快速傅里叶变换(FFT)的原理及公式

合集下载

FFT快速傅里叶变换(蝶形算法)详解概要

FFT快速傅里叶变换(蝶形算法)详解概要
第五章 快速傅里叶变换
本章目录

直接计算DFT的问题及改进的途径 按时间抽取的基2-FFT算法 按频率抽取的基2-FFT算法 快速傅里叶逆变换(IFFT)算法 Matlab实现
2
5.1 引言

DFT在实际应用中很重要: 可以计算信号的频
谱、功率谱和线性卷积等。

直接按DFT变换进行计算,当序列长度N很

9
5.3.1 算法原理
设N=2L,将x(n)按 n 的奇偶分为两组:
x(2r ) x1 (r )
x(2r 1) x2 (r )
r
N =0,1,…, 1 2

X (k ) DFT [ x(n)] x(n)WNnk
n 0
N 1

n 0 n为偶数
x(n)W
N 1
x1 (r )W
r ( N 2 k ) N 2
rk x1 (r )WN 2 X 1 (k ) r 0
N 2 1
同理可得
N k ) X 2 (k ) 2
12
考虑到 及前半部分X(k)
( N 2 k ) N 2 k k WN WN WN WN
k X (k ) X 1 (k ) WN X 2 (k )
运算前
A(k ) X 1 (k ) X (k )
运算后
A(k )
A(k
N ) X 2 (k ) 2
k WN
N A(k N ) X (k ) 2 2
30
观察原位运算规律
31
蝶形运算两节点间的距离

蝶形运算两节点间的距离
以N=8为例: 第一级蝶形,距离为: 第二级蝶形,距离为: 第三级蝶形,距离为: 1 2 4

快速傅里叶变换 FFT

快速傅里叶变换 FFT

因为
,所以:
上式中X1(k)和X2(k)分别为x2(r)和x2(r)的N/2点DFT, 即
由于X1(k)和X2(k)均以N/2为周期,且 X(k)又可表示为:
,以
即将一个N点的DFT分解成为两个N/2点的DFT。 上述运算可用右下图来表示,称为蝶形运算符号。
从右图可知,要完成一 个蝶形运算需要进行一 次复数相乘和两次复数 相加运算。
对于象雷达、通信、声纳等需要实时处理的信号, 因为其运算量更大,所以无法满足信号处理的实时 性要求。迫切需要有新的算法。
二、DFT运算的特点
实际上,DFT运算中包含有大量的重复运算。在WN
矩阵中,虽然其中有N2个元素,但由于WN的周期
性,其中只有N个独立的值,即
,且
这N个值也有一些对称关系。总之,WN因子具有如 下所述周期性及对称性:
N 1
X (k) x(n)WNkn n0
x(n)
1 N
N 1
X (k)WNkn
k 0
k 0,1,2, , N 1 n 0,1,2, , N 1
计算X(k)的运算量:需要N2次复数乘法,N(N-1)
次复数加法。在N较大时计算量很大。
例如:N=1024时, 需要1,048,576次复数乘法, 即 4,194,304次实数乘法
1.对称性
2.周期性 由上述特性还可得出:
利用上述对称特性,可使DFT运算中有些项可以合 并,这样,可使乘法次数减少大约一半;利用WN 矩阵的对称性及周期性,可以将长序列的DFT分解 为短序列的DFT,N越小,运算量能够减少。 例如,对于四点的DFT,直接计算需要16次复数乘 法,根据上述特性可以有以下形5年,J. W. Cooley和J. W. Tukey巧妙应用DFT中 W因子的周期性及对称性提出了最早的FFT,这是 基于时间抽取的FFT。具有里程碑式的贡献(运算量 缩短两个数量级)

快速傅里叶变换fft原理

快速傅里叶变换fft原理

快速傅里叶变换fft原理
快速傅立叶变换(Fast Fourier Transform,FFT)是一种将时域信号转变为频
域信号的数字信号处理方法。

它通常比傅里叶变换(Fourier Transform,FT)更快、更方便。

它通过将高维度的折叠为低维度,将傅里叶变换从背景计算量O(N2)优化到O(NlogN),并延长空间采样前的信号。

FFT可以理解为若干特殊形式的数学公式,用于将复数的时域函数转换为它们
的频域表示形式的变换,即其频域图像。

例如,我们可以将一个正弦信号的时域图像转换为它的频域图像,从而可以获得关于这个信号的频率的一些有用信息。

FFT的运算思想和FT一样,它们都使用复数的形式将时域信号变换成频域信号,但FFT采用更加高效的算法,以缩短复杂度为O(NlogN)。

它还允许用户以
恒定频率对信号进行采样,然后分析其时域运动规律。

因此,FFT应用于诸如脉冲
调制、音频信号分析等复杂的应用场景,广泛的地增强了计算能力。

编程实现快速傅里叶变换(fft)

编程实现快速傅里叶变换(fft)

一、概述傅里叶变换是信号处理和数据压缩中常用的数学工具,它可以将时域信号转换为频域信号,从而便于分析和处理。

而快速傅里叶变换(FFT)则是一种高效的计算傅里叶变换的方法,可以大大提高计算效率,广泛应用于信号处理、图像处理、通信系统等领域。

二、傅里叶变换原理傅里叶变换的基本思想是将一个时域信号分解为不同频率的正弦和余弦函数的叠加,从而得到该信号的频谱图。

具体来说,对于一个连续信号x(t),它的傅里叶变换X(ω)定义为:X(ω) = ∫[0,∞]x(t)e^(-jωt)dt其中,ω为频率变量,X(ω)表示在频率ω处的信号能量。

而对于离散信号x[n],它的傅里叶变换X[k]则定义为:X[k] = ∑[n=0,N-1]x[n]e^(-j2πkn/N)其中,N为信号的采样点数,k为频率域的序号。

上述公式称为离散傅里叶变换(DFT),计算复杂度为O(N^2)。

而快速傅里叶变换则通过巧妙的算法设计,将计算复杂度降低到O(NlogN)。

三、快速傅里叶变换算法概述快速傅里叶变换的算法最早由Cooley和Tukey在1965年提出,它的基本思想是将一个长度为N的DFT分解为两个长度为N/2的DFT的组合,通过递归地分解和合并,最终实现对整个信号的快速计算。

下面我们来介绍一种常用的快速傅里叶变换算法:递归式分治法。

四、递归式分治法递归式分治法是一种高效的计算DFT的方法,它的基本思想是将长度为N的DFT分解为两个长度为N/2的DFT,并通过递归地调用自身,最终实现对整个信号的傅里叶变换。

具体来说,假设有一个长度为N的信号x[n],对其进行快速傅里叶变换的过程可以分为如下几个步骤:1. 将长度为N的信号x[n]分为长度为N/2的偶数序号和奇数序号的两个子信号x_even[n]和x_odd[n];2. 对子信号x_even[n]和x_odd[n]分别进行快速傅里叶变换,得到它们的频域表示X_even[k]和X_odd[k];3. 结合X_even[k]和X_odd[k],计算原信号的频域表示X[k]。

FFT算法详解

FFT算法详解

FFT算法详解FFT (Fast Fourier Transform) 是一种高效的离散傅里叶变换算法,用于将时域信号转换为频域信号。

它在信号处理、图像处理、通信领域等具有广泛的应用。

本文将详细介绍FFT算法的原理和实现。

一、傅里叶变换的基本原理傅里叶变换是一种将信号从时域转换到频域的方法。

它将时域信号分解成多个不同频率的正弦和余弦函数的叠加。

傅里叶变换的基本公式为:F(k) = Σ_{n=0}^{N-1} f(n)e^{-2πikn/N}其中,F(k)是频域信号的复数表示,f(n)是时域信号的复数表示,N是信号长度,k是频率。

二、傅里叶变换的问题传统的傅里叶变换算法的时间复杂度为O(N^2),计算量较大,不适用于实时处理大型信号。

FFT算法通过分治的思想,将DFT(Digital Fourier Transform)问题转化为多个子问题,从而降低了计算复杂度。

三、蝶形运算蝶形运算的公式为:y_0=x_0+W_N^k*x_1y_1=x_0-W_N^k*x_1其中,x_0、x_1是输入,y_0、y_1是输出,W_N^k是旋转因子,N是信号长度,k是频率。

四、FFT算法的步骤1.将输入信号分成偶数下标和奇数下标的两个子序列。

2.对两个子序列分别进行FFT变换,得到两个子序列的频域表示。

3.将两个子序列的频域表示合并成完整的频域信号。

4.重复上述步骤,直到得到最终的频域信号。

五、FFT算法的实现1.初始化输入信号和旋转因子。

2.将输入信号按照偶数下标和奇数下标分成两个子序列。

3.对两个子序列分别进行FFT变换,递归调用FFT函数。

4.将两个子序列的频域表示合并成完整的频域信号。

5.返回最终的频域信号。

总结:FFT算法是一种高效的离散傅里叶变换算法,通过分治的思想将DFT问题分解为多个子问题,从而降低了计算复杂度。

它在信号处理、图像处理、通信领域等有着广泛的应用。

掌握FFT算法的原理和实现对于理解信号处理技术和提高算法效率具有重要意义。

快速傅里叶变换多项式乘法

快速傅里叶变换多项式乘法

快速傅里叶变换多项式乘法快速傅里叶变换(FFT)是一种快速计算多项式乘法的算法。

在计算机科学中,多项式乘法是一个十分广泛的问题,因为它有很多应用,例如信号处理、密码学、图像处理、数据压缩等等。

FFT算法的出现解决了这个问题的时间复杂度,使得计算大型多项式乘法成为了可行的任务。

1. FFT算法的原理和步骤 FFT算法是一种基于分治思想的算法,它把多项式乘法分解成两个较小的多项式乘法,然后以递归的方式继续分解直到小到可以直接计算的程度。

FFT算法的主要步骤如下:Step 1:将两个多项式的系数表达式分别展开,组成两个系数向量,由于向量在FFT算法中的操作更加方便,因此将分别展开出的系数给予两个向量。

Step 2:给向量补齐空缺值,由于$n$(两多项式次数之和)为$2$的幂,于是补齐至$2^n$个。

Step 3:对向量进行傅里叶变换,得到两个傅里叶变换向量。

这一步可以利用DFT(离散傅里叶变换)或IDFT (离散傅里叶逆变换)实现。

具体实现方式后续详细介绍。

Step 4:将两个傅里叶变换向量逐位相乘(注意:乘法运算是复数乘法,不是单纯的数乘),得到一个新的傅里叶变换向量。

Step 5:对新的傅里叶变换向量进行傅里叶逆变换(IDFT),得到的结果就是最后的多项式系数向量。

2. DFT的计算及优化思路DFT(离散傅里叶变换)是FFT算法中的重要计算基础,因此,如何快速准确地计算离散傅里叶变换的值是至关重要的。

对于长度为$n$的一个序列$a$,它的DFT计算公式如下:$$A(k)=\sum _{j=0}^{n-1}a(j)\cdot e^{-i2\pikj/n}$$其中$i$表示虚数单位,$e$表示自然常数,$k$表示频率,$j$表示时间,$n$表示序列长度。

根据公式,可以采用暴力枚举的方式计算出$A(k)$的值,但是时间复杂度达到$O(n^2)$,很不适合计算大量数据。

于是,FFT算法采用了一种基于蝴蝶运算的DFT优化方式,能够将时间复杂度降到$O(nlog(n))$:如果序列的长度为偶数,可以将序列分成两个序列,再分别进行DFT;如果序列长度是奇数,则可以将序列复制一份,增加一个零元素,然后将序列分成两部分,分别进行DFT的计算。

fft算法原理

fft算法原理

FFT算法原理一、简介傅里叶变换(Fourier Transform)是数字信号处理领域中一种重要的数学变换方法,常用于信号频谱分析、滤波器设计和图像处理等方面。

快速傅里叶变换(Fast Fourier Transform, FFT)是一种高效的傅里叶变换算法,能够在时间复杂度为O(N log N)的情况下进行离散傅里叶变换(Discrete Fourier Transform, DFT)计算。

本文将介绍FFT算法的原理及其应用。

二、傅里叶变换概述傅里叶变换是一种将一个连续时间域上的信号转换到频域上的数学变换。

对于连续信号f(t),其傅里叶变换F(ω)定义如下:傅里叶变换公式傅里叶变换公式其中,F(ω)表示信号在频率域上的表示,ω是频率参数。

三、离散傅里叶变换(DFT)离散傅里叶变换是对离散信号进行傅里叶变换的方法。

对于离散信号f(n),其中n为整数,其离散傅里叶变换F(k)定义如下:离散傅里叶变换公式离散傅里叶变换公式其中,N是信号的长度,k为频率参数。

DFT的计算复杂度为O(N^2),当信号长度N较大时,计算量会很大。

为了解决这个问题,FFTs算法应运而生。

四、快速傅里叶变换(FFT)快速傅里叶变换是一种分治算法,其思想是将一个N点DFT计算分解为多个较小规模的DFT计算,并利用它们之间的关系加速计算。

FFT算法基于下面的重要性质:一个N点DFT可以分解为两个N/2点DFT的和与差。

具体实现可以采用迭代方式或递归方式。

1. 迭代实现迭代实现FFT算法的步骤如下:1.将N点输入信号重新排列为位逆序(bit-reversal)的顺序;2.将长度为N的输入信号分解为两个长度为N/2的子信号;3.对两个子信号分别进行FFT计算;4.合并两个子信号的计算结果。

迭代实现FFT算法的时间复杂度为O(N log N)。

2. 递归实现递归实现FFT算法的步骤如下:1.如果N=1,直接返回输入信号;2.将长度为N的输入信号分解为两个长度为N/2的子信号;3.对两个子信号递归调用FFT计算;4.合并两个子信号的计算结果。

FFT快速傅里叶变换(蝶形算法)详解概要

FFT快速傅里叶变换(蝶形算法)详解概要

0 X 3 (1) x3 (0) W21x3 (1) x(0) W21 x(4) x(0) WN x(4)
这说明,N=2M的DFT可全部由蝶形运算来完成。
20
以8点为例第三次按奇偶分解
N=8按时间抽取法FFT信号流图
21
5.3.2 按时间抽取基2-FFT算法与直接计算DFT运算量的比较
所以 整个N点DFT运算共需要:
实数乘法次数: 4 N2
实数加法次数: N×2(2N-1)= 2N(2N-1)
6
DFT运算量的结论
N点DFT的复数乘法次数举例 N 2 4 8 16 32 N2 4 16 64 256 1028 N 64 128 256 512 1024 N2 4049 16384 65 536 262 144 1 048 576
规律:对于共L级的蝶形而言,其m级蝶形运算的节
点间的距离为 2 m1
32
r WN
的确定

W 的确定
r N
以N=8为例:
r m 1时,WN WNj / 4 W2jm W20 , j 0
r m 2时,WN WNj / 2 W2jm W4j , j 0,1
r m 3时,WN WNj W2jm W8j , j 0,1,2,3
16 384
65 536 262 144 1 048 576 4 194 304
448
1 024 2 304 5 120 11 264
36.6
64.0 113.8 204.8 372.4
24
5.3.3 按时间抽取的FFT算法的特点

序列的逆序排列 同址运算(原位运算) 蝶形运算两节点间的距离

fft的用法 -回复

fft的用法 -回复

fft的用法-回复FFT,即快速傅里叶变换(Fast Fourier Transform),是一种高效的信号处理算法,用于快速计算傅里叶变换。

它广泛应用于数字信号处理、图像处理、通信和音频处理等领域。

在本文中,我将详细介绍FFT的原理、算法步骤以及应用。

一、傅里叶变换简介傅里叶变换是一种将信号从时域转换为频域的数学工具,它可以将一个信号分解为不同频率成分的叠加。

傅里叶变换公式为:F(w) = ∫f(t)e^(-jwt)dt其中,F(w)表示频域的复数函数,f(t)表示时域的函数,w为频率。

二、快速傅里叶变换原理FFT算法是在1965年由J.W. Cooley和J.W. Tukey发现的,它利用了傅里叶变换的对称性质,将O(n^2)复杂度的计算降低为O(nlogn)的复杂度。

FFT算法通过将信号采样点划分为不同的子集进行计算,并利用了旋转因子运算的特性,实现了快速的计算。

三、FFT算法步骤1. 输入信号首先,我们需要准备一个输入信号,该信号是以时间为自变量的实数函数。

通常,我们会对信号进行采样,得到一组离散的采样点。

2. 信号的长度针对采样点的数量,我们需要确定信号的长度为N。

在实际应用中,为了确保FFT的正确性,通常会选择2的整数次幂,即N=2^k。

3. 填充零如果信号的长度小于N,我们需要对其进行零填充,使其长度等于N。

这样做是为了保证FFT算法的正确性以及计算的高效性。

4. 快速傅里叶变换采用分治法的思想,FFT算法将信号分为两个子集,并分别计算它们的频谱。

然后,通过合并这些子集的结果以及旋转因子的运算,得到整个信号的频谱。

5. 频谱结果最后,我们可以得到信号的频谱结果,它表示了信号中不同频率成分的振幅和相位。

四、FFT的应用1. 音频处理在音频处理中,FFT被广泛应用于音频信号的频谱分析、波形绘制和滤波处理等方面。

通过FFT算法,我们可以将音频信号转化为频域表示,实现音频特征提取、音频识别以及音频效果的处理。

FFT快速傅里叶变换(蝶形算法)详解概要

FFT快速傅里叶变换(蝶形算法)详解概要
nkmnknkmnnknk53按时间抽取的基2fft算法算法原理算法原理按时间抽取基按时间抽取基2fft2fft算法与直接计算算法与直接计算dftdft运算量的比较运算量的比较按时间抽取的按时间抽取的fftfft算法的特点算法的特点按时间抽取按时间抽取fftfft算法的其它形式流程图算法的其它形式流程图10531算法原理为奇数为偶数11为奇数为偶数另外式中k的取值范围是
所以 整个N点DFT运算共需要:
实数乘法次数: 4 N2
实数加法次数: N×2(2N-1)= 2N(2N-1)
6
DFT运算量的结论
N点DFT的复数乘法次数举例 N 2 4 8 16 32 N2 4 16 64 256 1028 N 64 128 256 512 1024 N2 4049 16384 65 536 262 144 1 048 576
(2)周期性 (3)可约性 另外,
( n N ) k n( k N ) nk WN WN WN
mnk nk WmN WN
nk nk / m WN WN /m
( k N / 2) k WN WN
N /2 WN 1
8
5.3 按时间抽取的基2-FFT算法

算法原理 按时间抽取基-2FFT算法与直接计算 DFT运算量的比较 按时间抽取的FFT算法的特点 按时间抽取FFT算法的其它形式流程图
23
FFT算法与直接DFT算法运算量的比较
N N2
N log 2 N 2
计算量 之比M
N
N2
N log 2 N 2
计算量 之比M
2
4 8 16 32 64
4
16 64 256 1028 4049
1
4 12 32 80 192

快速傅里叶变换的原理及公式

快速傅里叶变换的原理及公式

快速傅里叶变换的原理及公式快速傅里叶变换(Fast Fourier Transform,FFT)是一种快速计算离散傅里叶变换(Discrete Fourier Transform,DFT)的算法。

DFT是将时域的离散信号转换为频域的频谱表示的技术,它在信号处理、图像处理、语音识别等领域有着广泛的应用。

FFT算法通过利用信号的特殊性质,提高了计算效率,使得在计算复杂度为O(NlogN)的时间内,完成了DFT的计算。

FFT的原理基于傅里叶级数展开的思想。

任何周期为T的信号,都可以用一组正弦信号和余弦信号的和来表示。

傅里叶级数展开公式如下所示:f(t) = A0 + Σ[Ak*cos(kω*t) + Bk*sin(kω*t)]其中,f(t)表示信号的时域表示,A0表示直流分量,Ak和Bk表示信号的谐波分量,ω=2π/T表示信号的角频率。

FFT算法的主要思想是将DFT的计算分解为多个较小规模的DFT计算。

假设原始信号的长度为N,当N为2的幂时,可以将信号分为两个长度为N/2的子序列。

通过对这两个子序列分别进行FFT计算,然后合并计算结果,就得到了原始信号的DFT。

FFT算法可以描述为分治法的一个典型应用。

通过将信号分为两个子序列,FFT的计算可以分为两个阶段:变址和蝶形算法。

变址阶段的目标是将原始信号重新排列成迭代结构的形式,这样方便后续的计算。

变址操作通过位逆序运算实现,即将信号的各个元素按照二进制位翻转顺序重新排列。

蝶形算法是FFT计算的核心部分。

蝶形算法通过将信号的DFT计算分解为一系列蝶形运算,每个蝶形运算只涉及到两个元素的计算。

一个蝶形运算可以表示为如下公式:Xk=Xk_0+W_N^k*Xk_1Xk+N/2=Xk_0-W_N^k*Xk_1其中,Xk和Xk+N/2表示将原始信号分为两部分计算得到的结果,Xk_0和Xk_1分别是这两部分的数据,W_N^k表示旋转因子,计算公式为W_N^k = exp(-2πi*k/N)。

fft 快速傅里叶变换 (fast fourier transform)

fft 快速傅里叶变换 (fast fourier transform)

FFT 快速傅里叶变换(Fast Fourier Transform) 是一种用于快速计算傅里叶变换的算法,是在傅里叶变换的基础上发展而来的。

FFT 算法被广泛应用于数字信号处理、图像处理、声音处理、卷积操作、解析几何等领域,它的高效性和实时性使得它成为了当今计算机科学领域不可或缺的一部分。

一、傅里叶变换简介傅里叶变换是将一个时域信号转换为频域信号的过程,其公式如下:$F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt$其中,$f(t)$ 表示时域信号,$F(\omega)$ 表示频域信号,$\omega$ 表示角频率。

傅里叶变换可以分为连续傅里叶变换和离散傅里叶变换两种。

连续傅里叶变换仅适用于连续信号,而离散傅里叶变换适用于离散信号。

二、离散傅里叶变换离散傅里叶变换是一种将离散信号变换为频域信号的方法,其公式如下:$X_k=\sum_{n=0}^{N-1}x_n e^{-\frac{2\pi i}{N}kn},k=0,1,...,N-1$其中,$x_n(n=0,1,...,N-1)$ 表示原始离散信号,$X_k(k=0,1,...,N-1)$ 表示变换后的频域信号。

但是,使用该公式直接计算离散傅里叶变换的时间复杂度为$O(N^2)$,计算效率低下。

三、FFT 快速傅里叶变换FFT 快速傅里叶变换是一种基于DFT 离散傅里叶变换的高效算法,它的时间复杂度可以达到$O(NlogN)$,较之直接计算DFT 的时间复杂度要低得多。

FFT 算法的基本思想是将 DFT 分治成多个较小的 DFT,并利用其重复性降低运算次数。

1.蝴蝶运算蝴蝶运算是 FFT 算法的基本运算,通过它可以将 DFT 的计算复杂度降低为 $O(N)$。

蝴蝶运算的实质是将两个相邻点之间的信号进行乘法和加法运算,其公式如下:$X_k=X_{k1}+W_{N}^kX_{k2},X_{k+N/2}=X_{k1}-W_{N}^kX_{k2}$其中,$X_{k1}$ 表示 $X_k$ 中偶数项,$X_{k2}$ 表示 $X_k$ 中奇数项,$W_N$ 是DFT 的核函数。

快速傅里叶变换(FFT)的原理及公式

快速傅里叶变换(FFT)的原理及公式

快速傅里叶变换(FFT)的原理及公式原理及公式非周期性连续时间信号x(t)的傅里叶变换可以表示为式中计算出来的是信号x(t)的连续频谱。

但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。

因此需要利用离散信号x(nT)来计算信号x(t)的频谱。

有限长离散信号x(n),n=0,1,…,N-1的DFT定义为:可以看出,DFT需要计算大约N2次乘法和N2次加法。

当N较大时,这个计算量是很大的。

利用WN的对称性和周期性,将N点DFT分解为两个N/2点的DFT,这样两个N/2点DFT总的计算量只是原来的一半,即(N/2)2+(N/2)2=N2/2,这样可以继续分解下去,将N/2再分解为N/4点DFT等。

对于N=2m点的DFT都可以分解为2点的DFT,这样其计算量可以减少为(N/2)log2N 次乘法和Nlog2N次加法。

图1为FFT与DFT-所需运算量与计算点数的关系曲线。

由图可以明显看出FFT算法的优越性。

将x(n)分解为偶数与奇数的两个序列之和,即x1(n)和x2(n)的长度都是N/2,x1(n)是偶数序列,x2(n)是奇数序列,则其中X1(k)和X2(k)分别为x1(n)和x2(n)的N/2点DFT。

由于X1(k)和X2(k)均以N/2为周期,且WN k+N/2=-WN k,所以X(k)又可表示为:上式的运算可以用图2表示,根据其形状称之为蝶形运算。

依此类推,经过m-1次分解,最后将N点DFT分解为N/2个两点DFT。

图3为8点FFT的分解流程。

FFT算法的原理是通过许多小的更加容易进行的变换去实现大规模的变换,降低了运算要求,提高了与运算速度。

FFT不是DFT的近似运算,它们完全是等效的。

关于FFT精度的说明:因为这个变换采用了浮点运算,因此需要足够的精度,以使在出现舍入误差时,结果中的每个组成部分的准确整数值仍是可辨认的。

为了FFT的舍入误差,应该允许增加几倍log2(log2N)位的二进制。

fft计算谐波含量

fft计算谐波含量

fft计算谐波含量快速傅里叶变换(FFT)是一种用于将一个信号从时间域转换到频域的算法。

它是一种高效的算法,特别适用于处理频谱分析、滤波和信号处理等领域。

在本文中,我们将详细介绍FFT 算法的原理、实现以及计算谐波含量的应用。

一、傅里叶变换的基本原理傅里叶变换是一种将一个连续时域信号(周期性或非周期性)转换为连续频域信号的方法。

它基于以下重要定理:任何一个连续时域信号都可以分解为一系列不同频率的正弦和余弦函数的叠加。

数学上,如果一个连续信号f(t)的频谱表示为F(ω),其中ω是频率变量,那么傅里叶变换可以用下面的公式表示:F(ω) = ∫f(t)e^(-jωt)dt其中,e^(-jωt)是复指数函数,j是虚数单位。

傅里叶变换的结果是一个连续函数,表示了信号在不同频率上的幅度和相位。

二、离散傅里叶变换(DFT)离散傅里叶变换(DFT)是傅里叶变换的离散版本,它将连续信号和频域分为多个离散点进行处理。

如果有N个离散点,那么DFT的结果是一个包含N个复数值的序列,表示了信号在不同频率上的幅度和相位。

DFT的数学定义如下:X(k) = Σ[n=0,N-1]x(n)e^(-j*2πkn/N)其中,x(n)是时域信号的第n个采样点,N是采样点的总数,k是频率变量,X(k)是频域信号的第k个频率分量。

三、快速傅里叶变换(FFT)快速傅里叶变换(FFT)是一种高效计算DFT的算法。

它的核心思想是通过将DFT信号分解为多个小规模的DFT信号,再递归求解这些小规模的DFT信号。

FFT算法的时间复杂度为O(NlogN),相比于直接计算DFT的O(N^2)时间复杂度,FFT算法的计算速度大大提升。

FFT算法的流程如下:1.将输入信号分为偶数和奇数部分;2.对偶数部分和奇数部分分别进行FFT计算;3.将计算得到的频域分量进行合并;4.递归地进行上述步骤,直到信号分量的规模为1。

四、计算谐波含量计算谐波含量是FFT的一个重要应用,它可以帮助我们了解信号在不同频率上的能量分布情况。

FFT原理与实现

FFT原理与实现

FFT原理与实现FFT(快速傅里叶变换)是一种高效的算法,用于计算数值序列的离散傅里叶变换(DFT)。

FFT广泛应用于信号处理,图像处理,数据压缩,声音分析等领域。

在本文中,我们将探讨FFT的原理、实现和应用。

一、FFT原理1.傅里叶变换傅里叶变换是一种将一个连续信号(或离散信号)分解成一系列由正弦和余弦函数组成的频谱的方法。

它将信号从时域转换到频域,可以揭示信号中包含的频率成分。

2.DFT离散傅立叶变换(DFT)是傅立叶变换的离散形式。

它将离散信号分解为一系列复数频域分量。

DFT的公式如下:其中,N是离散信号的长度,k是频率序号,x[n]是离散信号的值。

3.FFT快速傅里叶变换(FFT)是一种通过分治算法减少计算复杂度的DFT算法。

它的核心思想是将DFT分解为更小规模的计算,然后通过递归地执行这些计算来得到结果。

FFT算法的关键在于将DFT的计算复杂度从O(N^2)降低到O(NlogN)。

它通过将长度为N的信号分解为两个长度为N/2的信号,然后进一步分解为更小规模的信号。

具体而言,FFT算法包括以下步骤:1)将信号分为偶数项和奇数项,然后对分别对它们进行FFT变换。

2)将奇数项和偶数项的结果合并,得到完整的FFT结果。

二、FFT实现FFT的实现有多种方法,其中最常用的是基于蝶形算法的Cooley-Tukey算法。

该算法采用迭代的方式实现了FFT,思路如下:1.将输入信号分为偶数项和奇数项,得到两个较短的信号。

2.对这两个信号分别进行FFT变换。

3.将两个变换结果合并成一个结果。

关键的步骤是FFT的合并过程。

这一过程可以通过蝶形算法来实现。

蝶形算法是一种基于矩阵运算的方法,用于合并两个FFT变换的结果。

它通过乘以不同的旋转因子来实现信号的合并。

这样做可以大大减少计算量。

三、FFT应用FFT在很多领域都有广泛的应用。

1.信号处理:通过FFT,我们可以将信号从时域转换到频域,以便进行频谱分析、滤波、降噪等处理。

快速傅里叶变换(FFT) 原理 介绍

快速傅里叶变换(FFT) 原理 介绍
1点: 512
51点:384
76点:192
按照公式,可以计算出直流分量为:512/N=512/256=2;
50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的
幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来
的幅度是正确的。
2点: -2.6195E-14 - 1.4162E-13i
3点: -2.8586E-14 - 1.1898E-13i
50点:-6.2076E-13 - 2.1713E-12i
51点:332.55 - 192i
52点:-1.6707E-12 - 1.5241E-12i
75点:-2.2199E-13 -1.0076E-12i
做,但是却不知道FFT之后的结果是什意思、如何决定要使用
多少点来做FFT。
现在圈圈就根据实际经验来说说FFT结果的具体物理意义。
一个模拟信号,经过ADC采样之后,就变成了数字信号。采样
定理告诉我们,采样频率要大于信号频率的两倍,这些我就
不在此罗嗦了。
采样得到的数字信号,就可以做FFT变换了。N个采样点,
换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。
根据FFT结果以及上面的分析计算,我们就可以写出信号的表达
式了,它就是我们开始提供的信号。
总结:假设采样频率为Fs,采样点数为N,做FFT之后,某
一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值
close all; %先关闭所有图片
Adc=2; %直流分量幅度
A1=3; %频率F1信号的幅度

快速傅里叶变换的原理及公式

快速傅里叶变换的原理及公式

快速傅里叶变换的原理及公式快速傅里叶变换(Fast Fourier Transform,FFT)是一种基于分治策略的计算离散傅里叶变换(Discrete Fourier Transform,DFT)的高效算法。

FFT算法的基本原理是利用对称性和周期性来减少计算量,将O(n^2)的复杂度降低到O(nlogn)。

傅里叶变换是一种将信号从时域转换到频域的方法,能够将信号拆分成不同频率的正弦和余弦波的叠加。

傅里叶变换的计算公式为:X(k) = Σ(x(n) * e^(-2πikn/N))其中,X(k)表示频域上第k个频率的幅度和相位,x(n)表示时域上第n个采样点的值,N表示采样点的总数。

该公式根据欧拉公式展开,可以得到正弦和余弦函数的和的形式。

FFT算法的核心思想是将DFT的计算分解成多个较小规模的DFT计算,并通过递归进行计算。

它利用了信号的对称性和周期性,将2个互为共轭的频率分量合并成一个复数,从而减少计算量。

FFT算法的具体过程如下:1.如果采样点数N不是2的幂次,则通过添加零补足为2的幂次,得到一个新的序列x'(n)。

2.如果序列的长度为1,即N=1,则返回序列x'(n)。

3.将x'(n)分为两个长度为N/2的子序列x1(n)和x2(n)。

4.使用递归调用FFT算法计算x1(n)的DFT结果X1(k)和x2(n)的DFT结果X2(k)。

5.根据DFT的定义,计算输出DFT序列X(k)。

-对于k=0,X(0)=X1(0)+X2(0)-对于k=1至N/2-1,X(k)=X1(k)+W_N^k*X2(k)-对于k=N/2至N-1其中W_N^k = e^(-2πik/N),是旋转因子。

6.返回DFT结果X(k)。

通过将FFT算法应用于信号处理、图像处理、语音识别等领域,可以大大加速傅里叶变换的计算过程,提高算法的效率和性能。

总结起来,快速傅里叶变换(FFT)是一种高效的算法,可以将信号从时域转换到频域,通过利用信号的对称性和周期性,将DFT的计算复杂度从O(n^2)降低到了O(nlogn)。

fft计算公式

fft计算公式

fft计算公式FFTC(快速傅里叶变换)是一种在信号处理和图像处理等领域广泛应用的算法。

它的核心思想是将信号从时域转换到频域,以便更好地分析和处理。

本篇文章将介绍FFTC的计算公式、计算步骤,以及在信号和图像处理中的应用。

一、FFTC计算公式简介FFTC的计算公式如下:X[k] = ∑(x[n] * e^(-jωnk)),其中x[n]为时域信号,X[k]为频域信号,ω为角频率,n为采样点,k为频率索引。

二、FFTC的计算步骤1.初始化:设定采样点数、频率范围和频率分辨率。

2.创建输入信号:根据采样点数生成一个实数值的时域信号。

3.计算频域信号:利用公式计算输入信号的频域信号。

4.输出结果:将计算得到的频域信号作为输出结果。

三、FFTC在信号处理中的应用1.频谱分析:通过FFTC将信号从时域转换到频域,可以分析信号的频率成分和能量分布。

2.滤波:利用FFTC在频域中对信号进行滤波,实现信号的降噪和增强。

3.信号识别:通过对信号进行FFTC,可以提取特征信息,实现信号的识别。

四、FFTC在图像处理中的应用1.图像滤波:利用FFTC在频域中对图像进行滤波,实现图像的平滑、锐化和边缘检测等处理。

2.图像变换:通过FFTC将图像从空间域转换到频域,可以分析图像的纹理和结构信息。

3.图像识别:通过对图像进行FFTC,可以提取特征信息,实现图像的识别。

五、FFTC的优缺点优点:1.计算速度快:FFTC采用快速算法,计算速度远高于直接计算傅里叶变换。

2.易于实现:FFTC的计算公式和步骤相对简单,易于编程实现。

缺点:1.频谱泄漏:FFTC在频域计算中存在频谱泄漏问题,可能导致频谱分析结果不准确。

2.频谱混叠:当采样频率小于信号频率两倍时,FFTC计算得到的频谱会发生混叠。

六、总结快速傅里叶变换(FFTC)是一种在信号处理和图像处理领域具有重要应用价值的算法。

通过对FFTC的计算公式、计算步骤和应用领域的介绍,本文旨在帮助读者更好地理解和应用FFTC。

FFT原理讲解及实现指南

FFT原理讲解及实现指南

FFT原理讲解及实现指南FFT(快速傅里叶变换)是一种高效的算法,用于将一个离散的时间域信号转换为频域信号。

在信号处理、图像处理以及通信领域,FFT是一种非常重要的工具。

一、FFT原理讲解傅里叶变换是一种将一个连续时间域信号转换为频域信号的方法。

其数学表达式为:X(f) = ∫x(t)e^(-j2πft)dt其中,X(f)表示频域信号,x(t)表示时间域信号,f表示频率,j表示虚数单位。

然而,对于离散时间信号,我们可以使用离散傅里叶变换(DFT)来对其进行频域分析。

DFT的公式如下:X(k) = Σx(n)e^(-j2πnk/N)其中,X(k)表示离散频域信号,x(n)为离散时间信号,N为采样点数,k表示频率。

FFT是一种用于快速计算DFT的算法,其基本原理是将DFT的计算复杂度从O(N^2)降低到O(NlogN)。

FFT的算法思路是:将N个采样点分为偶数和奇数序列,然后对偶数和奇数序列分别进行DFT变换,得到两个较小的DFT结果。

然后再将这两个较小的DFT结果合并,得到最终的DFT结果。

二、FFT实现指南1.选择合适的FFT库:在实际应用中,我们可以选择一些已有的FFT库来实现FFT算法,例如FFTW、MKL等。

2.确定输入信号:首先,需要确定待处理的离散时间信号x(n)。

3.计算FFT:使用FFT库提供的函数,对输入信号进行FFT计算。

常见的FFT库一般提供了相应的API,通过输入参数,得到计算出的离散频域信号X(k)。

4.获取频域信息:根据需要,可以从计算出的离散频域信号X(k)中提取相应的频域信息,例如频率分量、频谱等。

5.可选步骤:根据实际需求,可以进行滤波、频率域增强等操作。

6.反变换:如果需要将频域信号转换为时间域信号,可以使用反变换。

需要注意的是,FFT算法主要适用于离散时间信号的频域分析。

在实际应用中,可能还需要考虑信号预处理、采样率等因素。

三、总结FFT是一种高效的算法,用于离散时间信号的频域分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

快速傅里叶变换(FFT)的原理及公式
原理及公式
非周期性连续时间信号x(t)的傅里叶变换可以表示为
式中计算出来的是信号x(t)的连续频谱。

但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。

因此需要利用离散信号x(nT)来计算信号x(t)的频谱。

有限长离散信号x(n),n=0,1,…,N-1的DFT定义为:
可以看出,DFT需要计算大约N2次乘法和N2次加法。

当N较大时,这个计算量是很大的。

利用WN的对称性和周期性,将N点DFT分解为两个N/2点
的DFT,这样两个N/2点DFT总的计算量只是原来的一半,即(N/2)2+(N/2)2=N2/2,这样可以继续分解下去,将N/2再分解为N/4点DFT等。

对于N=2m点的DFT都可以分解为2点的DFT,这样其计算量可以减少为(N/2)log2N 次乘法和Nlog2N次加法。

图1为FFT与DFT-所需运算量与计算点数的关系曲线。

由图可以明显看出FFT算法的优越性。

将x(n)分解为偶数与奇数的两个序列之和,即
x1(n)和x2(n)的长度都是N/2,x1(n)是偶数序列,x2(n)是奇数序列,则
其中X1(k)和X2(k)分别为x1(n)和x2(n)的N/2点DFT。

由于X1(k)和X2(k)均以N/2为周期,且WN k+N/2=-WN k,所以X(k)又可表示为:
上式的运算可以用图2表示,根据其形状称之为蝶形运算。

依此类推,经过m-1次分解,最后将N点DFT分解为N/2个两点DFT。

图3为8点FFT的分解流程。

FFT算法的原理是通过许多小的更加容易进行的变换去实现大规模的变换,降低了运算要求,提高了与运算速度。

FFT不是DFT的近似运算,它们完全是等效的。

关于FFT精度的说明:
因为这个变换采用了浮点运算,因此需要足够的精度,以使在出现舍入误差时,结果中的每个组成部分的准确整数值仍是可辨认的。

为了FFT的舍入误差,应该允许增加几倍log2(log2N)位的二进制。

以256为基数、长度为N字节的数
可以产生大到(256)2N阶的卷积分量,所以为了正确存储,需要16+log2N位精度,若数i是浮点尾数的二进制位数,则有条件:
如果i=24,对于任意感兴趣(N>256)的N值,单精度是不合适的;如果i=53,也就是采用双精度,则允许N大于106,相当于几百万十进制位。

所以,用FFT 作大数乘法时,向量数组选用双精度类型。

相关文档
最新文档