专题3.1 以立体几何中探索性问题为背景的解答题——新高考数学专项练习题附解析
专题3.1 以立体几何中探索性问题为背景的解答题——新高考数学专项练习题附解析
专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由.类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M ,使平面?说明理由.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为233.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 所成的锐二面角的余弦值为30?若存在,确定点E 的位置;若不存在,请说明理由.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =,试判断线段PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为15,若存在,求出PQ OB 的值;若不存在,说明理由.3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由;(Ⅱ)当二面角D FC B --的余弦值为24时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD -中,底面四边形ABCD 为正方形,已知PA ⊥平面ABCD ,2AB =,2PA =.(1)证明:BD PC ⊥;(2)求PC 与平面PBD 所成角的正弦值;(3)在棱PC 上是否存在一点E ,使得平面BDE ⊥平面BDP ?若存在,求PEPC的值并证明,若不存在,说明理由.5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值. 6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值;(2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.14. 【河南省开封市2019届高三上学期第一次模拟考试】如图所示,是边长为2的正方形,平面,且.(Ⅰ)求证:平面平面;(Ⅱ)线段上是否存在一点,使二面角所成角的余弦值为?若存在,请找出点的位置;若不存在,请说明理由.15.如图,五面体11A BCC B -中,14AB =,底面ABC 是正三角形,2AB =,四边形11BCC B 是矩形,二面角1A BC C --为直二面角.(1)D 在AC 上运动,当D 在何处时,有1//AB 平面1BDC ,并说明理由; (2)当1//AB 平面1BDC 时,求二面角1C BC D --余弦值.专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.2.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【答案】(1)见解析;(2)33,2【解析】(1)取线段EF的中点M,有GM∥平面BDF.证明如下:如图所示,取线段EF的中点M,∵G为线段ED的中点,M为线段EF的中点,∴GM为△EDF的中位线,故GM∥DF,又GM⊄平面BDF,DF⊂平面BDF,故GM∥平面BDF;(2)∵CF ∥DE ,且AE 与CF 的夹角为60°,故AE 与DE 的夹角为60°,即60AED ∠=︒, 过D 作DP ⊥AE 交AE 于P ,由已知得DE ⊥EF ,AE ⊥EF ,∴EF ⊥平面AED , EF ⊥DP,又AE EF=E,∴DP ⊥平面AEFB , 即DP 为点D 到平面ABFE 的距离,且3DP x =, 设DE =x ,则AE =BF =4﹣x , 由(1)知GM ∥DF ,G BDF M BDF D MBF V V V ---===11131(4)3322MBF S DP x x ⎡⎤⋅⋅=⨯⨯⨯-⨯⎢⎥⎣⎦()24333(4)x x x x -+=-⋅=,当且仅当4﹣x =x 时等号成立,此时x =DE =2. 故三棱锥G ﹣BDF 的体积的最大值为33,此时DE 的长度为2. 【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由. 【解析】(1)证明:由四边形为正方形可知,连接必与相交于中点故∵面∴面(2)线段上存在一点满足题意,且点是中点理由如下:由点分别为中点可得:∵面∴面由(1)可知,面且故面面类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【解析】(1)证明:连接,,=,因为ABCD是平行四边形,则为中点,连接,又为中点,面,面平面.(2)解(Ⅰ)当点在线段中点时,有平面取中点,连接,又,又,,平面,又是正三角形,平面(Ⅱ)当时,有平面平面过作于,由(Ⅰ)知,平面,所以平面平面易得【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M,使平面?说明理由.【解析】(Ⅰ)证明:在三棱柱中,因为底面,CD⊂平面ABC,所以.又为等边三角形,为的中点,所以.因为,所以平面;(Ⅱ)取中点,连结,则因为,分别为,的中点,所以.由(Ⅰ)知,,如图建立空间直角坐标系.由题意得,,,,,,,,,.设平面法向量,则即令,则,.即.平面BAE法向量.因为,,,所以由题意知二面角为锐角,所以它的余弦值为.(Ⅲ)解:在线段上不存在点M,使平面.理由如下.假设线段上存在点M,使平面.则,使得.因为,所以.又,所以.由(Ⅱ)可知,平面法向量,平面,当且仅当,即,使得.所以 解得.这与矛盾.所以在线段上不存在点M ,使平面.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为23.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 30E 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,点E 位于AS 的靠近A 点的三等分点. 【解析】(1)证明:因为E 、F 分别是SA 、SB 的中点, 所以EF AB ∥,在矩形ABCD 中,AB CD ∥, 所以EF CD ∥,又因为E 、P 分别是SA 、AD 的中点, 所以∥EP SD ,又因为EF CD ∥,EF EP E ⋂=,,EF EP ⊂平面PEF ,,SD CD ⊂平面SCD ,所以平面∥PEF 平面SCD .(2)解:假设棱SA 上存在点E 满足题意. 在等边三角形SAD 中,P 为AD 的中点, 于是SP AD ⊥,又平面SAD ⊥平面ABCD , 平面SAD ⋂平面ABCD AD =,SP ⊂平面SAD ,所以SP ⊥平面ABCD ,所以SP 是四棱锥S ABCD -的高, 设AD m =,则SP =,ABCD S m =矩形,所以1133S ABCD ABDD V S SP m -=⋅==矩形 所以2m =,以P 为坐标原点,PA 所在直线为x 轴,过点P 与AB 平行的直线为y 轴,PS 所在直线为z 轴,建立如图所示的空间直角坐标系.则()0,0,0P ,()1,0,0A ,()1,1,0B,(S ,设(()()01AE AS λλλλ==-=-≤≤,()()1,0,0PE PA AE λ=+=+-()1λ=-,()1,1,0PB =,设平面PEB 的一个法向量为()1,,n x y z =,有()1110n PE x z n PB x y λ⎧⋅=-+=⎪⎨⋅=+=⎪⎩, 令3x λ=,则()13,,1n λλ=-,易知平面SAD 的一个法向量()20,1,0n =,所以12122123cos ,721n n n n n n λλλ-⋅==-+30=, 因为01λ≤≤, 所以13λ=, 所以存在点E ,位于AS 的靠近A 点的三等分点.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【答案】(1)见解析;(2)1CE =.【解析】(1)取1AB 中点G ,连结EG FG 、,则FG ∥1BB 且112FG BB =. 因为当E 为1CC中点时,CE ∥1BB 且112CE BB =, 所以FG ∥CE 且FG = CE .所以四边形CEGF 为平行四边形,CF ∥EG , 又因为1CF AEB ⊄平面,1EG AEB ⊂平面, 所以//CF 平面1AEB ;(2)假设存在满足条件的点E ,设()01CE λλ=≤≤.以F 为原点,向量1FB FC AA 、、方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系. 则()3,0,0A -,()13,0,2B ,()0,1,E λ,平面ABC 的法向量()0,0,1m =,平面1AEB 的法向量()333,3n λ=--,,()23cos 23991m n m n m nλ⋅===++-,,解得1λ=,所以存在满足条件的点E ,此时1CE =.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 【答案】(1)见解析(2)36【解析】 (Ⅰ)取PD 的中点M ,连接AM ,M Q ,Q PC点是的中点,∴M Q∥CD,1.2MQ CD=又AB∥CD,1,2AB CD QM=则∥AB,QM=AB,则四边形ABQM是平行四边形.BQ∴∥AM.又AM⊂平面PAD,BQ⊄平面PAD,BQ∴∥平面PAD.(Ⅱ)解:由题意可得DA,DC,DP两两垂直,以D为原点,DA,DC,DP所在直线为,,x y z轴建立如图所示的空间直角坐标系,则P(0,1,1),C(0,2,0),A(1,0,0),B(1,1,0).令()()()000000,,,,,1,0,2,1.Q x y z PQ x y z PC=-=-则()()000,,,10,2,1,PQ PC x y zλλ=∴-=-()0,2,1.Qλλ∴-又易证BC⊥平面PBD,()1,1,0.n PBD∴=-是平面的一个法向量设平面QBD的法向量为(),,,m x y z=(),0,0,2210,.0,1x yx ym DBy z z ym DQλλλλ=-⎧+=⎧⎧⋅=⎪⎨⎨⎨+-==⋅=⎩⎩⎪-⎩则有即解得令21,1,1,.1y mλλ⎛⎫==-⎪-⎝⎭则60Q BD P 二面角为--,21cos,,22221m n m n m nλλ⋅∴===⎛⎫⋅+ ⎪-⎝⎭解得3 6.λ=±Q 在棱PC 上,01,3 6.λλ<<∴=-2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为155,若存在,求出PQ OB 的值;若不存在,说明理由.【答案】(1)证明见解析(215【解析】(1)证明:连接BE ,在等腰梯形中ABCD ,2AD AB BC ===,4CD =,E 为中点, ∴四边形ABED 为菱形,∴BD AE ⊥,∴OB AE ⊥,OD AE ⊥,即OB AE ⊥,OP AE ⊥,且OBOP O =,OB ⊂平面POB ,OP ⊂平面POB ,∴AE ⊥平面POB .又AE ⊂平面ABCE ,∴平面POB ⊥平面ABCE . (2)由(1)可知四边形ABED 为菱形,∴2AD DE ==, 在等腰梯形ABCD 中2AE BC ==,∴PAE △正三角形, ∴3OP =3OB =∵6PB =,∴222OP OB PB +=,∴OP OB ⊥.由(1)可知OP AE ⊥,OB AE ⊥,以O 为原点,OE ,OB ,OP 分别为x 轴,y 轴,为z 轴,建立空间直角坐标系O xyz -, 由题意得,各点坐标为()0,0,3P ,()1,0,0A -,()0,3,0B,()2,3,0C ,()1,0,0E ,∴(3,3PB =-,(3,3PC =-,()2,0,0AE =,设()01PQ PB λλ=<<,()1,333AQ AP PQ AP PB λλλ=+=+=, 设平面AEQ 的一个法向量为(),,n x y z =,则00n AE n AQ ⎧⋅=⎨⋅=⎩,即()203330x x y λλ=⎧⎪⎨++=⎪⎩,取0x =,1y =,得1z λλ=-,∴0,1,1n λλ⎛⎫= ⎪-⎝⎭,设直线PC 与平面AEQ 所成角为θ,π0,2θ⎡⎤∈⎢⎥⎣⎦, 则15sin cos ,5PC nPC n PC nθ⋅===,即2331511011λλλλ+-=⎛⎫+ ⎪-⎝⎭化简得:24410λλ-+=,解得12λ=, ∴存在点Q 为PB 的中点时,使直线PC 与平面AEQ 所成角的正弦值为155. 3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由; (Ⅱ)当二面角D FC B --的余弦值为2时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒ 【解析】(Ⅰ)在棱AB 上存在点E ,使得//AF 平面PCE ,点E 为棱AB 的中点. 理由如下:取PC 的中点Q ,连结EQ 、FQ ,由题意,//FQ DC 且12FQ CD =, //AE CD 且12AE CD =,故//AE FQ 且AE FQ =.所以,四边形AEQF 为平行四边形.所以,//AF EQ ,又EQ ⊥平面PEC ,AF ⊥平面PEC ,所以,//AF 平面PEC . (Ⅱ)由题意知ABD ∆为正三角形,所以ED AB ⊥,亦即ED CD ⊥,又90ADP ∠=︒,所以PD AD ⊥,且平面ADP ⊥平面ABCD ,平面ADP ⋂平面ABCD AD =, 所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图空间直角坐标系,设FD a =,则由题意知()0,0,0D ,()0,0,F a ,()0,2,0C ,)3,1,0B,()0,2,FC a =-,()3,1,0CB =-,设平面FBC 的法向量为(),,m x y z =,则由m FCm CB⎧⋅=⎨⋅=⎩得2030y azx y-=⎧⎪⎨-=⎪⎩,令1x=,则3y=,23z=,所以取231,3,m⎛⎫= ⎪⎪⎝⎭,显然可取平面DFC的法向量()1,0,0n=,由题意:22cos,41213m na==++,所以3a=.由于PD⊥平面ABCD,所以PB在平面ABCD内的射影为BD,所以PBD∠为直线PB与平面ABCD所成的角,易知在Rt PBD∆中,tan3PDPBD aBD∠===,从而60PBD∠=︒,所以直线PB与平面ABCD所成的角为60︒.4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD-中,底面四边形ABCD为正方形,已知PA⊥平面ABCD,2AB=,2PA=.(1)证明:BD PC⊥;(2)求PC与平面PBD所成角的正弦值;(3)在棱PC上是否存在一点E,使得平面BDE⊥平面BDP?若存在,求PEPC的值并证明,若不存在,说明理由.【答案】(1)证明见解析;(210;(3)存在,23PEPC=,理由见解析【解析】(1)如图,连接AC交BD于点O,由于PA⊥平面ABCD,BD⊂平面ABCD所以PA BD⊥,即BD PA⊥由于BD PA ⊥,BD AC ⊥,PA AC A =,所以BD ⊥平面PAC又因为PC ⊂平面PAC ,因此BD PC ⊥ (2)由于PA ⊥平面ABCD ,AB平面ABCD ,AD ⊂平面ABCD ,所以PA AB ⊥,PA AD ⊥又AB AD ⊥,所以PA ,AB ,AD 两两垂直, 因比,如图建立空间直角坐标系A xyz -(2,0,0)B ,(2,2,0)C ,(0,2,0)D,P因此(2,2,PC =,(2,0,PB =,(0,2,PD =设平面PBD 的法向量为(,,)m x y z =,则00m PB m PD ⎧⋅=⎨⋅=⎩即2020x y ⎧=⎪⎨=⎪⎩ 取1x =,1y =,z =,则(1,1,2)m =设直线PC 与平面PBD 所成角为θ,10sin |cos ,|=||10||||m PC m PC m PC θ⋅=<>=⋅(3)存在,设[0,1]PEPCλ=∈,则(2,2))E λλλ- 则(22,2))BE λλλ=--,(2,2,0)BD =-设平面BDE 的法向量为(,,)n a b c =,则0n BE n BD ⎧⋅=⎨⋅=⎩,即2(1)2(1)0220a b a bλλλ⎧-+-=⎪⎨-+=⎪⎩,即1a λ=-,1b λ=-,2)c λ=-则(1,12))n λλλ=---,若平面BDE ⊥平面BDP ,则0m n ⋅=即1(1)1(1)2)0λλλ⋅-+⋅-+-=,则2[0,1]3λ=∈ 因此在棱PC 上存在点E ,使得平面BDE ⊥平面BDP ,23PE PC =5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值.【解析】设AE=BF=x.以D为原点建立空间直角坐标系,得下列坐标:D(0,0,0),A(2,0,0),B (2,2,0),C(0,2,0),D1(0,0,2),A1(2,0,2),B1(2,2,2),C1(0,2,2),E(2,x,0),F(2﹣x,2,0).(1)因为,,所以.所以A1F⊥C1E.(2)因为,所以当S△BEF取得最大值时,三棱锥B1﹣BEF的体积取得最大值.因为,所以当x=1时,即E,F分别是棱AB,BC的中点时,三棱锥B1﹣BEF的体积取得最大值,此时E,F坐标分别为E(2,1,0),F(1,2,0).设平面B1EF的法向量为,则得取a=2,b=2,c=﹣1,得.显然底面ABCD的法向量为.设二面角B1﹣EF﹣B的平面角为θ,由题意知θ为锐角.因为,所以,于是.所以,即二面角B1﹣EF﹣B的正切值为.6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.【解析】(1)∵在底面中,,且∴,∴又∵,,平面,平面∴平面又∵平面∴∵,∴又∵,,平面,平面∴平面(2)方法一:在线段上取点,使则又由(1)得平面∴平面又∵平面∴作于又∵,平面,平面∴平面又∵平面∴又∵∴是二面角的一个平面角设则,这样,二面角的大小为即即∴满足要求的点存在,且方法二:取的中点,则、、三条直线两两垂直∴可以分别以直线、、为、、轴建立空间直角坐标系且由(1)知是平面的一个法向量设则,∴,设是平面的一个法向量则∴令,则,它背向二面角又∵平面的法向量,它指向二面角这样,二面角的大小为即即∴满足要求的点存在,且7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.【解析】(1)由题设知,平面平面,交线为.因为,平面,所以平面,因此,又,,所以平面.而平面,所以平面平面.(2)以为坐标原点,的方向为轴正方向建立如图所示的直角坐标系,则有,过点作于,设,则.因为,所以,,由题设可得,即,解得或,因为,所以,所以,.由,知是平面的法向量,,.设平面的法向量为,则取得,设二面角为,则,因为,.综上,二面角的正弦值为.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值. 【解析】(1)证明:由已知,得,在中,,∴,即,∵平面,平面,∴,又∵,平面,平面,∴平面(2)∵平面,∴为直线与平面所成角,∴,∴,在中,,取的中点,连结,则,∵平面,平面,∴,又∵,平面,平面,∴平面,以点为坐标原点,建立如图空间直角坐标系,则,,,,∴,,设平面的法向量为,则,取,解得,又平面的法向量为,∴.∴二面角的余弦值为.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.【解析】证明:(1)取中点,连,连.在△中,因为分别是中点,所以,且.在平行四边形中,因为是的中点,所以,且.所以,且.所以四边形是平行四边形.所以.又因为平面,平面,所以平面.(2)因为侧面是正方形,所以.又因为平面平面,且平面平面,所以平面.所以.又因为,以为原点建立空间直角坐标系,如图所示. 设,则,.(ⅰ)设平面的一个法向量为.由得即令,所以. 又因为平面,所以是平面的一个法向量.所以.由图可知,二面角为钝角,所以二面角的大小为. (ⅱ)假设在线段上存在点,使得.设,则.因为,又,所以.所以.故点在点处时,有10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.【解析】(1)证明:由平面几何的知识,易得2BD =, 2AD =,又22AB =,所以在ABD ∆中,满足222AD BD AB +=,所以ABD ∆为直角三角形,且BD AD ⊥. 因为四边形BDMN 为矩形,所以BD DM ⊥. 由BD AD ⊥, BD DM ⊥, DM AD D ⋂=, 可得 BD ADM ⊥平面. 又BD ABD ⊂平面,所以平面ADM ⊥平面ABCD .(2)存在点H ,使得二面角H AD M --为大小为,点H 为线段AB 的中点.事实上,以D 为原点, DA 为x 轴, DB 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系D xyz -,则()()()0,0,0,2,0,0,0,2,0D A B , ()1,0,1M , 设(),,H x y z ,由MH MN DB λλ==,即()()1,,10,2,0x y z λ--=,得()1,2,1H λ. 设平面ADH 的一个法向量为()1111,,n x y z =,则,即,不妨设11y =,取()10,1,2n λ=-. 平面ADM 的一个法向量为()20,1,0n =. 二面角H AD M --为大小为于是.解得 或(舍去).所以当点H 为线段MN 的中点时,二面角H AD M --为大小为.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.法二:如图,以O 为原点,分别以过O 点与DB 共线同向的向量, OD , OP 方向上的单位向量为单位正交基建立空间直角坐标系O xyz -,则()()()()()0,0,0,0,2,0,2,1,0,2,1,0,0,0,3,O A B C P --()()()0,2,3,4,0,0,2,3,0AP BC AC ==-=-∴0AP BC ⋅= ∴AP BC ⊥ ∴AP BC ⊥(2)假设M 点存在,设AM AP λ=, (),,M x y z ,则(),2,AM x y z =+,∴()(),2,0,2,3x y z λ+=,∴0{22 3x y z λλ=+==,∴()0,22,3M λλ-, ∴()2,23,3BM λλ=--设平面MBC 的法向量为()1111,,n x y z =,平面APC 的法向量为()2222,,n x y z = 由110{n BM n BC ⋅=⋅=得()111122330{40x y z x λλ-+-+=-=,令11y =,可得1320,1,3n λλ-⎛⎫= ⎪⎝⎭, 由220{n AC n AP ⋅=⋅=得2222230{230x y y z -+=+=,令16y =,可得()29,6,4n =-,若二面角A MC B --为直二面角,则120n n ⋅=,得326403λλ--⋅=, 解得613λ=,∴613AM =故线段AP 上是否存在一点M ,满足题意, AM 的长为613. 12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值; (2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置. 【解析】(1)在中,记,,则由余弦定理:,(当且仅当时,上式取等号)此时,,的面积的最大值为.(2)由(1)知,,,设存在,在三棱锥中,取的中点,连接,易知.作于,由平面平面平面.故在平面上的投影为.与平面所成的角为,由.设,得,,故.故存在,且,满足题意.(2)另解:由(1),,设存在,则在三棱锥中,取的中点,连接,易求.以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,平面的法向量为,设,得,得,又.由.故存在,且,满足题意.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.【解析】(1)连接交于,连接,则是平面与平面的交线.因为平面,平面,所以.又因为是中点,所以是的中点.所以.(2)由已知条件可知,所以,以为原点,为轴,为轴,为轴建立空间直角坐标系.。
专题12 立体几何中探索性问题(解析版)
专题12 立体几何中探索性问题专题概述立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.典型例题【例1】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ;(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值.【分析】(1)推导出1AA AB ⊥,1A A AC ⊥,从而1A C ⊥平面1ABC ,由此能证明平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,取1A A 的中点F ,连接EF ,FD ,设点E 到平面1ABC的距离为d ,由11E ABC C ABE V V --=,求出d .以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1E AC B --的余弦值.【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,ABBC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥.又1A A AC =,11AC AC ∴⊥.又11BC AC ⊥,111BC AC C =,1AC ∴⊥平面1ABC , 又1A C ⊂平面11A ACC ,∴平面1ABC ⊥平面11A ACC .解:(2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,如图,取1A A 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EFDF F =,1ABAC A =,∴平面//EFD 平面1ABC ,则有//DE 平面1ABC .设点E 到平面1ABC 的距离为d ,AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥,∴1122BAC S=⨯= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB ,11//AC AC ,11AC ∴⊥平面11ABB ,∴11111182243323C ABE ABE V S AC -∆=⨯⨯=⨯⨯⨯⨯=, 由1183E ABC C ABE V V --==,解得188333ABC d S=⨯==以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系, (0A ,0,0),(2B ,0,0),1(0C ,4,4),(2E ,0,2), 1(0AC =,4,4),(2AB =,0,0),(2AE =,0,2),设平面1AC E 的法向量(n x =,y ,)z ,则1440220n AC y z n AE x z ⎧=+=⎪⎨=+=⎪⎩,取1x =,得(1n =,1,1)-, 设平面1AC B 的法向量(m x =,y ,)z ,则144020m AC y z m AB x ⎧=+=⎪⎨==⎪⎩,取1y =,得(0m =,1,1)-, 设二面角的平面角为θ, 则6cos ||||32m n m n θ===.∴二面角1E AC B --【例2】在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且1BC BB ==,1160A AB A AD ∠=∠=︒. (1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB .【分析】(1)连接1A B ,1A D ,AC ,则△1A AB 和△1A AD 均为正三角形,设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥,由四边形ABCD 是正方形,得AC BD ⊥,从而BD ⊥平面1A AC .进而1BD AA ⊥,由此能证明1BD CC ⊥.(2)推导出11A B A D ⊥,1AO AO ⊥,1AO BD ⊥,从而1A O ⊥底面ABCD ,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -,利用向量法能求出当E 为11D C 的中点时,直线DE 与平面1BDB . 【解答】解:(1)连接1A B ,1A D ,AC , 因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以△1A AB 和△1A AD 均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥, 而1A OAC O =,所以BD ⊥平面1A AC .又1AA ⊂平面1A AC ,所以1BD AA ⊥,又11//CC AA ,所以1BD CC ⊥.(2)由11A B A D ==2BD ==,知11A B A D ⊥,于是1112AO AO BD AA ===,从而1AO AO ⊥, 结合1AO BD ⊥,1A AC O =,得1A O ⊥底面ABCD ,所以OA 、OB 、1OA 两两垂直.如图,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -, 则(1A ,0,0),(0B ,1,0),(0D ,1-,0),1(0A ,0,1),(1C -,0,0), (0,2,0)DB =,11(1,0,1)BB AA ==-,11(1,1,0)D C DC ==-,由11(1,0,1)DD AA ==-,得1(1D -,1-,1).设111([0,1])D E D C λλ=∈,则(1E x +,1E y +,1)(1E z λ-=-,1,0),即(1E λ--,1λ-,1), 所以(1,,1)DE λλ=--.设平面1B BD 的一个法向量为(,,)n x y z =, 由100n DB n BB ⎧=⎪⎨=⎪⎩得00y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =,设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|2DE n θ=<>==⨯, 解得12λ=或13λ=-(舍去), 所以当E 为11D C 的中点时,直线DE 与平面1BDB .【变式训练】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥ (1)求证:平面1ABC ⊥平面11A ACC(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使//DE 平面1ABC ,若存在,求点E 到平面1ABC 的距离.【分析】(1)在三棱柱111ABC A B C -中,由侧面11ABB A 是矩形,可得1AA AB ⊥,又1AA BC ⊥,可得1AA ⊥平面ABC ,得到1AA AC ⊥,进一步有11AC AC ⊥,结合11BC AC ⊥,可得1A C ⊥平面1ABC ,由面面垂直的判定得平面1ABC ⊥平面11A ACC ;(2)当E 为1BB 的中点时,连接AE ,1EC ,DE ,取1AA 的中点F ,连接EF ,FD ,由面面平行的判定和性质可得//DE 平面1ABC ,咋爱优等体积法可求点E 到平面1ABC 的距离为. 【解答】(1)证明:在三棱柱111ABC A B C -中,侧面11ABB A 是矩形, 1AA AB ∴⊥,又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1AA AC ∴⊥,又1AA AC =,11AC AC ∴⊥, 又11BC AC ⊥,111BC AC C =,1A C ∴⊥平面1ABC ,又1A C ⊂平面11A ACC ,∴平面1ABC ⊥平面11A ACC ;(2)解:当E 为1BB 的中点时,连接AE ,1EC ,DE , 如图,取1AA 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EF DF F =,1ABAC A =,∴平面//EFD 平面1ABC ,又DE ⊂平面EFD ,//DE ∴平面1ABC ,又11E ABC C ABE V V --=,11C A ⊥平面ABE ,设点E 到平面1ABC 的距离为d ,∴111122243232d ⨯⨯⨯=⨯⨯⨯⨯,得d =∴点E 到平面1ABC专题强化1.(2020•3月份模拟)如图.在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面三角形ABC 是等边三角形)中,1BC CC =,M 、N 、P 分别是1CC ,AB ,1BB 的中点. (1)求证:平面//NPC 平面1AB M ;(2)在线段1BB 上是否存在一点Q 使1AB ⊥平面1A MQ ?若存在,确定点Q 的位置;若不存在,也请说明理由.【分析】(1)由M 、N 、P 分别是1CC ,AB ,1BB 的中点.利用平行四边形、三角形中位线定理即可得出1//NP AB ,1//CP MB ,再利用线面面面平行的判定定理即可得出结论.(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ .四边形11ABB A 是正方形,因此点Q 为B 点.不妨取2BC =.判断10AB MQ =是否成立即可得出结论.【解答】(1)证明:M 、N 、P 分别是1CC ,AB ,1BB 的中点. 1//NP AB ∴,四边形1MCPB 为平行四边形,可得1//CP MB ,NP ⊂/平面1AB M ;1AB ⊂平面1AB M ;//NP ∴平面1AB M ;同理可得//CP 平面1AB M ;又CP NP P =,∴平面//NPC 平面1AB M .(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ . 四边形11ABB A 是正方形,因此点Q 为线段1BB 的中点. 不妨取2BC =.(0M ,1-,1),(0Q ,1,0),A 0,0),1(0B ,1,2),1(AB =-1,2),(0MQ =,2,1)-, 10AB MQ =.∴在线段1BB 上存在一点Q ,使1AB ⊥平面1A MQ ,其中点Q 为线段1BB 的中点2.(2020•湖南模拟)如图,AB 为圆O 的直径,点E 、F 在圆O 上,//AB EF ,矩形ABCD 所在的平面与圆O 所在的平面互相垂直.已知2AB =,1EF =. (Ⅰ)求证:平面DAF ⊥平面CBF ; (Ⅰ)求直线AB 与平面CBF 所成角的大小;(Ⅰ)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60︒?【分析】()I 利用面面垂直的性质,可得CB ⊥平面ABEF ,再利用线面垂直的判定,证明AF ⊥平面CBF ,从而利用面面垂直的判定可得平面DAF⊥平面CBF;()II确定ABF∠为直线AB与平面CBF所成的角,过点F作FH AB⊥,交AB于H,计算出AF,即可求得直线AB与平面CBF所成角的大小;(Ⅰ)建立空间直角坐标系,求出平面DCF的法向量1(0,2,n t=,平面CBF的一个法向量21(0)2n AF==-,利用向量的夹角公式,即可求得AD的长.【解答】()I证明:平面ABCD⊥平面ABEF,CB AB⊥,平面ABCD⋂平面ABEF AB=,CB∴⊥平面ABEF.AF ⊂平面ABEF,AF CB∴⊥,⋯(2分)又AB为圆O的直径,AF BF∴⊥,AF∴⊥平面CBF.⋯(3分)AF ⊂平面ADF,∴平面DAF⊥平面CBF.⋯(4分)()II解:根据(Ⅰ)的证明,有AF⊥平面CBF,FB∴为AB在平面CBF内的射影,因此,ABF∠为直线AB与平面CBF所成的角⋯(6分)//AB EF,∴四边形ABEF为等腰梯形,过点F作FH AB⊥,交AB于H.2AB=,1EF=,则122AB EFAH-==.在Rt AFB∆中,根据射影定理2AF AH AB=,得1AF=.⋯(8分)∴1sin2AFABFAB∠==,30ABF∴∠=︒.∴直线AB与平面CBF所成角的大小为30︒.⋯(9分)(Ⅰ)解:设EF中点为G,以O为坐标原点,OA、OG、AD方向分别为x轴、y轴、z轴方向建立空间直角坐标系(如图).设(0)AD t t=>,则点D的坐标为(1,0,)t,则(1C-,0,)t,1(1,0,0),(1,0,0),(2A B F-∴1(2,0,0),(,)2CD FD t==⋯(10分)设平面DCF的法向量为1(,,)n x y z=,则1n CD =,1n FD =,即200.xy tz=⎧⎪⎨+=⎪⎩令z=,解得0x=,2y t=,∴1(0,2,n t=⋯(12分)由()I 可知AF ⊥平面CFB ,取平面CBF 的一个法向量为21(,0)2n AF ==-,依题意1n 与2n 的夹角为60︒,∴1212cos60||||n n n n ︒=,即12=,解得t =因此,当AD 时,平面与DFC 平面FCB 所成的锐二面角的大小为60︒.⋯(14分)3.(2019•全国二模)如图,直三棱柱111ABC A B C -中,点D 是棱11B C 的中点. (Ⅰ)求证:1//AC 平面1A BD ;(Ⅰ)若AB AC =12BC BB ==,在棱AC 上是否存在点M ,使二面角1B A D M --的大小为45︒,若存在,求出AMAC的值;若不存在,说明理由.【分析】(Ⅰ)先连接1AB ,交1A B 于点O ,再由线面平行的判定定理,即可证明1//AC 平面1A BD ; (Ⅰ)先由题意得AB ,AC ,1AA 两两垂直,以A 为原点,建立空间直角坐标系A xyz -,设(0M ,a ,0),(02)a,求出两平面的法向量,根据法向量夹角余弦值以及二面角的大小列出等式,即可求出a ,进而可得出结果.【解答】证明:(Ⅰ)连接1AB ,交1A B 于点O ,则O 为1AB 中点, 连接OD ,又D 是棱11B C 的中点,1//OD AC ∴, OD ⊂平面1A BD ,1AC ⊂/平面1A BD ,1//AC ∴平面1A BD .解:(Ⅰ)由已知AB AC ⊥,则AB ,AC ,1AA 两两垂直, 以A 为原点,如图建立空间直角坐标系A xyz -,则B ,1(0A ,0,2),D ,2),(0C0), 设(0M ,a ,0),(02)a,则1(2)BA =-,12(A D =0),1(0A M =,a ,2)-, 设平面1BA D 的法向量为(n x =,y ,)z ,则11220202n BA z n A D y ⎧=-+=⎪⎨=+=⎪⎩,取1z =,得(2,n =-1). 设平面1A DM 的法向量为(m x =,y ,)z ,则1120202m A M ay z m A D y ⎧=-=⎪⎨=+=⎪⎩,2x =-,得(2m =-,2,)a . 二面角1BA D M --的大小为45︒, 2|||2222cos 45|cos ,|||||58m na m n m n a --+∴︒=<>===+,23240a ∴+-=,解得a =-a =02a 3a ∴=, ∴存在点M ,此时23AM AC =,使二面角1B A D M --的大小为45︒.4.(2019•3月份模拟)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为BC 边上一点,BD =122AA AB AD ===.(1)证明:平面1ADB ⊥平面11BB C C .(2)若BD CD =,试问:1A C 是否与平面1ADB 平行?若平行,求三棱锥11A A B D -的体积;若不平行,请说明理由.【分析】(1)先证AD 与BC ,1BB 垂直,进而得线面垂直,面面垂直;(2)连接1A B 得中点E ,利用中位线得线线平行,进而得线面平行,再利用等分三棱柱的方法求得三棱锥的体积.【解答】解:(1)证明:2AB =,1AD =,BD =AD BD ∴⊥,1AA ⊥平面ABC ,1BB ∴⊥平面ABC , 1BB AD ∴⊥,AD ∴⊥平面11BB C C ,∴平面1ADB ⊥平面11BB C C ;(2)1A C 与平面1ADB 平行,证明如下:连接1A B 交1AB 于E ,连接DE ,则E 为1AB 中点, BD CD =,1//AC DE ∴, 又1A C ⊂/平面1ADB ,DE ⊂平面1ADB , 1//AC ∴平面1ADB , 利用三等分三棱柱的知识可知, 1111116A A B D A B C ABC V V --=116ABC S AA ∆=⨯ 11162BC AD AA =⨯⨯⨯ 111262=⨯⨯⨯=.故三棱锥11A A B D -. 5.(2018秋•全国期末)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是菱形,111112AA A B AB ===,60ABC ∠=︒,1AA ⊥平面ABCD .(1)若点M 是AD 的中点,求证:1//C M 平面11AA B B ;(2)棱BC 上是否存在一点E ,使得二面角1E AD D --的余弦值为13?若存在,求线段CE 的长;若不存在,请说明理由.【分析】(1)连接1B A ,推导出四边形11AB C M 是平行四边形,从而11//C M B A ,由此能证明1//C M 平面11AA B B .(2)取BC 中点Q ,连接AQ ,推导出AQ BC ⊥,AQ AD ⊥,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出结果.【解答】证明:(1)连接1B A ,由已知得,11////B C BC AD ,且1112B C AM BC == 所以四边形11AB C M 是平行四边形,即11//C M B A ⋯(2分)又1C M ⊂/平面11AA B B ,1B A ⊂平面11AA B B , 所以1//C M 平面11AA B B ⋯(4分)解:(2)取BC 中点Q ,连接AQ ,因为ABCD 是菱形,且60ABC ∠=︒, 所以ABC ∆是正三角形,所以AQ BC ⊥,即AQ AD ⊥, 由于1AA ⊥平面ABCD ⋯(6分)所以,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系, 如图(0A ,0,0),1(0A ,0,1),1(0D ,1,1),Q 假设点E 存在,设点E的坐标为,0)λ,11λ-, (3,0)AE λ=,1(0,1,1)AD =⋯(7分)设平面1AD E 的法向量(,,)n x y z =则100n AE n AD ⎧=⎪⎨=⎪⎩,即00y y z λ+=+=⎪⎩,可取(,3,n λ=-⋯(9分)平面1ADD 的法向量为(3,0,0)AQ =⋯(10分) 所以,31|cos ,|33AQ n λ<>==,解得:λ=(11分) 又由于二面角1E AD D --大小为锐角,由图可知,点E 在线段QC 上, 所以λ,即1CE =-(12分)6.(2019•山东模拟)如图所示的矩形ABCD 中,122AB AD ==,点E 为AD 边上异于A ,D 两点的动点,且//EF AB ,G为线段ED 的中点,现沿EF 将四边形CDEF 折起,使得AE 与CF 的夹角为60︒,连接BD ,FD .(1)探究:在线段EF 上是否存在一点M ,使得//GM 平面BDF ,若存在,说明点M 的位置,若不存在,请说明理由;(2)求三棱锥G BDF -的体积的最大值,并计算此时DE 的长度.【分析】(1)取线段EF 的中点M ,由G 为线段ED 的中点,M 为线段EF 的中点,可得//GM DF ,再由线面平行的判定可得//GM 平面BDF ;(2)由//CF DE ,且AE 与CF 的夹角为60︒,可得AE 与DE 的夹角为60︒,过D 作DP 垂直于AE 交AE 于P ,由已知可得DP 为点D 到平面ABFE 的距离,设DE x =,则4AE BF x ==-,然后利用等积法写出三棱锥G BDF -的体积,再由基本不等式求最值,并求出DE 的长度. 【解答】(1)解:取线段EF 的中点M ,有//GM 平面BDF . 证明如下:如图所示,取线段EF 的中点M , G 为线段ED 的中点,M 为线段EF 的中点, GM ∴为EDF ∆的中位线,故//GM DF ,又GM ⊂/平面BDF ,DF ⊂平面BDF ,故//GM 平面BDF ; (2)解://CF DE ,且AE 与CF 的夹角为60︒, 故AE 与DE 的夹角为60︒, 过D 作DP 垂直于AE 交AE 于P ,由已知得DE EF ⊥,AE EF ⊥,EF ∴⊥平面AED , 则DP 为点D 到平面ABFE 的距离, 设DE x =,则4AE BF x ==-, 由(1)知//GM DF , 故111333[1(4)](4)332G BDF M BDF D MBF MBF V V V S DP x x x x ---∆====⨯⨯⨯-⨯=-, 当且仅当4x x -=时等号成立,此时2x DE ==.故三棱锥G BDF-,此时DE的长度为2.7.(2018•全国模拟)如图,在四棱锥P ABCD-中,90ABC BAD∠=∠=︒,112AD AB BC===,PD⊥平面ABCD,PD,M为PC上的动点.(Ⅰ)当M为PC的中点时,在棱PB上是否存在点N,使得//MN平面PDA?说明理由;(Ⅰ)BDM∆的面积最小时,求三棱锥M BCD-的体积.【分析】(Ⅰ)当N为PB中点时,//MN平面PDA.取PB的中点N,连接MN,由M,N分别为PC,PB中点,可得//MN BC,又//BC AD,得//MN AD,再由直线与平面平行的判定对立即可证明//MN平面PDA;(Ⅰ)由PD⊥平面ABCD,DB⊂平面ABCD,知PD BD⊥,又BD CD⊥,CD PD D=,得BD⊥平面PCD,又MD⊂平面PDC,可得BD MD⊥,进一步得到DBM∆为直角三角形,当MD PC⊥时BDM∆的面积最小,然后利用等积法即可求出三棱锥M BCD-的体积.【解答】解:(Ⅰ)当N为PB中点时,//MN平面PDA.证明如下:取PB的中点N,连接MN,M,N分别为PC,PB中点,//MN BC∴,又//BC AD,//MN AD∴,又DA⊂平面PDA,MN⊂/平面PDA,//MN∴平面PDA;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥, 又BD CD ⊥,CDPD D =,BD ∴⊥平面PCD ,又MD ⊂平面PDC ,BD MD ∴⊥,DBM ∴∆为直角三角形.当MD PC ⊥时BDM ∆的面积最小. 在底面直角梯形ABCD 中,由90ABC BAD ∠=∠=︒,112AD AB BC ===,得CD =BD ∴==在Rt PDC ∆中,由PD =CD =可得PC =MD .则CM =122MCD S ∆∴=⨯=.∴1133M BCD B MCD MCD V V S BD --∆===⨯8.(2018•全国二模)直三棱柱111ABC A B C -中,14AC AA ==,AC BC ⊥. (Ⅰ)证明:11AC A B ⊥;(Ⅰ)当BC 的长为多少时,直线1A B 与平面1ABC 所成角的正弦值为13.【分析】(Ⅰ)由BC AC ⊥,1BC AA ⊥,得BC ⊥平面11AA C C ,从而1AC BC ⊥,连结1A C ,四边形11AA C C 是正方形,则11AC AC ⊥,由此能证明1AC ⊥平面1A BC ,从而11AC A B ⊥. (Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -,利用向量法能求出a .【解答】证明:(Ⅰ)BC AC ⊥,1BC AA ⊥,1AC AA A =,BC ∴⊥平面11AA C C ,又1AC ⊂平面11AA C C ,1AC BC ∴⊥,连结1A C ,四边形11AA C C 是正方形,11AC AC ∴⊥, 且1BCA C C =,1AC ∴⊥平面1A BC ,又1A B ⊂平面1A BC ,11AC A B ∴⊥.解:(Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -, 设BC a =,则(0C ,0,0),(4A ,0,0),(0B ,a ,0),1(0C ,0,4),1(4A ,0,4), 1(4A B =-,a ,4)-,(4AB =-,a ,0),1(4AC =-,0,4),设平面1ABC 的法向量为(n x =,y ,)z ,则140440AB n x ay AC n x z ⎧=-+=⎪⎨=-+=⎪⎩,取x a =,得(n a =,4,)a ,直线1A B 与平面1ABC 所成角的正弦值为13.1|cos A B ∴<,221||332216n a ==++.解得4a =.9.(2018•新课标Ⅰ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?说明理由.【分析】(1)通过证明CD AD ⊥,CD DM ⊥,证明CM ⊥平面AMD ,然后证明平面AMD ⊥平面BMC ; (2)存在P 是AM 的中点,利用直线与平面平行的判断定理说明即可.【解答】(1)证明:矩形ABCD 所在平面与半圆弦CD 所在平面垂直,所以AD ⊥半圆弦CD 所在平面,CM ⊂半圆弦CD 所在平面, CM AD ∴⊥,M 是CD 上异于C ,D 的点.CM DM ∴⊥,DMAD D =,CM ∴⊥平面AMD ,CM ⊂平面CMB ,∴平面AMD ⊥平面BMC ;(2)解:存在P 是AM 的中点, 理由:连接BD 交AC 于O ,取AM 的中点P ,连接OP ,可得//MC OP ,MC ⊂/平面BDP ,OP ⊂平面BDP , 所以//MC 平面PBD .。
2022年新高考数学复习:立体几何中的探索性问题
2022年新高考数学总复习:立体几何中的探索性问题 例 (2018·全国Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD ︵ 所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【分析】 ①看到平面AMD ⊥平面BMC ,想到利用面面垂直的判定定理寻找条件证明; ②看到MC ∥平面PBD ,想到利用线面平行的定理进行分析.【标准答案】——规范答题 步步得分(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连接AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点, 连接OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .【评分细则】①由平面CMD ⊥平面ABCD 推出BC ⊥DM ,给3分.②由线线垂直得到DM ⊥平面BMC ,给2分.③由线面垂直得到,平面AMD⊥平面BMC,给1分.④点明P为中点时,MC∥平面PBD,给1分.⑤正确作出辅助线并证得MC∥OP,给3分.⑥由线线平行证得MC∥平面PBD,给2分.【名师点评】1.核心素养:探索性的立体几何问题在高考中虽不多见,但作为高考命题的一种题型,要求学生掌握其解决思路及解决问题的途径,此类问题主要考查考生“直观想象”的核心素养.2.解题技巧:(1)得分步骤要写全:如第(1)问中,面面垂直性质定理的应用,BC⊥CD,BC⊂平面ABCD,不能丢.(2)得分关键:明确探索性试题的解题要领是先假设存在,然后采用相关定理或性质进行论证;第(2)问中,把假设当作已知条件进行推理论证,会起到事半功倍之效.〔变式训练4〕如图所示,平面ABCD⊥平面BCE,四边形ABCD为矩形,BC=CE,点F为CE的中点.(1)证明:AE∥平面BDF;(2)点M为CD上任意一点,在线段AE上是否存在点P,使得PM⊥BE?若存在,确定点P的位置,并加以证明;若不存在,请说明理由.[解析](1)证明:连接AC交BD于点O,连接OF.∵四边形ABCD是矩形,∴O为AC的中点,又F为EC的中点,∴OF∥AE.又OF⊂平面BDF,AE⊄平面BDF,∴AE∥平面BDF.(2)当点P为AE的中点时,有PM⊥BE,证明如下:取BE的中点H,连接DP,PH,CH.∵P为AE的中点,H为BE的中点,∴PH∥AB.又AB∥CD,∴PH∥CD,∴P,H,C,D四点共面.∵平面ABCD⊥平面BCE,且平面ABCD∩平面BCE=BC,CD⊥BC,CD⊂平面ABCD,∴CD⊥平面BCE.又BE⊂平面BCE,∴CD⊥BE,∵BC=CE,且H为BE的中点,∴CH⊥BE.又CH∩CD=C,且CH,CD⊂平面DPHC,∴BE⊥平面DPHC.又PM⊂平面DPHC,∴PM⊥BE.。
高考数学专题04 立体几何的探索性问题(第三篇)(原卷版)
备战2020年高考数学大题精做之解答题题型全覆盖高端精品第三篇 立体几何专题04 立体几何的探索性问题【典例1】【2020届江苏巅峰冲刺卷】如图,在四棱锥P ABCD 中,P A ⊥平面ABCD ,∠ABC =∠BAD =90°,AD =AP =4,AB =BC =2,M 为PC 的中点.(1)求异面直线AP ,BM 所成角的余弦值;(2)点N 在线段AD 上,且AN =λ,若直线MN 与平面PBC 所成角的正弦值为45,求λ的值. 【典例2】【2020届江西省赣州市高三上学期期末考试】如图,在平行四边形ABCD 中,2,4,60AB AD BAD ︒==∠=,平面EBD ⊥平面ABD ,且,EB CB ED CD ==.(1)在线段EA 上是否存在一点F ,使//EC 平面FBD ,证明你的结论; (2)求二面角A EC D --的余弦值. 【典例3】【北京市昌平区2020届高三期末】如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:CD ⊥PD ; (Ⅰ)求证:BD ⊥平面P AB ;(Ⅰ)在棱PD 上是否存在点M ,使CM ∥平面P AB ,若存在,确定点M 的位置,若不存在,请说明理由. 【典例4】【2019届陕西省西安中学高三下学期第十二次重点考试】在三棱锥P—ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB=PB =2,BC E 、G 分别为PC 、P A 的中点.(1)求证:平面BCG ⊥平面P AC ;(2)假设在线段AC 上存在一点N ,使PN ⊥BE ,求ANNC的值; (3)在(2)的条件下,求直线BE 与平面PBN 所成角的正弦值 【典例5】【浙江省丽水市2020届模拟】如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,90ABC ∠=︒,1AB BC ==,2PA AD ==.(1)求证:CD ⊥平面PAC ;(2)在棱PC 上是否存在点H ,使得AH ⊥平面PCD ?若存在,确定点H 的位置;若不存在,说明理由. 【典例6】【江苏省苏州市实验中学2020届高三月考】直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【典例7】【山东省临沂市2019年普通高考模拟】如图,底面ABCD 是边长为3的正方形,平面ADEF ⊥平面ABCD ,AF ∥DE ,AD ⊥DE ,AF =DE =(1)求直线CA 与平面BEF 所成角的正弦值;(2)在线段AF 上是否存在点M ,使得二面角M BE D 的大小为60°?若存在,求出AMAF的值;若不存在,说明理由.1.【2020届盐城市高三年级模拟考试】如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面四边形ABCD 为菱形,A 1A =AB =2,∠ABC =3π,E ,F 分别是BC ,A 1C 的中点.(1)求异面直线EF ,AD 所成角的余弦值;(2)点M 在线段A 1D 上,11A MA Dλ= .若CM ∥平面AEF ,求实数λ的值. 2.【四川省棠湖中学2020届高三月考】如图,在四棱锥P -ABCD 中,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD .E 为棱AD 的中点,异面直线PA 与CD 所成的角为90°.(I )在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由; (II)若二面角P -CD -A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值. 3.【河南省郑州市2019届高中毕业年级第一次(1月)质量预测】已知四棱锥中P ABCD -,底面ABCD 为菱形,60ABC ∠=︒,PA ⊥平面ABCD ,E 、M 分别是BC 、PD 上的中点,直线EM 与平面PAD F 在PC 上移动.(Ⅰ)证明:无论点F 在PC 上如何移动,都有平面AEF ⊥平面PAD ; (Ⅰ)求点F 恰为PC 的中点时,二面角C AF E --的余弦值. 4.【2020届四川省巴中市高三第一次诊断】如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA PD =,PA AB ⊥,N 是棱AD 的中点.(1)求证:PN ^平面ABCD ;(2)在棱BC 上是否存在点E ,使得//BN 平面DEP ?并说明理由. 5.【湖北省2019届高三1月联考测试】如图所示,在四棱锥P ABCD -中,AB PC ⊥,AD BC ∕∕,AD CD ⊥,且2PC BC AD ==2CD ==2PA =.(1)PA ⊥平面ABCD ;(2)在线段PD 上,是否存在一点M ,使得二面角M AC D --的大小为60︒?如果存在,求PMPD的值;如果不存在,请说明理由.6.【2020届广东省东莞市高三期末调研测试】如图,在四棱锥S ABCD -中,已知四边形ABCD 的正方形,点S 在底面ABCD 上的射影为底面ABCD 的中心点O ,点P 在棱SD 上,且SAC V 的面积为1.(1)若点P 是SD 的中点,求证:平面SCD ⊥平面PAC ;(2)在棱SD 上是否存在一点P 使得二面角P AC D --?若存在,求出点P 的位置;若不存在,说明理由.7.【2020届山西省太原市第五中学高三11月阶段性考试】如图,在三棱锥A BCD -中,顶点A 在底面BCD上的投影O 在棱BD 上,AB AD ==2BC BD ==,90CBD ∠=︒,E 为CD 的中点.(1)求证:AD ⊥平面ABC ; (2)求二面角B AE C --的余弦值;(3)已知点Q 为AE 的中点,在棱BD 上是否存在点P ,使得PQ ⊥平面ABE ,若存在,求BPBD的值;若不存在,说明理由.8.【河南省开封市五县2020届模拟】如图,AC 是O e 的直径,点B 是O e 上与A ,C 不重合的动点,PO ⊥平面ABC .(1)当点B 在什么位置时,平面OBP ⊥平面PAC ,并证明之;(2)请判断,当点B 在O e 上运动时,会不会使得BC AP ⊥,若存在这样的点B ,请确定点B 的位置,若不存在,请说明理由.。
立体几何的探索性问题-高考数学大题精做之解答题题型全覆盖高端精品
高考数学大题精做之解答题题型全覆盖高端精品第三篇立体几何专题04立体几何的探索性问题类型对应典例探索位置问题典例1“线定,面动”探索线面平行问题典例2“线动,面定”探索线面平行问题典例3探索线线垂直问题典例4探索线面垂直问题典例5探索面面垂直问题典例6探索二面角问题典例7【典例1】如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.(1)求异面直线AP,BM所成角的余弦值;(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为45,求λ的值.【典例2】如图,在平行四边形ABCD 中,2,4,60AB AD BAD ︒==∠=,平面EBD ⊥平面ABD ,且,EB CB ED CD ==.(1)在线段EA 上是否存在一点F ,使//EC 平面FBD ,证明你的结论;(2)求二面角A EC D --的余弦值.【典例3】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:CD ⊥PD ;(Ⅱ)求证:BD ⊥平面PAB ;(Ⅲ)在棱PD 上是否存在点M ,使CM ∥平面PAB ,若存在,确定点M 的位置,若不存在,请说明理由.【典例4】在三棱锥P—ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB=PB =2,BC =2E 、G 分别为PC 、PA 的中点.(1)求证:平面BCG ⊥平面PAC ;(2)假设在线段AC 上存在一点N ,使PN ⊥BE ,求ANNC的值;(3)在(2)的条件下,求直线BE 与平面PBN 所成角的正弦值【典例5】如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,90ABC ∠=︒,1AB BC ==,2PA AD ==.(1)求证:CD ⊥平面PAC ;(2)在棱PC 上是否存在点H ,使得AH ⊥平面PCD ?若存在,确定点H 的位置;若不存在,说明理由.【典例6】直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AA C C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AA C C .若存在,求出AG 的长;若不存在,请说明理由.【典例7】如图,底面ABCD 是边长为3的正方形,平面ADEF ⊥平面ABCD ,AF ∥DE ,AD ⊥DE ,AF =,DE =.(1)求直线CA 与平面BEF 所成角的正弦值;(2)在线段AF 上是否存在点M ,使得二面角M BE D 的大小为60°?若存在,求出AMAF的值;若不存在,说明理由.1.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面四边形ABCD 为菱形,A 1A =AB =2,∠ABC =3π,E ,F 分别是BC ,A 1C的中点.(1)求异面直线EF ,AD 所成角的余弦值;(2)点M 在线段A 1D 上,11A MA Dλ=.若CM ∥平面AEF ,求实数λ的值.2.如图,在四棱锥PABCD 中,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD .E 为棱AD 的中点,异面直线PA 与CD 所成的角为90°.(I )在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;(II)若二面角PCDA 的大小为45°,求直线PA 与平面PCE 所成角的正弦值.3.已知四棱锥中P ABCD -,底面ABCD 为菱形,60ABC ∠=︒,PA ⊥平面ABCD ,E 、M 分别是BC 、PD 上的中点,直线EM 与平面PAD 所成角的正弦值为155,点F 在PC 上移动.(Ⅰ)证明:无论点F 在PC 上如何移动,都有平面AEF ⊥平面PAD ;(Ⅱ)求点F 恰为PC 的中点时,二面角C AF E --的余弦值.4.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA PD =,PA AB ⊥,N 是棱AD 的中点.(1)求证:PN ^平面ABCD ;(2)在棱BC 上是否存在点E ,使得//BN 平面DEP ?并说明理由.5.如图所示,在四棱锥P ABCD -中,AB PC ⊥,AD BC ∕∕,AD CD ⊥,且2PC BC AD ==2CD ==2PA =.(1)PA ⊥平面ABCD ;(2)在线段PD 上,是否存在一点M ,使得二面角M AC D --的大小为60︒?如果存在,求PMPD的值;如果不存在,请说明理由.6.如图,在四棱锥S ABCD -中,已知四边形ABCD的正方形,点S 在底面ABCD 上的射影为底面ABCD 的中心点O ,点P 在棱SD 上,且SAC 的面积为1.(1)若点P 是SD 的中点,求证:平面SCD ⊥平面PAC ;(2)在棱SD 上是否存在一点P 使得二面角P AC D --?若存在,求出点P 的位置;若不存在,说明理由.7.如图,在三棱锥A BCD -中,顶点A 在底面BCD 上的投影O 在棱BD 上,AB AD ==,2BC BD ==,90CBD ∠=︒,E 为CD 的中点.(1)求证:AD ⊥平面ABC ;(2)求二面角B AE C --的余弦值;(3)已知点Q 为AE 的中点,在棱BD 上是否存在点P ,使得PQ ⊥平面ABE ,若存在,求BPBD的值;若不存在,说明理由.8.如图,AC 是O 的直径,点B 是O 上与A ,C 不重合的动点,PO ⊥平面ABC .(1)当点B 在什么位置时,平面OBP ⊥平面PAC ,并证明之;(2)请判断,当点B 在O 上运动时,会不会使得BC AP ⊥,若存在这样的点B ,请确定点B 的位置,若不存在,请说明理由.参考答案【典例1】【详解】(1)因为PA ⊥平面ABCD ,且AB ,AD ⊂平面ABCD ,所以PA ⊥AB ,PA ⊥AD .又因为∠BAD =90°,所以PA ,AB ,AD 两两互相垂直.分别以AB ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系,则由AD =2AB =2BC =4,PA =4可得A (0,0,0),B (2,0,0),C (2,2,0),D (0,4,0),P (0,0,4).又因为M 为PC 的中点,所以M (1,1,2).所以BM=(-1,1,2),AP =(0,0,4),所以cos 〈AP ,BM 〉=||||⋅AP BMAP BM63,所以异面直线AP ,BM所成角的余弦值为3.(2)因为AN =λ,所以N (0,λ,0)(0≤λ≤4),则MN =(-1,λ-1,-2),BC =(0,2,0),PB=(2,0,-4).设平面PBC 的法向量为m=(x,y,z ),则00m BC m PB ⎧⋅=⎨⋅=⎩即20240y x z =⎧⎨-=⎩令x =2,解得y =0,z =1,所以m=(2,0,1)是平面PBC 的一个法向量.因为直线MN 与平面PBC 所成角的正弦值为45,所以|cos 〈MN ,m 〉|=||||||⋅MN MN m m =2|22|5(1)5λ--+-⋅=45,解得λ=1∈[0,4],所以λ的值为1.【典例2】【详解】(1)存在点F ,点F 为EA 的中点证明:当点F 为EA 的中点时,连结AC 交BD 于O ,∵平行四边形ABCD ,∴O 为AC 的中点,连结OF ,则//OF EC ,∵FO ⊂平面BDF ,EC ⊂/平面BDF ,∴//EC 平面FBD .(2)∵4,2EB CB AD ED CD AB ======,60BAD ∠=︒∴23BD =,∴222BE BD ED =+,222BC BD DC =+,∴BD ED ⊥,BD DC ⊥又∵平面EBD ⊥平面ABD ,∴ED ⊥平面ABCD ,BD ⊥平面ECD ,以DB 为x 轴,DC 为y 轴,DE 为z 轴,如图建系:D xyz-则(0,0,0)D ,(23,2,0)A -,(0,2,0)C ,(0,0,2)E ,(23,0,0)B ∴(23,4,0)AC =- ,(23,2,2)AE =-∴(23,0,0)DB =为平面ECD 的一个法向量,令平面ACD 的一个法向量为(,,)n x y z =,∴40220n AC y n AE y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩ 取2x =,y =,z =∴平面ACD的一个法向量为(n =,令二面角A EC D --为θ,由题意可知θ为锐角,则||10cos |cos ,|5||||n DB n DB n DB θ⋅=<>===⋅.【典例3】【详解】(Ⅰ)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以CD ⊥PA .因为CD ⊥AD ,PA AD A ⋂=,所以CD ⊥平面PAD .因为PD ⊂平面PAD ,所以CD ⊥PD .(II )因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA .在直角梯形ABCD 中,12BC CD AD ==,由题意可得AB BD ==,所以222AD AB BD =+,所以BD AB ⊥.因为PA AB A = ,所以BD ⊥平面PAB .(Ⅲ)解:在棱PD 上存在点M ,使CM ∥平面PAB ,且M 是PD 的中点.证明:取PA 的中点N ,连接MN ,BN ,因为M 是PD 的中点,所以12MN AD .因为12BC AD,所以MN BC .所以MNBC 是平行四边形,所以CM ∥BN .因为CM ⊄平面PAB ,BN ⊂平面PAB .所以//CM 平面PAB .【典例4】【详解】(1)因为PB ⊥平面ABC ,BC ⊂平面ABC ,所以PB BC ⊥,又AB BC ⊥,AB BP B = ,所以BC ⊥平面PAB ,则BC PA ⊥①,又2AB PB ==,PAB ∆为等腰直角三角形,G 为斜边PA 的中点,所以BG PA ⊥②,又BG BC B ⋂=,所以PA ⊥平面BCG ,因PA ⊂平面PAC ,则有平面BCG ⊥平面PAC ;(2)分别以,,BA BC BP为,,x y z 轴,建立空间直角坐标系,那么(2,0,0),(0,(0,0,2),A C P BE =,因此(2,AC =- ,(2,0,2)PA =-,设(2,,0)AN AC λλ==-,那么(22,,2)PN λ=--,由PN BE ⊥,得0PN BE ⋅=,解得13λ=.因此13AN AC = ,因此12AN NC =;(3)由(2)知423(,,2)33PN =-,设平面PBN 的法向量为(,,)n x y z = ,则0,0n PN n BP ⋅=⋅=,即2042033z x y z =⎧⎪⎨+-=⎪⎩,令x =2y =-,0,z =因此2,0)n =-,设直线BE 与平面PBN 所成角为θ,那么sin 7BE n BE n θ⋅===⋅ .【典例5】解(1)由题意,可得DC AC ==,∴222A C D C A D +=,即AC DC ⊥,又PA ⊥底面ABCD ,∴PA CD ⊥,且PA AC A = ,∴DC ⊥平面PAC ;(2)过点A 作AH PC ⊥,垂足为H ,由(1)可得CD AH ⊥,又PC CD C = ,∴AH ⊥平面PCD .在Rt PAC △中,∵2PA =,AC =PH PAPA PC=∴23PH PC =.即在棱PC 上存在点H ,且23PH PC =,使得AH ⊥平面PCD.【典例6】【详解】(1)如图所示:以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:则1(0,0,0)A ,1(0,2,0)B ,1(2,2,0)C ,设(0,0,)A a ,则4(0,,)3E a ,2(,2,0)3F ,所以22(,,)33EF a =- ,1(0,0,)A A a = ,11(2,2,0)AC = ,因为11113EF A A A C =-+ ,所以EF ,1A A ,11AC共面,又EF 不在平面11AA C C 内,所以//EF 平面11AA C C(2)线段AC 上存在一点G ,使面EFG ⊥面11AA C C ,且3AG =,证明如下:在三角形AGE 中,由余弦定理得EG ==3==,所以222AG EG AE +=,即EG AG ⊥,又1A A ⊥平面ABCD ,EG ⊂平面ABCD ,、所以1A A EG ⊥,而1AG A A A ⋂=,所以EG ⊥平面11AA C C ,因为EG ⊂平面EFG ,所以EFG ⊥面11AA C C ,【典例7】【详解】(1)因为DA ,DC ,DE 两两垂直,所以以D 为坐标原点,射线DA ,DC ,DE 分别为x 轴,y 轴,z 轴的正半轴,建立空间直角坐标系D xyz ,如图所示.则A (3,0,0),F (3,0,,E (0,0,),B (3,3,0),C (0,3,0),CA =(3,-3,0),BE=(-3,-3,),EF=(3,0,.设平面BEF 的法向量为n=(x 1,y 1,z 1),1111133030n BE x y n EF x ⎧⋅=--+=⎪⎨⋅=-=⎪⎩ 取x 1,得n,,3).所以||13|cos ,|13||||CA n CA n CA n ⋅<>===所以直线CA 与平面BEF 所成角的正弦值为1313.(2)假设存在点M 在线段AF 上满足条件,设M (3,0,t ),0≤t≤则BM=(0,-3,t ),BE =(-3,-3,).设平面MBE 的法向量为m=(x 2,y 2,z 2),2222230330m BM y tz m BE x y ⎧⋅=-+=⎪⎨⋅=--+=⎪⎩令y 2=t ,得m=(t ,t ,3).易知CA=(3,-3,0)是平面BED 的一个法向量,所以|cos ,|m CA <>|12=,整理得2t 2-t +15=0,解得t=2或t =562(舍去),故在线段AF 上存在点M ,使得二面角M BE D 的大小为60°,此时14AM AF =.1.【思路引导】(1)由四棱柱1111ABCD A B C D -,证得11,A A AE A A AD ⊥⊥,进而得到AE AD ⊥,以{}1,,AE AD A A为正交基底建立空间直角坐标系,利用向量坐标运算,即可求解,EF AD 所成角的余弦值;(2)设(,,)M x y z ,由点M 在线段1A D 上,得到11A M A Dλ=,得出向量CM则坐标表示,再求得平面AEF 的一个法向量,利用向量的数量积的运算,即可得到λ的值。
2022年新高考数学总复习:立体几何中的探索性问题
2022年新高考数学总复习:立体几何中的探索性问题例(2021·陕西省西安中学模拟)如图所示,四棱锥P -ABCD 中,底面ABCD 为菱形,且PA ⊥平面ABCD ,∠ABC =60°,E 是BC 中点,F 是PC 上的点.(1)求证:平面AEF ⊥平面PAD ;(2)若M 是PD 的中点,当AB =AP 时,是否存在点F ,使直线EM 与平面AEF 的所成角的正弦值为15?若存在,请求出PF PC的值;若不存在,请说明理由.【分析】①利用面面垂直的判定定理,证AE ⊥平面PAD 或证AD ⊥平面AEF 即可;②建立空间直角坐标系,假设符合条件的点F 存在,且PF →=λPC →,利用向量法求解λ回答.【标准答案】——规范答题步步得分(1)连接AC ,因为底面ABCD 为菱形,∠ABC =60°,所以△ABC 是正三角形,∵E 是BC 的中点,∴AE ⊥BC ,又AD ∥BC ,∴AE ⊥AD ,∵PA ⊥平面ABCD ,AE ⊂平面ABCD ,∴PA ⊥AE ,又PA ∩AD =A ,∴AE ⊥平面PAD ,又AE ⊂平面AEF ,所以平面AEF ⊥平面PAD .(2)又PA ⊥AD ,∴PA 、AE 、AD 两两垂直,以A 为坐标原点建立如图所示空间直角坐标系,不妨设AB =AP =2,则AE =3,则A (0,0,0),C (3,1,0),D (0,2,0),P (0,0,2),E (3,0,0),M (0,1,1),7分得分点⑦设PF →=λPC →=λ(3,1,-2),0≤λ≤1,则AF →=AP →+PF →=(0,0,2)+λ(3,1,-2)=(3λ,λ,2-2λ),又AE →=(3,0,0),设n =(x ,y ,z )是平面AEF 的一个法向量,n ·AE →=3x =0n ·AF →=3λx +λy +(2-2λ)z =0,取z =λ,得n =(0,2λ-2,λ),设直线EM 与平面AEF 所成角为θ,由EM →=(-3,1,1),得:sin θ=|cos 〈EM →,n 〉|=|EM →·n ||EM →|·|n |=|3λ-2|5·(2λ-2)2+λ2=15.化简得:10λ2-13λ+4=0,解得λ=12或λ=45,故存在点F 满足题意,此时PF PC 为12或45.【评分细则】①证出△ABC 是正三角形得1分.②证出AE ⊥AD 得1分.③由线面垂直性质证出PA ⊥AE 得1分,不写AE ⊂平面ABCD 不得分.④由线面垂直的判定证出AE ⊥平面PAD 得1分.⑤证出平面AEF ⊥平面PAD 得1分,条件不全不得分.⑥建出空间直角坐标系得1分.⑦设出PF →=λPC →得1分.⑧求出平面AEF 的法向量得3分,算错但写出AE →,AF →坐标得1分.⑨求出λ得2分,算错但写出sin θ=|cos 〈EM →,n 〉|=|EM →·n ||EM →||n |得1分.⑩得出正确结论得1分.【名师点评】1.核心素养:本题考查线面的位置关系及线面角,考查学生转化与化归的思想,考查的核心素养是逻辑推理、直观想象、数学运算.2.解题技巧:(1)写全得分步骤:对于解题过程中得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写,如第(1)问中AE ⊂平面ABCD .(2)写明得分关键:对于解题过程中的关键点,有则给分,无则没分,所以在解答时一定要写清得分关键点,如第(2)问中空间直角坐标系的建立;再如AF →=AP →+PF →等.(3)思维发散:也可通过证AD ⊥PA 、AD ⊥AE 证得AD ⊥平面AEF ,进而证得平面AEF ⊥平面PAD .〔变式训练4〕(2021·陕西省质检)如图所示,等腰梯形ABCD 的底角∠BAD =∠ADC =60°,直角梯形ADEF 所在的平面垂直于平面ABCD ,且∠EDA =90°,ED =AD =2AF =2AB =2.(1)证明:平面ABE ⊥平面EBD ;(2)点M 在线段EF 上,试确定点M 的位置,使平面MAB 与平面ECD 所成的锐二面角的余弦值为34.[解析](1)证明:∵平面ABCD ⊥平面ADEF ,平面ABCD ∩平面ADEF =AD ,ED ⊥AD ,∴ED ⊥平面ABCD ,AB ⊂平面ABCD ,∴ED ⊥AB ,∵AB =1,AD =2,∠BAD =60°,∴BD =1+4-2×1×2cos 60°=3,∴AB 2+BD 2=AD 2,∴AB ⊥BD ,又∴BD ⊂平面BDE ,BD ∩ED =D ,AB ⊥平面BDE ,AB ⊂平面ABE ,∴平面ABE ⊥平面EBD .(2)以B 为坐标原点,以BA ,BD 为x 轴,y 轴建立如图所示的空间直角坐标系B -xyz ,则A (1,0,0),B (0,0,0),-12,32,D (0,3,0),E (0,3,2),F (1,0,1),则CD →,32,DE →=(0,0,2),BA →=(1,0,0),EF →=(1,-3,-1),设EM →=λEF →=(λ,-3λ,-λ),(0≤λ≤1),则BM →=BE →+EM →=(λ,3-3λ,2-λ),设平面CDE 的法向量为m =(x 1,y 1,z 1),平面ABM 的法向量为n =(x 2,y 2,z 2),·CD →=12x 1+32y 1=0,·DE →=2z 1=0,1=-3y 1,1=0,不妨取y 1=1,则m =(-3,1,0),·BA →=x 2=0,·BM →=λx 2+(3-3λ)y 2+(2-λ)z 2=0不妨取y 2=2-λ,则n =(0,2-λ,3λ-3),∴|cos θ|=|m ·n ||m |·|n |=|2-λ|24λ2-10λ+7=34,即λ=12或λ=54(舍),即点M 为线段EF 的中点时,平面MAB 与平面ECD 所成的锐二面角的余弦值为34.。
2021年高考数学难点突破(新课标版) 专题12 立体几何中探索性问题(解析版)
专题12 立体几何中探索性问题专题概述立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.典型例题【例1】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ;(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值.【分析】(1)推导出1AA AB ⊥,1A A AC ⊥,从而1A C ⊥平面1ABC ,由此能证明平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,取1A A 的中点F ,连接EF ,FD ,设点E 到平面1ABC的距离为d ,由11E ABC C ABE V V --=,求出d =A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1E AC B --的余弦值.【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,ABBC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥.又1A A AC =,11AC AC ∴⊥.又11BC AC ⊥,111BC AC C =,1A C ∴⊥平面1ABC ,又1A C ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC .解:(2)当E 为1B B 的中点时,连接AE ,1EC ,DE , 如图,取1A A 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EFDF F =,1ABAC A =,∴平面//EFD 平面1ABC ,则有//DE 平面1ABC .设点E 到平面1ABC 的距离为d ,AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥,∴1122BAC S=⨯= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB , 11//AC AC ,11AC ∴⊥平面11ABB ,∴11111182243323C ABE ABE V S AC -∆=⨯⨯=⨯⨯⨯⨯=, 由1183E ABC C ABE V V --==,解得188333ABC d S=⨯==以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系, (0A ,0,0),(2B ,0,0),1(0C ,4,4),(2E ,0,2), 1(0AC =,4,4),(2AB =,0,0),(2AE =,0,2),设平面1AC E 的法向量(n x =,y ,)z ,则1440220n AC y z n AE x z ⎧=+=⎪⎨=+=⎪⎩,取1x =,得(1n =,1,1)-, 设平面1AC B 的法向量(m x =,y ,)z ,则144020m AC y z m AB x ⎧=+=⎪⎨==⎪⎩,取1y =,得(0m =,1,1)-, 设二面角的平面角为θ, 则6cos ||||32m n m n θ===.∴二面角1E AC B --【例2】在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且1BC BB ==,1160A AB A AD ∠=∠=︒. (1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB .【分析】(1)连接1A B ,1A D ,AC ,则△1A AB 和△1A AD 均为正三角形,设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥,由四边形ABCD 是正方形,得AC BD ⊥,从而BD ⊥平面1A AC .进而1BD AA ⊥,由此能证明1BD CC ⊥.(2)推导出11A B A D ⊥,1AO AO ⊥,1AO BD ⊥,从而1A O ⊥底面ABCD ,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -,利用向量法能求出当E 为11D C 的中点时,直线DE 与平面1BDB . 【解答】解:(1)连接1A B ,1A D ,AC , 因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以△1A AB 和△1A AD 均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥, 而1A OAC O =,所以BD ⊥平面1A AC .又1AA ⊂平面1A AC ,所以1BD AA ⊥,又11//CC AA ,所以1BD CC ⊥.(2)由11A B A D ==2BD ==,知11A B A D ⊥,于是1112AO AO BD AA ===,从而1AO AO ⊥, 结合1AO BD ⊥,1A AC O =,得1A O ⊥底面ABCD ,所以OA 、OB 、1OA 两两垂直.如图,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -, 则(1A ,0,0),(0B ,1,0),(0D ,1-,0),1(0A ,0,1),(1C -,0,0), (0,2,0)DB =,11(1,0,1)BB AA ==-,11(1,1,0)D C DC ==-,由11(1,0,1)DD AA ==-,得1(1D -,1-,1).设111([0,1])D E D C λλ=∈,则(1E x +,1E y +,1)(1E z λ-=-,1,0),即(1E λ--,1λ-,1), 所以(1,,1)DE λλ=--.设平面1B BD 的一个法向量为(,,)n x y z =, 由100n DB n BB ⎧=⎪⎨=⎪⎩得00y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =,设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|2DE n θ=<>==⨯解得12λ=或13λ=-(舍去), 所以当E 为11D C 的中点时,直线DE 与平面1BDB .【变式训练】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥ (1)求证:平面1ABC ⊥平面11A ACC(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使//DE 平面1ABC ,若存在,求点E 到平面1ABC 的距离.【分析】(1)在三棱柱111ABC A B C -中,由侧面11ABB A 是矩形,可得1AA AB ⊥,又1AA BC ⊥,可得1AA ⊥平面ABC ,得到1AA AC ⊥,进一步有11AC AC ⊥,结合11BC AC ⊥,可得1A C ⊥平面1ABC ,由面面垂直的判定得平面1ABC ⊥平面11A ACC ;(2)当E 为1BB 的中点时,连接AE ,1EC ,DE ,取1AA 的中点F ,连接EF ,FD ,由面面平行的判定和性质可得//DE 平面1ABC ,咋爱优等体积法可求点E 到平面1ABC 的距离为. 【解答】(1)证明:在三棱柱111ABC A B C -中,侧面11ABB A 是矩形, 1AA AB ∴⊥,又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1AA AC ∴⊥,又1AA AC =,11AC AC ∴⊥, 又11BC AC ⊥,111BC AC C =,1A C ∴⊥平面1ABC ,又1A C ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC ;(2)解:当E 为1BB 的中点时,连接AE ,1EC ,DE , 如图,取1AA 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EF DF F =,1ABAC A =,∴平面//EFD 平面1ABC ,又DE ⊂平面EFD ,//DE ∴平面1ABC ,又11E ABC C ABE V V --=,11C A ⊥平面ABE ,设点E 到平面1ABC 的距离为d ,∴111122243232d ⨯⨯⨯=⨯⨯⨯⨯,得d =∴点E 到平面1ABC .专题强化1.(2020•3月份模拟)如图.在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面三角形ABC 是等边三角形)中,1BC CC =,M 、N 、P 分别是1CC ,AB ,1BB 的中点. (1)求证:平面//NPC 平面1AB M ;(2)在线段1BB 上是否存在一点Q 使1AB ⊥平面1A MQ ?若存在,确定点Q 的位置;若不存在,也请说明理由.【分析】(1)由M 、N 、P 分别是1CC ,AB ,1BB 的中点.利用平行四边形、三角形中位线定理即可得出1//NP AB ,1//CP MB ,再利用线面面面平行的判定定理即可得出结论.(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ .四边形11ABB A 是正方形,因此点Q 为B 点.不妨取2BC =.判断10AB MQ =是否成立即可得出结论.【解答】(1)证明:M 、N 、P 分别是1CC ,AB ,1BB 的中点. 1//NP AB ∴,四边形1MCPB 为平行四边形,可得1//CP MB ,NP ⊂/平面1AB M ;1AB ⊂平面1AB M ;//NP ∴平面1AB M ;同理可得//CP 平面1AB M ;又CP NP P =,∴平面//NPC 平面1AB M .(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ . 四边形11ABB A 是正方形,因此点Q 为线段1BB 的中点. 不妨取2BC =.(0M ,1-,1),(0Q ,1,0),A 0,0),1(0B ,1,2),1(AB =-1,2),(0MQ =,2,1)-, 10AB MQ =.∴在线段1BB 上存在一点Q ,使1AB ⊥平面1A MQ ,其中点Q 为线段1BB 的中点2.(2020•湖南模拟)如图,AB 为圆O 的直径,点E 、F 在圆O 上,//AB EF ,矩形ABCD 所在的平面与圆O 所在的平面互相垂直.已知2AB =,1EF =. (Ⅰ)求证:平面DAF ⊥平面CBF ; (Ⅰ)求直线AB 与平面CBF 所成角的大小;(Ⅰ)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60︒?【分析】()I 利用面面垂直的性质,可得CB ⊥平面ABEF ,再利用线面垂直的判定,证明AF ⊥平面CBF ,从而利用面面垂直的判定可得平面DAF⊥平面CBF;()II确定ABF∠为直线AB与平面CBF所成的角,过点F作FH AB⊥,交AB于H,计算出AF,即可求得直线AB与平面CBF所成角的大小;(Ⅰ)建立空间直角坐标系,求出平面DCF的法向量1(0,2,n t=,平面CBF的一个法向量21(0)2n AF==-,利用向量的夹角公式,即可求得AD的长.【解答】()I证明:平面ABCD⊥平面ABEF,CB AB⊥,平面ABCD⋂平面ABEF AB=,CB∴⊥平面ABEF.AF ⊂平面ABEF,AF CB∴⊥,⋯(2分)又AB为圆O的直径,AF BF∴⊥,AF∴⊥平面CBF.⋯(3分)AF ⊂平面ADF,∴平面DAF⊥平面CBF.⋯(4分)()II解:根据(Ⅰ)的证明,有AF⊥平面CBF,FB∴为AB在平面CBF内的射影,因此,ABF∠为直线AB与平面CBF所成的角⋯(6分)//AB EF,∴四边形ABEF为等腰梯形,过点F作FH AB⊥,交AB于H.2AB=,1EF=,则122AB EFAH-==.在Rt AFB∆中,根据射影定理2AF AH AB=,得1AF=.⋯(8分)∴1sin2AFABFAB∠==,30ABF∴∠=︒.∴直线AB与平面CBF所成角的大小为30︒.⋯(9分)(Ⅰ)解:设EF中点为G,以O为坐标原点,OA、OG、AD方向分别为x轴、y轴、z轴方向建立空间直角坐标系(如图).设(0)AD t t=>,则点D的坐标为(1,0,)t,则(1C-,0,)t,1(1,0,0),(1,0,0),(2A B F-∴1(2,0,0),(,)2CD FD t==⋯(10分)设平面DCF的法向量为1(,,)n x y z=,则1n CD =,1n FD =,即200.xy tz=⎧⎪⎨+=⎪⎩令z=0x=,2y t=,∴1(0,2,n t=⋯(12分)由()I 可知AF ⊥平面CFB ,取平面CBF 的一个法向量为21(0)2n AF ==-,依题意1n 与2n 的夹角为60︒,∴1212cos60||||n n n n ︒=,即12=,解得t =因此,当AD DFC 平面FCB 所成的锐二面角的大小为60︒.⋯(14分)3.(2019•全国二模)如图,直三棱柱111ABC A B C -中,点D 是棱11B C 的中点. (Ⅰ)求证:1//AC 平面1A BD ;(Ⅰ)若AB AC ==12BC BB ==,在棱AC 上是否存在点M ,使二面角1B A D M --的大小为45︒,若存在,求出AMAC的值;若不存在,说明理由.【分析】(Ⅰ)先连接1AB ,交1A B 于点O ,再由线面平行的判定定理,即可证明1//AC 平面1A BD ; (Ⅰ)先由题意得AB ,AC ,1AA 两两垂直,以A 为原点,建立空间直角坐标系A xyz -,设(0M ,a ,0),(02)a,求出两平面的法向量,根据法向量夹角余弦值以及二面角的大小列出等式,即可求出a ,进而可得出结果.【解答】证明:(Ⅰ)连接1AB ,交1A B 于点O ,则O 为1AB 中点, 连接OD ,又D 是棱11B C 的中点,1//OD AC ∴, OD ⊂平面1A BD ,1AC ⊂/平面1A BD ,1//AC ∴平面1A BD .解:(Ⅰ)由已知AB AC ⊥,则AB ,AC ,1AA 两两垂直, 以A 为原点,如图建立空间直角坐标系A xyz -,则B ,1(0A ,0,2),D ,2),(0C0), 设(0M ,a ,0),(02)a,则1(BA =-,12(22A D =,0),1(0A M =,a ,2)-, 设平面1BA D 的法向量为(n x =,y ,)z ,则11220202n BA z n A D y ⎧=-+=⎪⎨=+=⎪⎩,取1z =,得(2,n =-1). 设平面1A DM 的法向量为(m x =,y ,)z ,则1120202m A M ay z m A D y ⎧=-=⎪⎨=+=⎪⎩,2x =-,得(2m =-,2,)a . 二面角1BA D M --的大小为45︒, 2|||2222cos 45|cos ,|||||58m na m n m n a --+∴︒=<>===+,23240a ∴+-=,解得a =-a =02a ,3a ∴=, ∴存在点M ,此时23AM AC =,使二面角1B A D M --的大小为45︒.4.(2019•3月份模拟)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为BC 边上一点,BD =122AA AB AD ===.(1)证明:平面1ADB ⊥平面11BB C C .(2)若BD CD =,试问:1A C 是否与平面1ADB 平行?若平行,求三棱锥11A A B D -的体积;若不平行,请说明理由.【分析】(1)先证AD 与BC ,1BB 垂直,进而得线面垂直,面面垂直;(2)连接1A B 得中点E ,利用中位线得线线平行,进而得线面平行,再利用等分三棱柱的方法求得三棱锥的体积.【解答】解:(1)证明:2AB =,1AD =,BDAD BD ∴⊥,1AA ⊥平面ABC , 1BB ∴⊥平面ABC , 1BB AD ∴⊥,AD ∴⊥平面11BB C C ,∴平面1ADB ⊥平面11BB C C ;(2)1A C 与平面1ADB 平行,证明如下:连接1A B 交1AB 于E ,连接DE ,则E 为1AB 中点, BD CD =,1//AC DE ∴, 又1A C ⊂/平面1ADB ,DE ⊂平面1ADB , 1//AC ∴平面1ADB , 利用三等分三棱柱的知识可知, 1111116A A B D A B C ABC V V --=116ABC S AA ∆=⨯ 11162BC AD AA =⨯⨯⨯ 111262=⨯⨯⨯=.故三棱锥11A A B D -. 5.(2018秋•全国期末)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是菱形,111112AA A B AB ===,60ABC ∠=︒,1AA ⊥平面ABCD .(1)若点M 是AD 的中点,求证:1//C M 平面11AA B B ;(2)棱BC 上是否存在一点E ,使得二面角1E AD D --的余弦值为13?若存在,求线段CE 的长;若不存在,请说明理由.【分析】(1)连接1B A ,推导出四边形11AB C M 是平行四边形,从而11//C M B A ,由此能证明1//C M 平面11AA B B .(2)取BC 中点Q ,连接AQ ,推导出AQ BC ⊥,AQ AD ⊥,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出结果.【解答】证明:(1)连接1B A ,由已知得,11////B C BC AD ,且1112B C AM BC == 所以四边形11AB C M 是平行四边形,即11//C M B A ⋯(2分)又1C M ⊂/平面11AA B B ,1B A ⊂平面11AA B B , 所以1//C M 平面11AA B B ⋯(4分)解:(2)取BC 中点Q ,连接AQ ,因为ABCD 是菱形,且60ABC ∠=︒, 所以ABC ∆是正三角形,所以AQ BC ⊥,即AQ AD ⊥, 由于1AA ⊥平面ABCD ⋯(6分)所以,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系, 如图(0A ,0,0),1(0A ,0,1),1(0D ,1,1),Q 假设点E 存在,设点E的坐标为,0)λ,11λ-, (3,0)AE λ=,1(0,1,1)AD =⋯(7分)设平面1AD E 的法向量(,,)n x y z =则100n AE n AD ⎧=⎪⎨=⎪⎩,即00y y z λ+=+=⎪⎩,可取(,3,n λ=-⋯(9分)平面1ADD 的法向量为(3,0,0)AQ =⋯(10分) 所以,31|cos ,|33AQ n λ<>==,解得:λ=(11分) 又由于二面角1E AD D --大小为锐角,由图可知,点E 在线段QC 上, 所以λ=,即1CE =(12分)6.(2019•山东模拟)如图所示的矩形ABCD 中,122AB AD ==,点E 为AD 边上异于A ,D 两点的动点,且//EF AB ,G为线段ED 的中点,现沿EF 将四边形CDEF 折起,使得AE 与CF 的夹角为60︒,连接BD ,FD .(1)探究:在线段EF 上是否存在一点M ,使得//GM 平面BDF ,若存在,说明点M 的位置,若不存在,请说明理由;(2)求三棱锥G BDF -的体积的最大值,并计算此时DE 的长度.【分析】(1)取线段EF 的中点M ,由G 为线段ED 的中点,M 为线段EF 的中点,可得//GM DF ,再由线面平行的判定可得//GM 平面BDF ;(2)由//CF DE ,且AE 与CF 的夹角为60︒,可得AE 与DE 的夹角为60︒,过D 作DP 垂直于AE 交AE 于P ,由已知可得DP 为点D 到平面ABFE 的距离,设DE x =,则4AE BF x ==-,然后利用等积法写出三棱锥G BDF -的体积,再由基本不等式求最值,并求出DE 的长度. 【解答】(1)解:取线段EF 的中点M ,有//GM 平面BDF . 证明如下:如图所示,取线段EF 的中点M , G 为线段ED 的中点,M 为线段EF 的中点, GM ∴为EDF ∆的中位线,故//GM DF ,又GM ⊂/平面BDF ,DF ⊂平面BDF ,故//GM 平面BDF ; (2)解://CF DE ,且AE 与CF 的夹角为60︒, 故AE 与DE 的夹角为60︒, 过D 作DP 垂直于AE 交AE 于P ,由已知得DE EF ⊥,AE EF ⊥,EF ∴⊥平面AED , 则DP 为点D 到平面ABFE 的距离, 设DE x =,则4AE BF x ==-, 由(1)知//GM DF , 故111333[1(4)](4)332G BDF M BDF D MBF MBF V V V S DP x x x x ---∆====⨯⨯⨯-⨯=-, 当且仅当4x x -=时等号成立,此时2x DE ==.故三棱锥G BDF -,此时DE 的长度为2.7.(2018•全国模拟)如图,在四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,112AD AB BC ===,PD ⊥平面ABCD ,PD =M 为PC 上的动点.(Ⅰ)当M 为PC 的中点时,在棱PB 上是否存在点N ,使得//MN 平面PDA ?说明理由; (Ⅰ)BDM ∆的面积最小时,求三棱锥M BCD -的体积.【分析】(Ⅰ)当N 为PB 中点时,//MN 平面PDA .取PB 的中点N ,连接MN ,由M ,N 分别为PC ,PB 中点,可得//MN BC ,又//BC AD ,得//MN AD ,再由直线与平面平行的判定对立即可证明//MN 平面PDA ;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥,又BD CD ⊥,CDPD D =,得BD ⊥平面PCD ,又MD ⊂平面PDC ,可得BD MD ⊥,进一步得到DBM ∆为直角三角形,当MD PC ⊥时BDM∆的面积最小,然后利用等积法即可求出三棱锥M BCD -的体积. 【解答】解:(Ⅰ)当N 为PB 中点时,//MN 平面PDA . 证明如下:取PB 的中点N ,连接MN ,M ,N 分别为PC ,PB 中点,//MN BC ∴,又//BC AD , //MN AD ∴,又DA ⊂平面PDA ,MN ⊂/平面PDA , //MN ∴平面PDA ;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥, 又BD CD ⊥,CDPD D =,BD ∴⊥平面PCD ,又MD ⊂平面PDC ,BD MD ∴⊥,DBM ∴∆为直角三角形.当MD PC ⊥时BDM ∆的面积最小. 在底面直角梯形ABCD 中,由90ABC BAD ∠=∠=︒,112AD AB BC ===,得CD =BD ∴==在Rt PDC ∆中,由PD =CD =可得PC =MD =.则CM =122MCD S ∆∴=⨯=.∴1133M BCD B MCD MCD V V S BD --∆===⨯=8.(2018•全国二模)直三棱柱111ABC A B C -中,14AC AA ==,AC BC ⊥. (Ⅰ)证明:11AC A B ⊥;(Ⅰ)当BC 的长为多少时,直线1A B 与平面1ABC 所成角的正弦值为13.【分析】(Ⅰ)由BC AC ⊥,1BC AA ⊥,得BC ⊥平面11AA C C ,从而1AC BC ⊥,连结1A C ,四边形11AA C C 是正方形,则11AC AC ⊥,由此能证明1AC ⊥平面1A BC ,从而11AC A B ⊥. (Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -,利用向量法能求出a .【解答】证明:(Ⅰ)BC AC ⊥,1BC AA ⊥,1AC AA A =,BC ∴⊥平面11AA C C ,又1AC ⊂平面11AA C C ,1AC BC ∴⊥,连结1A C ,四边形11AA C C 是正方形,11AC AC ∴⊥, 且1BCA C C =,1AC ∴⊥平面1A BC ,又1A B ⊂平面1A BC ,11AC A B ∴⊥.解:(Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -, 设BC a =,则(0C ,0,0),(4A ,0,0),(0B ,a ,0),1(0C ,0,4),1(4A ,0,4), 1(4A B =-,a ,4)-,(4AB =-,a ,0),1(4AC =-,0,4),设平面1ABC 的法向量为(n x =,y ,)z ,则140440AB n x ay AC n x z ⎧=-+=⎪⎨=-+=⎪⎩,取x a =,得(n a =,4,)a ,直线1A B 与平面1ABC 所成角的正弦值为13.1|cos A B ∴<,221||332216n a ==++.解得4a =.9.(2018•新课标Ⅰ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?说明理由.【分析】(1)通过证明CD AD ⊥,CD DM ⊥,证明CM ⊥平面AMD ,然后证明平面AMD ⊥平面BMC ; (2)存在P 是AM 的中点,利用直线与平面平行的判断定理说明即可.【解答】(1)证明:矩形ABCD 所在平面与半圆弦CD 所在平面垂直,所以AD ⊥半圆弦CD 所在平面,CM ⊂半圆弦CD 所在平面, CM AD ∴⊥,M 是CD 上异于C ,D 的点.CM DM ∴⊥,DMAD D =,CM ∴⊥平面AMD ,CM ⊂平面CMB ,∴平面AMD ⊥平面BMC ;(2)解:存在P 是AM 的中点, 理由:连接BD 交AC 于O ,取AM 的中点P ,连接OP ,可得//MC OP ,MC ⊂/平面BDP ,OP ⊂平面BDP , 所以//MC 平面PBD .。
高考专题立体几何中的探索性问题-精品之高中数学(文)---精校解析Word版
第68题立体几何中的探索性问题I .题源探究·黄金母题【例1】【2016高考北京文数】如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F , 使得//PA 平面C F E ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析; (III )存在.理由见解析.【解析】分析:(Ⅰ)利用线面垂直判定定理证明;(Ⅱ)利用面面垂直判定定理证明;(III )取PB 中点F ,连结F E ,则F//E PA ,根据线面平行定理则//PA 平面C F E .解析:(I )因为C P ⊥平面CD AB ,所以C DC P ⊥.又因为DC C ⊥A ,所以DC ⊥平面C PA .(II )因为//DC AB ,DC C ⊥A ,所以C AB ⊥A . 因为C P ⊥平面CD AB ,所以C P ⊥AB . 所以AB ⊥平面C PA . 所以平面PAB ⊥平面C PA .(III )棱PB 上存在点F ,使得//PA 平面C F E .证明如下:取PB 中点F ,连结F E ,C E ,CF .又因为E 为AB 的中点,所以F//E PA . 又因为PA ⊄平面C F E ,所以//PA 平面C F E .【名师点睛】在解决立体几何探索性问题时,常常先通过空间观察和条件分析(中点)假设存在符合条件的点,然后进行推理论证。
II .考场精彩·真题回放【例2】【2015高考安徽文19】如图,三棱锥P -ABC 中,PA ⊥平面ABC ,1,1,PA AB ==2,60AC BAC =∠=o .(Ⅰ)求三棱锥P -ABC 的体积;(Ⅱ)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PMMC的值.【答案】(Ⅱ)13PM MC = 【解析】(Ⅰ)解:由题设AB =1,,2=AC60=∠BAC可得ABC S ∆︒⋅⋅⋅=60sin 21AC AB 23=.由⊥PA 面ABC ,可知PA 是三棱锥ABC P -的高,又1=PA所以三棱锥ABC P -的体积6331=⋅⋅∆PA S V ABC = (Ⅱ)证:在平面ABC 内,过点B 作AC BN ⊥, 垂足为N ,过N 作PA MN //交PC 于M ,连接BM.由⊥PA 面ABC 知AC PA ⊥,所以AC MN ⊥.由于N MN BN =⋂,故⊥AC 面MBN ,又⊂BM 面MBN ,所以BM AC ⊥.在直角BAN ∆中,21cos =∠⋅=BAC AB AN ,从而23=-=AN AC NC .由PA MN //,得31=NC AN MC PM =. 【名师点睛】本题将正弦定理求三角形的面积巧妙地结合到求锥体的体积之中,本题的第(Ⅱ)问需要学生构造出线面垂直,进而利用性质定理证明出面面垂直,本题考查了考生的空间想象能力、构造能力和运算能力.【例3】【2016高考四川文科】如图,在四棱锥P-ABCD 中,PA⊥CD ,AD∥BC ,∠ADC=∠PAB=90°,12BC CD AD ==. DCB AP(I )在平面PAD 内找一点M ,使得直线CM∥平面PAB ,并说明理由; (II )证明:平面PAB⊥平面PBD.【答案】(Ⅰ)取棱AD 的中点M ,证明详见解析;(Ⅱ)证明详见解析.【解析】分析:(Ⅰ)探索线面平行,根据是线面平行的判定定理,先证明线线平行,再得线面平行,只要在平面ABCD 上作//CM AB 交AD 于M 即得;(Ⅱ)要证面面垂直,先证线面垂直,也就要证线线垂直,本题中有PA BD ⊥(由线面垂直的性质或定义得),另外可以由平面几何知识证明BD AB ⊥,从而有线面垂直,再有面面垂直. 试题解析:MDCB AP(I )取棱AD 的中点M (M∈平面PAD ),点M 即为所求的一个点.理由如下:因为AD‖BC,BC =12AD ,所以BC‖AM , 且BC =AM . 所以四边形AMCB 是平行四边形,从而CM‖AB . 又AB ⊂ 平面PAB ,CM ⊄ 平面PAB ,所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(II )由已知,PA ⊥AB , PA ⊥CD ,因为AD ∥BC,BC =12AD ,所以直线AB 与CD 相交,所以PA ⊥平面ABCD . 从而PA ⊥ BD .因为AD ∥BC,BC =12AD , 所以BC ∥MD,且BC =MD. 所以四边形BCDM 是平行四边形.所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A,所以BD ⊥平面PAB .又BD ⊂ 平面PBD,所以平面PAB ⊥平面PBD . 【例4】【2015高考湖北,文20】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图所示的阳马P A B C D -中,侧棱PD ⊥底面A B C D ,且P D C D =,点E 是PC 的中点,连接,,DE BD BE .(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是 否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.【答案】(Ⅰ)四面体EBCD 是一个鳖臑; (Ⅱ)124.V V = 【解析】(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥. 由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PCBC C =,所以DE ⊥平面PBC . 由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是,,,.BCD BCE DEC DEB ∠∠∠∠ (Ⅱ)由已知,PD 是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(Ⅰ)知,DE是鳖臑D B C E -的高, BC CE ⊥,所以21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt △PDC中,因为PD CD =,点E 是PC 的中点,所以DE CE ==, 于是 12123 4.16BC CD PD V CD PDV CE DE BC CE DE ⋅⋅⋅===⋅⋅⋅【名师点睛】以《九章算术》为背景,给予新定义,增添了试题的新颖性,但其实质仍然是考查线面垂直与简单几何体的体积计算,其解题思路:第一问通过线线、线面垂直相互之间的转化进行证明,第二问关键注意底面积和高之比,运用锥体的体积计算公式进行求解. 结合数学史料的给予新定义,不仅考查学生解题能力,也增强对数学的兴趣培养,为空间立体几何注入了新的活力.【例5】【2014四川文18】在如图所示的多面体中,四边形11ABB A 和11ACC A 都为矩形。
微专题4:+立体几何中的探索问题+2022-2023学年高一下学期数学人教A版(2019)必修第二册
解:AD 上存在一点 P,AP=λPD,使得 CP
∥平面 ABEF,此时λ=3. 2
理由如下: 当λ=32时,AP=32PD,可知AADP=35,如图,过点 P 作 MP∥FD 交 AF 于点 M,连接 EM,PC,则有MFDP=AADP=35, 又 BE=1,可得 FD=5,故 MP=3, 又 EC=3,MP∥FD∥EC,故有 MP 綊 EC, 故四边形 MPCE 为平行四边形,所以 CP∥ME,
变式:如图,直三棱柱 ABC A1B1C1中,D,E分别是棱BC , AB的中点,点F在棱 CC1 上,已知AB=AC,AA1 3 , BC=CF=2.
(1)求证: C1E//平面ADF; (2)在棱 BB1 上是否存在点M,使平面 CAM 平面ADF ,若存在,试求出BM的值; 若不存在,请说明理由.
又BM=1,BC=2,CD=1,FC=2, Rt△CBM≌Rt△FCD
故 CM DF
DF . AD=D DF,AD
易证CM ,又
,
平面ADF,
故CM 平面ADF .
CAM
又 平面 CAM ,故平面
平面ADF.
翻折中的位置关系探索问题
例 3:如图,四边形 ABCD 中,AB⊥AD,AD∥BC,AD=6, BC=4,E,F 分别在 BC,AD 上,EF∥AB.现将四边形 ABCD 沿 EF 折起,使平面 ABEF⊥平面 EFDC.
证明如下:因为AB=AC, AD 平面ABC,故 AD BC.
在直三棱柱 ABC
中, A1B1C1
BB1
平面
ABC
立体几何中的探索性问题
立体几何中的探索性问题一、探索平行关系1.[2016·枣强中学模拟]如图所示,在正四棱柱A1C中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________,就有MN∥平面B1BDD1.(注:请填上一个你认为正确的条件,不必考虑全部可能的情况)答案:M位于线段FH上(答案不唯一)[解析]连接HN,FH,FN,则FH∥DD1,HN∥BD,FH∩HN=H,DD1∩BD=D,∴平面FHN∥平面B1BDD1,故只要M∈FH,则MN?平面FHN,且MN∥平面B1BDD1.2.如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成的角的正弦值;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.解:(1)如图所示,取AA1的中点M,连接EM,BM.因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.(2分),ABB1A1上的射影,∠EBM为BE和平面ABB1A1所成的角.(4分(2)在棱C1D1上存在点F,使B1F∥平面A1BE.事实上,如图(b)所示,分别取C1D1和CD的中点因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1是平行四边形,因此D1C∥A1B.又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B.这说明A1,B,G,E四点共面.所以BG?平面A1BE.(8分)因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且FG=C1C=B1B,因此四边形B1BGF是平行四边形,所以B1F∥BG,(10分)而B1F?平面A1BE,BG?平面A1BE,故B1F∥平面A1BE.(12分)3.如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.(1)求三棱锥A-PDE的体积;(2)AC边上是否存在一点M,使得P A∥平面EDM?若存在,求出AM的长;若不存在,请说明理由.解析:(1)∵PD⊥平面ABCD,∴PD⊥AD.又∵ABCD是矩形,又AD=2,∴V A-PDE=AD·S△PDE=×2×4=.(2)取AC中点M,连接EM,DM,∵E为PC又∵EM?平面EDM,P A?平面EDM,∴P A∥平面EDM.∴AM=AC=.即在AC边上存在一点M,使得P A∥平面EDM,AM的长为.4.如图所示,在三棱锥P-ABC中,点D,E分别为PB,BC的中点.在线段AC上是否存在点F,使得AD∥平面PEF?若存在,求出的值;若不存在,请说明理由.解:假设在AC上存在点F,使得AD∥平面PEF,连接DC交PE于G,连接FG,如图所示.∵AD∥平面PEF,平面ADC∩平面PEF=FG,∴AD∥FG.又∵点D,E分别为PB,BC的中点,∴G为△PBC的重心,∴==.故在线段AC上存在点F,使得AD∥平面PEF,且=.5.[2016·北京卷]如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面P AC.(2)求证:平面P AB⊥平面P AC.(3)设点E为AB的中点,在棱PB上是否存在点F,使得P A∥平面CEF?说明理由.解:(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,所以DC⊥平面P AC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB,所以AB⊥平面P AC,所以平面P AB⊥平面P AC.(3)棱PB上存在点F,使得P A∥平面CEF.证明如下:取6(1)(2)所以四边形AMCB是平行四边形,从而CM∥AB.又AB?平面P AB,CM?平面P AB,所以CM∥平面P AB.(说明:取棱PD的中点N,则所找的点可以是直线(2)证明:由已知,P A⊥AB,P A⊥CD.因为AD∥BC,BC=AD,所以直线AB与CD相交,所以P A⊥平面ABCD,从而P A⊥BD.因为AD∥BC,BC=AD,所以BC∥MD,且BC=MD,所以四边形BCDM是平行四边形,所以BM=CD=AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面P AB.又BD?平面PBD,所以平面P AB⊥平面PBD.7.[2016·阳泉模拟]如图7-41-10,在四棱锥P-ABCD中,BC∥AD,BC=1,AD=3,AC⊥CD,且平面PCD⊥平面ABCD.(1)求证:AC⊥PD.(2)在线段P A上是否存在点E,使BE∥平面PCD?若存在,求出的值;若不存在,请说明理由.解:(1)证明:∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,AC⊥CD,AC?平面ABCD,∴AC⊥平面PCD,∵PD?平面PCD,∴AC⊥PD.(2)在线段P A上存在点E,使BE∥平面PCD,且=.下面给出证明:∵AD=3,BC=1,∴在△P AD中,分别取P A,PD靠近点P的三等分点E,F,连接EF,BE,CF.∵==,∴EF∥AD,且EF=AD=1.又∵BC∥AD,∴BC∥EF,且BC=EF,∴四边形BCFE是平行四边形,∴BE∥CF,又∵BE?平面PCD,CF?平面PCD,∴BE∥平面PCD.8.(10分)[2016·河南中原名校联考]如图所示,在四棱锥S-ABCD中,平面SAD⊥平面ABCD,AB∥DC,△SAD 是等边三角形,且SD=2,BD=2,AB=2CD=4.(1)证明:平面SBD⊥平面SAD.(2)若E是SC上的一点,当E点位于线段SC上什么位置时,SA∥平面EBD?请证明你的结论.(3)求四棱锥S-ABCD的体积.解:(1)证明:∵△SAD是等边三角形,∴AD=SD=2,又BD=2,AB=4,=AD.∴V四棱锥S-ABCD=S梯形ABCD·SO.∵S梯形ABCD=×(2+4)×=3,∴V四棱锥S-ABCD=3.二、探索垂直关系1.如图所示,在三棱锥P-ABC中,已知P A⊥底面列说法错误的是()A.当AE⊥PB时,△AEF一定为直角三角形B.当AF⊥PC时,△AEF一定为直角三角形C.当EF∥平面ABC时,△AEF一定为直角三角形D.当PC⊥平面AEF时,△AEF一定为直角三角形答案:B[解析]已知P A⊥底面ABC,则P A⊥BC,又AB⊥BC,P A∩AB=A,则BC⊥平面P AB,BC⊥AE.当AE⊥PB时,又PB∩BC=B,则AE⊥平面PBC,则AE⊥EF,A正确.当EF∥平面ABC时,又EF?平面PBC,平面PBC∩平面ABC=BC,则EF∥BC,故EF⊥平面P AB,则AE⊥EF,故C正确.当PC⊥平面AEF时,PC⊥AE,又BC⊥AE,PC∩BC=C,则AE⊥平面PBC,则AE⊥EF,故D正确.用排除法可知选B.2.如图所示,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC为直角的等腰直角三角形,AC =2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.答案:a或2a[解析]由题意易知,B1D⊥平面ACC1A1,所以B1D⊥CF.要使CF⊥平面B1DF,只需CF⊥DF 即可.当CF⊥DF时,设AF=x,则A1F=3a-x.由Rt△CAF∽Rt△F A1D,得=,即=,整理得x2-3ax+2a2=0,解得x=a或x=2a.3.如图所示,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.答案:①②③[解析]由题意知P A⊥平面ABC,∴P A⊥BC.又AC⊥BC,P A∩AC=A,∴BC⊥平面P AC,∴BC⊥AF.∵AF⊥PC,BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,AF⊥BC.又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF,∴PB⊥EF.故①②③正确.4.如图所示,已知长方体ABCD-A1B1C1D1的底面ABCD为正方形,E为线段AD1的中点,F为线段BD1的中点.(1)求证:EF∥平面ABCD;(2)设M为线段C1C的中点,当的比值为多少时,DF⊥平面D1MB?并说明理由.解析:(1)证明:∵E为线段AD1的中点,F为线段BD1的中点,∴EF∥AB.∵EF?平面ABCD,AB?平面ABCD,∴EF∥平面ABCD.(2)当=时,DF⊥平面D1MB.∴FM∥AC.∴DF⊥FM.∵D1D=AD,∴D1D=BD.∴矩形D1DBB1为正方形.∵F为BD1的中点,∴DF⊥BD1.∵FM∩BD1=F,∴DF⊥平面D1MB.5.如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)(2)(1)求证:DE∥平面A1CB.(2)求证:A1F⊥BE.(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.解:(1)∵D,E分别为AC,AB的中点,∴DE∥BC.(2分)又∵DE?平面A1CB,∴DE∥平面A1CB.(4分)(2)由已知得AC⊥BC且DE∥BC,∴DE⊥AC.∴DE⊥A1D,DE⊥CD.如图,分别取A1C,A1B的中点P,Q,则PQ∥BC又∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP.又DP∩DE=D,∴A1C⊥平面DEP.(12分)从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.(14分)6.如图,在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1的中点.(1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点P,使BF⊥平面AEP?若存在,确定点P的位置,若不存在,说明理由.解析:(1)证明:连接A1B,则AB1⊥A1B,又∵AB1⊥A1F,且A1B∩A1F=A1,∴AB1⊥平面A1BF.又BF?平面A1BF,∴AB1⊥BF.(2)证明:取AD中点G,连接FG,BG,则FG⊥AE,又∵△BAG≌△ADE,∴EP∥AB1.由(1)知AB1⊥BF,∴BF⊥EP.又由(2)知AE⊥BF,且AE∩EP=E,∴BF⊥平面AEP.7.如图(1)所示,在Rt△ABC中,∠ABC=90°,D为AC的中点,AE⊥BD于点E(不同于点D),延长AE交BC 于点F,将△ABD沿BD折起,得到三棱锥A1-BCD,如图(2)所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.解:(1)证明:在题图(1)中,因为D,M分别为AC,FC的中点,所以DM是△ACF的中位线,所以DM∥EF,则在题图(2)中,DM∥EF,又EF?平面A1EF,DM?平面A1EF,所以DM∥平面A1EF.(2)证明:因为A1E⊥BD,EF⊥BD,且A1E∩EF=E,所以BD⊥平面A1EF.又A1F?平面A1EF,所以BD⊥A1F.(3)直线A1B与直线CD不能垂直.理由如下:因为平面A1BD⊥平面BCD,平面A1BD∩平面BCD=BD,EF⊥BD,EF?平面BCD,所以EF⊥平面A1BD.因为A1B?平面A1BD,所以A1B⊥EF,又EF∥DM,所以A1B⊥DM.假设A1B⊥CD,因为A1B⊥DM,CD∩DM=D,所以A1B⊥平面BCD,所以A1B⊥BD,这与∠A1BD为锐角矛盾,所以假设不成立,所以直线A1B与直线CD不能垂直.。
高考数学(理)二轮复习规范答题示例:解析几何中的探索性问题(含答案)
高考数学(理)二轮复习规范答题示例:解析几何中的探索性问题(含答案)规范答题示例9 解析几何中的探索性问题典例9 (12分)已知定点C (-1,0)及椭圆x 2+3y 2=5,过点C 的动直线与椭圆相交于A ,B 两点.(1)若线段AB 中点的横坐标是-12,求直线AB 的方程;(2)在x 轴上是否存在点M ,使MA →·MB →为常数?若存在,求出点M 的坐标;若不存在,请说明理由.审题路线图 (1)设AB 的方程y =k (x +1)→待定系数法求k →写出方程 (2)设M 存在即为(m ,0)→求MA →·MB →→在MA →·MB →为常数的条件下求m →下结论评分细则 (1)不考虑直线AB 斜率不存在的情况扣1分; (2)不验证Δ>0,扣1分;(3)直线AB 方程写成斜截式形式同样给分; (4)没有假设存在点M 不扣分;(5)MA →·MB →没有化简至最后结果扣1分,没有最后结论扣1分.跟踪演练9 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线7x -5y +12=0相切. (1)求椭圆C 的方程;(2)设A (-4,0),过点R (3,0)作与x 轴不重合的直线l 交椭圆C 于P ,Q 两点,连接AP ,AQ 分别交直线x =163于M ,N 两点,若直线MR ,NR 的斜率分别为k 1,k 2,试问:k 1k 2是否为定值?若是,求出该定值,若不是,请说明理由.解 (1)由题意得⎩⎪⎨⎪⎧c a =12,127+5=b ,a 2=b 2+c 2,∴⎩⎨⎧a =4,b =23,c =2,故椭圆C 的方程为x 216+y 212=1.(2)设直线PQ 的方程为x =my +3,P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧x 216+y 212=1,x =my +3,得(3m 2+4)y 2+18my -21=0, 且Δ=(18m )2+84(3m 2+4)>0, ∴y 1+y 2=-18m 3m 2+4,y 1y 2=-213m 2+4.由A ,P ,M 三点共线可知,y M163+4=y 1x 1+4,∴y M =28y 13(x 1+4).同理可得y N =28y 23(x 2+4),∴k 1k 2=y M 163-3×y N 163-3=9y M y N 49=16y 1y 2(x 1+4)(x 2+4)∵(x 1+4)(x 2+4)=(my 1+7)(my 2+7) =m 2y 1y 2+7m (y 1+y 2)+49 ∴k 1k 2=16y 1y 2m 2y 1y 2+7m (y 1+y 2)+49=-127,为定值.亲爱的读者:春去燕归来,新桃换旧符。
专题3.1 以立体几何中探索性问题为背景的解答题 高考数学压轴题分项讲义(解析版)
专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行”为背景的存在判断型问题典例1 如图,四棱锥P ABCD-的底面ABCD是菱形,0∠=,PA⊥平面ABCD,E是ABBCD60的中点.(1)求证:平面PDE⊥平面PAB;(2)棱PC上是否存在一点F,使得//BF平面PDE?若存在,确定F的位置并加以证明;若不存在,请说明理由.【解析】(1)连接BD,因为底面ABCD是菱形,60∆为正三角形.BCD∠=︒,所以ABD因为E是AB的中点, 所以DE AB⊥,因为PA⊥面ABCD,DE ABCD⊥,⊂面,∴DE PA因为DE AB⊥,AB PA A⋂=,⊥,DE PA所以DE PAB⊥面.又DE PDE⊂面, 所以面PDE⊥面PAB.所以BF∥GE,又GE⊂面PDE,BF⊄面PDE,∴BF∥面PDE,结论得证. 学_【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由.【解析】(1)证明:由四边形为正方形可知,连接必与相交于中点故∵面∴面(2)线段上存在一点满足题意,且点是中点理由如下:由点分别为中点可得:∵面∴面由(1)可知,面且故面面类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点, (1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?(Ⅱ)当时,有平面平面过作于,由(Ⅰ)知,平面,所以平面平面易得【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M,使平面?说明理由.【解析】(Ⅰ)证明:在三棱柱中,因为底面,CD⊂平面ABC,所以.又为等边三角形,为的中点,所以.因为,所以平面;(Ⅱ)取中点,连结,则因为,分别为,的中点,所以.由(Ⅰ)知,,如图建立空间直角坐标系.由题意得,,,,,,,,,.设平面法向量,则即令,则,.即.平面BAE法向量.因为,,,所以由题意知二面角为锐角,所以它的余弦值为.(Ⅲ)解:在线段上不存在点M ,使平面.理由如下.假设线段上存在点M ,使平面.则,使得.因为,所以.又,所以. 由(Ⅱ)可知,平面法向量,平面,当且仅当,即,使得.所以 解得.这与矛盾.所以在线段上不存在点M ,使平面.类型3 以“角”为背景的探索性问题典例3 如图所示,在棱长为2的正方体1111ABCD A B C D -中, ,E F 分别为11A D 和1CC 的中点.(1)求证: EF 平面1ACD ;(2)在棱1BB 上是否存在一点P ,使得二面角P AC B --的大小为30︒,若存在,求出BP 的长;若不存在,请说明理由.【解析】(1)证明:如图所示,分别以1,,DA DC DD 所在的直线为x 轴, y 轴, z 轴建立空间直角坐标系Dxyz ,由已知得()0,0,0D , ()2,0,0A , ()2,2,0B , ()0,2,0C , ()12,2,2B , ()10,0,2D ,()1,0,2E , ()0,2,1F ,∵平面1ACD 的一个法向量是()12,2,2DB =, 又∵()1,2,1EF =--, ∴12420EF DB ⋅=-+-=, ∴1EF DB ⊥,而EF ⊄平面1ACD , ∴EF 平面1ACD .(2)解:设点()2,2,(02)P t t <≤, 平面ACP 的一个法向量为(),,n x y z =, 则0{n AC n AP ⋅=⋅=,∵()0,2,AP t =, ()2,2,0AC =-,∴20{220y tz x y +=-+=,取1y =,则1x =, 2z t =-,∴21,1,n t ⎛⎫=- ⎪⎝⎭,平面ABC 的一个法向量()10,0,2BB =, 依题意知, 1,30BB n =︒或1,150BB n =︒,∴1243cos ,2422t BB n t -==⋅+,即2243424t t ⎛⎫=+ ⎪⎝⎭,解得6t =6t = (舍), (]60,2,∴在棱1BB 上存在一点P ,当BP 的长为63时,二面角P AC B --的大小为30︒. 【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.学_【举一反三】【山东省德州市跃华中学2017-2018学年下学期高三模拟】如图所示,正四棱椎P-ABCD 中,底面ABCD 的边长为2,侧棱长为.(I )若点E 为PD 上的点,且PB ∥平面EAC.试确定E 点的位置; (Ⅱ)在(I )的条件下,点F 为线段PA 上的一点且,若平面AEC 和平面BDF 所成的锐二面角的余弦值为,求实数的值.【解析】(Ⅰ)设BD 交AC 于点O ,连结OE , ∵PB ∥平面AEC ,平面AEC ∩平面BDP =OE , ∴PB ∥OE , 又O 为BD 的中点,∴在△BDP 中,E 为PD 中点.(Ⅱ)连结OP ,由题意得PO ⊥平面ABCD ,且AC ⊥BD ,∴以O 为原点,OC 、OD 、OP 所成直线为x ,y ,z 轴,建立空间直角坐标系, OP ,∴A (,0,0),B (0,,0),C (,0,0),D (0,,0),P (0,0,),则E (0,,),(,0,0),(,,),(0,,0),设平面AEC 的法向量(x ,y ,z ),则,令z=1,得平面AEC的一个法向量(0,,1),设平面BDF的法向量(x,y,z),由,得F(,0,),(,,),∴,令z=1,得(,0,1),∵平面AEC和平面BDF所成的锐二面角的余弦值为,∴cos,解得λ.【精选名校模拟】1.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值.【解析】设AE=BF=x.以D为原点建立空间直角坐标系,得下列坐标:D(0,0,0),A(2,0,0),B (2,2,0),C(0,2,0),D1(0,0,2),A1(2,0,2),B1(2,2,2),C1(0,2,2),E(2,x,0),F(2﹣x,2,0).(1)因为,,所以.所以A1F⊥C1E.(2)因为,所以当S△BEF取得最大值时,三棱锥B1﹣BEF的体积取得最大值.因为,所以当x=1时,即E,F分别是棱AB,BC的中点时,三棱锥B1﹣BEF的体积取得最大值,此时E,F坐标分别为E(2,1,0),F(1,2,0).设平面B1EF的法向量为,则得取a=2,b=2,c=﹣1,得.显然底面ABCD的法向量为.设二面角B1﹣EF﹣B的平面角为θ,由题意知θ为锐角.因为,所以,于是.所以,即二面角B1﹣EF﹣B的正切值为.2. .【湖北省2019届高三1月联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由._网(2)方法一:在线段上取点,使则又由(1)得平面∴平面又∵平面∴作于又∵,平面,平面∴平面又∵平面∴又∵∴是二面角的一个平面角设则,这样,二面角的大小为即即∴满足要求的点存在,且方法二:取的中点,则、、三条直线两两垂直∴可以分别以直线、、为、、轴建立空间直角坐标系且由(1)知是平面的一个法向量设则,∴,设是平面的一个法向量则∴令,则,它背向二面角又∵平面的法向量,它指向二面角这样,二面角的大小为即即∴满足要求的点存在,且3.【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.【解析】(1)由题设知,平面平面,交线为.因为,平面,所以平面,因此,又,,所以平面.而平面,所以平面平面.(2)以为坐标原点,的方向为轴正方向建立如图所示的直角坐标系,则有,过点作于,设,则.因为,所以,,由题设可得,即,解得或,因为,所以,所以,.由,知是平面的法向量,,.设平面的法向量为,则取得,设二面角为,则,因为,.综上,二面角的正弦值为.4.【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值.【解析】(1)证明:由已知,得,在中,,∴,即,∵平面,平面,∴,又∵,平面,平面,∴平面(2)∵平面,∴为直线与平面所成角,∴,∴,在中,,取的中点,连结,则,∵平面,平面,∴,又∵,平面,平面,∴平面,以点为坐标原点,建立如图空间直角坐标系,则,,,,∴,,设平面的法向量为,则,取,解得,又平面的法向量为,∴.∴二面角的余弦值为.5. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.【解析】证明:(1)取中点,连,连.在△中,因为分别是中点,所以,且.在平行四边形中,因为是的中点,所以,且.所以,且.所以四边形是平行四边形.所以.又因为平面,平面,所以平面.(2)因为侧面是正方形,所以.又因为平面平面,且平面平面,所以平面.所以.又因为,以为原点建立空间直角坐标系,如图所示.设,则,.(ⅰ)设平面的一个法向量为.由得即令,所以.又因为平面,所以是平面的一个法向量.所以.由图可知,二面角为钝角,所以二面角的大小为.(ⅱ)假设在线段上存在点,使得.设,则.因为,又,所以.所以.故点在点处时,有6.如图,在多面体ABCDMN中,四边形ABCD为直角梯形,//⊥,AB CD,22AB=,BC DC ====,四边形BDMN为矩形.BC DC AM DM2(1)求证:平面ADM⊥平面ABCD;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.【解析】(1)证明:由平面几何的知识,易得2BD =, 2AD =,又22AB =,所以在ABD ∆中,满足222AD BD AB +=,所以ABD ∆为直角三角形,且BD AD ⊥. 因为四边形BDMN 为矩形,所以BD DM ⊥. 由BD AD ⊥, BD DM ⊥, DM AD D ⋂=, 可得 BD ADM ⊥平面. 又BD ABD ⊂平面,所以平面ADM ⊥平面ABCD .(2)存在点H ,使得二面角H AD M --为大小为,点H 为线段AB 的中点.事实上,以D 为原点, DA 为x 轴, DB 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系D xyz -,则()()()0,0,0,2,0,0,0,2,0D A B ,()1,0,1M ,设(),,H x y z ,由MH MN DB λλ==,即()()1,,10,2,0x y z λ--=,得()1,2,1H λ.设平面ADH 的一个法向量为()1111,,n x y z =,则,即,不妨设11y =,取()10,1,2n λ=-.平面ADM 的一个法向量为()20,1,0n =.二面角H AD M --为大小为于是.解得 或(舍去).所以当点H 为线段MN 的中点时,二面角H AD M --为大小为.7. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.法二:如图,以O 为原点,分别以过O 点与DB 共线同向的向量, OD , OP 方向上的单位向量为单位正交基建立空间直角坐标系O xyz -,则()()()()()0,0,0,0,2,0,2,1,0,2,1,0,0,0,3,O A B C P --()()()0,2,3,4,0,0,2,3,0AP BC AC ==-=-∴0AP BC ⋅= ∴AP BC ⊥ ∴AP BC ⊥(2)假设M 点存在,设AM AP λ=, (),,M x y z ,则(),2,AM x y z =+,∴()(),2,0,2,3x y z λ+=,∴0{223x y z λλ=+==,∴()0,22,3M λλ-,∴()2,23,3BM λλ=--设平面MBC 的法向量为()1111,,n x y z =,平面APC 的法向量为()2222,,n x y z =由110{n BM n BC ⋅=⋅=得()111122330{40x y z x λλ-+-+=-=,令11y =,可得1320,1,3n λλ-⎛⎫= ⎪⎝⎭,由220{n AC n AP ⋅=⋅=得2222230{ 230x y y z -+=+=, 令16y =,可得()29,6,4n =-,若二面角A MC B --为直二面角,则120n n ⋅=,得326403λλ--⋅=, 解得613λ=,∴61313AM =故线段AP 上是否存在一点M ,满足题意, AM 的长为61313.8. 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值; (2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置. 【解析】(1)在中,记,,则由余弦定理:,(当且仅当时,上式取等号)此时,,的面积的最大值为.(2)由(1)知,,, 设存在,在三棱锥中,取的中点,连接,易知.作于,由平面平面平面.故在平面上的投影为.与平面所成的角为,由.设,得,,故.故存在,且,满足题意.(2)另解:由(1),,设存在,则在三棱锥中,取的中点,连接,易求.以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,平面的法向量为,设,得,得,又.由.故存在,且,满足题意.9. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;_网(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.【解析】(1)连接交于,连接,则是平面与平面的交线.因为平面,平面,所以.又因为是中点,所以是的中点.所以.(2)由已知条件可知,所以,以为原点,为轴,为轴,为轴建立空间直角坐标系.则,,,,,,,.假设在棱上存在点,设,得,.记平面的法向量为,则即取,则,所以.要使直线与平面所成角的大小为,则,即,解得.所以在棱上存在点使直线与平面所成角的大小为.此时.10. 【河南省开封市2019届高三上学期第一次模拟考试】如图所示,是边长为2的正方形,平面,且.(Ⅰ)求证:平面平面;(Ⅱ)线段上是否存在一点,使二面角所成角的余弦值为?若存在,请找出点的位置;若不存在,请说明理由.【解析】(Ⅰ)∵平面,平面,平面,∴,,又∵,∴,∴平面,又平面,∴平面平面.(Ⅱ)如图所示,建立空间直角坐标系,∵,,,∴.假设线段上存在一点满足题意,,,,,易知:平面的一个法向量为,∵,,∴设平面的一个法向量为, 由,得,取,得,,∴.点为线段的中点时,二面角所成角的余弦值为.11.如图,五面体11A BCC B -中,14AB =,底面ABC 是正三角形,2AB =,四边形11BCC B 是矩形,二面角1A BC C --为直二面角.(1)D 在AC 上运动,当D 在何处时,有1//AB 平面1BDC ,并说明理由; (2)当1//AB 平面1BDC 时,求二面角1C BC D --余弦值. 【解析】(1)当D 为AC 中点时,有1//AB 平面1BDC .证明:连结1B C 交1BC 于O ,连结DO , ∵四边形11BCC B 是矩形,∴O 为1B C 中点,又D 为AC 中点,从而1//DO AB , ∵1AB ⊄平面1BDC ,DO ⊂平面1BDC , ∴1//AB 平面1BDC .(2)建立空间直角坐标系B xyz -,如图所示,则(0,0,0)B ,3,1,0)A ,(0,2,0)C ,33,0)2D ,1(0,2,23)C , 所以33(,0)22BD =,1(0,2,23)BC =, 设1(,,)n x y z =为平面1BDC 的法向量,则有330,22230,x y y z +=⎨⎪+=⎩即3,3,x z y z =⎧⎪⎨=⎪⎩ 令1z =,可得平面1BDC 的一个法向量为1(3,3,1)n =-, 而平面1BCC 的一个法向量为2(1,0,0)n =, 所以1212123313cos ,13||||13n n n n n n ⋅<>===⋅ 故二面角1C BC D --313 12. 如图,已知平面四边形ABCP 中,D 为PA 的中点,PA AB ⊥,//CD AB ,且24PA CD AB ===.将此平面四边形ABCP 沿CD 折成直二面角P DC B --,连接PA PB 、,设PB 中点为E . (1)证明:平面PBD ⊥平面PBC ;(2)在线段BD 上是否存在一点F ,使得EF ⊥平面PBC ?若存在,请确定点F 的位置;若不存在,请说明理由.(3)求直线AB 与平面PBC 所成角的正弦值.【答案】(1)详见解析;(2)点F 存在,且为线段BD 上靠近点D 的一个四等分点;(3)66.(2)解法一:由(1)的分析易知,,,PD DA PD DC DC DA ⊥⊥⊥,则以D 为原点建立空间直角坐标系如图所示.结合已知数据可得(2,0,0)A ,(2,2,0)B ,(0,4,0)C ,(0,0,2)P , 则PB 中点(1,1,1)E .F ∈平面ABCD ,故可设(,,0)F x y ,则(1,1,1)EF x y =---,EF ⊥平面ABCD ,0,0EF PB EF PC ∴⋅=⋅=,又(2,2,2),(0,4,2)PB PC =-=-, 由此解得12x y ==,即11(,,0)22F , 易知这样的点F 存在,且为线段BD 上靠近点D 的一个四等分点; (8分)PABCD E zyx解法二:(略解)如图所示,在PBD ∆中作EF PB ⊥,交BD 于F ,因为平面PBD ⊥平面PBC ,则有EF ⊥平面PBC .在Rt PBD ∆中,结合已知数据,利用三角形相似等知识可以求得33224BF BD ==, 故知所求点F 存在,且为线段BD 上靠近点D 的一个四等分点; ..(8分)解法二:(略解)如上图中,因为//AB CD ,所以直线AB 与平面PBC 所成角等于直线CD 与平面PBC 所成角,由此,在Rt PBD ∆中作DH PB ⊥于H ,易证DH ⊥平面PBC , 连接CH ,则DCH ∠为直线CD 与平面PBC 所成角, 结合题目数据可求得6sin 6DCH ∠=,故所求角的正弦值为66. ..(12分) 13. 四棱锥ABCD P -中,ABCD 为矩形,平面⊥PAD 平面ABCD . (1)求证:;PD AB ⊥(2)若,2,2,90===∠PC PB BPC问AB 为何值时,四棱锥ABCD P -的体积最大?并求此时平面PBC 与平面DPC 夹角的余弦值.PABCD E FH【答案】(1)详见解析,(2)63AB =时,四棱锥的体积P-ABCD 最大. 平面BPC 与平面DPC 夹角的余弦值为10.5【解析】试题分析:(1)先将面面垂直转化为线面垂直:ABCD 为矩形,故AB ⊥AD ,又平面PAD ⊥平面ABCD ,平面PAD平面ABCD=AD ,所以AB ⊥平面PAD ,再根据线面垂直证线线垂直:因为PD ⊂平面PAD ,所以AB ⊥PD 学_试题解析:(1)证明:ABCD 为矩形,故AB ⊥AD ,又平面PAD ⊥平面ABCD 平面PAD平面ABCD=AD 所以AB ⊥平面PAD ,因为PD ⊂平面PAD ,故AB ⊥PD(2)解:过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG . 故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG 在直角三角形BPC 中,2366333PG GC BG === 设,AB m =,则2224,3DP PG OG m =-=-,故四棱锥P-ABCD 的体积为 A BCDP2214686.333m V m m m =⋅⋅⋅-=-因为22228866()33m m m -=--+故当63m =时,即63AB =时,四棱锥的体积P-ABCD 最大.建立如图所示的空间直角坐标系,66626266(0,0,0),(((0,(0,0,)333333O B C D P - 故62666((0,6,0),(33PC BC CD ===- 设平面BPC 的法向量1(,,1),x y =n ,则由1PC ⊥n ,1BC ⊥n 得6266060x y +=⎨⎪=⎩解得1,0,x y ==1(1,0,1),=n同理可求出平面DPC 的法向量21(0,,1),2=n ,从而平面BPC 与平面DPC 夹角θ的余弦值为121210cos ||||51214θ⋅===⋅⋅+n n n n 14.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,90ABC BAD ∠=∠=︒, 4AD AP ==,2AB BC ==,M 为PC 的中点.(1)求异面直线AP ,BM 所成角的余弦值;(2)点N 在线段AD 上,且AN λ=,若直线MN 与平面PBC 所成角的正弦值为45,求λ的值.【解析】试题解析:(1)因为PA ⊥平面ABCD ,且,AB AD ⊂平面ABCD ,所以PA AB ⊥,PA AD ⊥,又因为90BAD ∠=︒,所以,,PA AB AD 两两互相垂直.分别以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,则由224AD AB BC ===,4PA =可得(0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,4,0)D ,(0,0,4)P ,又因为M 为PC 的中点,所以(1,1,2)M .所以(1,1,2)BM =-,(0,0,4)AP =,…………2分 所以cos ,||||AP BM AP BM AP BM ⋅〈〉= 646==⨯ 所以异面直线AP ,BM 65分(2)因为AN λ=,所以(0,,0)N λ(04)λ≤≤,则(1,1,2)MN λ=---, (0,2,0)BC =,(2,0,4)PB =-,设平面PBC 的法向量为(,,)x y z =m ,则0,0,BC PD ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,240.y x z =⎧⎨-=⎩ 令2x =,解得0y =,1z =, 所以(2,0,1)=m 是平面PBC 的一个法向量.……………………………7分 因为直线MN 与平面PBC 所成角的正弦值为45,学!所以||4|cos ,|5||||MN MN MN ⋅〈〉===m m m , 解得[]10,4λ=∈, 所以λ的值为1.……………………………………………………………10分。
立体几何中的探索性问题
立体几何中的探索性问题立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.这类试题的一般设问方式是“是否存在?存在给出证明,不存在说明理由”.解决这类试题,一般根据探索性问题的设问,首先假设其存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论就肯定假设,如果得到了矛盾就否定假设.8如图,在四棱锥P–ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=√3,点F是PB的中点,点E在边BC上移动.(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由.(2)求证:无论点E在BC边的何处,都有PE⊥AF.(3)当BE为何值时,PA与平面PDE所成角的大小为45。
?拓展提升(1)开放性问题是近几年高考的一种常见题型.一般来说,这种题型依据题目特点,充分利用条件不难求解.(2)对于探索性问题,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.9如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的√2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,求二面角P-AC-D的大小.(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE:EC的值;若不存在,试说明理由.如图所示,在正方体ABCD—A l B l C1D l中,M,N分别是AB,BC中点.(1)求证:平面B 1MN⊥平面BB1D1D;(2)在棱DD1上是否存在点P,使BD1∥平面PMN,若有,确定点P的位置;若没有,说明理由.如图所示,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=√2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,0为AD中点.(1)求证:PO⊥平面ABCD;(2)求异面直线PB与CD所成角的大小:(3)线段AD上是否存在点Q,使得它到平面PCD3若存在,求出AQ:DQ的值;若不存在,请说明理由.立体几何中探索性问题的向量解法高考中立体几何试题不断出现了一些具有探索性、开放性的试题。
高中数学黄金解题模板专题立体几何中的探索问题(解析版)
高考地位】探究性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.近几年高考中立体几何试题不断出现了一些具有探索性、开放性的试题.内容涉及异面直线所成的角,直线与平面所成的角,二面角,平行与垂直等方面,对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的.【方法点评】方法一直接法使用情景:立体几何中的探索问题解题模板:第一步首先假设求解的结果存在,寻找使这个结论成立的充分条件;第二步然后运用方程的思想或向量的方法转化为代数的问题解决;第三步得出结论,如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件,或出现了矛盾,则不存在..例1.如图甲,e 的直径2 ,圆上两点C、D 在直径的两侧,使C4 D .沿直径折起,使两个半圆所在的平面互相垂直(如图乙),F为C 的中点,3为的中点.根据图乙解答下列各题:(1)求证:C D ;(2)在BD弧上是否存在一点G,使得FG//平面CD ?若存在,试确定点G的位置;若不存在,请说明理由.得到DE 平面ABC,进而得出结论.(2)要满足FG ∥平面ACD ,可过直线FG 做一平面使其与平面ACD平行,找到所做平面与BD 弧的交点.点评:本题考查了直线与平面垂直的判定和直线与平面平行的判定. 这类探索性题型通常是找命题成立的一个充分条件,所以解这类题采用下列二种方法:⑴通过各种探索尝试给出条件;⑵找出命题成立的必要条件,也证明充分性.【变式演练1】如图,在四棱锥 E ABCD中,AE DE,CD 平面ADE ,AB 平面ADE ,(Ⅱ)求证:平面ACE 平面CDE ;(Ⅲ)在线段DE上是否存在一点 F ,使AF //平面BCE ?若存在,求出EF的值;若不存在,ED得到说明理由.EF 1 (Ⅲ)结论:在线段DE上存在一点F,且,使AF //平面BCE.ED 3EF 1解:设 F 为线段DE 上一点,且,过点 F 作FM //CD 交CE 于M ,则ED 31FM = CD .因为CD 平面ADE ,AB 平面ADE ,所以CD//AB .又因为CD 3AB 所3以MF AB ,FM //AB ,所以四边形ABMF 是平行四边形,则AF //BM .又因为AF 平面BCE ,BM 平面BCE ,所以AF //平面BCE.【变式演练2】如图,在四棱锥P ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE 与棱PD 交于点F .1)求证:AB//EF ;2)若PA AD ,且平面PAD 平面ABCD ,试证明AF 平面PCD;3)在(2)的条件下,线段PB上是否存在点M ,使得EM 平面PCD ?(直接给出结论,不需要说明理由)答案】(1)详见解析;(2)详见解析;(3)详见解析.解析】方法二 空间向量法使用情景:立体几何中的探索问题解题模板:第一步 首先根据已知条件建立适当的空间直角坐标系并假设求解的结果存在, 寻找使这个结论成立的充分条件;第二步 然后运用空间向量将立体几何问题转化为空间向量问题并进行计算、求 解;第三步 得出结论,如果找到了符合题目结果要求的条件,则存在;如果找不到 符合题目结果要求的条件,或出现了矛盾,则不存在. .例 2. 如图,已知矩形 ABCD 所在平面垂直于直角梯形 ABPE 所在平面于直线 AB ,且 AB BP 2,AD AE 1, AE AB,且AE ∥BP .(Ⅰ)设点 M 为棱 PD 中点,求证: EM ∥平面 ABCD ;(Ⅱ)线段 PD 上是否存在一点 N ,使得直线 BN 与平面 PCD 所成角的正弦值等于 2 ?若存5 在,试确定点 N 的位置;若不存在,请说明理由.uuuv uuuvuuuuv 思路分析:(Ⅰ)方法一:以 B 为原点, BA, BP,BC 分别为 x 轴,y 轴, z 轴建立空间直角 坐标系,求出平面 ABCD 的一个法向量,由此证得结果;方法二:连结 AC,BD ,其交点记1为O ,连结 MO ,EM ,由中位线定理可得 OM P 1 PB ,从而证得四边形 AEMO 是平行四边 2 形,进而由平行四边形的性质可使问题得证; (Ⅱ)先求出平面 PCD 的一个法向量,然后由此 利用向量法求出线段 PD 上存在一点 N ,当 N 点与 D 点重合时,直线 BN 与平面 PCD 所成2角的正弦值为 2 .5(方法二)由三视图知,BA, BP,BC两两垂直.连结AC,BD ,其交点记为O,连结MO ,EM .因为四边形ABCD为矩形,所以O为BD中点.因为M为PD中点,所以OM ∥PB,且1OM PB .21又因为AE∥PB,且AE PB,所以AE∥OM ,且AE=OM .所以四边形AEMO是平2行四边形,所以EM ∥ AO,因为EM 平面ABCD,AO 平面ABCD ,所以EM ∥平面ABCD .主要途(1)一般来说,如果已知的空间几何体中含有两两垂直且交于一点的三条就以这三条直线为坐标轴建立空间直角坐标系;(2)如果不存在这样的三条直线,则应尽可能找两条垂直相交的直线,以其为两条坐标轴建立空间直角坐标系,即坐标系建立时以其中的垂直相交直线为基本出发点;(3)建系的基本思想是寻找其中的线线垂直关系,在没有现成的垂直关系时要通过其他已知条件得到垂直关系.【变式演练3】如图,在多面体ABCDEF 中,四边形ABCD为正方形,EF / / AB ,EF EA,AB 2EF 2,AED 90o,AE ED,H 为AD 的中点.2)在线段BC上是否存在一点P ,使得二面角B FD P的大小为?若存在,求出BP 3的长;若不存在,请说明理由【答案】(1) 证明见解析;(2) 存在点P的坐标为( 1,2,0) ,使BP BC 2.【解析】试题分析:(1) 借助题设条件运用线面垂直的判定定理推证;(2) 借助题设构建空间坐标系运用空间向量求解探求.(2)因为AD,OH,HE 两两垂直,如图,建立空间直角坐标系H xyz ,则1)求证:EH平面ABCD ;A(1,0,0) D( 1,0,0) ,F (0,1,1),O(0,1,0) ,C( 1,2,0) .设点P (m, 2,0)(0 m 2) ,uuur uuur于是有DF (1,1,1),DP (m 1,2,0) .考点:空间线面的位置关系及空间向量的有关知识的综合运用.变式演练4】如图, ABCD 是边长为 3 的正方形,DE 面ABCDAF // DE,DE 3AF ,BE 与平面ABCD所成的角为600.(1)求二面角F BE D 的的余弦值;(2)设点M 是线段BD 上一动点,试确定M 的位置,使得AM // 面BEF ,并证明你的结论.解:OD / / 平面 ABC 1)求证 2)求直线 AB 的中点 3)能否在 CD 和平面 ODM 所成角的正弦值 以证明;若不能,请说明理由 四边形 ABDE 是直角梯形, BD/ /AE ,BD BA ,BD 1 AE 2,点O 、M 分别为 CE 2 变式演练 4】如图,平面 ABDE 平面 ABC , ABC 是等腰直角三角形, AB BC 4 EM 上找到一点 N ,使得 ON 平面 ABDE ?若能, 请指出点 N 的位置,并加【高考再现】1. 【20XX年高考北京理数】(本小题14 分)AD,如图,在四棱锥P ABCD 中,平面PAD 平面ABCD ,PA PD ,PA PD ,ABAB 1,AD 2,AC CD 5.1)求证: PD 平面 PAB ;2)求直线 PB 与平面 PCD 所成角的正弦值;(3)在棱 PA 上是否存在点 M ,使得BM //平面PCD ?若存在,求 AM 的值;若不存在, AP 说明理由 .试题解析:(1)因为平面 PAD 平面 ABCD , AB AD ,所以 AB 平面 PAD ,所以 AB PD , 又因为 PA PD ,所以 PD 平面 PAB ; (2)取 AD 的中点 O ,连结 PO , CO , 因为 PA PD ,所以 PO AD .又因为 PO 平面 PAD ,平面 PAD 平面 ABCD , 所以 PO 平面 ABCD . 因为 CO 平面 ABCD ,所以 PO CO . 因为 AC CD ,所以 CO AD . 如图建立空间直角坐标系 O xyz ,由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0, 1,0),P(0,0,1).答案】(1)见解析; 2) 3 ;(3 )存在,3 AMAP考点: 1.空间垂直判定与性质; 2.异面直线所成角的计算; 3.空间向量的运用. 【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一3)设M 是棱PA 上一点,则存在[0,1] 使得AM AP.因此点M (0,1 , ),BM ( 1, , ) .因为BM 平面PCD ,所以BM ∥ 平面PCD 当且仅当BM n 0,1即( 1, , ) (1, 2,2) 0 ,解得1 .4所以在棱PA上存在点M 使得BM∥ 平面PCD ,此时AMAP14所以直线PB 与平面PCD 所成角的正弦值个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.2. 【20XX年高考四川理数】(本小题满分12 分)1如图,在四棱锥P-ABCD中,AD∥BC,ADC= PAB=90 °,BC=CD= AD,E为边AD2的中点,异面直线PA 与CD 所成的角为90°.(Ⅰ)在平面PAB 内找一点M,使得直线CM∥平面PBE,并说明理由;(Ⅱ)若二面角P-CD-A的大小为45 °,求直线PA 与平面PCE所成角的正弦值.答案】(Ⅰ)详见解析;(Ⅱ)【解析】试题解析:(Ⅰ)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面PAB),点M 即为所求的一个点.理由如下:由已知,BC∥ ED,且BC=ED.所以四边形BCDE是平行四边形.,所以CD∥EB从而CM∥ EB.又EB 平面PBE,CM 平面PBE,所以CM∥平面PBE.说明:延长AP 至点N,使得AP=PN,则所找的点可以是直线MN 上任意一点)Ⅱ)方法一:易知PA⊥平面ABCD,从而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH. 过A作AQ⊥PH于Q,则AQ⊥平面PCE. 所以∠ APH 是PA与平面PCE所成的角. 在Rt△AEH中,∠ AEH=45°,AE=1,2所以AH= .2在Rt△PAH中,PH= PA2AH2=3 2,2AH 1所以sin∠APH= = .PH 3方法uuur uuur作 Ay ⊥ AD ,以 A 为原点,以 AD ,AP 的方向分别为 x 轴, z 轴的正方向,建立如图所示的空 间直角坐标系 A-xyz ,则 A (0,0,0),P ( 0,0,2),C (2,1,0),E (1,0,0),uuur uuur uuur所以 PE =(1,0,-2),EC =(1,1,0), AP =(0,0,2)所以直线 PA 与平面 PCE 所成角的正弦值为 13考点:线线平行、线面平行、向量法设平面 PCE 的法向量为n=(x,y,z),uuuuuuuur n PE 0, x 2z 0, 由uuur 得 n EC 0, x y 0,设 x=2,解得 n=(2,-2,1). uuuur |n AP | 2,则 sin α = uuur =设直线 PA 与平面 PCE 所成角为α|n| |AP | 2 22 ( 2)2 12 3A3. 【2016 高考北京文数】 (本小题 14 分)如图,在四棱锥 P ABCD 中, PC 平面 ABCD , AB ∥ DC , DC AC答案】(Ⅰ)见解析;(Ⅱ)见解析;(III )存在 .理由见解析 解析】II )求平面PAB 平面PAC ;I )求证: DC 平面PAC ;// 平面 C F ?说明理由 .F ,使得所以 C . 所以 平面 C .考点:空间垂直判定与性质;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一 个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直 (必要时可以通过平面几何的知识证明垂直关系 ),构造 (寻找 )二面角的平面角或得到点到面的距离等.【反馈练习】1. 【江苏省淮安市 20XX 届高三第五次模拟考试】 (本题满分 14 分)如图,边长为 2 的正方形 ABCD 是圆柱的中截面,点 E 为线段 BC 的中点,点 S 为圆柱 的下底面圆周上异于 A , B 的一个动点.1)在圆柱的下底面上确定一定点 F ,使得 EF // 平面 ASC ;【答案】(1)点 F 为线段 AB 的中点;(2)详见解析; 【解析】2. 【20XX 年高考模拟 (南通市数学学科基地命题 )(2) 】(本小题满分 14 分)已知直三棱柱ABC A 1B 1C 1中,D,E 分别为 AA 1,CC 1的中点, AC BE,点F 在线段 AB 上,且 AB 4AF .⑴求证 : BC C 1D ;⑵若 M 为线段 BE 上一点,试确定 M 在线段 BE 上的位置, 使得 C 1D // 平面 B 1FM(第 16题) 平面 BSC .【答案】(1)见解析;(2)BE=4ME【解析】⑵连结AE,在BE 上取点M,使BE=4ME,连结FM,B1M ,F B1 ,在BEA 中,由BE=4ME,AB=4AF所以 MF//AE , 又在面 AA 1C 1C 中,易证 C 1D//AE ,所以 C 1D//平面 B 1FM3. 【扬州市 2014—2015学年度第四次调研测试试题高三数学】 如图 ,三棱锥 A BCD 中,侧面ABC 是等边三角形 ,M 是 ABC 的中心.⑴若 DM BC ,求证 AD BC ;⑵若 AD 上存在点 N ,使 MN / / 平面 BCD ,求 AN 的值.ND1【答案】⑴见试题分析;⑵ 12【解析】⑵ M AE,AE 平面 ADE ,所以 M 平面 ADE ,因为 AD 上存在点 N ,所以 N 平面 ADE ,所以 MN 平面 ADE , 又 MN / / 平面 BCD ,平面ADE I 平面 BCD DE ,所以 MN / / DE , 在 ADE中 ,因为 AM 1 ,所以 AN1.ME 2 ND24.【20XX 届福建省福州市第八中学高三上学期第三次质检】在如图所示的几何体中,面CDEF1)求证:AC 平面FBC ;2)求四面体FBCD 的体积;2)线段AC 上是否存在点M ,使EA // 平面FDM ?证明你的结论.解析】为正方形,面ABCD 为等腰梯形,AB // CD,AC 3,AB 2BC 2,AC FB .答案】(1)祥见解析;32)3;(2)祥见解析.125.【20XX 届辽宁省大连市第二十高级中学高三上学期期中考试 】如图,四边形 ABCD 中, AB ⊥AD ,AD ∥BC ,AD =6,BC =4,AB =2,E 、F 分别在 BC 、 AD 上, EF ∥AB .现将四边形 ABEF沿P ,使得 CP ∥平面 ABEF ?若存在,求出 P点位置,若不存在,说明理由;( 2)设 BE =x ,问当 x 为何值时,三棱锥 A CDF 的体积有最大值?并求出这个最大值.MP =3,又因为 EC =3, MP ∥FD ∥EC ,故有 MP // EC ,故四边形 MPCE 为平行四边形,所以 PC ∥1)存在 AP P 使得满足条件 CP ∥平面 ABEF ,且此时. 3AD 5面证明: AP 3,过点 P 作 MP ∥FD ,与 AF 交于点 M,则有MPAD 5FD解析】3 ,又 FD = 5 ,故5ME,又CP 平面ABEF,ME 平面ABEF,故有CP∥平面ABEF成立.( 2)因为平面ABEF 平面EFDC,平面ABEF I 平面EFDC=EF,又AF EF,所以AF⊥平面EFDC 由已知BE=x,,所以AF=x(0 x , 4),FD=6 x.1 1 12 1 2 1 2故V A CDF 1 1 2 (6 x) x 1(6x x2) 1[ (x3)2 9] 1(x 3)2 3 .所以,当x3 2 3 3 3=3时,V A CDF有最大值,最大值为 3.。
立体几何中探索性问题(解析版)
专题4.5 立体几何中探索性问题一.方法综述立体几何在高考中突出对考生空间想象能力、逻辑推理论证能力及数学运算能力等核心素养的考查。
考查的热点是以几何体为载体的垂直、平行的证明、平面图形的折叠、探索开放性问题等;同时考查转化化归思想与数形结合的思想方法。
对于探索性问题(是否存在某点或某参数,使得某种线、面位置关系成立问题)是近几年高考命题的热点,问题一般有三种类型:(1)条件追溯型;(2)存在探索型;(3)方法类比探索型。
现进行归纳整理,以便对此类问题有一个明确的思考方向和解决办法。
二.解题策略类型一 空间平行关系的探索【例1】(2020·眉山外国语学校高三期中(理))在棱长为1的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的动点(点M 与1A C 、不重合),则下列结论正确的是__________①存在点M ,使得平面1A DM ⊥平面1BC D ; ②存在点M ,使得平面DM 平面11B CD ; ③1A DM ∆的面积可能等于36;④若12,S S 分别是1A DM ∆在平面1111A B C D 与平面11BB C C 的正投影的面积,则存在点M ,使得12S S【答案】①②③④【解析】①如图所示,当M 是1AC 中点时,可知M 也是1A C 中点且11B C BC ⊥,111A B BC ⊥,1111A B B C B =,所以1BC ⊥平面11A B C ,所以11BC A M ⊥,同理可知1BD A M ⊥, 且1BC BD B =,所以1A M ⊥平面1BC D ,又1A M ⊂平面1A DM ,所以平面1A DM ⊥平面1BC D ,故正确;②如图所示,取1AC 靠近A 的一个三等分点记为M ,记1111AC B D O =,1OC AC N =,因为11AC AC ,所以1112OC C N AC AN ==,所以N 为1AC 靠近1C 的一个三等分点, 则N 为1MC 中点,又O 为11A C 中点,所以1A M NO ,且11A DB C ,111A MA D A =,1NOB C C =,所以平面1A DM平面11B CD ,且DM ⊂平面1A DM ,所以DM 平面11B CD ,故正确;③如图所示,作11A M AC ⊥,在11AA C 中根据等面积得:12633A M ==, 根据对称性可知:16A M DM ==,又2AD =1A DM 是等腰三角形, 则12216232232A DMS⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故正确;④如图所示,设1AM aAC =,1A DM ∆在平面1111D C B A 内的正投影为111A D M ∆,1A DM ∆在平面11BB C C 内的正投影为12B CM ∆,所以1111122222A D M aS S a ∆==⨯⨯=,122121222222B CM a S S a ∆-==⨯-⨯=,当12S S 时,解得:13a =,故正确.故答案为 ①②③④【点评】.探索开放性问题,采用了先猜后证,即先观察与尝试给出条件再加以证明,对于命题结论的探索,常从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论。
2021版新高考数学:立体几何中的翻折、探究性、最值问题含答案
第七节立体几何中的翻折、探究性、最值问题(对应学生用书第136页)考点1平面图形的翻折问题3步解决平面图形翻折问题(20xx·全国卷Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.[解](1)证明:由已知可得BF⊥PF,BF⊥EF,PF∩EF=F,PF,EF⊂平面PEF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)如图,作PH ⊥EF ,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H -xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE =3. 又PF =1,EF =2, 所以PE ⊥PF . 所以PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝ ⎛⎭⎪⎫0,0,32.又HP →为平面ABFD 的法向量, 设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈HP →,DP →〉|=|HP →·DP →||HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34.平面图形翻折为空间图形问题重点考查平行、垂直关系,解题关键是看翻折前后线面位置关系的变化,根据翻折的过程找到翻折前后线线位置关系中没有变化的量和发生变化的量,这些不变的和变化的量反映了翻折后的空间图形的结构特征.[教师备选例题](20xx·贵阳模拟)如图所示,在梯形CDEF 中,四边形ABCD 为正方形,且AE =BF =AB =1,将△ADE 沿着线段AD 折起,同时将△BCF 沿着线段BC 折起,使得E ,F 两点重合为点P .(1)求证:平面PAB ⊥平面ABCD ;(2)求直线PB 与平面PCD 的所成角的正弦值. [解] (1)证明:∵四边形ABCD 为正方形, ∴AD ⊥AB ,AD ⊥AE , ∴AD ⊥AP, ∴AD ⊥平面PAB , 又∵AD ⊂平面ABCD , ∴平面ABCD ⊥平面PAB .(2)以AB 中点O 为原点,建立空间坐标系如图, ∵AE =BF =AB =1, ∴AP =AB =BP =1,∴B ⎝ ⎛⎭⎪⎫12,0,0,P (0,0,32),C ⎝ ⎛⎭⎪⎫12,1,0,D ⎝⎛⎭⎪⎫-12,1,0,图1 图2(1)证明:OD ⊥平面PAQ ;(2)若BE =2AE ,求二面角C -BQ -A 的余弦值. [解] (1)证明:由题设知OA ,OB ,OO 1两两垂直, ∴以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设AQ 的长为m ,则O (0,0,0),A (6,0,0),B (0,6,0),C (0,3,6),D (3,0,6),Q (6,m ,0).∵点P 为BC 的中点,∴P ⎝⎛⎭⎪⎫0,92,3,∴OD →=(3,0,6),AQ →=(0,m ,0),PQ →=⎝ ⎛⎭⎪⎫6,m -92,-3.∵OD →·AQ →=0,OD →·PQ →=0, ∴OD →⊥AQ →,OD →⊥PQ →,即OD ⊥AQ ,OD ⊥PQ ,又AQ ∩PQ =Q , ∴OD ⊥平面PAQ .(2)∵BE =2AE ,AQ ∥OB ,∴AQ =12OB =3,则Q (6,3,0),∴QB →=(-6,3,0),BC →=(0,-3,6). 设平面CBQ 的法向量为n 1=(x ,y ,z ),由⎩⎪⎨⎪⎧n1·QB →=0,n1·BC →=0,得⎩⎨⎧-6x +3y =0,-3y +6z =0,令z =1,则y =2,x =1,n 1=(1,2,1). 易得平面ABQ 的一个法向量为n 2=(0,0,1). 设二面角C -BQ -A 的大小为θ,由图可知,θ为锐角, 则cos θ=⎪⎪⎪⎪⎪⎪n1·n2|n1|·|n2|=66, 即二面角C -BQ -A 的余弦值为66. 考点2 立体几何中的探究性问题(1)解决探究性问题的基本方法是假设结论成立或对象存在,然后在这个前提下进行逻辑推理,若能推导出与条件吻合的数据或事实,则说明假设成立,即存在,并可进一步证明;否则不成立,即不存在.(2)在棱上探寻一点满足各种条件时,要明确思路,设点坐标,应用共线向量定理a =λb (b ≠0),利用向量相等,所求点坐标用λ表示,再根据条件代入,注意λ的范围.(3)利用空间向量的坐标运算,可将空间中的探究性问题转化为方程是否有解的问题进行处理.如图,在五面体ABCDEF中,AB∥CD∥EF,AD⊥CD,∠DCF=60°,CD=EF=CF=2AB=2AD=2,平面CDEF⊥平面ABCD.(1)求证:CE⊥平面ADF;(2)已知P为棱BC上的点,试确定点P的位置,使二面角P-DF-A的大小为60°.[解](1)证明:∵CD∥EF,CD=EF=CF,∴四边形CDEF是菱形,∴CE⊥DF.∵平面CDEF⊥平面ABCD,平面CDEF∩平面ABCD=CD,AD⊥CD,AD ⊂平面ABCD,∴AD⊥平面CDEF,∵CE⊂平面CDEF,∴AD⊥CE.又∵AD⊂平面ADF,DF⊂平面ADF,AD∩DF=D,∴CE⊥平面ADF.(2)由(1)知四边形CDEF为菱形,又∵∠DCF=60°,∴△DEF为正三角形.如图,取EF的中点G,连接GD,则GD⊥EF.∵EF∥CD,∴GD⊥CD.∵平面CDEF⊥平面ABCD,GD⊂平面CDEF,平面CDEF∩平面ABCD=CD,(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解、是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.[教师备选例题](20xx·潍坊模拟)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=12AD=1,CD=3.(1)求证:平面PBC⊥平面PQB;(2)当PM的长为何值时,平面QMB与平面PDC所成的锐二面角的大小为60°?[解](1)证明:∵AD∥BC,Q为AD的中点,BC=12AD,∴BC∥QD,BC=QD,∴四边形BCDQ为平行四边形,∴BQ∥CD.∵∠ADC=90°,∴BC⊥BQ.∵PA=PD,AQ=QD,∴PQ⊥AD.又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PQ⊥平面ABCD,∴PQ⊥BC.∴QM →=(-λ,3λ,3(1-λ)).设平面MBQ 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧QM →·m =0,QB →·m =0,即⎩⎨⎧-λx +3λy +3(1-λ)z =0,3y =0. 令x =3,则y =0,z =λ1-λ, ∴平面MBQ 的一个法向量为m =⎝ ⎛⎭⎪⎫3,0,λ1-λ. ∴平面QMB 与平面PDC 所成的锐二面角的大小为60°,∴cos 60°=|n·m||n||m|=⎪⎪⎪⎪⎪⎪33-3·λ1-λ12·3+⎝ ⎛⎭⎪⎫λ1-λ2=12, ∴λ=12.∴PM =12PC =72.综上知,PM =7或72.(20xx·北京高考)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且PF PC =13.(1)求证:CD ⊥平面PAD ;(2)求二面角F -AE -P 的余弦值;(3)设点G 在PB 上,且PG PB =23,判断直线AG 是否在平面AEF 内,说明理由.[解] (1)证明:因为PA ⊥平面ABCD ,所以PA ⊥CD .又因为AD ⊥CD ,PA ∩AD =A ,所以CD ⊥平面PAD .(2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A -xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点,所以E (0,1,1).所以AE →=(0,1,1),PC →=(2,2,-2),AP →=(0,0,2).所以PF →=13PC →=⎝ ⎛⎭⎪⎫23,23,-23,AF →=AP →+PF →=⎝ ⎛⎭⎪⎫23,23,43. 设平面AEF 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n·AE →=0,n·AF →=0, 即⎩⎪⎨⎪⎧y +z =0,23x +23y +43z =0. 令z =1,则y =-1,x =-1.于是n =(-1,-1,1).又因为平面PAD 的法向量为p =(1,0,0),所以cos 〈n ,p 〉=n·p |n||p|=-33.由题知,二面角F -AE -P 为锐角,所以其余弦值为33.(3)直线AG 在平面AEF 内.因为点G 在PB 上,且PG PB =23,PB →=(2,-1,-2),所以PG →=23PB →=⎝ ⎛⎭⎪⎫43,-23,-43,AG →=AP →+PG →=⎝ ⎛⎭⎪⎫43,-23,23. 由(2)知,平面AEF 的法向量n =(-1,-1,1).所以AG →·n =-43+23+23=0.所以直线AG 在平面AEF 内.本题(3)先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.考点3 立体几何中的最值问题解决空间图形有关的线段、角、距离、面积、体积等最值问题,一般可以从三方面着手:一是从问题的几何特征入手,充分利用其几何性质去解决;二是利用空间几何体的侧面展开图;三是找出问题中的代数关系,建立目标函数,利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法、二次数的配方法、公式法、函数有界法(如三角函数等)及高阶函数的拐点导数法等.(1)(20xx·衡水中学月考)如图所示,长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2面对角线B 1D 1上存在一点P 使得A 1P +PB 最短,则A 1P +PB 的最小值为( )A.5B .2+62C .2+2D .2(2)(20xx·三明模拟)如图所示,PA ⊥平面ADE ,B ,C 分别是AE ,DE 的中点,AE ⊥AD ,AD =AE =AP =2.①求二面角A -PE -D 的余弦值;②点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.(1)A [如图,把△A 1B 1D 1折起至与平面BDD 1B 1共面,连接A 1B 交B 1D 1于P ,则此时的A 1P +PB 最短,即为A 1B 的长,在△A 1B 1B 中,由余弦定理求得A 1B =5,故选A.(2)[解] ①因为PA ⊥平面ADE ,AD ⊂平面ADE ,AB ⊂平面ADE ,所以PA ⊥AD ,PA ⊥AB ,又因为AB ⊥AD ,所以PA ,AD ,AB 两两垂直.以{AB →,AD →,AP →}为正交基底建立空间直角坐标系A -xyz ,则各点的坐标为A (0,0,0),B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).因为PA ⊥AD ,AD ⊥AE ,AE ∩PA =A ,所以AD ⊥平面PAE ,所以AD →是平面PAE 的一个法向量,且AD →=(0,2,0).易得PC →=(1,1,-2),PD →=(0,2,-2).设平面PED 的法向量为m =(x ,y ,z ).则⎩⎪⎨⎪⎧m·PC →=0,m·PD →=0,即⎩⎨⎧x +y -2z =0,2y -2z =0. 令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PED 的一个法向量,所以cos 〈AD →,m 〉=AD →·m |AD →||m|=33,所以二面角A -PE -D 的余弦值为33.②BP →=(-1,0,2),故可设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1).又CB →=(0,-1,0),所以CQ →=CB →+BQ →=(-λ,-1,2λ).又DP →=(0,-2,2),所以cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t25t2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910, 当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数, 所以当λ=25时直线CQ 与DP 所成角取得最小值.又因为BP =12+22=5,所以BQ =25BP =255.本例(1)属于线段和的最值问题,求解时采用了化空间为平面,化折为直的重要手段;本例(2)属于解决空间角的最值问题,求解时采用了把空间角的余弦三角函数值表示为参数λ的二次函数,利用这个函数的单调性求三角函数值的最值,求解时需要注意的是函数中自变量的取值范围对最值的决定作用.(20xx·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.[解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,所以BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz .当三棱锥M -ABC 体积最大时,M 为CD ︵的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n·AM →=0,n·AB →=0, 即⎩⎨⎧-2x +y +z =0,2y =0.可取n =(1,0,2). DA →是平面MCD 的法向量,因此cos 〈n ,DA →〉=n·DA →|n||DA →|=55,sin 〈n ,DA →〉=255.所以面MAB 与面MCD 所成二面角的正弦值是255.。
2022高考复习解答题题型通关21讲第11讲 立体几何中的探索性问题(含解析)
沿 PD 翻折至 PDA ,使平面 PDA 平面 PBCD . (1)当棱锥 APBCD 的体积最大时,求 PA 的长; (2)若点 P 为 AB 的中点, E 为 AC 的中点,求证: DE 平面 ABC .
高考预测二:翻折问题 4.如图, BCD 是等边三角形, AB AD , BAD 90 ,将 BCD 沿 BD 折叠到△ BCD 的位置,使得 AD CB . (1)求证: AD AC ; (2)若 M , N 分别是 BD , CB 的中点,求二面角 N AM B 的余弦值.
5.图 1 是由矩形 ADEB 、 RtABC 和菱形 BFGC 组成的一个平面图形,其中 AB 1 , BE BF 2 , FBC 60 .将其沿 AB , BC 折起使得 BE 与 BF 重合,连结 DG ,如图 2.
13.如图,四棱锥层 ABCD 中,平面 EAD ABCD , CD / / AB , BC CD , EA ED .且 AB 4 , BC CD EA ED 2
(Ⅰ)求证: BD 平面 ADE ; (Ⅱ)求直线 BE 和平面 CDE 所成角的正弦值; (Ⅲ)在线段 CE 上是否存在一点 F ,使得平面 BDF 上平面 CDE ?如果存在点 F , t 请指出点 F 的位置;
设 n (x , y , z) 为平面 BDE 的法向量,
PC 3 (1)求证: CD 平面 PAD ; (2)应是平面 AEF 与直线 PB 交于点 G 在平面 AEF 内,求 PG 的值.
PB
17.如图,在四棱锥 P ABCD 中,PA 平面 ABCD ,AD CD ,AD / /BC ,PA AD CD 2 ,BC 3 .E 为 PD 的中点,点 F 为 PC 上靠近 P 的三等分点. (1)求二面角 F AE P 的余弦值; (2)设点 G 在 PB 上,且 PG 2 .判断直线 AG 是否在平面 AEF 内,说明理由.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行”为背景的存在判断型问题典例1(2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由.类型2以“垂直”为背景的存在判断型问题典例2如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M ,使平面?说明理由.类型3以“角”为背景的探索性问题典例3(2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为233.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ;(2)是否存在点E ,使得平面PEB 与平面SAD 所成的锐二面角的余弦值为10?若存在,确定点E 的位置;若不存在,请说明理由.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠= 且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【精选名校模拟】1.(·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点.(Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面;(Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°.2.(2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ;(2)若PB =PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为5,若存在,求出PQ OB 的值;若不存在,说明理由.3.(2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由;(Ⅱ)当二面角D FC B --的余弦值为24时,求直线PB 与平面ABCD 所成的角.【答案】(1)见解析(2)60︒4.(2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD -中,底面四边形ABCD 为正方形,已知PA ⊥平面ABCD ,2AB =,PA =.(1)证明:BD PC ⊥;(2)求PC 与平面PBD 所成角的正弦值;(3)在棱PC 上是否存在一点E ,使得平面BDE ⊥平面BDP ?若存在,求PEPC的值并证明,若不存在,说明理由.5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值.6.【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.7.【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.8.【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值.9.【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.10.如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形,//AB CD ,AB =BC DC ⊥,BC DC AM DM ====BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.11.在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====.(1)证明:AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.12【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值;(2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置.13.【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.14.【河南省开封市2019届高三上学期第一次模拟考试】如图所示,是边长为2的正方形,平面,且.(Ⅰ)求证:平面平面;(Ⅱ)线段上是否存在一点,使二面角所成角的余弦值为?若存在,请找出点的位置;若不存在,请说明理由.15.如图,五面体11A BCC B -中,14AB =,底面ABC 是正三角形,2AB =,四边形11BCC B 是矩形,二面角1A BC C --为直二面角.(1)D 在AC 上运动,当D 在何处时,有1//AB 平面1BDC ,并说明理由;(2)当1//AB 平面1BDC 时,求二面角1C BC D --余弦值.专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.2.以“平行”为背景的存在判断型问题典例1(2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【答案】(1)见解析;(2)3,2【解析】(1)取线段EF的中点M,有GM∥平面BDF.证明如下:如图所示,取线段EF的中点M,∵G为线段ED的中点,M为线段EF的中点,∴GM为△EDF的中位线,故GM∥DF,又GM⊄平面BDF,DF⊂平面BDF,故GM∥平面BDF;(2)∵CF ∥DE ,且AE 与CF 的夹角为60°,故AE 与DE 的夹角为60°,即60AED ∠=︒,过D 作DP ⊥AE 交AE 于P ,由已知得DE ⊥EF ,AE ⊥EF ,∴EF ⊥平面AED ,EF ⊥DP,又AE EF=E,∴DP ⊥平面AEFB ,即DP 为点D 到平面ABFE 的距离,且32DP x =,设DE =x ,则AE =BF =4﹣x ,由(1)知GM ∥DF ,G BDF M BDF D MBF V V V ---===11131(4)3322MBF S DP x ⎡⎤⋅⋅=⨯⨯⨯-⨯⎢⎥⎣⎦ ()24333(4)121243x x x x -+=-⋅=,当且仅当4﹣x =x 时等号成立,此时x =DE =2.故三棱锥G ﹣BDF 的体积的最大值为33,此时DE 的长度为2.【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由.【解析】(1)证明:由四边形为正方形可知,连接必与相交于中点故∵面∴面(2)线段上存在一点满足题意,且点是中点理由如下:由点分别为中点可得:∵面∴面由(1)可知,面且故面面类型2以“垂直”为背景的存在判断型问题典例2如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【解析】(1)证明:连接,,=,因为ABCD 是平行四边形,则为中点,连接,又为中点,面,面平面.(2)解(Ⅰ)当点在线段中点时,有平面取中点,连接,又,又,,平面,又是正三角形,平面(Ⅱ)当时,有平面平面过作于,由(Ⅰ)知,平面,所以平面平面易得【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M,使平面?说明理由.【解析】(Ⅰ)证明:在三棱柱中,因为底面,CD⊂平面ABC,所以.又为等边三角形,为的中点,所以.因为,所以平面;(Ⅱ)取中点,连结,则因为,分别为,的中点,所以.由(Ⅰ)知,,如图建立空间直角坐标系.由题意得,,,,,,,,,.设平面法向量,则即令,则,.即.平面BAE法向量.因为,,,所以由题意知二面角为锐角,所以它的余弦值为.(Ⅲ)解:在线段上不存在点M,使平面.理由如下.假设线段上存在点M,使平面.则,使得.因为,所以.又,所以.由(Ⅱ)可知,平面法向量,平面,当且仅当,即,使得.所以解得.这与矛盾.所以在线段上不存在点M ,使平面.类型3以“角”为背景的探索性问题典例3(2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为233.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ;(2)是否存在点E ,使得平面PEB 与平面SAD 所成的锐二面角的余弦值为3010?若存在,确定点E 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,点E 位于AS 的靠近A 点的三等分点.【解析】(1)证明:因为E 、F 分别是SA 、SB 的中点,所以EF AB ∥,在矩形ABCD 中,AB CD ∥,所以EF CD ∥,又因为E 、P 分别是SA 、AD 的中点,所以∥EP SD ,又因为EF CD ∥,EF EP E ⋂=,,EF EP ⊂平面PEF ,,SD CD ⊂平面SCD ,所以平面∥PEF 平面SCD .(2)解:假设棱SA 上存在点E 满足题意.在等边三角形SAD 中,P 为AD 的中点,于是SP AD ⊥,又平面SAD ⊥平面ABCD ,平面SAD ⋂平面ABCD AD =,SP ⊂平面SAD ,所以SP ⊥平面ABCD ,所以SP 是四棱锥S ABCD -的高,设AD m =,则32SP m =,ABCD S m =矩形,所以113323S ABCD ABDD V S SP m m -=⋅=⋅=矩形,所以2m =,以P 为坐标原点,PA 所在直线为x 轴,过点P 与AB 平行的直线为y 轴,PS 所在直线为z 轴,建立如图所示的空间直角坐标系.则()0,0,0P ,()1,0,0A ,()1,1,0B,(S ,设(()(),0,01AE AS λλλλ==-=-≤≤ ,()()1,0,0PE PA AE λ=+=+-()1λ=-,()1,1,0PB = ,设平面PEB 的一个法向量为()1,,n x y z = ,有()11100n PE x z n PB x y λ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ ,令x =,则)1,,1n λ=- ,易知平面SAD 的一个法向量()20,1,0n =u u r,所以121212cos ,n n n n n n ⋅== 3010=,因为01λ≤≤,所以13λ=,所以存在点E ,位于AS 的靠近A 点的三等分点.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠= 且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【答案】(1)见解析;(2)1CE =.【解析】(1)取1AB 中点G ,连结EG FG 、,则FG ∥1BB 且112FG BB =.因为当E 为1CC 中点时,CE ∥1BB 且112CE BB =,所以FG ∥CE 且FG =CE .所以四边形CEGF 为平行四边形,CF ∥EG ,又因为1CF AEB ⊄平面,1EG AEB ⊂平面,所以//CF 平面1AEB ;(2)假设存在满足条件的点E ,设()01CE λλ=≤≤.以F 为原点,向量1FB FC AA 、、方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系.则()A,)12B ,()0,1,E λ,平面ABC 的法向量()0,0,1m = ,平面1AEB的法向量)3,3n λ=-- ,3cos 2m n m n m n ⋅=== ,,解得1λ=,所以存在满足条件的点E ,此时1CE =.【精选名校模拟】1.(·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点.(Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面;(Ⅱ)PQ PC λ= 试确定λ的值使得二面角Q BD P --为60°.【答案】(1)见解析(2)3-【解析】(Ⅰ)取PD 的中点M ,连接AM ,M Q ,Q PC 点是的中点,∴M Q ∥CD ,1.2MQ CD =又AB ∥CD ,1,2AB CD QM =则∥AB ,QM =AB ,则四边形ABQM 是平行四边形.BQ ∴∥AM.又AM ⊂平面PAD ,BQ ⊄平面PAD ,BQ ∴∥平面PAD.(Ⅱ)解:由题意可得DA ,DC ,DP 两两垂直,以D 为原点,DA ,DC ,DP 所在直线为,,x y z 轴建立如图所示的空间直角坐标系,则P(0,1,1),C(0,2,0),A(1,0,0),B(1,1,0).令()()()000000,,,,,1,0,2,1.Q x y z PQ x y z PC =-=-则()()000,,,10,2,1,PQ PC x y z λλ=∴-=-()0,2,1.Q λλ∴-又易证BC ⊥平面PBD ,()1,1,0.n PBD ∴=-是平面的一个法向量设平面QBD 的法向量为(),,,m x y z =(),0,0,2210,.0,1x y x y m DB y z z y m DQ λλλλ=-⎧+=⎧⎧⋅=⎪⎨⎨⎨+-==⋅=⎩⎩⎪-⎩则有即解得令21,1,1,.1y m λλ⎛⎫==- ⎪-⎝⎭则60Q BD P 二面角为--,1cos ,,2m nm n m n ⋅∴==解得3λ=± Q 在棱PC上,01,3λλ<<∴=2.(2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ;(2)若PB =PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为5,若存在,求出PQ OB 的值;若不存在,说明理由.【答案】(1)证明见解析(2)存在,155【解析】(1)证明:连接BE ,在等腰梯形中ABCD ,2AD AB BC ===,4CD =,E 为中点,∴四边形ABED 为菱形,∴BD AE ⊥,∴OB AE ⊥,OD AE ⊥,即OB AE ⊥,OP AE ⊥,且OB OP O = ,OB ⊂平面POB ,OP ⊂平面POB ,∴AE ⊥平面POB .又AE ⊂平面ABCE ,∴平面POB ⊥平面ABCE .(2)由(1)可知四边形ABED 为菱形,∴2AD DE ==,在等腰梯形ABCD 中2AE BC ==,∴PAE △正三角形,∴OP =,同理OB =∵PB =,∴222OP OB PB +=,∴OP OB ⊥.由(1)可知OP AE ⊥,OB AE ⊥,以O 为原点,OE ,OB ,OP分别为x 轴,y 轴,为z 轴,建立空间直角坐标系O xyz -,由题意得,各点坐标为(P ,()1,0,0A -,()B,()C ,()1,0,0E,∴(PB =,(PC = ,()2,0,0AE =,设()01PQ PB λλ=<<,()AQ AP PQ AP PB λ=+=+=- ,设平面AEQ 的一个法向量为(),,n x y z =r,则00n AE n AQ ⎧⋅=⎨⋅=⎩,即)200x x y =⎧⎪⎨+=⎪⎩,取0x =,1y =,得1z λλ=-,∴0,1,1n λλ⎛⎫=⎪-⎝⎭,设直线PC 与平面AEQ 所成角为θ,π0,2θ⎡⎤∈⎢⎥⎣⎦,则15sin cos ,5PC n PC n PC nθ⋅===155=,化简得:24410λλ-+=,解得12λ=,∴存在点Q 为PB 的中点时,使直线PC 与平面AEQ 所成角的正弦值为155.3.(2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由;(Ⅱ)当二面角D FC B --的余弦值为24时,求直线PB 与平面ABCD 所成的角.【答案】(1)见解析(2)60︒【解析】(Ⅰ)在棱AB 上存在点E ,使得//AF 平面PCE ,点E 为棱AB 的中点.理由如下:取PC 的中点Q ,连结EQ 、FQ ,由题意,//FQ DC 且12FQ CD =,//AE CD 且12AE CD =,故//AE FQ 且AE FQ =.所以,四边形AEQF 为平行四边形.所以,//AF EQ ,又EQ ⊥平面PEC ,AF ⊥平面PEC ,所以,//AF 平面PEC .(Ⅱ)由题意知ABD ∆为正三角形,所以ED AB ⊥,亦即ED CD ⊥,又90ADP ∠=︒,所以PD AD ⊥,且平面ADP ⊥平面ABCD ,平面ADP ⋂平面ABCD AD =,所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图空间直角坐标系,设FD a =,则由题意知()0,0,0D ,()0,0,F a ,()0,2,0C ,)3,1,0B,()0,2,FC a =-,)3,1,0CB =- ,设平面FBC 的法向量为(),,m x y z =,则由00m FC m CB ⎧⋅=⎨⋅=⎩得200y az y -=⎧⎪-=,令1x =,则y =,23z a =,所以取23m a ⎛⎫= ⎪⎪⎝⎭,显然可取平面DFC 的法向量()1,0,0n = ,由题意:2cos ,4m n ==,所以a =由于PD ⊥平面ABCD ,所以PB 在平面ABCD 内的射影为BD ,所以PBD ∠为直线PB 与平面ABCD 所成的角,易知在Rt PBD ∆中,tan PDPBD a BD∠===,从而60PBD ∠=︒,所以直线PB 与平面ABCD 所成的角为60︒.4.(2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD -中,底面四边形ABCD 为正方形,已知PA ⊥平面ABCD ,2AB =,PA =.(1)证明:BD PC ⊥;(2)求PC 与平面PBD 所成角的正弦值;(3)在棱PC 上是否存在一点E ,使得平面BDE ⊥平面BDP ?若存在,求PEPC的值并证明,若不存在,说明理由.【答案】(1)证明见解析;(2)1010;(3)存在,23PE PC =,理由见解析【解析】(1)如图,连接AC 交BD 于点O ,由于PA ⊥平面ABCD ,BD ⊂平面ABCD 所以PA BD ⊥,即BD PA⊥由于BD PA ⊥,BD AC ⊥,PA AC A = ,所以BD ⊥平面PAC 又因为PC ⊂平面PAC ,因此BD PC⊥(2)由于PA ⊥平面ABCD ,AB Ì平面ABCD ,AD ⊂平面ABCD ,所以PA AB ⊥,PA AD ⊥又AB AD ⊥,所以PA ,AB ,AD 两两垂直,因比,如图建立空间直角坐标系A xyz-(2,0,0)B ,(2,2,0)C ,(0,2,0)D,P因此(2,2,PC =,(2,0,PB =,(0,2,PD =设平面PBD 的法向量为(,,)m x y z = ,则00m PB m PD ⎧⋅=⎨⋅=⎩即2020x y ⎧=⎪⎨=⎪⎩取1x =,1y =,z =,则m =设直线PC 与平面PBD 所成角为θ,sin |cos ,|=||10||||m PC m PC m PC θ⋅=<>=⋅(3)存在,设[0,1]PEPCλ=∈,则(2,2))E λλλ-则(22,2))BE λλλ=-- ,(2,2,0)BD =-设平面BDE 的法向量为(,,)n a b c =,则00n BE n BD ⎧⋅=⎨⋅=⎩ ,即2(1)2(1)0220a b a b λλλ⎧-++-=⎪⎨-+=⎪⎩,即1a λ=-,1b λ=-,2)c λ=-则(1,12))n λλλ=---,若平面BDE ⊥平面BDP ,则0m n ⋅=r r即1(1)1(1)2)0λλλ⋅-+⋅-+-=,则2[0,1]3λ=∈因此在棱PC 上存在点E ,使得平面BDE ⊥平面BDP ,23PE PC =5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值.【解析】设AE=BF=x.以D为原点建立空间直角坐标系,得下列坐标:D(0,0,0),A(2,0,0),B (2,2,0),C(0,2,0),D1(0,0,2),A1(2,0,2),B1(2,2,2),C1(0,2,2),E(2,x,0),F(2﹣x,2,0).(1)因为,,所以.所以A1F⊥C1E.(2)因为,所以当S△BEF取得最大值时,三棱锥B1﹣BEF的体积取得最大值.因为,所以当x=1时,即E,F分别是棱AB,BC的中点时,三棱锥B1﹣BEF的体积取得最大值,此时E,F坐标分别为E(2,1,0),F(1,2,0).设平面B1EF的法向量为,则得取a=2,b=2,c=﹣1,得.显然底面ABCD的法向量为.设二面角B1﹣EF﹣B的平面角为θ,由题意知θ为锐角.因为,所以,于是.所以,即二面角B1﹣EF﹣B的正切值为.6.【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.【解析】(1)∵在底面中,,且∴,∴又∵,,平面,平面∴平面又∵平面∴∵,∴又∵,,平面,平面∴平面(2)方法一:在线段上取点,使则又由(1)得平面∴平面又∵平面∴作于又∵,平面,平面∴平面又∵平面∴又∵∴是二面角的一个平面角设则,这样,二面角的大小为即即∴满足要求的点存在,且方法二:取的中点,则、、三条直线两两垂直∴可以分别以直线、、为、、轴建立空间直角坐标系且由(1)知是平面的一个法向量设则,∴,设是平面的一个法向量则∴令,则,它背向二面角又∵平面的法向量,它指向二面角这样,二面角的大小为即即∴满足要求的点存在,且7.【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.【解析】(1)由题设知,平面平面,交线为.因为,平面,所以平面,因此,又,,所以平面.而平面,所以平面平面.(2)以为坐标原点,的方向为轴正方向建立如图所示的直角坐标系,则有,过点作于,设,则.因为,所以,,由题设可得,即,解得或,因为,所以,所以,.由,知是平面的法向量,,.设平面的法向量为,则取得,设二面角为,则,因为,.综上,二面角的正弦值为.8.【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值.【解析】(1)证明:由已知,得,在中,,∴,即,∵平面,平面,∴,又∵,平面,平面,∴平面(2)∵平面,∴为直线与平面所成角,∴,∴,在中,,取的中点,连结,则,∵平面,平面,∴,又∵,平面,平面,∴平面,以点为坐标原点,建立如图空间直角坐标系,则,,,,∴,,设平面的法向量为,则,取,解得,又平面的法向量为,∴.∴二面角的余弦值为.9.【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.【解析】证明:(1)取中点,连,连.在△中,因为分别是中点,所以,且.在平行四边形中,因为是的中点,所以,且.所以,且.所以四边形是平行四边形.所以.又因为平面,平面,所以平面.(2)因为侧面是正方形,所以.又因为平面平面,且平面平面,所以平面.所以.又因为,以为原点建立空间直角坐标系,如图所示.设,则,.(ⅰ)设平面的一个法向量为.由得即令,所以.又因为平面,所以是平面的一个法向量.所以.由图可知,二面角为钝角,所以二面角的大小为.(ⅱ)假设在线段上存在点,使得.设,则.因为,又,所以.所以.故点在点处时,有10.如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形,//AB CD ,AB =BC DC ⊥,BC DC AM DM ====BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.【解析】(1)证明:由平面几何的知识,易得2BD =,2AD =,又AB =,所以在ABD ∆中,满足222AD BD AB +=,所以ABD ∆为直角三角形,且BD AD ⊥.因为四边形BDMN 为矩形,所以BD DM ⊥.由BD AD ⊥,BD DM ⊥,DM AD D ⋂=,可得BD ADM ⊥平面.又BD ABD ⊂平面,所以平面ADM⊥平面ABCD .(2)存在点H ,使得二面角H AD M --为大小为,点H 为线段AB 的中点.事实上,以D 为原点,DA 为x 轴,DB 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系D xyz -,则()()()0,0,0,2,0,0,0,2,0D A B ,()1,0,1M ,设(),,H x y z ,由MH MN DB λλ==,即()()1,,10,2,0x y z λ--=,得()1,2,1H λ.设平面ADH 的一个法向量为()1111,,n x y z =,则,即,不妨设11y =,取()10,1,2n λ=-.平面ADM 的一个法向量为()20,1,0n =.二面角H AD M --为大小为于是.解得或(舍去).所以当点H 为线段MN 的中点时,二面角H AD M --为大小为.11.在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====.(1)证明:AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.法二:如图,以O 为原点,分别以过O 点与DB共线同向的向量,OD ,OP方向上的单位向量为单位正交基建立空间直角坐标系O xyz -,则()()()()()0,0,0,0,2,0,2,1,0,2,1,0,0,0,3,O A B C P --()()()0,2,3,4,0,0,2,3,0AP BC AC ==-=-∴0AP BC ⋅= ∴AP BC ⊥∴AP BC⊥(2)假设M 点存在,设AM AP λ=,(),,M x y z ,则(),2,AM x y z =+,∴()(),2,0,2,3x y z λ+=,∴0{22 3x y z λλ=+==,∴()0,22,3M λλ-,∴()2,23,3BM λλ=--设平面MBC 的法向量为()1111,,n x y z = ,平面APC 的法向量为()2222,,n x y z =由110{ 0n BM n BC ⋅=⋅=得()111122330{ 40x y z x λλ-+-+=-=,令11y =,可得1320,1,3n λλ-⎛⎫= ⎪⎝⎭ ,由220{ 0n AC n AP ⋅=⋅=得2222230{ 230x y y z -+=+=,令16y =,可得()29,6,4n =-,若二面角A MC B --为直二面角,则120n n ⋅= ,得326403λλ--⋅=,解得613λ=,∴61313AM =故线段AP 上是否存在一点M ,满足题意,AM 的长为61313.12【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值;(2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置.【解析】(1)在中,记,,则由余弦定理:,(当且仅当时,上式取等号)此时,,的面积的最大值为.(2)由(1)知,,,设存在,在三棱锥中,取的中点,连接,易知.作于,由平面平面平面.故在平面上的投影为.与平面所成的角为,由.设,得,,故.故存在,且,满足题意.(2)另解:由(1),,设存在,则在三棱锥中,取的中点,连接,易求.以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,平面的法向量为,设,得,得,又.由.故存在,且,满足题意.13.【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.【解析】(1)连接交于,连接,则是平面与平面的交线.因为平面,平面,所以.又因为是中点,所以是的中点.所以.(2)由已知条件可知,所以,以为原点,为轴,为轴,为轴建立空间直角坐标系.。