对数与对数运算导学案

合集下载

221 对数与对数运算3导学案人教A版必修1.doc

221 对数与对数运算3导学案人教A版必修1.doc

♦高中数学必修1导学案♦§2.2.1对数与对数运算(3)心.学习亘标1.能较熟练箍运用对数运算性质解决实践问题;2.加强数学应用意识的训练,提高解决应用问题的能力. 心 '' 学习过程一'课前准备复习1:对数的运算性质及换底公式.如果a>0, azl, M>0, N>0 ,则(1) log。

(MV) = ____________________ ;(2) log“誉 ________________________ (3) log“ M n = _______________________ .二' 新课导学(预习教材P66~ P67,解决下面的问题)新知:换底公式log n b = _____________________ (a > 0,且a 工1; c > 0,且c 工1; b > 0)三' 合作探究1.已知lg2 = a,lg3 = Z?,求下列各式的值:3(1) lg6; (2) log3 4 ;(3) log212;(4) lg|2.已知2000年人口数13亿,年平均增长率1%,多少年后可以达到18亿?(参考数据;lg2=0.3010 , lg3=0.4771 , lg5=0.6990, lgl3 = 1.1139)3.20世纪30年代,查尔斯.里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M,其计算公式为:M=lgA-lg4,其中 4 是被测地震的最大振幅,A是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);(2)5级地震给人的振感已比较明显,计算7.6级地震最大振幅是5级地震最大振幅的多少倍?(精确到1)小结:读题摘要一寻找数量关系一利用对数计算.三、总结提升探学习小结1.换底公式2.应用建模思想(审题一设未知数一建立x与y之间的关系一求解"验证);3.用数学结果解释现象.探知识拓展对数的换底公式1。

对数函数导学案.doc

对数函数导学案.doc

2.2.1对数与对数运算(一)一【学习目标】 (一) 教学知识点1.对数的概念;2.对数式与指数式的互化. (二) 能力训练要求1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识. 二、教学重点:对数的定义. 三、教学难点:对数概念的理解. 四【新课讲授】(导学)假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?列出表达式: (自学)知识点1 : 对数的概念1.对数定义:一般地,如果 ,)1,0(≠>a a 且则数 b 叫做以a 为底 N 的对数, 记作 ,其中a 称为对数的底,N 称为真数. (b N N a a b =⇔=log )(1)底数的取值范围 ;真数的取值范围(2)对数式和指数式关系式 子名称 a b N指数式 对数式思考1.将下列指数式写成对数式: (1)62554= (2)64126=- (3)273=a(4)73.531=m )(知识点2 两种重要对数1.常用对数:以10为底的对数叫做常用对数N 10log 简记作 . 思考2:5log 10简记作; 5.3log 10简记作2.自然对数:用以无理数e=2.71828……为底的对数叫自然对数, N e log 简记作思考3:3log e 简记作 10log e 简记作 思考4. 将下列对数式写成指数式:(1)416log 21-=; (2)7128log 2=; (3)201.0lg -=; (4)303.210ln =.知识点三 : 重要公式:⑴负数与零没有对数; ⑵01log =a , 1log =a a ⑶对数恒等式N aNa =log五【典例欣赏】(互学) 1对数概念应用例1.求下列各式中x 的取值范围:(1)log 2(x -10);(2)log (x -1)(x +2);(3)log (x +1)(x -1)2.2对数基本运算例2求下列各式中的x 的值:(1)32log 64-=x ;(2)68log =x ;(3)x =100lg ;(4)x e =-2ln 。

2.2 对数与对数函数导学案

2.2  对数与对数函数导学案

必修一 2.2.1 对数与对数运算导学案(课时一)一.合作探究:假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍? ()?2%81=⇒=+⋅x a a x也就是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢? 新知:1. 对数的概念.一般地,如果N a x=)1,0(≠>a a ,那么数 x 叫做以a 为底 N 的对数. 记作 ,其中a 叫做对数的底数,N 叫做真数. 2. 对数与指数的关系.一般地,如果(a >0, a ≠1)的b 次幂等于N ,就是N a b =,那么数b 叫做以a 为底N 的对数,记作b N a =log ,3. 常用对数.我们通常将以10为底的对数叫做常用对数,并把常用对数10log N 简记为lg N例如:5log 10简记作lg5; 5.3log 10简记作 .4. 自然对数.在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数N e log 简记作N ln例如:3log e 简记作3ln ; 10log e 简记作 . 反思:1.是不是所有的实数都有对数?b N a =log 中的N 可以取哪些值?负数与零是否有对数?为什么? 2.=1log a , =a a log .3.底数的取值范围是 ,真数的取值范围 .4.=na a log ,=na alog .【典型例题】例1.将下列指数式写成对数式,对数式写成指数式.(1)62554=;(2)73.531=m )( ;(3)416log 21-= ;(4)303.210ln =.⇔=N a b例2.求下列各式中的x 的值.(1)32log 64-=x ; (2)68log =x ; (3)x =100lg ; (4)x e =-2ln .例3.计算.(1)27log 9; (2)81log 3; (3)125log 5; (4)()()32log 32-+.课堂检测 1. 若2log 3x =,则x =_____2.若1)12(log -=+x ,则x =_____3. 将下列指数式写成对数式,对数式写成指数式.(1)823= (2)3131=- (3)29log 3= (4)241log 2-=4. 求下列各式的值:(1)1log 4.0 (2)32log 2 (3) 1000lg (4)343log 7(选做)(3))23(log )23(+-; (4)625log35.2.2.1 对数与对数运算(课时二)【预习指导】 复习回顾:1.对数定义:如果N a x =(0,1)a a >≠,那么数 x 叫做 ,记作 .2.指数式与对数式的互化:N a x =⇔ .3.幂的运算性质.(1)n m a a = ;(2)n m a )(= ;(3)n ab )(= . 合作探究:问题:由q p q p a a a +=,如何探讨)(log MN a 和M a log 、N a log 之间的关系?设p M a =log , q N a =log ,由对数的定义可得:p a M =,q a N =∴q p q p a a a MN +==,∴q p MN a +=)(log ,即得N M MN a a a log log )(log +=.新知:对数运算性质.如果1,0≠>a a ,M > 0, N > 0 有:(1)N M MN a a a log log )(log +=;(2) ; (3))(log log R n M n M a n a ∈=.反思:1.性质的证明思路.2.对数的运算性质可否逆用? 【知识链接】【典型例题】例1.用x a log ,y a log ,z a log 表示下列各式.32log )2(;(1)log zyx zxyaa .例2.计算.(1)25log 5; (2))24(log 572⨯; (3)5100lg ;例3.计算. (1) 18lg 7lg 37lg 214lg -+-; (2) 2lg 5lg 2lg )5(lg 2+⋅+.(选讲)例4.已知3010.02lg =,4771.03lg =, 求108lg .课堂检测1. 下列等式成立的是( ).A .222log (35)log 3log 5÷=-B .222log (10)2log (10)-=-C .5log 3log )53(log 222⋅=+D .3322log (5)log 5-=-2. 如果c b a xlg 5lg 3lg lg -+=,那么( ).A .x =a +3b -cB .35ab x c= C . 35ab x c = D .x =a +b 3-c 33. 计算(1))927(log 23⨯ (2)3log 6log 22-(3)15lg lg 23+=; (4) =+27log 3log 99.4. 计算(1)2lg 2lg2lg5lg5+⋅+; (选做)(2) lg8lg1.2-.2.2.1 对数与对数运算(课时三)【预习指导】 复习回顾:对数的运算法则如果 a >0,a ≠ 1,M >0, N >0 有:=)(log MN a ,=NM a log ,=n a M log .新知:1.对数的换底公式:aNN b b a log log log =;证明:设 a log N = x , 则 x a = N .两边取以b 为底的对数:N a x N a b b b x b log log log log =⇒=从而得:a N x b b log log = ∴ aNN b b a log log log =.2.对数的倒数公式:ab b a log 1log =;(选讲)3.对数恒等式:N N a n a n log log =;N N a nn a m log log =;1log log =⋅a b b a .【典型例题】例1.20世纪30年代,查尔斯.里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大. 这就是我们常说的里氏震级M ,其计算公式为:0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001, 计算这次地震的震级(精确到0.1); (2)5级地震给人的振感已比较明显,计算7.6级地震最大振幅是5级地震最大振幅的多少倍?(精确到1)例2.计算. (1);25log 20lg 100+ (3)4log 16log 327.课堂检测1.计算(1)8log 4log 3log 432∙∙⋅ (2) ()2log 2)(log 3log 3log 9384++2.已知 2log 3 = a , 3log 7 = b ,用b a ,表示42log 56.(选做)3.计算: 3log 12.05+;2.2.2对数函数及其性质导学案(1)复习1 :画出 x y 2= x y )21(=的图象,并以这两个函数为例,说说指数函数的性质复习2 :生物机体内碳 的“半衰期”为 5730年,湖南长沙马王堆汉墓女尸出土时,碳14 的残余量为P ,试推算马王堆古墓的年代(列式)二、新课导学※探究任务一:对数函数的概念讨论: 复习2中t 与 P 的关系?(对每一个碳14 的含量 P 的取值,通过对应关系P t 573021log=,生物死亡年数 t 都有唯一的值与之对应,从而 t 是 P 的函数)新知:一般当a>0且 ≠1 时,形如 叫做对数函数,,函数的定义域是 判断: x y 2log 2= ,)5(log 5x y =为对数函数吗?试一试:同一坐标系中画出下列对数函数的图象(1)x y 2log = (2)x y 21log =例1 求下列函数的定义域 (1))32(log 2-+=x x y a (2)xy 311log 7-=练1求下列函数的定义域(1))6(log 5--=x y (2) 1log 2-=x y例2比较下列各题中两个数值的大小(1)5.3log 3log 22和 (2) 7.2log 8.2log 3.03.0和 (3) 9.5log 1.5log a a 和练2:比较下列各题中两个数值的大小 (1)5.8ln 4.3ln 和 (3) 8.1log 61.1log 7.07.0和(2) 4log 7.0log 3.02.0和 (4)2log 3log 32和当堂检测1. 函数)3(log )1(x y x -=-的定义域是 2. 比大小(1)6log 7log 76和 (2)5.1log 8.0log 32和 3. 函数)1(log 22≥+=x x y 的值域为4. 不等式21log 4>x 解集是2.2.2 对数函数及其性质导学案(2)复习1:对数函数log (0,1)y x a a =>≠且图象和性质.一.学习探究探究任务1:阅读教材 P 73探究,答:关系式是_________________________探究任务2:理解指数函数2x y =与对数函数2log y x =互为反函数反函数,课本P 73(不必抄写,理解既可)探究任务3:在同一平面直角坐标系中,画出指数函数2x y =及其反函数2log y x =图象,发现什么性质?(这个问题是课本P76“探究与发现”的问题)由上述过程可以得到结论:互为反函数的两个函数的图象关于 对称. 典型例题例1求函数3x y =的反函数练1. 求下列函数的反函数.(1) y =x (x ∈R ); (2)y =log a 2x (a >0,且a ≠1,x >0)小结:求反函数的步骤(解x →习惯表示→定义域) .五、当堂检测1.函数0.5log y x =的反函数是( ).A. 0.5log y x =-B. 2log y x =C. 2xy = D.1()2xy = 2. 函数2(0)y x x =<的反函数是( ).A. (0)y x =>B. (0)y x =>C. (0)y x =>D.。

高中数学 2.2.1对数与对数运算(2)导学案 新人教A版必修1

高中数学 2.2.1对数与对数运算(2)导学案 新人教A版必修1

课题:2.2.1对数与对数运算(2)一、三维目标:知识与技能: 1.理解和掌握对数运算的性质; 2.掌握对数式与指数式的关系。

过程与方法: 通过对具体实例的学习,使学生了解知识源于生活,服务于生活。

情感态度与价值观: 1.通过对数的运算法则的学习,培养学生的严谨的思维品质;2.在学习过程中培养学生探究的意识,体会数学的应用价值。

二、学习重、难点:重点:对数运算的性质与对数知识的应用。

难点:正确使用对数的运算性质。

三、学法指导:学生自主推理、讨论和概括,从而更好地完成本节课的教学目标。

四、知识链接:B ㈠ ⑴、x1.0822=, x 的值可以表示为___________。

⑵、3464=,对数形式记作_______________。

⑶、2384=,对数形式记作____________________。

⑷、2100.01-=,对数形式记作__________________。

A ㈡对数的定义及对数恒等式:log a N b =⇔ (a >0,且a ≠1,N >0).A ㈢指数的运算性质:_______;_______m n m n a a a a ⋅=÷=;()________;__________m na ==。

五、学习过程:A 问题1:我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?例如:,,+⋅===mnm nm n a a aM a N a 设,于是,m n MN a += 由对数的定义得到log ,log m n a a M a m M N a n N =⇔==⇔= log m n a MN a m n MN +=⇔+= log log log a a a M N MN ∴+=即:同底对数相加,底数不变,真数相乘。

B 问题2:请根据指数的性质按照以上的方法推出对数的其它性质。

如果a >0且a ≠1,M >0,N >0,那么:(1)log log log a a a MN M N =+ (2)log log log aa a MM N N=- (3)log log ()n a a M n M n R =∈C 问题3:1. 在上面的式子中,为什么要规定a >0,且a ≠1,M >0,N >0呢?2.你能用自己的语言分别表述出以上三个等式吗?B 例1.计算:① 01.0lg ; ② 42log (2; ③ 5lg 2lg +; ④lg1001/5⑤ 142log 2112log 487log 222--+; ⑥ 25lg 50lg 2lg )2(lg 2+⋅+;⑦2593⨯3()㏒ ; ⑧3332726log log log 535+-.C 例2. 用a a a x , y , z ㏒㏒㏒表示下列各式:(1)2a x yz ()㏒ (2)a ㏒ yz x 2 (3)a ㏒zy x2C 例3.必修一66页例5、例6请同学们认真阅读例题内容及解法,要求每个人都可以在课堂上展示。

对数与对数运算导学案

对数与对数运算导学案

对数与对数运算导学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN§2.2.1 对数与对数运算(1)1. 理解对数的概念;2. 能够说明对数与指数的关系;3. 掌握对数式与指数式的相互转化.6264,找出疑惑之处)复习1:庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺复习2:假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产是2002年的2倍(只列式)二、新课导学※学习探究探究任务:对数的概念问题:截止到1999年底,我国人口约13亿. 如果今后能将人口年平均增长率控制在1%,那么多少年后人口数可达到18亿,20亿,30亿?讨论:(1)问题具有怎样的共性?(2)已知底数和幂的值,求指数怎样求呢?例如:由1.01x m,求x.新知:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数试试:将复习2及问题中的指数式化为对数式.新知:我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N试试:分别说说lg5 、lg3.5、ln10、ln3的意义.反思:(1)指数与对数间的关系?0,1a a >≠时,x a N =⇔ .(2)负数与零是否有对数为什么(3)log 1a = , log a a = .※ 典型例题例1下列指数式化为对数式,对数式化为指数式.(1)35125= ;(2)712128-=;(3)327a =; (4) 2100.01-=; (5)12log 325=-;(6)lg0.001=3-; (7)ln100=4.606.变式:12log 32?= lg0.001=小结:注意对数符号的书写,与真数才能构成整体.例2求下列各式中x 的值:(1)642log 3x =; (2)log 86x =-; (3)lg 4x =; (4)3ln e x =.小结:应用指对互化求x .※ 动手试试练1. 求下列各式的值.(1)5log 25 ; (2)21log 16; (3)lg 10000.练2. 探究log ?n a a = log ?a N a =三、总结提升※ 学习小结①对数概念;②lg N 与ln N ;③指对互化;④如何求对数值※ 知识拓展对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier ,1550-1617年)男爵. 在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科. 可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间. 纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 若2log 3x =,则x =( ).A. 4B. 6C. 8D. 92.log = ( ).A. 1B. -1C. 2D. -23. 对数式2log (5)a a b --=中,实数a 的取值范围是( ).A .(,5)-∞B .(2,5)C .(2,)+∞D . (2,3)(3,5)4. 计算:1(3+= .5. 若log 1)1x =-,则x =________,若y =,则y =___________.1. 将下列指数式化成对数式,对数式化成指数式.(1)53243=; (2)51232-=; (3)430a = (4)1() 1.032m =; (5)12log 164=-;(6)2log 1287=; (7)3log 27a =.2. 计算:(1)9log 27; (2)3log 243; (3);(3)(2log (2; (4).§§2.2.1 对数与对数运算(2)1. 掌握对数的运算性质,并能理解推导这些法则的依据和过程;2. 能较熟练地运用对数运算法则解决问题..一、课前准备(预习教材P 64~ P 66,找出疑惑之处)复习1:(1)对数定义:如果x a N =(0,1)a a >≠,那么数 x 叫做 ,记作 .(2)指数式与对数式的互化: x a N =⇔ .复习2:幂的运算性质.(1)m n a a = ;(2)()m n a = ;(3)()n ab = .复习3:根据对数的定义及对数与指数的关系解答:(1)设log 2a m =,log 3a n =,求m n a +;(2)设log a M m =,log a N n =,试利用m 、n 表示log (a M ·)N .二、新课导学※ 学习探究探究任务:对数运算性质及推导问题:由p q p q a a a +=,如何探讨log a MN 和log a M 、log a N 之间的关系?问题:设log a M p =, log a N q =,由对数的定义可得:M =p a ,N =a∴MN =p a q a =p q a +,∴log a MN =p +q ,即得log a MN =log a M + log a N根据上面的证明,能否得出以下式子?如果 a > 0,a ≠ 1,M > 0, N > 0 ,则(1)log ()log log a a a MN M N =+;(2)log log log a a a M M N N=-; (3) log log ()n a a M n M n R =∈.反思:自然语言如何叙述三条性质 性质的证明思路(运用转化思想,先通过假设,将对数式化成指数式,并利用幂运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式※ 典型例题例1用log a x , log a y , log a z 表示下列各式:(1)2log a xy z ; (2)log a .例2计算:(1)5log 25; (2)0.4log 1;(3)852log (42)⨯; (4)探究:根据对数的定义推导换底公式log log log c a c b b a=(0a >,且1a ≠;0c >,且1c ≠;0b >).试试:2000年人口数13亿,年平均增长率1℅,多少年后可以达到18亿?※ 动手试试练1. 设lg2a =,lg3b =,试用a 、b 表示5log 12.变式:已知lg2=0.3010,lg3=0.4771,求lg6、.练2. 运用换底公式推导下列结论.(1)log log m n a a n b b m=;(2)1log log a b b a =.练3. 计算:(1)7lg142lg lg7lg183-+-;(2)lg 243lg9.三、总结提升※ 学习小结①对数运算性质及推导;②运用对数运算性质;③换底公式.※ 知识拓展① 对数的换底公式log log log b a b N N a =; ② 对数的倒数公式1log log a b b a=. ③ 对数恒等式:log log n n a a N N =,log log m n a a n N N m=,log log log 1a b c b c a =.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列等式成立的是( )A .222log (35)log 3log 5÷=-B .222log (10)2log (10)-=-C .222log (35)log 3log 5+=D .3322log (5)log 5-=-2. 如果lgx =lga +3lgb -5lgc ,那么( ).A .x =a +3b -cB .35abx c =C .35ab x c = D .x =a +b 3-c 33. 若()2lg 2lg lg y x x y -=+,那么( ).A .y x =B .2y x =C .3y x =D .4y x =4. 计算:(1)99log 3log 27+= ; (2)2121log log 22+= .5.计算:15lg 23= .1. 计算:(1;(2)2lg 2lg 2lg5lg5+⋅+.2. 设a 、b 、c 为正数,且346a b c ==,求证:1112c a b -=.§2.2.1 对数与对数运算(3)1. 能较熟练地运用对数运算性质解决实践问题;2. 加强数学应用意识的训练,提高解决应用问题的能力.6669,找出疑惑之处)复习1:对数的运算性质及换底公式.如果 a > 0,a ≠ 1,M > 0, N > 0 ,则(1)log ()a MN = ;(2)log a M N= ; (3) log n a M = .换底公式log a b = .复习2:已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56.复习3:1995年我国人口总数是12亿,如果人口的年自然增长率控制在1.25℅,问哪一年我国人口总数将超过14亿(用式子表示)二、新课导学※ 典型例题例1 20世纪30年代,查尔斯.里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大. 这就是我们常说的里氏震级M ,其计算公式为:0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001, 计算这次地震的震级(精确到0.1);(2)5级地震给人的振感已比较明显,计算7.6级地震最大振幅是5级地震最大振幅的多少倍(精确到1)小结:读题摘要→寻找数量关系→利用对数计算.例2当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据些规律,人们获得了生物体碳14含量P与生物死亡年数t之间的关系.回答下列问题:(1)求生物死亡t年后它机体内的碳14的含量P,并用函数的观点来解释P和t之间的关系,指出是我们所学过的何种函数?(2)已知一生物体内碳14的残留量为P,试求该生物死亡的年数t,并用函数的观点来解释P和t之间的关系,指出是我们所学过的何种函数?(3)长沙马王墓女尸出土时碳14的余含量约占原始量的76.7%,试推算古墓的年代?反思:①P和t之间的对应关系是一一对应;②P关于t的指数函数(xP ,则t关于P的函数为 .※动手试试练1. 计算:(1)0.21log 35-; (2)4912log 3log 2log ⋅-练2. 我国的GDP 年平均增长率保持为7.3%,约多少年后我国的GDP 在2007年的基础上翻两番?三、总结提升※ 学习小结1. 应用建模思想(审题→设未知数→建立x 与y 之间的关系→求解→验证);2. 用数学结果解释现象.※ 知识拓展在给定区间内,若函数()f x 的图象向上凸出,则函数()f x 在该区间上为凸函数,结合图象易得到1212()()()22x x f x f x f ++≥; 在给定区间内,若函数()f x 的图象向下凹进,则函数()f x 在该区间上为凹函数,结合图象易得到1212()()()x x f x f x f ++≤.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:25()a-(a≠0)化简得结果是().A.-a B.a2C.|a|D.a 2. 若 log7[log3(log2x)]=0,则12x=().A. 3B.3. 已知35a b m==,且112a b+=,则m之值为().A.15 B..2254. 若3a=2,则log38-2log36用a表示为 .5. 已知lg20.3010=,lg1.07180.0301=,则lg2.5=;1102=.1. 化简:(1)222lg5lg8lg5lg20(lg2)3+++;(2)()()24525log5+log0.2log2+log0.5.2. 若()()lg lg2lg2lg lgx y x y x y-++=++,求xy的值.。

人教A版高中数学必修一对数与对数运算导学案新

人教A版高中数学必修一对数与对数运算导学案新

§§2.2.1 对数与对数运算(2)1. 掌握对数的运算性质,并能理解推导这些法则的依据和过程;2. 能较熟练地运用对数运算法则解决问题..6466 复习1: (1)对数定义:如果x a N =(0,1)a a >≠,那么数 x 叫做 ,记作 . (2)指数式与对数式的互化:x a N =⇔ .复习2:幂的运算性质.(1)m n a a = ;(2)()m n a = ; (3)()n ab = .复习3:根据对数的定义及对数与指数的关系解答: (1)设log 2a m =,log 3a n =,求m n a +;(2)设log a M m =,log a N n =,试利用m 、n 表示log (a M ·)N .二、新课导学 ※ 学习探究探究任务:对数运算性质及推导问题:由p q p q a a a +=,如何探讨log a MN 和log a M 、log a N 之间的关系?问题:设log a M p =, log a N q =,由对数的定义可得:M =p a ,N =q a ∴MN =p a q a =p q a +,∴log a MN =p +q ,即得log a MN =log a M + log a N 根据上面的证明,能否得出以下式子?如果 a > 0,a ≠ 1,M > 0, N > 0 ,则 (1)log ()log log a a a MN M N =+;(2)log log log a a a MM N N=-;(3) log log ()n a a M n M n R =∈.反思:自然语言如何叙述三条性质? 性质的证明思路?(运用转化思想,先通过假设,将对数式化成指数式,并利用幂运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式)※ 典型例题例1用log a x , log a y , log a z 表示下列各式:(1)2log a xyz ; (2)log a .例2计算:(1)5log 25; (2)0.4log 1; (3)852log (42)⨯; (4)探究:根据对数的定义推导换底公式log log log c a c bb a=(0a >,且1a ≠;0c >,且1c ≠;0b >).试试:2000年人口数13亿,年平均增长率1℅,多少年后可以达到18亿?※ 动手试试练1. 设lg 2a =,lg3b =,试用a 、b 表示5log 12.变式:已知lg2=0.3010,lg3=0.4771,求lg6、.练2. 运用换底公式推导下列结论.(1)log log m n a a n b b m =;(2)1log log a b b a=.练3. 计算:(1)7lg142lg lg 7lg183-+-;(2)lg 243lg9.三、总结提升 ※ 学习小结①对数运算性质及推导;②运用对数运算性质;③换底公式.※ 知识拓展① 对数的换底公式log log log b a b NN a=;②对数的倒数公式1log log a b b a=.③ 对数恒等式:log log n n a a N N =, log log m n a a nN N m=,log log log 1a b c b c a =. ※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列等式成立的是( ) A .222log (35)log 3log 5÷=- B .222log (10)2log (10)-=- C .222log (35)log 3log 5+=D .3322log (5)log 5-=-2. 如果lgx =lga +3lgb -5lgc ,那么( ).A .x =a +3b -cB .35abx c=C .35ab x c= D .x =a +b 3-c 33. 若()2lg 2lg lg y x x y -=+,那么( ). A .y x = B .2y x = C .3y x = D .4y x = 4. 计算:(1)99log 3log 27+= ;(2)2121log log 22+= .5.计算:15lg 23= .(1;(2)2lg 2lg 2lg5lg5+⋅+.2. 设a 、b 、c 为正数,且346a b c ==,求证: 1112c a b -=.。

2.2.1 对数与对数运算导学案

2.2.1 对数与对数运算导学案
推论2:logab·logbc=__________(a>0,a≠1,b>0,b≠1,c>0);
推论3: =__________(a>0,a≠1,b>0).
【对应练习】(4)已知log189=a,18b=5,则log3645=__________.
(5) log23·log35·log58=_________.
【对应练习】(2)已知对数式log(4-a)(2a-1),求a的取值范围_____________.
3.把指数式a0=1,a1=a,ar=ar(其中a>0,且a≠1)写成对数式的结果是什么?可以得出什么结论?
【知识归纳】1的对数为0;底数的对数为1,底数的r次幂的对数为r,进一步说明了求对数就是求指数的运算.
5.对数式log10b,logeb(e≈2.71828)可以写成什么形式?
【知识归纳】通常以10为底的对数叫做____________,记作lgb;将以e为底的对数称为___________,记作lnN,其中e为无理数,且e=2.718 28….
【拓展知识】e是一个极限, .
【对应练习】(6)已知-lne2=x,则x=______;lg100=______,100lge=_______.
2.对数运算性质1:loga(M·N)=logaM+logaN,你能证明这个式子成立吗?式子成立的前提又是什么?
【知识归纳】积的对数等于对数的和:loga(M·N)=logaM+logaN(________________).
【对应练习】(1)log36+log3=________;lg2+lg5=_______.
二、例题精讲
1.计算下列各式:
(1) log210-log25=________;(2) log73+log7=________;

高中数学必修一导学案对数与对数运算一

高中数学必修一导学案对数与对数运算一

学生班级姓名小组号评价必修一 2.2.1对数与对数运算(一)【学习目标】1.深刻理解对数的定义,熟练进行对数的计算及指数式与对数式的互化,掌握对数的性质,培养积极合作探究的能力;2. 自主学习,积极讨论,踊跃展示,探究对数应用的规律和方法;【重点和难点】教学重点:对数的概念;教学难点:对数式与指数式的互化.【使用说明及学法指导】1. 先预习课本P 62~63,然后开始做导学案;2.对比学习过的指数函数及指数式,结合课本学习对数的概念;预习案一.知识梳理1.对数定义:如果x a N (0,1)a a ,那么数x 叫做,记作.式子名称a x N a x =Nlog a N=x2.常用对数:3.自然对数:4.log 1a ,log a a ,没有对数。

二.问题导学1.如何实现对数式与指数式的互化?2.常用对数和自然对数是如何定义的?3.真数为1的对数值是什么?当真数与底数相同时呢?三.预习自测1. 将下列指数式化成对数式,对数式化成指数式. (1)53243;(2)51232;(3)430a (4)1() 1.032m ;(5)12log 164;(6)2log 1287;2. 求下列各式的值.(1)5log 25= ;(2)21log 16;(3)lg 10000 ;3. 探究log ?n a a l o g ?a N a四.我的疑问:探究案一.合作探究探究1.下列指数式化为对数式,对数式化为指数式. (1)2100.01;(2)712128;(3)327a ;(4)12log 325;(5)lg0.001=3;(6)ln100=4.606. 变式:12log 32?lg0.001=?探究2.例2求下列各式中x 的值:(1)642log 3x ;(2)log 86x ;(3)lg 4x ;(4)3ln e x . 二.课堂训练与检测1.若2log 3x ,则x ()A. 4B. 6C. 8D. 92. (1)log (1)n n n n = ().A. 1B. -1C. 2D. -23. 对数式2log (5)a a b 中,实数a 的取值范围是().A .(,5)B .(2,5)C .(2,)D .(2,3)(3,5)4. 计算:21log (322).5. 若log (21)1x ,则x=________,若2log 8y ,则y=___________.三.课堂小结。

221_《对数与对数运算导学案.doc

221_《对数与对数运算导学案.doc

(1) 54 =625;(2)厂73(3) log丄16 =-4 ;2(4) lnlO = 2.303•(3) IglOO = x ;(4) -lne2 = x .年级:高一内容:2. 2. 1对数与对数运算(1) 课型:新课执笔人:陈鹏审核人:谭安民、吴军武时间:2015年9月17日班级___________ 姓名 _______【学习目标】1・理解对数的概念,能够说明对数与指数的关系2.掌握对数式与指数式的相互转化.【学习重难点】对数与指数的关系,对数式与指数式的相互转化一、教材助读,知识归纳:探究:假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍? a • (1 + 8%)x=2a^x = ?也就是已知底数和幕的值,求指数.你能看得出来吗?怎样求呢?新知:1.对数的概念一般地,如果a x=N(a>0,且aHl),那么数工叫做_______________________ ,记作 ___________ , 其中a叫做___________ , N叫做 _ _・2.常用对数与自然对数通常将以10为底的对数叫做___________________ ,以e(e=2.71828...)为底的对数叫做____________ ,logio^可简记为______ , log* 简记为___________ .3.对数与指数的关系若d>0,且“H1,贝lj a x=N^\og a N= _________ ・4.对数的性质(1)1的对数为 ___ ;(2)底的对数为—;(3)零和负数__________ .5•特别的:(1) log, 1 = _______ , lo艮a 二______ ・(2)零和负数 _____________二、思考:1.是不是所有的实数都有对数?log“ N = b中的/V可以取哪些值?负数与零是否有对数?为什么?2.1og fl l = ______ , log“ a = _________ ・3 •底数的取值范围是________________ ,真数的取值范围 ____________4・log“a"=____ , ___ ・三、例题讲解,合作探究:例1:将下列指数式写成对数式,对数式写成指数式.练习教材P64练习第1题,第2题例2:求下列各式中的兀的值.2(1) log M x = --;(2) log x 8 = 6;■丿练习教材P64练习第3题,第4题变式练习1:将下列指数式写成对数式:①10 3=1000;②°・5‘=°・125; ③(迈一1)一】=迈+1・变式练习2:将下列对数式写成指数式:®log26 = 2.585 0;②log30.8= -0.203 1;③lg 3 = 0.477 1.例3 计算⑴ i O g9 27 (2) log羽81 (3) log(2+V3)⑷ log莎625[归纳总结]'对鼓的概念难以理解,对数的符号初学时不太好掌握,学习时要抓住对数与指数的相互联系,深刻理解对数与指数间的关系,将有助于掌握对数的概念,对于对数式与指数式的互化,简单对数值的计算,要多做练习。

2.2.1对数与对数运算导学案

2.2.1对数与对数运算导学案

2.2.1 对数与对数运算导学案【学习目标】理解对数的含义及对数的运算.【教学重点】:(1)对数的定义;(2)指数式与对数式的互化【教学难点】:推导对数性质一、问题引入:(1)32= (2) 83=a ,则a = (3)2002年我国GDP 为a 亿元,如果每年平均增长8%,那么经过多少年GDP 是2002年的2倍?二、辅导自学阅读课本62页内容,完成下列内容:1、对数的概念:一般地,如果那么数x 叫做以 的对数,记作 ,其中a 叫做对数的 ,N 叫做 。

注意:底数的限制: ;真数的限制:2、两个重要对数(1)常用对数:以 为底的对数,简记为 ;(2)自然对数:以 为底的对数,简记为 ;3、对数与指数的互化:三、例题分析例1:将下列对数式写成指数式。

(1)532log 2= (2)4811log 3-= (3)31000lg = (4)381log 2-=()10≠>=a a N a x 且N 10log N e log例2:将下列指数式写成对数数式。

(1)62554= (2)64126-= (3)73.531=m )(例3:求下列各式x 的值:(1)32log 64-=x (2)68log =x (3)x =100lg四、探究活动(对数的性质))探究1:求下列各式的值:(1) (2) (3)探究2:求下列各式的值:(1) (2) (3)探究3:1、求下列各式的值:(1) (2)1log 33log 36.0log 772、求下列各式的值:(1); (2); (3)思考:你发现了什么?归纳:1、“1”的对数等于 ,即=1log a,类比 2、底数的对数等于“1”,即=a a log 3、对数恒等式:4、对数恒等式:5、 和 没有对数。

【巩固训练】1.把下列各题的指数式写成对数式:(1)42=16; (2)30=1; (3)4x =2 (4)2x =0.5;(5)54=625 (6)3-2= (7)()-2=16. 2.把下列各题的对数式写成指数式:(1)x =log 527 (2)x =log 87 (3)x =log 43(4)x =log 7; (5)log 216=4; (6)log27=-3;433log 410lg 10=a 9141313.求下列各式中x的值:(1)log8x=(2)logx27=3(3)log2(log5x)=1 (4)log3(lgx)=0 32。

高中数学 2.2.1对数与对数运算(第一课时)导学案 新人教A版必修1

高中数学 2.2.1对数与对数运算(第一课时)导学案 新人教A版必修1

四川省古蔺县中学高中数学必修一 2.2.1对数与对数运算(第一课时)导学案一、教学目标1、理解和掌握对数的运算性质及对数的换底公式;2、对数式与指数式的互化及对数的运算性质;并能进行熟练运算和化简;3、对数的运算性质和换底公式的应用。

二、重难点教学重点:对数式与指数式的互化及对数的运算性质;并能进行熟练运算和化简。

教学难点:对数的运算性质和换底公式的应用。

三、课时学法指导:在学习的过程中注意与指数之间的联系,类比学习。

四、预习案〈1〉、任务布置:1、 小组长组织本小组仔细阅读书上62—66页;2、 个人独立完成例题,并总结规律、方法;〈2〉、存在问题:五、探究案(教学流程与探究问题)探究一:对数的定义问题:对数的定义是什么?符号代表什么意义呢?探究二:对数与指数的互化问题:对数与指数如何转化?你能否举一个具体的例子来加以说明!探究三:对数的运算性质问题:对数的运算性质有哪些?除了书上所给出的三条性质,你能否再给出一些性质或结论呢? 探究四:典例分析例1、将下列指数式化为对数式,对数式化为指数式;6255)1(4= 6412)2(6=- (3)73.5)31(m = 416)4(log 21-= 201.0)5(lg -= 303.210)6(ln =例2、求下列各式中的x 的值;32x )1(log 64-= 68)2(log x= x 100)3(lg = x e )4(2ln =-六、训练案课本64页1—4题,大小聚集上相应习题七、反思与小结1.2.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。

书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。

新人教A版必修1高中数学2.2.2-1对数与对数运算导学案

新人教A版必修1高中数学2.2.2-1对数与对数运算导学案

高中数学 2.2.2-1对数与对数运算导学案新人教A 版必修1学习目标:1、理解对数函数的定义 2、掌握对数函数的图象和性质 学习重点:对数函数性质的应用 学习过程: 一、对数函数的概念 (1)计算下列对数的值 ______21log 2= ______1log 2= ______2log 2= ______4log 2=______8log 2= ______16log 2= ______32log 2= ______64log 2= 在x y 2log =中x 是自变量,y 是因变量 (2)计算下列对数的值 _____21log 21= _____1log 21= _____2log 21= _____4log 21=_____8log 21= _____16log 21=_____32log 21= _____64log 21=在x y 21log =中x 是自变量,y 是因变量归纳:对数函数的概念_________________________ 练习:下列函数是对数函数的是__________________ ① x y 5= ②x y 3log -= ② x y 5.0log = ④x y 23log =yx⑤)1(log 2+=x y ⑥x y 2log 3= ⑦x y 3log 2= ⑧)(log R a x y a ∈= ⑨23log x y =二、对数函数的图象与性质1、图象:在直角坐标系中作出下列函数的图象(1) x y 2log =yx(2) x y1log =2、对数函数)10(log ≠>=a ,a x y a 且的图象和性质课后感悟1求下列函数的定义域:(1)y=log3x-12x+3 x-1;(2)y=11-log a(x+a)(a>0,a≠1).2、比较大小(1)log 43,log 34,log 4334的大小顺序为( )A .log 34<log 43<log 4334B .log 34>log 43>log 4334C .log 34>log 4334>log 43D .log 4334>log 34>log 43(2)若a 2>b >a >1,试比较log a a b ,log b ba,log b a ,log a b 的大小.3、已知log a 12<1,那么a 的取值范围是________.4.下列函数图象正确的是 ( )A B C D5.函数y =a x 与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象只可能为( )6.函数)2(log 221x y -=的定义域是 ,值域是 .7.方程log 2(2x +1)log 2(2x +1+2)=2的解为 .8.将函数x y 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,作出C 2关于直线y =x 对称的图象C 3,则C 3的解析式为 .9、若不等式2x-log a x <0,当x ∈⎝⎛⎭⎪⎫0,12时恒成立,求实数a 的取值范围.。

《对数与对数运算》导学案

《对数与对数运算》导学案

《对数与对数运算》导学案对数函数对于学生来说是一个全新的函数模型,学习起来比较困难。

以下是我们为大家整理有关高一的数学对数与对数运算导学案范文,欢迎参阅!《对数与对数运算》导学案教学内容剖析本节课是新课标高中数学A版必修1中第二章对数函数内容的第1课时,也就是对数函数的入门.而对数函数又是本章的要紧内容,在高考中占有肯定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些平时的生活问题及科研中起着十分要紧的用途.通过本节课的学习,可以让学生理解对数的定义,从而进一步深化对对数模型的认识与理解,为学习对数函数做好筹备 .同时,通过对对数定义的学习,对培养学生对立统一、相互联系、相互转化的思想,培养学生的逻辑思维能力都具有要紧的意义.学生学习状况剖析现阶段大多数学生学习的自主性较差,主动性不够,学习有依靠性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数与指数幂的运算的学习,学生已多次领会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了肯定的训练.因此,学生已拥有了探索、发现、研究对数概念的认识基础,故应通过指导,教会学生独立考虑、大胆探索和灵活运用类比、转化、总结等数学思想的学习办法.设计思想学生是教学的主体,本节课要给学生供应各种参与机会.为了调动学生学习的积极性,使学生化被动为主动,本节课可借助多媒体辅助教学,引导学生从实例中认识对数模型,领会引入对数的必要性.在教学重难点上,步步设问、启发学生的思维,通过课堂训练、探究活动、学生讨论的方法来加深理解,更好地突破难点和提升教学效率.让学生在教师的引导下,充分地动手、动口、动脑,学会学习的主动权.教学目的1.理解对数的定义,知道对数与指数的关系;学会对数式与指数式的互化;理解对数的性质,学会以上常识并形成技术.2.通过实例使学生认识对数模型,领会引入对数的必要性;通过师生观察剖析得出对数的定义及对数式与指数式的互化.3.通过学生分组进行探究活动,学会对数的重要程度质.通过做训练,使学生感受到理论与实践的统一.4.培养学生的类比、剖析、总结能力,培养学生严谨的思维品质以及在学习流程中培养学生的探究意识.重点难点重点:对数的定义;对数式与指数式的相互转化.难点:对数定义的理解;对数性质的理解.教学流程环节教学程序及设计设计意图创设情境,引入新课引例1.一尺之锤,日取其半,万世不竭.取5次,还有多长?取多少次,还有0.125尺?剖析:为同学们熟知的指数函数模型,易得125=132,可设取x次,则有12x=0.125,抽象出:12x=0.125x =?2.2002年国内GDP为a亿元,如果年均增长8%,那样经过多少年GDP是2002年的2倍?剖析:设经过x年,则有x=2,抽象出:x=2x=? 让学生依据题意,设未知数,列出方程.这两个例子都出现指数是未知数x的状况,让学生考虑怎么样表示x,激发其对对数的学习兴趣,培养学生的探究意识.生活及科研中还有大量这样的例子,因此引入对数是必要的.讲授新课一、对数的定义[一般地,如果ax=N,那样数x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数.注意:底数的限制:a0且a1;对数的书写格式正确理解对数概念中底数的限制,为以后对数函数概念域的确定做筹备.同时注意对数的书写格式,防止因书写不规范而产生的错误.二、对数式与指数式的互化:幂底数a对数底数指数b对数幂N真数考虑:为啥对数的概念中需要底数a0且a1?是不是是所有的实数都有对数呢?负数和零没有对数让学生知道对数与指数的关系,明确对数式与指数式形式有哪些不同,a,b和N位置的不一样,及它们的含义.互化体现了等价转化这个要紧的数学思想.三、两个要紧对数常用对数:以10为底的对数log10N,简记为lg N;自然对数:以无理数e=2.718 28为底的对数logeN,简记为lnN.注意:两个要紧对数的书写这两个要紧对数肯定要学会,为以后的解题以及换底公式作筹备.课堂训练1.将下列指数式写成对数式:24=16;3-3=127;5a=20;12b=0.45.2.将下列对数式写成指数式:log5125=3; =-2;log10a=-1.069.3.求下列各式的值:log264;log927. 本训练让学生独立阅读课本例1和例2后考虑完成,从而熟知对数式与指数式的相互转化,加深对对数定义的理解.并需要学生指出对数式与指数式互化时应注意哪些问题,培养学生严谨的思维品质.四、对数的性质探究活动1求下列各式的值:log31=0;lg 1=0;log0.51=0;ln1=0.考虑:你发现了什么?1的对数等于零,即loga1=0,类比:a0=1. 探究活动由学生独立完成后,通过考虑,然后分小组进行讨论,最后得出结论.通过训练与讨论的方法,让学生自身得出结论,从而能更好地理解和学会对数的性质.培养学生类比、剖析、总结的能力.探究活动2求下列各式的值:log33=1;lg 10=1;log0.50.5=1;lne=1.考虑:你发现了什么?底数的对数等于1,即logaa=1,类比:a1=a.探究活动3求下列各式的值:=3; =0.6; =89.考虑:你发现了什么?对数恒等式: =N.探究活动4求下列各式的值:log334=4;log0.90.95=5;lne8=8.考虑:你发现了什么?对数恒等式:logaan=n.讲授新课小结负数和零没有对数;1的对数等于零,即loga1=0;底数的对数等于1,即logaa=1;对数恒等式: =N;对数恒等式:logaan=n. 将学生总结的结论进行小结,从而得到对数的基本性质.总结小结,强化思想1.引入对数的必要性对数的定义一般地,如果ax=N,那样数x叫做以a为底N的对数,记作x=logaN.2.指数与对数的关系3.对数的基本性质负数和零没有对数;loga1=0;logaa=1;对数恒等式: =N;logaan=n. 概括是一堂课内容的概括,有利于学生系统地学会所学内容.同时,将本节内容纳入已有的常识体系中,发挥承上启下的用途.为下一课时对数的运算打下扎实的基础.。

高中数学《对数》导学案

高中数学《对数》导学案

2.2.1对数与对数运算第1课时对数1.对数的概念(1)对数的概念:□1如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.(2)两种特殊的对数①常用对数:□2通常以10为底的对数叫做常用对数,N的常用对数log10N简记为lg_N;②自然对数:□3以e为底的对数称为自然对数,N的自然对数log e N简记为ln_N(其中e≈2.71828…).2.对数与指数的关系(1)对数的基本性质①□4零和负数没有对数,即N>0;②□51的对数为0,即log a1=0;③□6底数的对数等于1,即log a a=1.(2)两个重要的对数恒等式①a log a N=□7N(a>0,且a≠1,N>0);②log a a N=□8N(a>0,且a≠1).1.判一判(正确的打“√”,错误的打“×”)(1)因为(-2)4=16,所以log(-2)16=4.()(2)对数式log32与log23的意义一样.()(3)对数的运算实质是求幂指数.()(4)等式log a1=0对于任意实数a恒成立.()答案(1)×(2)×(3)√(4)×2.做一做(1)若5x=2018,则x=________.(2)(教材改编P64T3)lg 10=________;ln e=________.(3)(教材改编P64T2)将log24=2化为指数式为________.答案(1)log52018(2)11(3)22=4『释疑解难』在对数的概念中为什么规定a>0且a≠1呢?(1)若a<0,则当N为某些值时,x的值不存在,如:x=log(-2)8不存在.(2)若a=0,①当N≠0时,x的值不存在.如:log03(可理解为0的多少次幂是3)不存在;②当N=0时,x可以是任意正实数,是不唯一的,即log00有无数个值.(3)若a=1,①当N≠1时,x的值不存在.如:log13不存在;②当N =1时,x 可以为任意实数,是不唯一的,即log 11有无数个值.因此规定a >0,且a ≠1.探究1 对数的概念例1 (1)使对数log 2(-2x +1)有意义的x 的取值范围为( ) A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫12,+∞ C.⎝ ⎛⎭⎪⎫-∞,12 D.⎝ ⎛⎭⎪⎫-∞,-12 (2)在对数式b =log a -2(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <4解析 (1)要使对数log 2(-2x +1)有意义,只要使真数-2x +1>0即可,即x <12,∴x 的取值范围为⎝⎛⎭⎪⎫-∞,12,故选C. (2)由题意得⎩⎪⎨⎪⎧a -2>0,a -2≠1,5-a >0,解得2<a <3或3<a <5.答案 (1)C (2)C 拓展提升对数式有意义的条件对数式有意义的两个前提:①底数大于零且不等于1;②对数的真数必须大于零.【跟踪训练1】 (1)满足函数f (x )=lg (x +1)x -1的x 的取值范围是( )A .(-1,+∞)B .[-1,+∞)C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞)(2)在log (2x -1)(x +2)中求x 的范围.答案 (1)C (2)见解析 解析 (1)要使函数有意义,必有⎩⎨⎧x +1>0,x -1≠0,解得x >-1且x ≠1,故选C.(2)因为真数大于0,底数大于0且不等于1, 所以⎩⎪⎨⎪⎧x +2>0,2x -1>0,2x -1≠1,解得x >12,且x ≠1.即x 的取值范围是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >12,且x ≠1.探究2 指数式与对数式的互化例2 (1)将下列指数式改写成对数式:24=16;2-5=132;34=81;⎝ ⎛⎭⎪⎫12m=n ; (2)将下列对数式改写成指数式:log 5125=3;log 1216=-4;ln a=b ;lg 1000=3.解 (1)log 216=4;log 2132=-5;log 381=4;log 12n =m .(2)53=125;⎝ ⎛⎭⎪⎫12-4=16;e b =a,103=1000.拓展提升由指数式a b =N 可以写成log a N =b (a >0,且a ≠1),这是指数式与对数式互化的依据.对数式与指数式是同一种数量关系的两种不同表达形式.具体对应如下:【跟踪训练2】 (1)若a =log 23,则2a +2-a =________. (2)将下列指数式化为对数式,对数式化为指数式: ①log 216=4;②log 3x =6;③43=64. 答案 (1)103 (2)见解析解析 (1)因为a =log 23,所以2a=3,则2a+2-a =3+3-1=103.(2)①24=16;②(3)6=x ;③log 464=3.探究3 对数性质的应用 例3 (1)给出下列各式: ①lg (lg 10)=0; ②lg (ln e)=0;③若10=lg x ,则x =10; ④由log 25x =12,得x =±5.其中,正确的是________(把正确的序号都填上). (2)求下列各式中x 的值: ①log 2(log 5x )=0;②log 3(lg x )=1; ③log (2-1)(2-1)=x ;④3x +3=2.解析 (1)∵lg 10=1,∵lg (lg 10)=lg 1=0,∵正确;∵ln e =1,∵lg (ln e)=lg 1=0,∵正确;若10=lg x ,则x =1010,∵错误;由log 25x =12,得x =2512=5,∵错误.故填∵∵.(2)①∵log 2(log 5x )=0. ∴log 5x =20=1,∴x =51=5.②∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1000. ③∵log(2-1)(2-1)=x ,∴(2-1)x =2-1, ∴x =1.④x +3=log 32,∴x =log 32-3. 答案 (1)①② (2)见解析 拓展提升对数性质在计算中的应用(1)对数运算时的常用性质:log a a =1,log a 1=0(a >0且a ≠1). (2)使用对数的性质时,有时需要将底数或真数进行变形后才能运用;对于多重对数符号的,可以先把内层视为整体,逐层使用对数的性质.【跟踪训练3】 (1)若log 2(x 2-7x +13)=0,求x 的值; (2)已知log 2[log 3(log 4x )]=log 3[log 4(log 2y )]=0,求x +y 的值.解 (1)因为log 2(x 2-7x +13)=0, 所以x 2-7x +13=1,即x 2-7x +12=0, 解得x =4或x =3. (2)∵log 2[log 3(log 4x )]=0, ∴log 3(log 4x )=1,∴log 4x =3.∴x =43=64.同理求得y =16.∴x +y =80. 探究4 对数恒等式的应用 例4 求下列各式的值: (1)5log 54;(2)3log 34-2;(3)24+log 25.解 (1)设5log 54=x ,则log 54=log 5x ,∴x =4. (2)∵3log 34=4,∴3log 34-2=3log 34×3-2=4×19=49.(3)∵2log 25=5,∴24+log 25=24×2log 25=16×5=80. 拓展提升运用对数恒等式时的注意事项(1)对于对数恒等式a log a N =N (a >0,且a ≠1,N >0)要注意格式:①它们是同底的;②指数中含有对数形式;③其值为对数的真数.(2)对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.【跟踪训练4】 求31+log 36-24+log 23+103lg 3+⎝ ⎛⎭⎪⎫19log 34的值.解 原式=31×3log 36-24×2log 23+(10lg 3)3+3-2×log 34=3×6-16×3+33+(3log 34)-2=18-48+27+116=-4716.对数概念的理解 (1)规定a >0且a ≠1.(2)由于在实数范围内,正数的任何次幂都是正数,所以在a b =N 中,N 总是正数,即零和负数没有对数.(3)对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a a b =b ;(2)a log a N =N .(4)在关系式a x =N 中,已知a 和x ,求N 的运算称为求幂运算,而如果已知a 和N ,求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算.1.若a >0,且a ≠1,c >0,则将a b =c 化为对数式为( ) A .log a b =c B .log a c =b C .log b c =a D .log c a =b答案 B解析 由对数的定义直接可得log a c =b . 2.已知log x 16=2,则x 等于( ) A .±4 B .4 C .256 D .2 答案 B解析 ∵x 2=16且x >0,x ≠1,∴x =4.故选B.3.若log 3181=x ,则x =________. 答案 -4解析 ∵log 3181=log 33-4,∴3x =3-4,∴x =-4. 4.式子2log 25+log 321的值为________.答案 5解析 由对数性质知,2log 25=5,log 321=0,故原式=5.5.求下列各式中x 的值:(1)若log 3⎝ ⎛⎭⎪⎫1+2x 3=1,求x 的值; (2)若log 2018(x 2-1)=0,求x 的值. 解 (1)∵log 31+2x 3=1,∴1+2x3=3, ∴1+2x =9,∴x =4. (2)∵log 2018(x 2-1)=0, ∴x 2-1=1,即x 2=2.∴x =± 2.A 级:基础巩固练一、选择题1.将对数式log 5b =2化为指数式是( ) A .5b =2 B .b 5=2 C .52=b D .b 2=5 答案 C解析 由对数的概念可知log 5b =2⇔52=b ,故选C. 2.下列指数式与对数式互化不正确的一组是( ) A .e 0=1与ln 1=0B .8-13=12与log 812=-13C .log 39=2与912=3 D .log 77=1与71=7答案 C解析 log 39=2应转化为32=9. 3.已知log 12x =3,则x13=( )A.18B.14C.12D.32 答案 C解析 由log 12x =3,得x =⎝ ⎛⎭⎪⎫123=18,所以x13 =⎝ ⎛⎭⎪⎫18 13 =12. 4.方程2log 3x =14的解是( )A .x =19B .x =x3 C .x = 3 D .x =9 答案 A 解析∵2log 3x =2-2,∴log 3x =-2,∴x =3-2=19.5.21+12log 25 的值等于()A .2+ 5B .25C .2+52D .1+52答案 B 解析21+12log 25 =2×212log 25 =2×(2log 25) 12 =2×(5) 12 =25.二、填空题6.方程log 3(2x -1)=1的解为x =________. 答案 2解析 依题意得2x -1=3,∴x =2.7.若a >0,a 2=49,则log 23a =________.答案 1解析 由a >0,a 2=49=⎝ ⎛⎭⎪⎫232,可知a =23, ∴log 23 a =log 2323=1.8.2log 214 -⎝ ⎛⎭⎪⎫827-23 +lg 1100+(2-1)lg 1的值是_______. 答案 -3解析原式=14-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫233-23 +lg 10-2+(2-1)0=14-94-2+1=-3.三、解答题9.求下列各式中的x 的值:(1)log x 27=32;(2)log 2x =-23;(3)log x (3+22)=-2;(4)log 5(log 2x )=0;(5)x =log 2719.解 (1)由log x 27=32,得x 32 =27,∴x =27 23 =32=9.(2)由log 2x =-23,得2-23 =x ,∴x =1322=322. (3)由log x (3+22)=-2,得3+22=x -2, 即x =(3+22)-12 =2-1.(4)由log 5(log 2x )=0,得log 2x =1.∴x =21=2.(5)由x =log 2719,得27x =19,即33x =3-2, ∴x =-23.B 级:能力提升练10.已知log a b =log b a (a >0,且a ≠1;b >0,且b ≠1).求证:a =b 或a =1b .证明 设log a b =log b a =k , 则b =a k ,a =b k ,∴b =(b k )k =bk 2. ∵b >0,且b ≠1,∴k 2=1,即k =±1.当k =-1时,a =1b ;当k =1时,a =b .∴a =b 或a =1b ,命题得证.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.2对数函数2.2.1对数与对数运算第1课时对数学习目标 1.理解对数的概念、掌握对数的性质(重、难点).2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程(重点).知识点1对数1.对数(1)指数式与对数式的互化及有关概念:(2)底数a的范围是a>0,且a≠1.2.常用对数与自然对数【预习评价】(正确的打“√”,错误的打“×”)(1)根据对数的定义,因为(-2)4=16,所以log(-2)16=4.()(2)对数式log32与log23的意义一样.()(3)对数的运算实质是求幂指数.()提示(1)×因为对数的底数a应满足a>0且a≠1,所以(1)错;(2)× log 32表示以3为底2的对数,log 23表示以2为底3的对数,所以(2)错; (3)√ 由对数的定义可知(3)正确. 知识点2 对数的基本性质 (1)负数和零没有对数. (2)log a1=0(a >0,且a ≠1). (3)log a a =1(a >0,且a ≠1). 【预习评价】若log 32x -33=1,则x =________;若log 3(2x -1)=0,则x =________. 解析 若log 32x -33=1,则2x -33=3,即2x -3=9,x =6;若log 3(2x -1)=0,则2x -1=1,即x =1. 答案 6 1题型一 对数的定义【例1】 (1)在对数式y =log (x -2)(4-x )中,实数x 的取值范围是________; (2)将下列指数式化为对数式,对数式化为指数式. ①54=625;②log 216=4;③10-2=0.01;④log5125=6.(1)解析由题意可知⎩⎪⎨⎪⎧4-x >0,x -2>0,x -2≠1,解得2<x <4且x ≠3.答案 (2,3)∪(3,4)(2)解 ①由54=625,得log 5625=4. ②由log 216=4,得24=16. ③由10-2=0.01,得lg 0.01=-2. ④由log5125=6,得(5)6=125.规律方法 指数式与对数式互化的思路(1)指数式化为对数式:将指数式的幂作为真数,指数作为对数,底数不变,写出对数式.(2)对数式化为指数式:将对数式的真数作为幂,对数作为指数,底数不变,写出指数式.【训练1】 将下列指数式化为对数式,对数式化为指数式: (1)43=64;(2)ln a =b ;(3)⎝ ⎛⎭⎪⎫12m=n ;(4)lg 1000=3.解 (1)因为43=64,所以log 464=3; (2)因为ln a =b ,所以e b =a ; (3)因为⎝ ⎛⎭⎪⎫12m=n ,所以log 12n =m ;(4)因为lg 1 000=3,所以103=1 000.题型二 利用指数式与对数式的互化求变量的值 【例2】 (1)求下列各式的值.①log 981=________.②log 0.41=________.③ln e 2=________. (2)求下列各式中x 的值. ①log 64x =-23;②log x 8=6; ③lg 100=x ;④-ln e 2=x .(1)解析 ①设log 981=x ,所以9x =81=92,故x =2,即log 981=2;②设log 0.41=x ,所以0.4x =1=0.40,故x =0,即log 0.41=0;③设ln e 2=x ,所以e x =e 2,故x =2,即ln e 2=2. 答案 ①2 ②0 ③2(2)解 ①由log 64x =-23得x =64-23=43×(-23)=4-2=116; ②由log x 8=6,得x 6=8,又x >0,即x =816=23×16=2;③由lg 100=x ,得10x =100=102,即x =2; ④由-ln e 2=x ,得ln e 2=-x ,所以e -x =e 2, 所以-x =2,即x =-2.规律方法 对数式中求值的基本思想和方法 (1)基本思想.在一定条件下求对数的值,或求对数式中参数字母的值,要注意利用方程思想求解.(2)基本方法.①将对数式化为指数式,构建方程转化为指数问题. ②利用幂的运算性质和指数的性质计算.【训练2】 利用指数式、对数式的互化求下列各式中x 的值. (1)log 2x =-12;(2)log x 25=2; (3)log 5x 2=2.解 (1)由log 2x =-12,得2-12=x , ∴x =22.(2)由log x 25=2,得x 2=25. ∵x >0,且x ≠1,∴x =5. (3)由log 5x 2=2,得x 2=52,∴x =±5.∵52=25>0,(-5)2=25>0, ∴x =5或x =-5.题型三 利用对数的性质及对数恒等式求值 【例3】(1)71-log 75;(2)100⎝ ⎛⎭⎪⎪⎫12lg 9-lg 2; (3)a log a b ·log b c(a ,b 为不等于1的正数,c >0).解(1)原式=7×7-log75=77log75=7 5.(2)原式=10012lg 9×100-lg 2=10lg 9×1100lg 2=9×1102lg 2=9×110lg 4=9 4.(3)原式=(a log a b)log b c=b log b c=c.规律方法对数恒等式a log a N=N的应用(1)能直接应用对数恒等式的直接应用即可.(2)对于不能直接应用对数恒等式的情况按以下步骤求解.【训练3】(1)设3log3(2x+1)=27,则x=________.(2)若logπ(log3(ln x))=0,则x=________.解析(1)3log3(2x+1)=2x+1=27,解得x=13.(2)由logπ(log3(ln x))=0可知log3(ln x)=1,所以ln x=3,解得x=e3.答案(1)13(2)e3课堂达标1.有下列说法:(1)只有正数有对数;(2)任何一个指数式都可以化成对数式;(3)以5为底25的对数等于±2;(4)3log3(-5)=-5成立.其中正确的个数为()A.0B.1C.2D.3解析(1)正确;(2),(3),(4)不正确.答案 B2.使对数log a(-2a+1)有意义的a的取值范围为()A.a >12且a ≠1 B.0<a <12 C.a >0且a ≠1D.a <12解析由题意知⎩⎪⎨⎪⎧-2a +1>0,a >0,a ≠1,解得0<a <12. 答案 B3.方程lg(2x -3)=1的解为________.解析 由lg(2x -3)=1知2x -3=10,解得x =132. 答案 1324.计算:2log 23+2log 31-3log 77+3ln 1=________. 解析 原式=3+2×0-3×1+3×0=0. 答案 05.把下列指数式化为对数式,对数式化为指数式. (1)2-3=18;(2)⎝ ⎛⎭⎪⎫17a=b ;(3)lg 11 000=-3;(4)ln 10=x .解 (1)由2-3=18可得log 218=-3; (2)由⎝ ⎛⎭⎪⎫17a=b 得log 17b =a ;(3)由lg 11 000=-3可得10-3=11 000; (4)ln 10=x 可得e x =10.课堂小结1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b =N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a a b =b ;(2)a log a N =N .2.在关系式a x =N 中,已知a 和x 求N 的运算称为求幂运算,而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算.3.指数式与对数式的互化基础过关1.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e2.其中正确的是( ) A.①③ B.②④ C.①②D.③④解析 lg(lg 10)=lg 1=0,ln(ln e)=ln 1=0,故①②正确;若10=lg x ,则x =1010,故③错误;若e =ln x ,则x =e e ,故④错误. 答案 C2.log a b =1成立的条件是( ) A.a =b B.a =b 且b >0 C.a >0,a ≠1D.a >0,a =b ≠1解析 由log a b =1得a >0,且a =b ≠1. 答案 D3.设a =log 310,b =log 37,则3a -b 的值为( ) A.107 B.710 C.1049D.4910解析 3a -b =3a ÷3b =3log 310÷3log 37=10÷7=107.答案 A4.若log (1-x )(1+x )2=1,则x =________. 解析 由题意知1-x =(1+x )2, 解得x =0或x =-3.验证知,当x =0时,log (1-x )(1+x )2无意义,故x =0时不合题意,应舍去.所以x =-3. 答案 -35.若log 3(a +1)=1,则log a 2+log 2(a -1)=________.解析 由log 3(a +1)=1得a +1=3,即a =2,所以log a 2+log 2(a -1)=log 22+log 21=1+0=1. 答案 16.将下列指数式化成对数式,对数式化成指数式. (1)35=243;(2)2-5=132; (3)log 1381=-4;(4)log 2128=7.解 (1)log 3243=5;(2)log 2132=-5;(3)⎝ ⎛⎭⎪⎫13-4=81;(4)27=128.7.求下列各式中的x 的值. (1)log x 27=32; (2)log 2x =-23;(3)log x (3+22)=-2; (4)log 5(log 2x )=0; (5)x =log 2719.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log x (3+22)=-2,得3+22=x -2, ∴x =(3+22)-12=2-1.(4)由log 5(log 2x )=0,得log 2x =1.∴x =21=2.(5)由x =log 2719,得27x =19, 即33x =3-2, ∴x =-23.能力提升8.对于a >0且a ≠1,下列说法正确的是( )(1)若M =N ,则log a M =log a N ;(2)若log a M =log a N ,则M =N ;(3)若log a M 2=log a N 2,则M =N ;(4)若M =N ,则log a M 2=log a N 2. A.(1)(2) B.(2)(3)(4) C.(2)D.(2)(3)解析 (1)中若M ,N 小于或等于0时,log a M =log a N 不成立;(2)正确;(3)中M 与N 也可能互为相反数且不等于0;(4)中当M =N =0时不正确. 答案 C9.已知log 3(log 5a )=log 4(log 5b )=0,则ab 的值为( ) A.1 B.-1 C.5D.15解析 由log 3(log 5a )=0得log 5a =1,即a =5,同理b =5,故ab =1. 答案 A10.方程3log 2x =127的解是________.解析 3log 2x =3-3,∴log 2x =-3,x =2-3=18. 答案 1811.若正数a ,b 满足2+log 2a =3+log 3b =log 6(a +b ),则1a +1b =________. 解析 设2+log 2a =3+log 3b =log 6(a +b )=k ,则a =2k -2,b =3k -3,a +b =6k ,即4a =2k ,27b =3k ,所以108ab =6k ,∴108ab =a +b ,∴108=1a +1b . 答案 10812.(1)若f (10x )=x ,求f (3)的值;(2)计算23+log23+35-log 39.解 (1)令t =10x ,则x =lg t , ∴f (t )=lg t ,即f (x )=lg x ,∴f (3)=lg 3. (2)23+log 23+35-log 39=23·2log 23+353log 39=23×3+359=24+27=51.13.(选做题)若log 2(log 12(log 2x ))=log 3(log 13(log 3y ))=log 5(log 15(log 5z ))=0,试确定x ,y ,z 的大小关系.解 由log 2(log 12(log 2x ))=0,得log 12(log 2x )=1,log 2x =12,x =212=(215)130.由log 3(log 13(log 3y ))=0,得log 13(log 3y )=1,log 3y =13,y =313=(310)130.由log 5(log 15(log 5z ))=0,得log 15(log 5z )=1,log 5z =15,z =515=(56)130.∵310>215>56,∴y >x >z .。

相关文档
最新文档