方波、正弦波、三角波
lm358正弦波方波三角波产生电路
《LM358正弦波、方波、三角波产生电路设计与应用》一、引言在电子领域中,波形发生器是一种非常重要的电路,它可以产生各种不同的波形信号,包括正弦波、方波和三角波等。
LM358作为一款宽幅增益带宽产品电压反馈运算放大器,被广泛应用于波形发生器电路中。
本文将探讨如何利用LM358设计正弦波、方波和三角波产生电路,并简要介绍其应用。
二、LM358正弦波产生电路设计1. 基本原理LM358正弦波产生电路的基本原理是利用振荡电路产生稳定的正弦波信号。
通过LM358的高增益和频率特性,结合RC滤波电路,可以实现较为稳定的正弦波输出。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电容C1和C2相连,形成反馈电路,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
(2)RC滤波电路。
在LM358的输出端接入RC滤波电路,通过调节电阻和电容的数值,可以实现所需的正弦波频率和幅值。
3. 电路测试连接电源并接入示波器进行测试,调节RC滤波电路的参数,可以观察到稳定的正弦波信号输出。
三、LM358方波产生电路设计1. 基本原理LM358方波产生电路的基本原理是通过LM358的高增益和高速响应特性,结合反相输入和正向输入,实现对方波信号的产生。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电阻R1和R2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
(2)反相输入和正向输入。
通过R1和R2的分压作用,实现LM358反相输入和正向输入,从而产生方波输出。
3. 电路测试连接电源并接入示波器进行测试,调节R1和R2的数值,可以观察到稳定的方波信号输出。
四、LM358三角波产生电路设计1. 基本原理LM358三角波产生电路的基本原理是通过LM358的反相输入和正向输入结合,实现对三角波信号的产生。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电容C1和C2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
正弦波方波三角波
正弦波方波三角波咱们聊聊波形里的三大明星:正弦波、方波、三角波。
它们不只是数学书上的枯燥线条,更像是音乐里的音符,各有各的调调,各有各的魅力。
先说说正弦波,这家伙就像是海边的浪花,一波接一波,温柔又规律。
你站在海边,看着浪花轻轻拍打沙滩,那波浪起伏的样子,简直就是正弦波的现实写照。
它不高调,也不张扬,就那么悠悠地来回摆动,像是时间的节拍器,让人心里头那个平静的湖面也跟着泛起涟漪。
正弦波无处不在,从电台广播到电力传输,都离不开它的身影。
它就像个默默奉献的老黄牛,虽然不咋显眼,但少了它,这日子还真就没法过了。
再聊聊方波,这家伙跟正弦波可不一样,它是那种直来直去的性格,非黑即白,没有中间地带。
想象一下,你按下一个开关,灯泡“啪”地一下就亮了,那亮度变化就是方波的形状。
方波就像个急性子,说走就走,说停就停,从不拖泥带水。
在数字世界里,方波可是个大红人,电脑里的时钟信号、数字通信,都离不开它的精确指挥。
它就像是足球场上的裁判,哨声一响,比赛开始;哨声再响,比赛结束,公平公正,不含糊。
最后说说三角波,这家伙就像是爬山的过程,从山脚开始,一步一步往上爬,直到山顶,然后又一步一步往下走,回到山脚。
它不像正弦波那么温柔,也不像方波那么果断,但它有自己的节奏,有自己的步调。
三角波就像是个乐观的探险家,不管前路多么崎岖,它总是满怀希望地前行,不畏艰难,不惧挑战。
在音频合成、信号处理这些领域,三角波可是个不可或缺的角色。
它就像是个充满活力的年轻人,总是带着满满的正能量,让周围的人也跟着充满活力。
这三大波形,就像是音乐里的不同乐器,各有各的音色,各有各的风格。
正弦波像是小提琴,悠扬婉转;方波像是架子鼓,干脆利落;三角波就像是吉他,充满力量。
它们在一起,就像是一支完美的乐队,演奏出生活的交响乐。
生活中,我们也该学学这些波形,正弦波的温柔、方波的果断、三角波的坚韧,都是值得我们学习的品质。
不管遇到啥困难,只要心中有波形,就能找到前行的节奏,奏响属于自己的乐章。
正弦波 方波 三角波发生电路
正弦波方波三角波发生电路----9eef9958-7160-11ec-a078-7cb59b590d7d正弦波方波三角波发生电路正弦波&周期;方波&周期;三角波产生电路一、设计目的及要求:1.1. 设计目的:(1).掌握波形产生电路的设计、组装和调试的方法;(2). 熟悉集成电路:集成运算放大器LM324,掌握其工作原理。
1.2. 设计要求:(1)设计波形产生电路。
(2)信号频率范围:100hz——1000hz。
(3)信号波形:正弦波。
二、实验方案:为了产生正弦波,必须在放大电路里加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。
但是,这样两部分构成的振荡器一般得不到正弦波,这是由于很难控制正反馈的量。
如果正反馈量大,则增幅,输出幅度越来越大,最后由三极管的非线性限幅,这必然产生非线性失真。
反之,如果正反馈量不足,则减幅,可能停振,为此振荡电路要有一个稳幅电路。
为了获得单一频率的正弦波输出,应该有选频网络,选频网络往往和正反馈网络或放大电路合而为一。
选频网络由r、c和l、c等电抗性元件组成。
正弦波振荡器的名称一般由选频网络来命名。
正弦波发生电路的组成:放大电路、正反馈网络、选频网络、稳幅电路。
产生正弦波的条件与负反馈放大电路中产生自激的条件非常相似。
然而,在负反馈放大器电路中,信号频率到达通带的两端,导致足够的附加相移,从而使负反馈变为正反馈。
正反馈加到振荡电路中。
振荡建立后,它只是一个频率的信号,没有额外的相移。
(a)负反馈放大电路(b)正反馈振荡电路图1振荡器的方框图比较图1(a)和(b)就可以明显地看出负反馈放大电路和正反馈振荡电路的区别了。
由于=十、。
由于正负号的变化,正反馈的放大系数为: = 0,因此X振荡电路的输入信号xiif.a,式中a是放大电路的放大倍数,f是反馈网络的放大倍数。
..振荡条件:AF 1.幅度平衡条件:af=1相位平衡条件: AF= a+f=±2n振荡器在刚刚起振时,为了克服电路中的损耗,需要正反馈强一些,即要求|af| 1..这被称为起始条件。
【multisim】正弦波-三角波-方波转换电路
【multisim】正弦波-三角波-方波转换电路要实现从正弦波到三角波再到方波的转换电路,可以使用集成运算放
大器(Op-Amp)和滞回器电路。
以下是实现该转换电路的步骤:
1. 正弦波至三角波的转换:将正弦波输入到一个比较器电路中。
比较
器电路由一个集成运算放大器和两个电阻组成。
其中一个电阻连接到
一个固定电压源,另一个电阻连接到一个可调电压源,可调电压源的
输出与正弦波输入相连。
比较器电路会将正弦波与一个参考电压进行
比较,并根据比较结果输出高电平或低电平。
通过调节可调电压源的
电压,可以改变比较器的输出电平,从而实现正弦波至三角波的转换。
2. 三角波至方波的转换:之前得到的三角波接入一个滞回器电路中。
滞回器电路也由一个集成运算放大器和两个电阻组成。
其中一个电阻
连接到固定电压源,另一个电阻连接到滞回器电路的输出端。
滞回器
电路会将三角波的波峰和波谷进行限幅,输出一个具有较高/低电平的
方波信号。
需要注意的是,电阻值的选择以及比较器和滞回器电路的参数设置,
都会影响转换电路的性能和效果。
可根据具体需求进行调整。
正弦波、方波、三角波发生电路解析
一、设计目的及要求:1.1、设计目的:(1).掌握波形产生电路的设计、组装和调试的方法;(2).熟悉集成电路:集成运算放大器LM324,并掌握其工作原理。
1.2、设计要求: (1)设计波形产生电路。
(2)信号频率范围:100Hz ——1000Hz 。
(3)信号波形:正弦波。
二、实验方案:方案一:为了产生正弦波,必须在放大电路里加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。
但是,这样两部分构成的振荡器一般得不到正弦波,这是由于很难控制正反馈的量。
如果正反馈量大,则增幅,输出幅度越来越大,最后由三极管的非线性限幅,这必然产生非线性失真。
反之,如果正反馈量不足,则减幅,可能停振,为此振荡电路要有一个稳幅电路。
为了获得单一频率的正弦波输出,应该有选频网络,选频网络往往和正反馈网络或放大电路合而为一。
选频网络由R 、C 和L 、C 等电抗性元件组成。
正弦波振荡器的名称一般由选频网络来命名。
正弦波发生电路的组成:放大电路、正反馈网络、选频网络、稳幅电路。
产生正弦波的条件与负反馈放大电路产生自激的条件十分类似。
只不过负反馈放大电路中是由于信号频率达到了通频带的两端,产生了足够的附加相移,从而使负反馈变成了正反馈。
在振荡电路中加的就是正反馈,振荡建立后只是一种频率的信号,无所谓附加相移。
(a)负反馈放大电路 (b)正反馈振荡电路图1 振荡器的方框图比较图1(a) 和 (b)就可以明显地看出负反馈放大电路和正反馈振荡电路的区别了。
由于振荡电路的输入信号i X =0,所以i X =fX 。
由于正、负号的改变,正反馈的放大倍数为:F AA A -=1f,式中A 是放大电路的放大倍数,.F 是反馈网络的放大倍数。
振荡条件:1..=F A幅度平衡条件:|..F A |=1相位平衡条件:ϕAF = ϕA +ϕF = ±2n π振荡器在刚刚起振时,为了克服电路中的损耗,需要正反馈强一些,即要求1|..|>F A 这称为起振条件。
三角波、方波、正弦波发生电路
波形【2 】产生电路请求:设计并制造用分立元件和集成运算放大器构成的能产生方波.三角波和正弦波的波形产生器.指标:输出频率分离为:102H Z.103H Z和104Hz;方波的输出电压峰峰值V PP≥20V(1)计划的提出计划一:1.由文氏桥振荡产生一个正弦波旌旗灯号.2.把文氏桥产生的正弦波经由过程一个过零比较器从而把正弦波转换成方波.3.把方波旌旗灯号经由过程一个积分器.转换成三角波.计划二:1.由滞回比较器和积分器构成方波三角波产生电路.2.然后经由过程低通滤波把三角波转换成正弦波旌旗灯号.计划三:1.由比较器和积分器构成方波三角波产生电路.2.用折线法把三角波转换成正弦波.(2)计划的比较与肯定计划一:文氏桥的振荡道理:正反馈RC收集与反馈歧路构成桥式反馈电路.当时,F=1/3.Au=3.然而,起振前提为Au略大于3.现实操作时, R1=R2.C1=C2.即f=f假如要知足振荡前提R4/R3=2时,起振很慢.假如R4/R3大于2时,正弦波旌旗灯号顶部掉真.调试艰苦.RC串.并联选频电路的幅频特征不对称,且选择性较差.是以废弃计划一.计划二:把滞回比较器和积分比较器首尾相接形成正反馈闭环体系,就构成三角波产生器和方波产生器.比较器输出的方波经积分可得到三角波.三角波又触发比较器主动翻转形成方波,如许即可构成三角波和方波产生器.经由过程低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化规模很小的情形下应用.然而,指标请求输出频率分离为102H Z.103H Z和104Hz.是以不知足应用低通滤波的前提.废弃计划二.计划三:方波.三角波产生器道理如同计划二.比较三角波和正弦波的波形可以发明,在正弦波从零逐渐增大到峰值的进程中,与三角波的差别越来越大;即零邻近的差别最小,峰值邻近差别最大.是以,依据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形.并且折线法不受频率规模的限制.分解以上三种计划的优缺陷,最终选择计划三来完成本次课程设计.(3)工作道理:1.方波.三角波产生电路道理该电路由滞回比较器和积分器构成.图中滞回比较器的输出电压u01=Uz ±,它的输入电压就是积分电路的输出电压u02.则U1A 的同相输入端的电位:101202up=1212R u R u R R R R +++,令up=un=0,则阀值电压:1022R Ut u Uz R ±==±;积分电路的输入电压是滞回比较器的输出电压u01,并且不是+Uz,就是-Uz,所以输出电压的表达式为:01(10)0202(0)82u t t u u t R C -=-+;设初态时u01正好从-Uz 跃变到+Uz,则:(10)0282Uz t t u Ut R C -=-+,积分电路反向积分,u02随时光的增加线性降低,一旦u02=-Ut,在稍减小,u01将从+Uz 跃变为-Uz,使式变为:(21)0282Uz t t u Ut R C -=-,积分电路正向积分,u02随时光增加线性增大,一旦u02=+Ut,再稍微增大,uo1将从-Uz 跃变为+Uz,回到初态.电路反复上述进程,因而产生自激振荡.由上剖析,u01是方波,且占空比为50%,幅值为Uz ±;u02是三角波,幅值为Ut ±.取正向积分进程,正向积分的肇端值-Ut,终了值+Ut,积分时光为T/2,代入(21)0282Uz t t u Ut R C -=-,得282Uz T Ut Ut R C +=-,式中12R Ut Uz R =,整顿可得:24812R f R R C =. 2.正弦波产生电路道理折线法是用多段直线逼近正弦波的一种办法.其根本思绪是将三角波分成若干段,分离按不同比例衰减,所获得的波形就近似为正弦波.下丹青出了波形的1/4周期,用四段折线逼近正弦波的情形.图中UImax 为输入三角波电压幅值.依据上述思绪,可以采用增益主动调节的运算电路实现.应用二极管开关和电阻构成反馈通路,跟着输入电压的数值不同而转变电路的增益.在ωt=0°~25°段,输出的“正弦波”用此段三角波近似(二者重合),是以,此段放大电路的电压增益为1.因为ωt=25°时,标准正弦波的值为sin25°≈0.423,这里uO=uI=25/90UImax≈0.278UImax ,所以,在ωt=90°时,输出的“正弦波”的值应为uO=0.278/0.423UImax≈0.657UImax .在ωt=50°时,输入三角波的值为uI=50/90UImax≈0.556UImax,请求输出电压uO=0.657UImax×sin50°≈0.503UImax,可得在25°~50°段,电路的增益应为ΔuO/ΔuI=(0.503−0.278)/(0.556−0.278)=0.809.在ωt=70°时,输入三角波的值为uI=70/90UImax≈0.778UImax,请求输出电压uO=0.657UImax×sin70°≈0.617UImax,可得在50°~70°段,电路的增益应为ΔuO/ΔuI=(0617−0.503)/(0.778−0.556)=0.514.在ωt=90°时,输入三角波的值为uI=UImax,请求输出电压uO≈0.657UImax,可得在70°~90°段,电路的增益应为ΔuO/ΔuI=(0.657−0.617)/(1−0.778)=0.180. 下页图所示是实现上述思绪的反相放大电路.图中二极管D3~D5及响应的电阻用于调节输出电压u03>0时的增益,二极管D6~D8及响应的电阻用于调节输出电压u03<0时的增益.电路的工作道理剖析如下.当输入电压uI <0.278UImax时,增益为1,请求图中所有二极管均不导通,所以反馈电阻Rf=R11.据此可以选定Rf=R11=R6的阻值均为1kΩ.当ωt=25°~50°时,电压增益为0.809,请求D1导通,则应知足:13//110.8096R R R =,解出R13=4.236k Ω.因为在ωt=25°这一点,D1开端导通,所以,此时二极管D1正极电位应等于二极管的阈值电压Vth .由图可得:03141314u VEE Vth VEE R R R --=+,式中u03是ωt=25°时输出电压的值,即为0.278UImax .取UImax=10V ,Uth=0.7V ,则有100.278(15)14(15)0.74.23614R R ⨯--+-=+解出R14=31.97k Ω.电阻取标准值,则R13=4.22k Ω,R14=31.6k Ω.其余剖析如上.须要解释,为使各二极管可以或许工作在开关状况,对输入三角波的幅度有必定的请求,假如输入三角波的幅渡过小,输出电压的值不足以使各二极管依次导通,电路将无法正常工作,所以上述电路采用比列可调节的比例运算电路(U3A 模块)将输出的三角波的幅值调至10V ±.(4)元件选择:①选择集成运算放大器因为方波前后沿与用作开关的器件U1A 的转换速度SR 有关,是以当输出方波的反复频率较高时,集成运算放大器A1 应选用高速运算放大器.集成运算放大器U2B 的选择:积分运算电路的积分误差除了与积分电容的质量有关外,重要事集成放大器参数非幻想所致.是以为了减小积分误差,应选用输入掉调参数(VI0.Ii0.△Vi0/△T.△Ii0/△T )小,开环增益高.输入电阻高,开环带较宽的运算放大器.反比拟例运算放大器请求放大不掉真.是以选择信噪比低,转换速度SR 高的运算放大器.经由芯片材料的查询,TL082 双运算放大转换速度SR=14V/us.相符各项指标请求.②选择稳压二极管稳压二极管Dz 的感化是限制和肯定方波的幅度,是以要依据设计所请求的方波幅度来选稳压管电压Dz.为了得到对称的方波输出,平日应选用高精度的双向稳压管③电阻为1/4W的金属薄膜电阻,电位器为周详电位器.④电容为通俗瓷片电容与电解电容.(5)仿真与调试按如下电路图衔接衔接完成后仿真,仿真组图如下仿真完成后开端焊接电路,焊接完成后开端调试,调试组图如下:.(5)总结该设计完整知足指标请求.第一:下限频率较高:70hz.原因剖析:电位器最大阻值和相干电阻阻值的参数不准确.改良:用阻值周详电位器和电阻.第二:正弦波在10000HZ时,波形已变坏.原因剖析:折线法中各电阻阻值不精准,TL082CD不知足参数请求.改良:采用精准电阻,用NE5532代替TL082CD..(6)心得领会“掉败乃成功之母”.从始时的调试到最后完成课程设计阅历了多次掉败.不能半途而废,永不废弃的精力在本身选择的道路上保持走下去!在此次设计进程中,表现出本身单独设计的才能以及分解应用常识的才能,领会了学乃至用.并且从设计中发明本身日常平凡进修的不足和薄弱环节,从而加以填补.时,此次模仿电子课程设计也让我熟悉到以前所学常识的不深刻,基本不够扎实,乃至于此次在设计电路图的时刻,须要反复翻阅教材的常识.我深深知道了常识连贯应用的重要性.(7)参考书目:1.童诗白.华成英,《模仿电子技巧基本》2.吴慎山,《电子技巧基本试验》3.周誉昌.蒋力立,《电工电子技巧试验》4.广东工业大学试验教授教养部,《Multisim电路与电子技巧仿真试验》(8)元件清单。
模电设计性实验之正弦波-方波-三角波
模拟电路提高性实验学院:科目:指导老师:学生:学号:班级:波形发生及转换器一、实验任务要求用面包板搭建一个波形发生及转换器,测试满足要求后,在电路板上焊接出来。
指标要求如下:1.±12V直流电源供电,输出3路波形:正弦波、方波和三角波.2.信号频率1kHz,3种波形幅度均为±4V.3.信号频率和幅度连续可调,尽量减小波形失真.二、方案论证产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。
本实验采用先产生正弦波,再将正弦波转换为方波,最后将方波转换为三角波的电路设计方法首先,±12V直流电源供电给运放,产生正弦波,本实验使用文氏振荡电路作为第一级电路,通过调节50kΩ的电位器将部分输出电压叠加反馈到输入电路;第二级使用滞回比较器将正弦波转换为方波,同时通过10kΩ和20kΩ的电阻串联取出部分电压反馈到输入,但本级电路无法调节输出的方波幅度;第三级为反相求和运算电路,使得输入的方波幅度可调;第四级通过一个积分运算电路将方波转变为三角波,取第三级的输出为输入,并通过50kΩ的电位器调节三角波的幅度。
本实验中除了第一级的两个200kΩ的可调电位器用来调节幅度外,其余50kΩ的电位器均是用来调节幅度,使得正弦波、方波、三角波三种波形的幅度可调范围较大,而且本电路均引入反馈,尽量减小波形失真。
三、实验电路图及说明说明:第一级为RC桥式正弦波振荡电路,两个200kΩ的电位器接入电路的电阻相同,作用为调节正弦波的频率;50kΩ的电位器的作用是调节幅度。
第二级为滞回比较器(正弦波->方波),输出方波,但幅度不可调节。
第三级为反相求和运算电路,通过50kΩ的电位器调节方波的幅度。
第四级为积分运算电路,将输入的方波转变为三角波,同时也通过50kΩ的电位器调节三角波的幅度。
正弦波方波三角波
课程设计名称:设计制作一个方波\三角波\正弦波\锯齿波发生器摘要函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。
该电路可为实验室提供波形频率范围为0.02Hz~20kHz,幅值2v的稳定信号源。
大大降低了实验成本,有效的简化了实验的操作步骤,是实验室小型电路信号发生器的理想所选,具有广泛的应用价值。
此信号发生器采用模块化结构,主要由以下三个模块组成,即正弦波发生器模块、方波发生器模块、三角波发生器模块。
在设计此函数信号发生器时,采用模块化的设计思想,使设计起来更加简单、容易、条理清晰。
同时调试起来也更容易。
经过一系列的分析、准备,本次设计除在美观方面处理得不够得当之外,完成了全部的设计要求。
关键词:函数信号发生器、 LM324、集成运算放大器、晶体管差分放大目录前言 (4)第一章函数发生器的设计要求 (5)1.1 波形发生器的特点及应用 (5)1.2 设计任务及要求 (5)第二章电路设计原理及单元模块 (6)2.1 设计原理 (6)2.1 单元模块 (6)2.1.1 RC选频振荡模块 (6)2.1.2 过零比较器 (8)2.3.3 产生三角波模块 (9)第三章安装与调试 (12)3.1 电路的安装 (12)3.2 电路的调试 (12)3.2 电路的分析 (13)结论 (14)参考文献 (14)附录一 (15)附录二 (16)前言科学技术是第一生产力。
三次工业革命使我们的社会发生了翻天覆地的变化,使我们由手工时代进入了现代的电器时代。
同时科技在国家的国防事业中发挥了重要的作用,只有科技发展了才能使一个国家变得强大。
而作为二十一世纪的主义,作为一名大学生,不仅仅要将理论知识学会,更为重要的是要将所学的知识用于实际生活之中,使理论与实践能够联系起来。
波形发生器在实际生活中有很重要的作用,影响着科技的发展,在当今社会又好又快的生活方式是人们所向往的,因此作为一名学习知识的青年,应该学好基础知识,设计出是人民满意的东西,产出人性化和自能化的电子产品,另一方面电子产品不断的更新,需要我们更加扎实的基础。
脉搏波波形函数
脉搏波波形函数
脉搏波是一种反映心脏活动和心血管系统状态的信号,其波形产生函数主要取决于心脏的跳动和血管的动态特性。
脉搏波信号可以通过测量人体表面上的动脉搏动来获得,常见测量部位包括桡动脉、颈总动脉和足背动脉等。
脉搏波的波形函数可以根据不同的参数和模型进行描述。
在医学和生理学领域,常用的一些脉搏波波形函数包括正弦波、三角波、方波等。
这些波形函数可以模拟不同类型和特征的脉搏波信号。
例如,正弦波可以模拟具有周期性特征的脉搏波信号,三角波可以模拟具有线性特征的脉搏波信号,方波可以模拟具有突变性特征的脉搏波信号等。
此外,还可以使用其他复杂的数学函数来描述脉搏波波形,如傅里叶变换函数、滤波器函数等。
在具体应用中,需要根据实际需求选择适合的脉搏波波形函数,并进行适当的参数调整和模型优化。
方波三角波正弦波锯齿波
方波三角波正弦波_锯齿波发生器This manuscript was revised by the office on December 10, 2020.电子工程设计报告目录方波—三角波—正弦波函数信号发生器摘要波形函数信号发生器广泛地应用于各场所。
函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。
除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。
设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。
然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。
其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。
函数(波形)信号发生器。
能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。
关键词:振荡电路;电压比较器;积分电路;低通滤波电路设计要求1.设计、组装、调试方波、三角波、正弦波发生器。
2.输出波形:方波、三角波、正弦波;锯齿波3.频率范围:在-20KHz范围内且连续可调;1.前言在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。
可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。
lm358正弦波方波三角波产生电路
lm358正弦波方波三角波产生电路LM358是一种双通道运算放大器,具有低功耗和宽电源电压范围等特点,非常适合用于信号处理、滤波以及波形生成电路。
在本文中,我们将针对LM358正弦波、方波和三角波产生电路展开探讨,并提供详细的电路设计原理和实现步骤。
1. LM358正弦波产生电路正弦波产生电路是一种基本的波形生成电路,能够产生具有稳定幅值和频率的正弦波信号。
使用LM358运算放大器和一些基本的无源元件,我们可以设计出简单而稳定的正弦波产生电路。
我们需要通过一个RC 网络将运算放大器配置为反馈振荡电路。
通过调整RC网络的参数,可以实现所需频率的正弦波输出。
需要注意的是,为了稳定输出的幅值和频率,我们需要精心选择和调整电阻和电容的数值。
2. LM358方波产生电路方波产生电路是一种能够生成具有固定占空比和频率的方波信号的电路。
使用LM358运算放大器和几个简单的元件,我们可以设计出稳定的方波产生电路。
我们可以将LM358配置为比较器,通过设置阈值电压和反馈电阻,可以实现所需频率和占空比的方波输出。
需要注意的是,选择合适的电阻和电容数值,可以使得方波输出的上升和下降沿更加陡峭。
3. LM358三角波产生电路与正弦波和方波不同,三角波产生电路能够生成具有线性变化斜率的三角波信号。
同样地,我们可以利用LM358运算放大器和几个简单的元件设计出稳定的三角波产生电路。
我们可以将LM358配置为积分放大器,通过输入一个方波信号,并将其积分,可以得到具有线性变化斜率的三角波输出。
调整输入方波的频率和幅值,可以进一步调整三角波输出的频率和幅值。
总结回顾通过对LM358正弦波、方波和三角波产生电路的探讨,我们可以看到LM358作为运算放大器在波形生成电路中的灵活性和高性能。
通过精心设计和调整,我们可以实现稳定、精确和灵活的波形输出。
值得一提的是,LM358产生的波形信号可以应用于各种信号处理和波形调制电路中,具有广泛的应用前景。
三,三角波、方波、正弦波
波形发生电路的设计一、课题:波形发生电路二、主要技术指标:能输出正弦波、方波、三角波。
正弦波Vpp=10V,f=160HZ;方波Vpp=6V,f=160HZ;三角波Vpp=4V,f=160HZ;方波Vpp=6V,f=160HZ。
三、方案论证及选择:(1)方波:方波产生电路是一种能够直接产生方波或矩形波的非正弦信号发生电路。
由于方波包含了极丰富的谐波,因此,这种电路又成为多谐振荡电路。
这是在迟滞比较器的基础上连了一个积分电路,把输出电压经Rf,C反馈到集成运放的反向端。
在运放的输出端引入限流电阻R和两个背靠背的稳压管就组成了一个双向方波发生的电路。
(2)三角波:三角波产生电路主要是积分电路的正向和反向充放电时间常数相等。
即与锯齿波产生的差别。
积分电路利用虚地的概念,电容C存在的漏电流也是产生误差的原因之一,选用泄漏电阻大的电容器可减少这种误差。
(3)正弦波:从结构上看,正弦波振荡电路就是一个没有输入信号的带选频网络的正反馈放大电路。
振幅平衡和相位平衡是正弦波振荡电路产生持续振荡的两个条件。
四、系统组成框图:系统由三个相对独立的分模块组成。
首先由选频网络选出电路的噪音中频率,符合选频网络的频率特性的一支通过放大然后输出正弦波。
正弦波输出后,以该信号做为信号源作为下一级的输入,从而输出方波。
同理,方波输入下一级积分电路中经过积分电路积分产生三角波。
五、单元电路设计及说明:1.正弦波信号产生单元:下图电路为桥式振荡电路。
该电路由三部分组成,即放大电路、选频网络和反馈网络。
其选频网络的频率特性如下:1211,;11rj cr r j cZ r Z j c j c j c r j c ωωωωωω+=+===++反馈网络的反馈系数为2212();13()v Z j cRF s Z Z j cR j cR ωωω==+++由此可得RC 串并联选频网络的幅频响应即相频响应为2001;3()v F j ωωωω=+-0()arctan;3f ωωωωϕ-=-由上两式知当00112f f rc rc ωωπ====或时,幅频响应的幅值为最大,即max 1;3F =相应的相频响应的相位角为零,即0;f ϕ=此时输出电压的幅值最大,并且输出电压为输入电压的3倍。
正弦波-方波-三角波产生电路
正弦波-方波-三角波产生电路综述:正弦波、方波和三角波是按照不同波形的原理产生的电路。
此外,它们之间也存在着共同点,例如,它们都是复用的技术,均可利用振荡电路来产生多种波形。
本文旨在介绍正弦波、方波和三角波的电路原理,以及它们之间的异同点。
一、正弦波产生电路原理正弦波的产生原理,可以是指振荡电路的基本原理,或者是采用某种数字信号处理方法产生出来的。
振荡电路就是利用低压脉冲充电器充电电容,再将电容中的电荷引到另一个电荷;反复循环这个过程,便可形成一种“弹簧”式的脉冲振荡,从而形成正弦波。
按照数字信号处理的原理,把波形的高和低电压写入某种字段,用现有的处理器进行转换,便可以生成正弦波。
方波的产生电路利用了一种特殊的振荡电路来实现,它主要由四部分组成:加法->正弦波发生器->交织多路反馈网络、平衡多路反馈网络。
正弦波发生器可以产生必须控制电压大小,频率和起点电压起点(最低电压和最高电压)的正弦波;交织多路反馈网络用来调节正弦波的峰峰电压;平衡多路反馈网络则用来消除正弦波的一半电压,形成方波。
三角波产生电路也是基于共oscilla tor振荡原理实现,它利用振荡器来实现,只需改变振荡器的结构即可产生三角波。
比如,采用增益电子管、三极管和整流电路组成的振荡器,在控制调节的过程中,可以产生不同类型的振荡,从而得到完美的三角波。
四、正弦-方-三角波的异同点同点:三者都可以通过振荡电路或数字信号处理来产生。
不同点:(1)振荡电路原理上,正弦波是由低压脉冲电路充放电,产生弹性振荡;方波是利用加法/正弦/交织/反平衡振荡电路来完成;而三角波则需要增益电子管、三极管和整流电路组成振荡器,控制调节获取完美的三角波。
(2)如果以数字信号处理来产生各类波形,则不存在性质上的差别,就是利用现有的处理器,把波形的高和低电压写入某种字段,进行转换,即可产生对应的波形。
本文对正弦-方-三角波的产生电路及其异同点进行了简要说明。
正弦波-方波-三角波发生电路设计
东华理工大学长江学院课程设计报告正弦波-方波-三角波发生电路设计学生姓名:专业:班级:指导教师:正弦波-方波-三角波发生电路设计函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。
产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生正弦波,再将正弦波变成方波-三角波或将方波变成三角波等等。
本课题采用先产生正弦波,再将方波变换成三角波的电路设计方法,本课题中函数发生器电路组成框图如下所示:由比较器和积分器组成正弦波产生电路,比较器输出的方波经积分器得到三角波,目录1、正弦波发生器 (3)2、方波发生器 (4)3、三角波发生器 (7)4、正弦波-方波-三角波发生器 (9)5、总电路图、元器件清单 (10)6、心得体会及参考文献 (11)简述:方波、正弦波、三角波是电子电路中经常用到的信号,设计一个正弦波-方波-三角波发生电路。
具体技术要求如下:(1)正弦波-方波-三角波的频率在100Hz-20KHz范围内连续可调;(2)正弦波和方波的信输出幅度为6V,三角波的输出幅度在0-2V之间连续可调;正弦波的失真度r5%;(4)设计上述电路工作所需的直流稳压电源电路。
使用仪器及测量仪表:选用元器件(1).集成运放F007(a741);(2)稳压及开关二极管;(3)电阻、电容、电位器若干。
测量仪表(1)直流稳压电源;(2)示波器;(3)万用表(4)频率计(5)交流电压表一、正弦波发生器其振荡频率为1kHz。
方波_三角波_正弦波_锯齿波发生器
电子工程设计报告目录设计要求1.前言 (2)2方波、三角波、正弦波发生器方案 (3)2.1原理框图 (3)3.各组成部分的工作原理 (4)3.1 方波发生电路的工作原理 (4)3.2 方波--三角波转换电路的工作原理 (5)3.3三角波--正弦波转换电路的工作原理 (7)3.4 方波—锯齿波转换电路的工作原理 (8)3.5总电路图 (9)方波—三角波—正弦波函数信号发生器摘要波形函数信号发生器广泛地应用于各场所。
函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。
除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。
设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。
然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。
其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。
函数(波形)信号发生器。
能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。
关键词:振荡电路;电压比较器;积分电路;低通滤波电路设计要求1.设计、组装、调试方波、三角波、正弦波发生器。
2.输出波形:方波、三角波、正弦波;锯齿波3.频率范围:在0.02-20KHz范围内且连续可调;1.前言在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
工程中常用的波形
在工程领域中,有许多不同类型的波形被广泛应用。
以下是一些常见的波形:
1. 正弦波:正弦波是一种周期性的波形,它在时间上呈现出正弦函数的形式。
正弦波常用于交流电路、信号处理和音频工程中。
2. 方波:方波是一种矩形波形,其特点是在高电平和低电平之间快速切换。
方波常用于数字电路、时钟信号和触发电路中。
3. 三角波:三角波是一种类似于正弦波的波形,但其峰值和谷值之间的过渡更加陡峭。
三角波常用于信号发生、调制和解调等应用中。
4. 锯齿波:锯齿波是一种矩形波,其特点是在高电平和低电平之间以线性方式上升和下降。
锯齿波常用于扫描电路、显示器和控制器中。
5. 脉冲波:脉冲波是一种短暂的、高电平的波形,通常用于数字信号传输、触发和同步等应用中。
这些波形在工程中具有广泛的应用,并且可以通过各种电子设备和仪器进行产生和处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方波、正弦波、三角波
摘要
本文通过介绍一种电路的连接,实现函数发生器的基本功能。
将其接入电源,并通过在显示器上观察波形及数据,得到结果。
电压比较器实现方波的输出,又连接积分器得到三角波,并通过三角波-正弦波转换电路看到正弦波,得到想要的信号。
NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。
凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。
本设计就是利用Multisim软件进行电路图的绘制并进行仿真。
关键词:电源、波形、比较器、积分器、转换器电路、Multisim
目录
1 设计任务 (5)
1.1 电路设计任务 (5)
1.2 电路设计要求........................................................................5 2函数转换器的组成 (5)
2.1 原理框图 (5)
2.2 原理分析 (5)
2.3 放大器功能及管脚图...............................................................6 3 各部分电路设计 (6)
3.1方波---三角波转换电路的工作原理 (6)
3.2元器件型号 (11)
3.3电路的参数选择及计算............................................................11 4 电路安装于调试 (12)
4.1 安装方波---三角波发生电路 (12)
4.2调试方波---三角波发生电路......................................................12 5实验总结 (13)
一设计任务
1.1 任务
设计制作一个产生方波-三角波-正弦波函数转换器。
1.2 要求
①输出波形频率范围为0.02Hz~20kHz且连续可调;
②正弦波幅值为±2V;
③方波幅值为2V;
④三角波峰-峰值为2V,占空比可调。
二函数发生器的组成
2.1原理框图
2.2原理分析
函数发生器一般是指能自动产生方波、三角波、正弦波及锯齿波、阶梯波等电压波形的电路或仪器。
产生方波、三角波、正弦波的方案有多种,本课题介绍先产生方波-三角波,再将三角波变换成正弦波的电路设计方法。
由R、C振荡电路、比较器产生方波,再通过方波转换为三角波,最后通过差分放大器将三角波转换为正弦波。
2.3放大器功能及管脚图
LM324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。
可工作在
单电源下,电压范围是3.0V-32V或+16V.
LM324引脚图(管脚图)
三系统中各模块设计
3.1 方波-三角波
由模电知识我们知道,将一组矩形波经积分电路会得到良好的三角波,所以本设计采用前置矩形波发生电路,然后对所得到的矩形波进行积分电路积分,最后输出三角波。
矩形波发生电路实际是由一个滞回比较器和一个RC充放电回路组成,如图一所示。
其中R1、R2与集成运放组成滞回比较器,电阻R4和电容C组成充放电回路,稳压管D3、D4和电阻R3的作用是钳位,将滞回比较器输出电压稳定在正负Uz。
在方波发生电路中,利用二极管的单项导电性是电容正向和反向充电的通路不同,从而使它们时间常数不同,即可以改变输出电压的占空比,再经过积分就可以得到占空比可调的三角波,如图所示,图中电位器和两个二极管的作用是将电容和放电的回路分开,调节充电和放电两个时间常数的比例。
如果将电位器向下滑动,
则充电时间常数减小,放电时间常数增大,于是输出端为高电平的时间缩短,低电平的时间增长。
将上述的矩形波发生电路的输出端与积分电路的输入端连接即可得到占空比可调的的三角波发生电路。
4
将矩形波发生电路和积分电路连接起来就可以将方波转换为占空比可调的三角波。
⑴输出幅度
由图可知,稳压管两端电压为UZ,积分电路的输出电压Uo往正方向线性增长,此时U+也随着增长,当增长至U+=U-=0时,滞回比较器的输出电压UO1发生跳变,而发生跳变时的UO值是使三角波的最大值Uom。
将条件UO1=--UZ,U+=0和Uo=Uom代入下式可得:
0=R1)+R2R1+R2 (-UzR1+R2 Uom
可解的三角波的输出幅度为:
UR1om=R2 Uz
(2)占空比
当忽略二极管的导通电阻时经分析可知:
T=(R2R116+R10)C㏑R2T2=(R6+R9)C㏑(1+2R1R2 )
输出波形的震荡周期为:
T=T2R11+T2=(2R6+R8)C㏑(1+R2占空比为:
D=T1T =R6+R102R6+R8
3.2元器件型号
采用下图所示电路,其中运算放大器A1和A2用LM324,二极管用
IN4148,稳压管用IN4735,因为,输出波形幅度有电位器R7调节,所以可使供电电源
VCC=-5V,VEE=5V
3.3参数设计
比较器A1和A2的元件参数设计算如下
有上式得
三角波的输出幅度为:
R1Uom=R2 Uz
取R1=R2=1K,限流电阻R3=5K
输出波形的震荡周期为:
2R1 T=T1+T2=(2R6+R8)C㏑(1+R2
当0.02hz
积分电路部分,C2=1uf,R10=10k,R8=R9=1k,R11=6k.
四电路调试
4.1安装方波——三角波产生电路
1. 把两块741集成块插入万能板,注意布局;
2. 分别把各电阻放入适当位置;
3. 按图接线,注意直流源的正负及接地端。
4.2调试方波——三角波产生电路
1. 接入电源后,用示波器进行双踪观察;
2. 调节R7,使三角波的幅值满足指标要求;
3. 调节R5,微调波形的频率;
4. 观察示波器,使各指标达到;
注意:电路先产生方波,经过积分电路再产生三角波,所以可以先安装方波发生器,再安装积分电路,需要注意的是,安装电位器之前,要先将其调整到设计值,否则可能会不起振。
安装电位器的时候要注意三个管脚的接入。
调节电位器R5可以调节三角波的占空比,虽然频率会同时改变,但改变的不大。
微调R5时输出频率在对应波段内连续可变。
调节R7可以调节输出波的幅值,使三角波的幅度满足设计指标要求。
4.3能指标测量与误差分析
①波形不稳定时,可能是电路在安装的时候接触不良,可加旁路电容使波形稳定
②方波的上升时间主要受放大器转换速率的限制,如果输出频率太高,可介入加速电容,一般加速电容取几十皮法。
结论
为期两周的课程设计让我感触颇深。
从选择这个课题后,我们组员在设计、焊接、调试等过程中就遇到各种各样的问题,为解决这些问题,我们利用各种途径查找资料。
遇到课设要求出现问题时,我们进行各种尝试,各种设计方案,最后,在和老师的商讨下,最后把要求给改了,虽然我们在最后时才将设计方案定下来,不过我更有感触的是这个过程,我们在遇到问题的时候不再是放弃,而是积极想办
法解决,在这点我觉得我进步了。
其次是在焊接过程,在没有想好走线的时候就盲目动手焊接,结果造成短路,吸取第一次教训,第二块板子在我们的布局下顺利焊接完了,在这个过程中,可以看出我们做事情还是毛毛躁躁的,没有缜密的计划就动手,不过我们还是很有耐心的把第二块板子焊完了。
最后是在调试过程中遇到的一些问题,比如,波形出不来,波形失真,在老师的指导下,我们认真寻找问题,最后,形调试成功。
在这个过程中,我觉得主要是组员之间要团结,意见要统一,而且任务要分配合理,这样两个人合作才不会有冲突。
经过这次课设让我对低频电子线路有了进一步的认识,在设计方面掌握了以前书上没有的知识,在电路焊接方面也有了提升,懂得怎样走线,怎样焊接,以及学会了处理焊接过程中遇到的一些问题。
总之,这次课设让我从理论上,动手能力上都有了一定的提高。
11。