附表A-2 常用函数的拉氏变换和z变换表

合集下载

拉氏变换和z变换表

拉氏变换和z变换表

附录A 拉普拉斯变换及反变换1.拉氏变换的基本性质1()([n n k f t dt s s-+=+∑⎰个2.常用函数的拉氏变换和z变换表附表A-2 常用函数的拉氏变换和z变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式,即1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b -都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

(1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (F-1)式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()ii i s s c s s F s →=- (F-2)或iss i s A s B c ='=)()( (F-3)式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数为[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=1in s ti i c e =∑ (F -4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算:)()(lim 11s F s s c r s s r -=→11lim[()()]ir r s s dc s s F s ds-→=-)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)。

(完整版)拉普拉斯变换表

(完整版)拉普拉斯变换表

拉普拉斯变换及反变换1. 表 A-1 拉氏变换的基本性质1齐次性线性定理叠加性2微分定一般形式理L[af ( t)] aF (s)L[ f1 (t ) f 2 ( t )] F1 ( s) F2 ( s) L[ df (t ) ] sF (s) f (0)dtL[d 2 f (t) 2f()dt 2 ] s F (s) sf (0) 0n nd f (t ) n n k ( k 1 )L dt n s F (s) k 1 s f (0) f ( k 1) (t ) d k 1 f (t )dt k 1初始条件为 0 时一般形式3积分定理初始条件为 0 时4延迟定理(或称 t 域平移定理)5衰减定理(或称 s 域平移定理)6终值定理7初值定理8卷积定理L[d n f (t) ndt n ] s F (s)L[ f (t)dt]F (s) [ f (t)dt] t 0s sL[ f (t)(dt)2 ] F (s)[ f (t )dt]t 0[ f (t)( dt) 2 ] t 0s2 ss2共 n个n共 n个nF (s) 1 nL[ f (t )(dt) ] 1 [ f (t)( dt) ] t 0nk 1 sn ks共 n个F (s)L[ f (t )( dt) n ]s nL[ f (t T )] e Ts F ( s)L[ f ( t)e at ] F (s a)lim f (t ) lim sF (s)t s0lim f (t ) lim sF ( s)t 0 st 1 ( ) 2 ( ) ] [ t 1 ( ) 2 ( ) ] 1() 2()[ f d L f f t dL f t t F s F s0 012.表 A-2 常用函数的拉氏变换和z 变换表拉氏变换E(s)111 e Ts1s12s13s1s n 11s a1( s a) 2as( s a)b a( s a)(s b)s2 2ss2 2( s a) 2 2s a( s a)2 21s (1 / T ) ln a 时间函数 e(t)δ(t)T (t )(t nT )n01(t )tt 22ntn!e atte at1 e ate at e btsin tcos te at sin te at cos ta t / T23.用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

拉普拉斯变换和Z变换常用表格

拉普拉斯变换和Z变换常用表格

拉普拉斯变换和z 变换常用表格1.拉氏变换的基本性质附表1 拉氏变换的基本性质1()1()([n n k F s f t dt s s−+=+∑⎰个2.常用函数的拉氏变换和z变换表附表2 常用函数的拉氏变换和z变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式,即1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==−−−− (m n >) 式中,系数n n a a a a ,,...,,110−和011,,,,m m b b b b −都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

(1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即∑=−=−++−++−+−=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (F-1)式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()ii i s s c s s F s →=− (F-2)或iss is A s B c ='=)()( (F-3)式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数为[]⎥⎦⎤⎢⎣⎡−==∑=−−n i i i s s c L s F L t f 111)()(=1in s ti i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F −−−=+ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c −++−++−+−++−+−++−− 11111111)()()(式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r −个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1−r c ,…,1c 则按下式计算:)()(lim 11s F s s c r s s r −=→11lim[()()]ir r s s dc s s F s ds−→=−)()(lim !11)()(1s F s s dsd j c r j j s s jr −=→− (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s −−=−−→原函数)(t f 为 [])()(1s F Lt f −=⎥⎦⎤⎢⎣⎡−++−++−+−++−+−=++−−−n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=−−−+⎥⎦⎤⎢⎣⎡+++−+−=1122111)!2()!1( (F-6)。

(完整word版)常用函数的拉氏变换

(完整word版)常用函数的拉氏变换

附录A 拉普拉斯变换及反变换4194204213. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==----ΛΛ (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(ΛΛ (F-1)式中,n s s s ,,,21Λ是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→ (F-2)或iss i s A s B c ='=)()( (F-3)式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1(F-4)②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+Λ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;422其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→- M)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5) M)()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L ΛΛΛ111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1(Λ (F-6)。

Laplace拉氏变换公式表

Laplace拉氏变换公式表

419附录A 拉普拉斯变换及反变换1.表A-1拉氏变换的基本性质1线性定理齐次性)()]([s aF t af L =叠加性)()()]()([2121s F s F t f t f L ±=±2微分定理一般形式=−=][ ′− −=−=−−−−=−∑11)1()1(1222)()()0()()(0)0()(])([)0()(])([k k k k nk k n n nn dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L ⋮)(初始条件为0时)(])([s F s dtt f d L n nn =3积分定理一般形式��∑∫∫∫∫∫∫∫∫∫∫∫==+−===+=++=+=nk t n n k n n nn t t t dt t f s s s F dt t f L sdt t f s dt t f s s F dt t f L sdt t f s s F dt t f L 101022022]))(([1)(])()([]))(([])([)(]))(([])([)(])([个共个共⋯⋯⋮初始条件为0时�nn n ss F dt t f L )(]))(([=∫∫个共⋯4延迟定理(或称t 域平移定理))()](1)([s F e T t T t f L Ts −=−−5衰减定理(或称s 域平移定理))(])([a s F e t f L at +=−6终值定理)(lim )(lim 0s sF t f s t →∞→=7初值定理)(lim )(lim 0s sF t f s t ∞→→=8卷积定理)()(])()([])()([21021021s F s F d t f t f L d f t f L tt =−=−∫∫τττττ4202.表A-2常用函数的拉氏变换和z 变换表序号拉氏变换E(s)时间函数e(t)Z 变换E(z)11δ(t)12Tse −−11∑∞=−=0)()(n T nT t t δδ1−z z 3s1)(1t 1−z z 421s t2)1(−z Tz 531s 22t 32)1(2)1(−+z z z T 611+n s !n t n )(!)1(lim 0aTn n n a e z z a n −→−∂∂−7as +1at e −aTe z z−−82)(1a s +atte−2)(aT aT e z Tze −−−9)(a s s a +ate−−1))(1()1(aT aT e z z z e −−−−−10))((b s a s a b ++−bt at e e −−−bT aT e z ze z z −−−−−1122ωω+s t ωsin 1cos 2sin 2+−T z z Tz ωω1222ω+s s tωcos 1cos 2)cos (2+−−T z z T z z ωω1322)(ωω++a s t e atωsin −aTaT aT e T ze z Tze 22cos 2sin −−−+−ωω1422)(ω+++a s a s teatωcos −aTaT aT e T ze z T ze z 222cos 2cos −−−+−−ωω15aT s ln )/1(1−Tt a /az z −4213.用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

拉氏变换和z变换表

拉氏变换和z变换表

附录A拉普拉斯变换及反变换1 •拉氏变换的基本性质常用函数的拉氏变换和变换表附表A-2常用函数的拉氏变换和z变换表3.用査表法进行拉氏反变换用査表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设F(s)是s 的有理真分式,即F(s)_ 3G) _勺”卍+也严+…+加+仇A(s) a n s11 + 心-is" + ・•・ + qs + a。

式中.系数心仆…'心“和…九亠叽都是实常数S是正整数。

按代数定理可将F(s)展开为部分分式。

分以下两种情况讨论。

(1)4(5)= 0无重根:这时,F(s)可展开为n个简单的部分分式之和的形式,即F(s)= -^+_Ea_ + ...+_^+…+_S^_ = £_S_ (F-i)s — s —s — S)s — S fj j=| s — s i式中,51,52,---,5…是特征方程A(s)= 0的根:Cj为待肚常数,称为F(s)在耳处的留数,可按下列两式计算: c i =lim(5 一5Z)F(5)(F-2)f式中,A f(s)为4(s)对s的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数为■/(r) = L-1[F(5)] = r,乞丄严(F-4)■】S一S: /-1(2) A(5)= 0有重根:设4($) = 0有r重根$厂F(s)可写为皿巾卷FC r C r_|Cl C r+| c+・・• + ——!— + —+・——-—+ ——-―・・ + —:($ —山)‘ (s-S|)L (s-g) S 一片+1 S —式中,S]为F(s)的r重根,常I,…,召为F(s)的n-r个单根;其中,c r+I,…,c“仍按式(F-2)或式(F-3) 计算,c r, c“…,5则按下式计算:c r = lim(s-y])「F($) fij =limf [(s-y) F(s)] f asds }(s-s{ y F(s)(F-5)B(s)(F-3) Si _ T Hi j(r-i)帆科(_"弘)原函数/(/)为/(r) = r*[F(5)]__ £-1 I『+ I —1 __ | ____ p ( [ + —J _| ________ p Cj______ p(几L(y-g)「(y-$i)z (s-yj y-»+] s-»s_s“=[ —t r~' + (— t r~2 + -• ■ + cJ + c.严+ £cf (F-6) L(r-1)! (r-2)! J $。

(完整版)拉普拉斯变换及其逆变换表

(完整版)拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式11n 1n nn11m 1m mmas a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==---- (m n >)式中系数n1n 1a ,a ,...,a ,a-,m1m 1b ,b ,b ,b - 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=n1i iinnii2211ss cs s c s s c s s c s s c )s (F 式中,Sn 2S 1S ,,, 是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c is s i-=→或is s i)s (A )s (B c='=式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]t s n 1i i n 1i i i 11i e c s s cL )s (F L )t (f -==--∑∑=⎥⎦⎤⎢⎣⎡-==② 0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())s s ()s s ()s s ()s (B s F n1r r 1---=+=nnii1r 1r 111r 11r r 1rss cs s c s s c )s s (c )s s (c )s s (c -++-++-+-++-+-++-- 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)s (F )s s (lim c r1s s r-=→)]s (F )s s ([dsdlim c -=)s (F )s s (dsd lim !j 1c -=)s (F )s s (dsdlim )!1r (1c --=原函数)(t f 为 [])()(1s F L t f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=s s cs s c s s c )s s (c )s s (c )s s (c L e c e c t c t )!2r (c t )!1r (c ∑+⎥⎦⎤⎢⎣⎡+++-+-= (F-6)。

拉普拉斯变换的基本性质、变换及反变换

拉普拉斯变换的基本性质、变换及反变换

拉普拉斯变换的基本性质、变换及反变换t t8 卷积定理L[ [f i(t—l)f2&)dE] =L[ [f i(t)f2(t—l)dl] = F i(s)F2(s)用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设F(s)是s 的有理真分式A(s)二0有重根设A(s) = 0有r 重根s ,F(s)可写为F s-(s-s ,)r(s-s ri ) (s-s n )B(s)b m 「4 g b0A(s)n ,n 」a n S - a n 」s 山…“y s - a 。

式中系数a 0, a i ,..., a n J ,a n , b °,b i , b m 」,b m 都是实常数; 将F(s)展开为部分分式。

分以下两种情况讨论。

m,n 是正整数。

按代数定理可①A(s) = 0无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

i C 2C jC nF(s) 121— s — s i s — S 2s — ss_s nC i(F-1)式中,q,s 2,…,s n 是特征方程 A(s) = 0的根。

C i 为待定常数,称为 可按下式计算:F(s)在S i 处的留数,式中,C =lim (s _sJF (s)S Tic _ B(s) iA(s)s zs iA (s)为A(s)对s 的一阶导数。

根据拉氏变换的性质,从式(4 I l j n C i =L !F (S )】=L 巨一—S — Sj 一 f(t)C in -s it=' Ci e ii =1(F-2)(F-3)F-1 )可求得原函数(F-4)B(s)式中, 其中,& r -(S —S i) (s—s)C if ,s〜) CriS —■S r iG •…©S - s S—S nS i为F(s)的r重根,S r审,…,s n为F(s)的n-r个单根;C r +,…,C n 仍按式(F-2)或(F-3)计算,C r,C rj,…, C i则按下式计算:f(t)为厂c r =lim (s — sj r F(s)T id rC ri =lim [(s -sj F(s)] dss :siC i原函数f (t)二L°〔F(s) I冷冗加(DEi d(7C i _____ . C r i ....(F-5)(s -S i)r 1(s—s i) S —S r*G *…+C nS — S j S —S nt r^ +…+c2t +G e Sit(r-2)! 2 5S i t°e iF-6)欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

拉普拉斯变换及其逆变换表

拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表1. 表A-1 拉氏变换的基本性质1 L [ af ( t )] aF ( s )齐次性线性定理L [ f 1 ( t ) f 2 ( t )] F 1 ( s ) F 2 ( s ) 叠加性L [ df ( t )]sF ( s ) f ( 0 )L [ ddt2 f ( t )dt 2] s 2 F ( s ) sf ( 0 ) f (0 )L d n f ( t ) ndt ns n F ( s ) s n k f ( k 1 ) ( 0 )k 1f ( k 1 ) ( t ) d k 1 fdt( t )k 12 微分定理一般形式初始条件为0 时L [ d n f ( t )dt n] s n F ( s )L[ f (t )dt ]F ( s)s [ f (t )dt ]t 0s[ 2L[ f ( t)( dt ) ] 2 F ( s)s 2f (t) d t ]t 0s[2f (t )(dt ) ]t 0s共n个共n个L[ f (t)(dt )n ] F ( s)s nnk 1 s1n k 1[ f (t)(dt ) n ] t 0一般形式共n个3 积分定理初始条件为0 时L[ f ( t)( dt) n ]F ( s)s nTs4 延迟定理(或称t 域平移定理)L[ f (t T)1(t T )] e F ( s)精品资料精品资料5衰减定理(或称 s 域平移定理)L[ f (t )eat] F ( s a)6终值定理lim f ( t )lim tssF ( s)lim f (t ) lim sF(s)7初值定理t 0 s8卷积定理tL[ f 1( t) f 2 ( ) d ]tL[ f 1( t ) f 2 ( t) d ]F 1 (s) F 2 ( s )2. 表 A-2 常用函数的拉氏变换和 z 变换表序号拉氏变换 F(s)时间函数 f(t)Z 变 换 F(z)1 1δ(t)11 2 1 eTsT( t)(t nT )zn 0z 1 1 1(t )z sz 11 4 s2tTz ( z 1)21 t 5 s32T 2z(z 1) 2( z 1)1 t n6 n 1lim( 1) z n ( aT ) sn!a 0n!a z e17 s aeatzz e1 atTze 8 ( s a) 2tea at( z e(1 eaT )2aT) z9s(s a)1 e(z 1)( z 2 3n)3 naTaT e aT精品资料2m m 1n 1b aat btz z 10(s11a)(s b)e esin tz eaTz ebTz sin T s2 2z22 z cos T 1scos tz( z cos T )12 s2z 2 2 zcos T 1atzeaTsin T13 (s a)2 2e sin t z22 ze aTcos T e2 aTs a14 22e atcos tz2zeaTcos T( s 15s a)1 (1 / T ) ln aat / Tz22zeaTz z acos T e2 aT3.用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

(完整版)拉普拉斯变换表

(完整版)拉普拉斯变换表

拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质12.表A-2 常用函数的拉氏变换和z变换表233. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==----ΛΛ (m n >)式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni iin n i i s s c s s c s s c s s c s s c s F 12211)(ΛΛ (F-1)式中,n s s s ,,,21Λ是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→ (F-2) 或is s i s A s B c ='=)()((F-3)式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts ni i i e c -=∑1(F-4)4② 0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r r s s s s s s s B s F ---=+Λ=n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11111111)()()(式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r ss r -=→ )]()([lim111s F s s dsdc r s s r -=→- M)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5) M)()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F L t f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L ΛΛΛ111111111)()()( t s nr i i t s r r r r i e c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1(Λ (F-6)。

(完整版)拉普拉斯变换表

(完整版)拉普拉斯变换表

拉普拉斯变换及反变换1. 表 A-1 拉氏变换的基本性质1齐次性线性定理叠加性2微分定一般形式理L[af ( t)] aF (s)L[ f1 (t ) f 2 ( t )] F1 ( s) F2 ( s) L[ df (t ) ] sF (s) f (0)dtL[d 2 f (t) 2f()dt 2 ] s F (s) sf (0) 0n nd f (t ) n n k ( k 1 )L dt n s F (s) k 1 s f (0) f ( k 1) (t ) d k 1 f (t )dt k 1初始条件为 0 时一般形式3积分定理初始条件为 0 时4延迟定理(或称 t 域平移定理)5衰减定理(或称 s 域平移定理)6终值定理7初值定理8卷积定理L[d n f (t) ndt n ] s F (s)L[ f (t)dt]F (s) [ f (t)dt] t 0s sL[ f (t)(dt)2 ] F (s)[ f (t )dt]t 0[ f (t)( dt) 2 ] t 0s2 ss2共 n个n共 n个nF (s) 1 nL[ f (t )(dt) ] 1 [ f (t)( dt) ] t 0nk 1 sn ks共 n个F (s)L[ f (t )( dt) n ]s nL[ f (t T )] e Ts F ( s)L[ f ( t)e at ] F (s a)lim f (t ) lim sF (s)t s0lim f (t ) lim sF ( s)t 0 st 1 ( ) 2 ( ) ] [ t 1 ( ) 2 ( ) ] 1() 2()[ f d L f f t dL f t t F s F s0 012.表 A-2 常用函数的拉氏变换和z 变换表拉氏变换E(s)111 e Ts1s12s13s1s n 11s a1( s a) 2as( s a)b a( s a)(s b)s2 2ss2 2( s a) 2 2s a( s a)2 21s (1 / T ) ln a 时间函数 e(t)δ(t)T (t )(t nT )n01(t )tt 22ntn!e atte at1 e ate at e btsin tcos te at sin te at cos ta t / T23.用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

拉普拉斯变换表

拉普拉斯变换表

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质4198 卷积定理)()(])()([])()([21021021s F s F d t f t f L d f t f L tt =−=−∫∫τττττ2.表A-2 常用函数的拉氏变换和z 变换表4203. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设是的有理真分式)(s F s 01110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==−−−−L L () m n >式中系数,都是实常数;是正整数。

按代数定理可将展开为部分分式。

分以下两种情况讨论。

n n a a a a ,,...,,110−m m b b b b ,,,110−L n m ,)(s F ① 无重根0)(=s A 这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=−=−++−++−+−=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(L L (F-1)式中,是特征方程A(s)=0的根。

为待定常数,称为F(s)在处的留数,可按下式计算: n s s s ,,,21L i c i s (F-2))()(lim s F s s c i s s i i−=→或iss i s A s B c =′=)()( (F-3)式中,为对)(s A ′)(s A s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡−==∑=−−n i i i s s c L s F L t f 111)()(= (F-4)ts n i i ie c −=∑1②有重根 0)(=s A 设有r 重根,F(s)可写为0)(=s A 1s ())()()()(11n r rs s s s s s s B s F −−−=+L 421=nn i i r r r r r r s s c s s c s s c s s c s s c s s c −++−++−+−++−+−++−−L L L 11111111)()()( 式中,为F(s)的r 重根,,…, 为F(s)的n-r 个单根;1s 1+r s n s 其中,,…, 仍按式(F-2)或(F-3)计算,,,…, 则按下式计算: 1+r c n c r c 1−r c 1c)()(lim 11s F s s c r s s r −=→)]()([lim111s F s s dsdc r s s r −=→− M)()(lim !11)()(1s F s s dsd j c r j j s s jr −=→− (F-5) M)()(lim )!1(11)1()1(11s F s s dsd r c r r r s s −−=−−→原函数为 )(t f[])()(1s F Lt f −=⎥⎦⎤⎢⎣⎡−++−++−+−++−+−=++−−−n n i i r r r r r r s s c s s c s s c s s c s s c s s c L L L L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=−−−+⎥⎦⎤⎢⎣⎡+++−+−=1122111)!2()!1(L (F-6)4224.2.10 性质表及常用变换表为了便于查阅和应用,最后,将单边拉普拉斯变换的性质和常用单边拉普拉斯变换分别列于表4.1和4.2表中。

常用傅里叶_拉普拉斯_Z变换表

常用傅里叶_拉普拉斯_Z变换表

时域信号弧频率表示的傅里叶变换注释1 线性2 时域平移3 频域平移, 变换2的频域对应4 如果值较大,则会收缩到原点附近,而会扩散并变得扁平. 当 | a | 趋向无穷时,成为 Delta函数。

5 傅里叶变换的二元性性质。

通过交换时域变量和频域变量得到.6 傅里叶变换的微分性质7 变换6的频域对应8表示和的卷积—这就是卷积定理9 矩形脉冲和归一化的sinc函数10 变换10的频域对应。

矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。

11 tri是三角形函数12 变换12的频域对应13 高斯函数 exp( −αt2) 的傅里叶变换是他本身. 只有当Re(α) > 0时,这是可积的。

141516 a>018 δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换19 变换23的频域对应20 由变换3和24得到.21 由变换1和25得到,应用了欧拉公式: cos(at) = (e iat + e−iat) / 2.22 由变换1和25得到23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。

这个变换是根据变换7和24得到的。

将此变换与1结合使用,我们可以变换所有多项式。

24 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的.25 变换29的推广.26 变换29的频域对应.17 变换本身就是一个公式27 此处u(t)是单位阶跃函数; 此变换根据变换1和31得到.28 u(t)是单位阶跃函数,且a > 0.34 狄拉克梳状函数——有助于解释或理解从连续到离散时间的转变.附录A 拉普拉斯变换及反变换1.拉氏变换的基本性质附表A-1 拉氏变换的基本性质1()1()([n n k F s f t dt s s-+=+∑⎰个[f L 2.常用函数的拉氏变换和z 变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

常用函数Laplace变换表

常用函数Laplace变换表
z za
3. 用查表法进行拉氏反变换
用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行
反变换。设 F (s) 是 s 的有理真分式
F (s)
B(s) A(s)
bm s m an s n
bm1s m1 b1s b0 an1s n1 a1s a0
(n m)
cn
n
ci
s s1 s s2
s si
s sn i1 s si
(F-1)
式中, s1, s2 ,, sn 是特征方程 A(s)=0 的根。 ci 为待定常数,称为 F(s)在 si 处的留数,可
按下式计算:
ci
lim(s
ssi
si
)
F
(
s
)

(F-2)
B( s) ci A(s)
s si
附录 A 拉普拉斯变换及反变换
1.表 A-1 拉氏变换的基本性质 1 齐次性 线性定理 叠加性
2 微分定理 一般形式
L[af (t)] aF (s) L[ f1 (t) f 2 (t)] F1 (s) F2 (s)
L[ df (t)] sF (s) f (0) dt
d2 L[
f
(t)]
式中系数 a0 , a1,...,an1, an , b0 ,b1,bm1,bm 都是实常数; m, n 是正整数。按代数定理可 将 F (s) 展开为部分分式。分以下两种情况讨论。
① A(s) 0 无重根
这时,F(s)可展开为 n 个简单的部分分式之和的形式。
F (s) c1 c2 ci
(F-3)
式中, A(s) 为 A(s) 对 s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数

最新一些常见的Z变换

最新一些常见的Z变换

附表A-2常用函数的拉氏变换和z变换表一、单选题1、下列关于洞口作业时,应采取防坠落措施的说法正确的是()。

A、当垂直洞口短边边长大于或等于500 mm时,应在临空一侧设宜髙度不小于1.5m的防护栏杆B、电梯井道内应每隔2层且不大于15m加设一道安全平网。

C、电梯井内的施工层上部,可以不用设置隔离防护设施。

D、当竖向洞口短边边长小于500 mm时,应采取封堵措施正确答案:D2、下列关于办公用房、宿舍的防火设汁建筑构件的燃烧等级的说法正确的是()。

A、等级为AB、等级为AlC、等级为BD、等级为B1正确答案:A3、城市轨道交通建设工程项目工程验收合格后,建设单位应组织不载客试运行,试运行()个月,并通过全部专项验收后,方可组织竣工验收。

A、1B、3C、 6D、12正确答案:B4、下列属于《工程质量安全提升行动方案》指导思想中的工作重点的是()。

A、企业管理与项目管理并重B、企业责任与个人责任并重C、落实主体责任D、质量安全行为与工程实体质量安全并重正确答案:C5、关于悬挑式操作平台,下列说法错误的是()。

A、操作平台的搁置点、拉结点、支撑点应设置在稳左的主体结构上,且应可靠连接B、严禁将操作平台设置在临时设施上C、操作平台安装完后可直接使用D、作平台的结构应稳泄可靠,承载力应符合设讣要求正确答案:C6、《工程质量安全提升行动方案》拟用()年时间达成使全国工程质量安全总体水平得到明显提升的总目标。

A、1B、3C、 4D、 5正确答案:B7、《城市桥梁检测与评左技术规范》开始施行日期为()。

A、201 制0:00:00B、2017*71 0:00:00C、201^6/1 0:00:00。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附录A拉普拉斯变换及反变换1.拉氏变换的基本性质
附表A-1 拉氏变换的基本性质
419
2.常用函数的拉氏变换和z变换表
附表A-2 常用函数的拉氏变换和z变换表
420
421
3. 用查表法进行拉氏反变换
用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式,即
11
10111)
()()(a s a s
a s a
b s b s
b s
b s A s B s F n n n
n m m m m ++++++++==
---- (m n >)
式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b - 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

(1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即

=-=
-+
+-+
+-+
-=
n
i i
i n
n i
i s s c s s c s s c s s c s s c s F 1
2
21
1)( (F-1)
式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim ()()i
i i s s c s s F s →=- (F-2)

i
s s i s A s B c ='=
)
()( (F-3)
式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数为
[]⎥⎦
⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 11
1)()(=1i
n
s t
i i c e =∑ (F -4)
(2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为
422
())()()()
(11n r r
s s s s s s s B s F ---=+
=n
n i
i r r r r r
r s s c s s c s s c s s c s s c s s c -+
+-+
+-+
-+
+-+
-++-- 1
1111111)
()
()
(
式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算:
)()(lim 11
s F s s c r
s s r -=→
11lim
[()()]i
r
r s s d c s s F s ds
-→=-
)()(lim
!11)
()(1s F s s ds
d
j c r
j j s s j r -=
→- (F-5)
)()(lim
)!1(1
1)
1()1(11s F s s ds
d
r c r
r r s s --=--→
原函数)(t f 为 [])()(1
s F L
t f -=
⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11111
1111
)()()
( t
s n
r i i
t s r r r r i e
c e c t c t r c t r c ∑+=---+
⎥⎦
⎤⎢⎣⎡+++-+-=1
122
111
)!2()!1( (F-6)。

相关文档
最新文档