据对分类器进行训练。
通过对样本数据的学习和分析,分类器可以建立一个数学模型,从而对未知样本进行分类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西师范大学地理与环境学院
实习报告
四、实习步骤(应附上不同过程中的实习结果,如图形、图像、数字等)
一、几种主要遥感平台的图像
1.NOAA气象卫星图像
ndsat ETM图像(XS_truecolor_sub.img)
3.Quickbird卫星图像(quickbird.img)
4.SAR图像(StereoSAR_Ref.img)
5.航空遥感图像(air-photo-1.img)
打开IMAGINE视窗打开图像
航空遥感图像(air-photo-1.img)
Quickbird卫星图像(quickbird.img)
SAR图像(StereoSAR_Ref.img)
Landsat ETM图像(XS_truecolor_sub.img)
NOAA气象卫星图像
二、遥感数据的输入、合成与输出
(利用NOAA数据1~5波段的数据进行数据的输入、合成与输出)
(1)单波段数据的输入(二进制图像数据的输入)
启动ERDAS IMAGINE数据输入输出模块(Import )
设
置
输
入
、
输
出
路
径
、
行
列
数
及
文
件
格
输出结果为:
(2)多波段数据的合成
启动图像解译模块->->加载5个波段的数据
(3)数据的输出与转换
启动ERDAS IMAGINE数据输入输出模块(将合成的图像转换输出成JPEG格式的图像)
三、遥感图像的镶嵌与裁切
(1)遥感图像的镶嵌
1.在ERDAS图标面板工具条单击Data Preparation->Mosaic Images
单击MosaicTool窗口,点击Edit->Add Images,然后依次加载镶嵌的数据:wasia1_mss.img、wasia2_mss.img和wasia3_tm.img
注:1拼接的图像必须经过了几何校正或几何配准
2拼接的图像必须具有相同的波段数
如下图:
2.Edit->Set Overlap Function,打开Set Overlap Function 对话框
①设置相交关系(Intersection Method)为
No Cutline Exists(没有裁切线)
②设置重叠区象元灰度计算(Select Function)
为Average(均值)
3.Edit->Color Corrections,打开Color Corrections 对话框
直方图匹配设置
忽略零值4.运行Process=>Run Mosaic,输出结果如下:以R1 G2 B3显示
(2)遥感图像的裁切
1) 规则范围的裁切
1.打开IMAGINE视窗加载将裁切的图像
2.点击右键,通过查询框(Inquire Box)定义裁切范围,
3.启动数据预处理模块(Data preparation),单击Subset Image
设置输入、输出路径;
通过查询框定义裁切范围;
数据类型Unsigned 8bit 、continous;
象元波段数1-7 七个波段;
(2)不规则分幅裁剪
1.打开IMAGINE视窗Viewer, 加载将裁切的图像Lanier.img
启动AOI->Tools,绘制AOI
裁切结果
2.保存AOI ,File ->Save->AOI layer as;
3.同上启动Subset对话框;调用AOI区域来裁切图像;
裁切结果
五、实习小结
通过掩膜运算(Mask)实现图像的不规则裁剪中,在设置裁剪区内外值后再做交集运算,最后没有出结果,遇到问题。
以及运用矢量图转换成栅格后进行裁剪也运行有错。