讲稿风廓线雷达简介研究

合集下载

风廓线雷达

风廓线雷达

风廓线雷达类型
各种类型风廓线仪用途:
边界层风廓线雷达:航空港飞机着陆与起飞; 空间污染监控;军事替代地面观察站;研究。
低对流层风廓线雷达:航空港环境——飞机 着陆,起飞,交通管制;运输和扩散——危 险原料(核能)的污染控制;军事——射弹 风修正;研究。
对流层风廓线雷达:天气观察、预报及研究
电磁净空环境的选择:由于风廓线雷达为高 频发射和接收设备,信号容易受到附近电磁波 的影响,频率选定前应尽早到当地无线电管理 部门办理频率适用许可并办理无线电电台执 照
设备运行的维护维修 :所需时间大概30min, 30min,30min,1h,2h,1h

风廓线仪维护维修计划表
小结 高分辨率大气廓线仪等新一代雷达遥感技术在大气 研究领域中的广泛应用,能够拓宽全球气象预报,对 改进天气分析和预报,降低测风成本和提高实效都 有很重要的意义,必将极大地推动中尺度大气热动 力学的研究进展,使人们能够对中纬度和热带地区 的各类天气现象进行更加深入的研究。 为适应我国未来风廓线仪大规模建设和应用的需要,
RASS
风廓线仪上加装无线电探声系统(RASS) 后, 可以测量大气层的有效温度。RASS 雷达系 统通常由4 个声源组成,分布在廓线仪天线阵 的每一边并垂直向上发射声波。廓线仪把声 波作为目标接收并处理反向散射,同时测得传 播速度。由于声速与大气温度有很好的对应 关系,所以可以通过廓线仪测得的声速来得到 有效温度廓线。
频谱非相参累积后频谱(பைடு நூலகம்)与相参累积后(右)比较
应用现状
水平风测定:通过测量水平风廓线,研究暴 雨、锋面、急流、重力波等天气现象。1989 年中国气象科学研究院研制成功了我国首部 UHF 多普勒风廓线仪,并用于北京中尺度灾 害性天气预报基地的业务试验,证明了其有 效性和可靠性。王欣等用风廓线仪资料分析 安徽梅雨期间的强降水过程,表明其对水平 风的垂直结构有较强的探测能力,能实时监 测中尺度降水期间风的垂直切变和对流特征, 提高临近天气预报的精度。

风廓线雷达有源相控阵天线研究

风廓线雷达有源相控阵天线研究
1 风廓线雷达研究概述 结合所收到的回波信号能够得到大气运动径向值。 而以上的
作为一种新型雷达 , 风廓线雷达拥有很高的性能和较为 操作 不断进行, 便可以逐步获取所有指 向的径 向速度, 从而 广 阔的适应性, 因此近年来广受关注。 相关领域 已经出现 了 得到探测 目 标的所需参数, 完成探测。
摘 要: 风廓线雷达有源相控阵天线可以显著 避免来 自 地杂波的干扰 , 非常适用于气象领域。 文章从 系统整体设计、 天线辐 射模块 方案、 收发单元的设计、 功放单元的设计、 天线阵的设计等方面详细阐述了 此种天线的研发过程 。 关键词 : 风廓线雷达; 有源相控阵天线; 辐射模 块 ; 收发单元 ; 功放单元
取, 经过不断试验 , 得到一些必要的数据, 对 单元 间距 进 行 雷达 中使 用 。 本研究所选 用的半 波振子 天线, 在类别上属于线性天 调整, 最后确定不 同单元 的距离保持在波长0 . 6 8 倍。 将天线
线, 且构造较 为简单 。 典型的半波振子天线 由2 根金 属棒构 成。 通过垂直正交排 列的方式进行组合。 在端点施加必要的 电位 , 从而在 金属棒上产生 电流, 由此形成辐射。 因为这 些 振 子是基于 阵反射面 的, 因此 完全能够获取
No. 3
2 0 1 7 年2 月
无线 互 联科 技 ・ 通信观 察
February,201 7
加之 因为不同模块间的距离很短, 因此不存在栅瓣 , 便于得 3 . 4 天 线 阵的设 计 在具体开发 的过 程 中, 先 对小面 阵进行观测 和参 数提 到低副瓣性能, 能够显著降低地 杂波干扰, 有利于在风廓线
计 算机结 合用户所确定的具体模 式, 将 控制信 息发送 至信号产生 :

风廓线雷达与及激光测风雷达

风廓线雷达与及激光测风雷达
• 模块箱:内部有24个模块分别控制24组天线。 • 收发装置: ①向模块箱里的激励单元传送发射信号,并对各
波束进行控制。②从模块箱接收观测信号,并检测出信号的 相位。③在收发装置中还产生这个系统的时间信号,用于系 统的时序控制。
• 数据处理单元:主要是用计算机处理收发装置送来的数据,以 图形方式将处理后的产品显示出来,同时保存数据文件
定位精度
±0.1度
位置分辨率 ±0.01度
位置重复率 ±0.05度
感谢您的聆听
THANK YOU FOR LISTENING
激光测风雷达-分类
探测方式: • 相干探测激光雷达 • 非相干探测(直接探测)激光雷达。
激光测风雷达-分类
• 直接式常以空气分子的瑞丽散射为基础,一般选择蓝绿光或紫外等短 波长激光作为发射源,才能得到比较强的瑞丽散射气象回波信号,经 过单边缘滤波、双边缘滤波或条纹检测手段,通过功率谱分析方法, 间接提取多普勒频率信息。
• 2007年,中国科学技术大学研发了一台波长为355nm的车 载测风激光雷达系统。
• 当前,中国兵器209所在传统扫描方式的基础上,研发了 一种采用二维扫描工作方式的小型三维测风激光雷达。
WindTrace相干激光多普勒测风雷达
技术参数
技术指标
脉冲重复频率 500Hz ±10Hz
脉冲能量
2mJ
风廓线雷达-原理探究
• 实际仪器设计为三波束或五波束 轮流发送
• 通过依次测量1个天顶垂直波束 指向和东、南、西、北4个倾斜 波束指向上各个距离库的多普勒 速度, 在大气水平均匀的条件下, 用同一高度上的5个波束指向的 多普勒速 度测量值联合求解出 大气3维风场。
02 激光测风雷达
激光测风雷达-概念探测

风廓线雷达——一种新型的测风雷达

风廓线雷达——一种新型的测风雷达
动 使得大 气 的 折射 指数 在 不 断的 变 化 这 种变 化 也必 然与 各 种 尺 度 的大 气 湍 流有密 切关 系 当 地面辐射的 电磁 波 波长 的 一 半 以尽) 与这 些尺 度基 本 一 致时 将产生较 强的后 向 散 射 回
从 年 10 月 刀 日 本文于 1望 收封
, , ,

, , , ,
VAD
时 通 常 要 有 一 定 的假 设 即 认 为 大 气 变 化 在
时 间上 是 连 续 的
空间上 是规 律 3
对 设 备 的 要求
风廓线雷 达 与常 规的 天 气雷达 一 样 也 包
, 、 、
f 一
~
一 一 一
一~
一 -
自.
-
T
资料 表 明 讥蓬F 频 率适 合 于 作 同 温 层 / 对 流 层 雷 达 ( s

雷达) 到

2 ~

而 3 k
m
U HF
频 率适 合 于 对流 层 中 下层 和 大 气 边 界 层观 测 的 雷 达 特 别 是 在
,
AGL 1 0 Om
高度 上 线测 量
gl 5
Mz H 的 雷 达 能 有 效 的进 行 风 廓
,
卯 年第

现代 电子
落第粉 期


线



提要
一种新型 的 测 风雷达
离仲辉
:
(华东 电子丈程研 究所 合肥 力的 31 )
本 文介绍 了 风廓线雷 达的侧风 原理及这种 礴风方 式对 雷达设 备的姿 求 同时 也筒 要 介 绍 了
.
,
与风脚线 雷达祝 合使月的 R 叫沼 系统 原理 主题 询 侧风 风廉线

风廓线雷达

风廓线雷达

垂直风测定:测定垂直风速,研究强对流等 天气现象的垂直结构。 2002 年7~9 月在广 东阳江海凌岛实施了首次中国登陆台风现场 科学试验,试验中首次启用风廓线仪、多普 勒声雷达等先进仪器,对台风“黄蜂”进行 了追踪观测,获取了大量登陆我国台风内部 和环境场的精细资料。 Neiman 等利用 NOAA 的风廓线仪和RASS 资料,研究了 Colorado 地区大气低层和对流层中部天气系 统的垂直结构。
结构
风廓线雷达组成框图
流,它们能引起折射指数的不规则变化,对无线 电波产生散射作用。风廓线仪向天空发射无 线电波,并接收它的回波,这些回波是由于大气 湍流在空中不同层面引起的电波折射而产生 的,通过对回波的处理和分析就可以获得湍流 的多普勒系数和强度系数,从而反演出湍流强 度、运动方向和运动速度随高度的分布。大 气湍流的运动是随背景风的运动而运动的,因 此,如果获得了大气湍流的多普勒速度和方向, 同时也就获得了风的多普勒速度和方向。
风廓线雷达的特点
风廓线雷达类型
各种类型风廓线仪用途:
Байду номын сангаас
边界层风廓线雷达:航空港飞机着陆与起飞; 空间污染监控;军事替代地面观察站;研究。 低对流层风廓线雷达:航空港环境——飞机 着陆,起飞,交通管制;运输和扩散——危 险原料(核能)的污染控制;军事——射弹 风修正;研究。 对流层风廓线雷达:天气观察、预报及研究
测量精度
风廓线雷达的探测是有非常高的测量精度,其运行 也有很高的可靠性。风廓线雷达的整个系统有现代 的最新技术,举几个例子:远距离操作监控,路上 通讯线路、卫星数字化通讯,高效能固态发射机, 数字化信号数据处理,喂处理助兴检测器等等。由 此看出,风廓线雷达系统具有相当高的运行可靠性, 而且还有操作维修方便的优点。平均无故障的时间 最低为6个月,修复时间平均也只需一小时左右。 看得出风廓线雷达比一般雷达要求要高许多。至于 探测精度,中低层垂直分辨率为250米,高层1千米; 风速的误差会小于在3.65千米每时,与气球测风有 相当的测量精度。

风廓线雷达资料在强对流天气预报中的应用

风廓线雷达资料在强对流天气预报中的应用

风廓线雷达资料在强对流天气预报中的应用风廓线雷达资料在强对流天气预报中的应用1. 引言强对流天气是指发生在大气层中的强烈垂直运动,伴随着强风、大雨、冰雹、龙卷风等天气现象。

由于其突发性和破坏力,强对流天气对人类社会和经济活动造成了极大的威胁。

因此,准确预报强对流天气对于社会和经济的安全十分重要。

本文将探讨风廓线雷达资料在强对流天气预报中的应用。

2. 风廓线雷达技术简介风廓线雷达是一种利用雷达探测大气中散射物体(如悬浮在空气中的小颗粒)的运动信息的仪器。

通过测量散射物体的速度和方向,风廓线雷达可以提供大气中不同高度层的风场信息。

它的工作原理是利用雷达向大气中发射微波脉冲,当这些脉冲与散射物体相互作用时,一部分能量被散射回传到雷达接收器,从而获得风场信息。

3. 风廓线雷达资料的获取与分析风廓线雷达通过不断扫描天空,得到一系列垂直方向上的雷达回波,然后通过信号处理和算法分析,可以得到各个高度层的风速和风向资料。

这些资料可以进行可视化展示,如风廓线图,也可以转换为水平风场图和垂直风剖面图等形式。

在强对流天气预报中,通常会将这些资料与其他观测数据、模型预报等数据进行综合分析,以提高预报的准确性。

4. 风廓线雷达资料在强对流天气预报中的应用4.1 预测对流系统演化强对流天气的演化过程往往与形成对流云的热力学条件和上升运动有着密切的关系。

风廓线雷达可以提供对流云中的气旋度和辐合度等参数,通过分析这些参数的变化,可以预测对流系统的演化趋势。

例如,当气旋度增强和辐合度增大时,预示着对流云将继续发展并可能引发强对流天气。

4.2 定量降水预报强对流天气常常伴随着大雨和冰雹等降水现象。

风廓线雷达可以提供不同高度层的降水强度和降水型态信息,通过分析这些信息,可以定量预报降水的强度和分布范围。

同时,风廓线雷达还可以检测到雨滴的径向速度,通过测量径向速度的变化,可以判断降水颗粒的类型,从而更好地预测降水过程中的冰雹等极端天气。

风廓线雷达和地基微波辐射计在台风中的应用

风廓线雷达和地基微波辐射计在台风中的应用

风廓线雷达和地基微波辐射计在台风中的应用
浦东机场8月4日08:00-5日24:00期间风向、 风速和阵风,4日中午12:00以后,平均风速 稳定在10m/s以上并伴有阵风,平均风速最 大值为14m/s,主要出现在16:30-18:00, 阵风最大值为21m/s,阵风出现在4日12:005日07:14时段,约离台风距离浦东机场同纬 度前后9个小时,风向也在4日21:00以后东 南风转为偏南风
风廓线雷达和地基微波辐射计在台风中的应用
当1km以下高度层出现Cn2高值区,且在2-6km高度层出现次高值区时,对应着强降水,同 时,当高值区逐渐减弱时,也预示着强降水的减弱或终止; 在连续性强降水时段内, SNR最大值高度层稳定的位于5-6km之间
Simple & Creative
感谢观看 不 忘 初 心 砥 砺 前 行 THANKS
出现了长时间的中到大阵雨,5日上午09:54到12:25浦 东机场以小阵雨为主,随后雨止转阴到多云天气。"黑 格比"对浦东机场造成了较为严重的降水影响:12小时 (4日21:00-5日09:00)累计降水量达57.9mm,达暴雨-大 暴雨级别,其中降水主要集中在5日01:00-09:00,而这 与之前研究的台风降水集中在台风登陆前基本一致
风廓线雷达和地基微波辐射计在台风中的应用
1 可以发现,在从4日21:30到5日12:30,5km以下出现大于4m/s的向下速度(对应图中黄色到红色回波)
2 5km以上垂直速度比较小(对应图中蓝色回波)
当出现明显降水过程时,5km以下高度层垂直速度都出现了相应的显著大值区,尤其是4日凌晨到5日上
3 午的强降水过程中,垂直速度大值区高度甚至可以达到5km以上,且垂直速度数值与降水强度基本成正

《风廓线雷达原理》课件

《风廓线雷达原理》课件

03
特点
接收系统的性能直接影响雷达的灵敏度和抗干扰能力, 因此需要具备高灵敏度和低噪声水平。
天线系统
功能
定向发射和接收电磁波信号。
组成
包括天线阵列和伺服系统等部件,用于控制天线 的方向和扫描范围。
特点
天线系统的性能直接影响雷达的扫描速度和覆盖 范围,因此需要具备高精度和快速响应能力。
信号处理系统
谢谢聆听
将雷达部署至不同地点,实地测量并与标准气 象观测数据进行比较,评估雷达性能。
实验室测试
在特定条件下,模拟雷达工作环境,进行 性能检测。
B
C
长期监测
长时间连续运行雷达,观察其性能变化,评 估其稳定性和可靠性。
与其他雷达比较
将新型雷达与现有雷达进行比较,评估其在 性能、精度和效率上的优势。
D
雷达性能评估方法
风廓线雷达技术发展趋势
探测精度提升
随着技术的不断进步,风廓线雷 达的探测精度将得到显著提高, 能够更准确地测量风速、风向等 气象参数。
多普勒频移技术应

多普勒频移技术在风廓线雷达中 的应用将进一步拓展,能够提供 更丰富的气象信息,如湍流、风 切变等。
智能化和自动化
风廓线雷达将朝着智能化和自动 化的方向发展,能够自动识别和 跟踪目标,减轻人工操作的负担 。
风向反演算法
根据雷达回波信号的相位差等信息,反演出 风向信息。
数据后处理
数据融合
将多个雷达站的数据进行融合,提高数据的准确性和 可靠性。
数据可视化
将处理后的数据以图表、图像等形式进行可视化展示 。
数据分析
对处理后的数据进行统计分析,提取有用的气象信息 。
04 风廓线雷达性能评估

《风廓线雷达原理》课件

《风廓线雷达原理》课件

雷达探测原理
风廓线雷达利用电磁波的传播和反射特性进行探测。它发射电磁波信号,接 收所反射回来的信号,并通过计算距离,得到目标的位置和速度信息。
风廓线雷达监测参数
风廓线雷达可以监测多个重要参数,包括风速和风向,反射率因子以及多普 勒频移。这些参数对于气象学和能源领域的应用具有重要意义。
风廓线雷达工作流程
风廓线雷达的优势和局限性
优势
• 多参数监测,提供全面的气象信息 • 具有强大的实时性,可实时监测天气变化
局限性
• 重构成本较高,要求专业技术支持 • 对电磁环境有一定要求,受到干扰的风
险较高
结语
风廓线雷达在气象学和能源领域中具有重要意义。展望未来,随着技术的不断发展,风廓线雷达将发挥 更大的作用,助力人们更好地理解和利用自然力量。
《风廓线雷达原理》PPT 课件
欢迎大家来到《风廓线雷达原理》的课程,本课程将带领您深入了解风廓线 雷达的原理和应用。让我们一起探索这个神奇的技术吧!
什么是风廓线雷达
风廓线雷达是一种用于监测大气风场和天气变化的先进技术。它能够通过探 测大气中的微弱电磁波信号,获取风速、风向、反射率因子和多普勒频移等 重要参数。
1
雷达发射电磁波
风廓线雷达通过发射电磁波信号来探测大气中的目标。
2
接收信号
风廓线雷达接收目标反射回来的信号。
3
信号处理
通过信号滤波、多普勒频移处理和数据处理等步骤,对接收到的信号进行处理泛应用于风场监测和天气预报, 为气象学提供关键数据。
能源领域
在风电场运维中,风廓线雷达可以提供风速 和风向等数据,帮助优化风力发电。

风廓线雷达原理

风廓线雷达原理

因为风廓线雷达同 时要完成测速与定 位功能,所以风廓 线雷达是是无线电 测距与多普勒测速 的结合。
NO.2
国内外发展及应用
风廓线雷达诞生于20世纪80年代,近三十年已经在国 际气象组织得到认可和广泛使用。美国于1992年开始在美国 建成包括35部风廓线雷达的观测网,并进入业务运行,多年 来的运行结果表明,风廓线雷达网资料能满足观测精度的要 求,他的时空分辨率超过任何高空风测量系统。NOAA(美 国国家海洋和大气管理组织)在对风廓线雷达网进行评估时 指出: 6分钟的风廓线资料能显示出锋面,短波波动,气旋 和重力波等系统连续详实的演变过程,资料通话后,明显地 改善了3-6h临近数值预报结果,美国还计划研制是用于热带 海洋地区的太阳能自动风廓线系统。日本与2003年6月建成 包含31部风廓线来打的气象业务观测网,观测资料在多个领 域地得到广泛应用,芬兰,德国,瑞士,英国,法国都建早 有自主的风廓线雷达网
个波束方向发射脉冲进行探测。完成一个波束方向的探测之后,将波束切换到下一个 方向,进行下一个波束方向的探测,直到完成所有波束方向的探测,便完成一个探测 周期,再接着进行下一个周期的探测。因为技术条件的限制,抛物面天线雷达只能采 用单波束的工作方式。
多波束工作方式:在多波束工作方式下,相控阵风廓线雷达可以近乎同时完成多个
4.分类
NO.5
显示的图形产品
风廓线仪的数据处理由一台高性能的PC机来实现,它与信号处理器通过DMA相 联接,实时采集信号处理器输出的各波束射向上每个距离库的信号功率谱密度分布 ,经处理估算出各高度上水平风向﹑风速﹑垂直运动速度和各高度上cn2值,将处 理结果形成各类图形产品,建立数据和图形产品库,通过网络或其他通信方式,向 外传送观测数据和图形产品。

讲稿-风廓线雷达简介

讲稿-风廓线雷达简介
• 风廓线雷达探测的主要对象是晴空或多云 大气,对降水天气也有一定的探测能力
风廓线雷达发射的电磁波在大气中传播过程
中,由于大气折射率的空间不均匀分布而产生散
射,其后向散射能量被风廓线雷达所接收,能实
时提供大气的三维风场信息。
增加无线电声学探测系统(RASS),与微波
辐射仪或GPS/MET水汽监测系统配合,可实现对大
2 风廓线雷达探测原理
2.1 晴空的电磁波散射
1. Bragg 散射 —— 折射率空间分布周期性的变化引起对相
同波长电磁波造成散射。大气中的湍流活动造成折射率 的空间涨落,也称作湍流散射; 2. Fresnal 散射 —— 折射率梯度很大的水平层状结构上对 电磁波的反射; 3. Thomson 散射 —— 电离层中的大量自由电子对入射电磁 波的散射。
1270-1375MHz
高对流层 风廓线雷达
最大探测高度:12~16km 起始高度:150m 高度分辨率:120m
边界层大气风场 观测
晴空局地空域气 流监测 中尺度灾害性天 气监测 边界层数值预报
低对流层 风廓线雷达
最大探测高度:6~8km 起始高度:300m 高度分辨率:240m
边界层 风廓线雷达
理论研究和实际使用的结果都表明NOAA风廓线雷 达网对于天气预报具有很重要的价值,尤其是监 测墨西哥湾水汽输送过程中的低空急流。NOAA风 廓线雷达网的数据对于预测这种低空急流引起的 夜间雷暴非常重要。
• 日本
WINDAS(31部1.3G风廓线 雷达),间隔130公里。 经过台站级处理的10分 钟平均的风数据传输到 风廓线雷达控制中心, 通过进一步的一致性检 验后用于数值天气预报。 WINDAS用于预报台风、 梅雨和中纬度低压引起 的强降水。

风廓线雷达数据处理与应用研究

风廓线雷达数据处理与应用研究

风廓线雷达数据处理与应用研究风廓线雷达数据处理与应用研究摘要:风廓线雷达是一种常用于探测大气中风场结构和变化的仪器,广泛应用于气象、航空、环境科学等领域。

本文主要探讨了风廓线雷达数据的处理方法及其在实际应用中的研究进展。

首先介绍了风廓线雷达的基本工作原理和数据获取方式,然后详细讨论了雷达数据处理的流程和常用方法。

接着,分别介绍了风廓线雷达的应用于天气预报、空气质量监测、气候研究等方面,探讨了其在这些领域中的具体应用和作用。

最后,对目前风廓线雷达数据处理与应用研究的不足进行了总结,并展望了未来的发展方向。

一、引言近年来,随着大气科学研究的迅猛发展,风廓线雷达作为一种能够实时、连续观测大气风场的先进仪器,得到了广泛的应用。

风廓线雷达可以提供垂直方向上大气风场的信息,对于理解大气中的动力学过程、天气变化和气候演变等具有重要意义。

二、风廓线雷达的基本原理和数据获取风廓线雷达是一种主动型雷达,利用发射的微波信号与大气中的散射体进行相互作用,通过接收散射回波来获取散射体的运动信息。

风廓线雷达的基本原理是多普勒效应,即监测散射回波的频率变化来推测散射体的运动状态。

三、风廓线雷达数据处理方法风廓线雷达数据处理的目的是从原始雷达回波中提取有用的风场等信息,并将其转化为可视化的形式。

常用的风廓线雷达数据处理方法主要包括数据质量控制、多普勒频谱分析、风场反演和数据可视化等步骤。

四、风廓线雷达在天气预报中的应用风廓线雷达在天气预报中的应用主要体现在对切变线、对流云和飑线等天气现象的监测和预警上。

通过监测大气中的风场变化,可以及时发现和跟踪可能发展成破坏性天气事件的特征。

五、风廓线雷达在空气质量监测中的应用风廓线雷达在空气质量监测中的应用主要体现在对大气污染物传输过程的研究上。

通过监测大气中的风场和污染物浓度分布,可以评估不同污染源的影响程度和扩散途径,为制定有效的空气质量改善策略提供科学依据。

六、风廓线雷达在气候研究中的应用风廓线雷达在气候研究中的应用主要集中在对大气环流、季节变化和气候异常等方面的探索。

浅谈风廓线雷达的原理及其应用

浅谈风廓线雷达的原理及其应用

浅谈风廓线雷达的原理及其应用作者:牟杰来源:《科学与技术》 2019年第1期摘要:风廓线雷达是一种新型的高空大气探测系统,需要在晴空天气下进行探测,可以实时监测大气三维风场信息。

本文结合风廓线雷达原理,探讨了风廓线雷达的应用,仅供相关部门进行参考借鉴。

关键词:风廓线雷达;原理;应用引言风廓线雷达的应用实现了无人值守,可以对各种气象要素数据进行监测,同时具有高时空分辨特征。

因风廓线雷达探测优势和自身资料特点的综合作用,促进了数值预报模式工作的顺利开展,提升了天气预报的精细化水平。

风廓线雷达的使用弥补了传统探空资料时空密度不足的缺陷,同时还摆脱了时间方面的限制,在研究天气系统结构和演变中发挥着重要作用。

1.风廓线雷达的原理1.1风廓线雷达的定义将不同方向的电磁波束朝着高空发射,对因大气垂直不均匀而返回的电磁波束信息进行接收并处理的高空风场探测遥感设备称之为风廓线雷达。

结合风廓线雷达中的多普勒效应可实现区域上空随高度变化的风向、风速等气象要素数据的探测,其优点是探测时空分辨率高、自动化程度强等。

将声发射装置与风廓线雷达进行结合构成了具有无线电结构的声探测系统,可遥感探测到大气中温度的垂直廓线。

1.2风廓线雷达分类根据不同的天线制式,可以将风廓线雷达划分为相控阵风廓线雷达和抛物面风廓线雷达。

相控阵风廓线雷达体制可在各种类型的高空探测中使用,也是当前使用最为广泛的技术体制。

因风廓线雷达在测量气流速度的同时,还要定位空间气流信息,应具备发射脉冲电磁波和多普勒测速的功能,可以将风廓线雷达划分到脉冲多普勒雷达中。

晴空天气是风廓线雷达的主要探测对象,因此风廓线雷达往往被人们称之为晴空雷达。

根据不同的探测高度,可以将风廓线雷达划分为三种:边界层、对流层和中间层-平流层-对流层风廓线雷达。

其中边界层风廓线雷达的探测高度在3km左右,对流层风廓线雷达探测高度在12~16km之间;中间层-平流层-对流层风廓线雷达的探测高度在两者之间,其中探测高度不足8km的则称之为低流程风廓线雷达。

风廓线雷达原理

风廓线雷达原理

径向速度以朝向天线运动为正,失量的分量取正直代表风向。水平风速 VH,风向由UE,UN导出:
垂直波束的径向速度URd与大气垂直速度一致。 由于倾斜波束偏离垂直方向的角度较小,取其水平方向的分量误差较大,因此, 垂直波束的测量误差要小于水平分量的误差,即风廓线雷达最适用于大气垂直的气流 测量 风廓线测风的分层高度 风廓线雷达可采用不同的模式工作,有发射脉冲宽度确定分层高度。边界层,对 流层和平流层风廓线雷达有不同的分层高度。 根据探测高度的不同,可以将风廓线雷达分为边界层风廓线雷达,对流层风廓线 雷达,以及中间层-平流层-对流层风廓线雷达(MST).边界层风廓线雷达的探测高 度一般在3千米左右,对流层风廓线雷达的探测高度在12~16千米。MST雷达的探测 高度可以达到中间层高度。
LOGO
风廓线雷达原理
中国气象局气象探测中心 2011年11月5日
NO.1
风廓线基本概念
从遥感角度讲 风廓线雷达(wind profiler radar,WPR) 主要是利用 大气 湍流对电磁波的散 射作用对大气风场 等物理量进行探测 的一种主动式地基 遥感设备。 从测量角度讲 从应用系统讲
风廓线雷达以晴空大气作为 探测对象,利用大气对电磁 波的散射进行风场的测量, 能够实时提供大气的三维风 场信息,增加无线电声学探 测系统(RASS),与微波 辐射仪或GPS/MET水汽监 测系统配合,可实现对大气 风、温、湿等要素的连续遥 感探测,是一种新的高空大 气探测系统。
NO.5
显示的图形产品
a.观测时间的风速﹑风向随高度变化图
C2 n n
2
NO.5
生成产品
NO.5
生成产品
d.SNR值分布随时间变化图
NO.5
生成产品

风廓线雷达数据处理与应用研究

风廓线雷达数据处理与应用研究

风廓线雷达数据处理与应用研究风廓线雷达数据处理与应用研究一、引言风廓线雷达是一种用于探测大气中风场特征的高分辨、全天候雷达系统。

它利用探测得到的散射信号和多普勒频移信息,可以获取大气中不同高度上的风速和风向数据。

这些数据对于气象、航空、气候等领域的研究和应用具有重要意义。

风廓线雷达数据的处理和分析是利用这一技术的关键环节,本文将对风廓线雷达数据的处理方法和应用进行研究和探讨。

二、风廓线雷达数据处理方法1. 数据获取风廓线雷达通过发射微波信号,利用散射回波量测来自大气中不同高度上的信号强度。

这些回波信号被接收到雷达天线,并通过模拟/数字转换等方式将其转化为数字信号保存。

获取的原始数据包括频率、强度和多普勒频移信息。

2. 数据预处理原始数据存在一定的噪声和杂波,需要进行滤波和去噪处理。

滤波可以选择不同的算法,如中值滤波、卡尔曼滤波等。

去噪处理可以采用傅立叶变换、小波变换等频域方法,也可以利用滑动窗口平均、差分算法等时域方法。

3. 数据分析数据分析主要包括信号处理、多普勒频移解算和风分析。

信号处理包括雷达图像生成和分析,可以利用滤波、插值等算法对散射回波信号进行处理和可视化展示。

多普勒频移解算是指通过多普勒频移信息计算出风速和风向,可以利用傅立叶变换、互相关等方法进行解算。

风分析是利用解算得到的风速和风向数据,对大气运动、风场结构等进行分析和研究。

三、风廓线雷达数据应用研究1. 气象学应用风廓线雷达可以提供大气中不同高度上的风场特征,对于气象学研究有着重要意义。

可以通过分析风廓线数据,探测大气中的气旋、锋面等天气系统;研究大气运动对降水、气温等气象要素的影响;监测大气层结、对流发展等气象过程;识别大气中的边界层和湍流等。

2. 航空航天应用风廓线雷达可以提供精确的风速和风向数据,在航空和航天领域有着广泛的应用。

利用风廓线雷达可以监测低空风场,为飞机起降、航迹规划等提供重要参考信息;可以预测复杂气象条件下的空气动力学影响,提高航空器的飞行安全性;可以研究风切变等对飞行的影响,改善飞行操纵性能。

风廓线雷达

风廓线雷达

风廓线雷达
风廓线雷达是一种用于探测大气中风速和风向的仪器。

它通过发射无线电波至大气中,并接收反射回来的信号来获取相关数据。

风廓线雷达在气象学、气候研究和天气预报等领域具有重要的应用价值。

原理
风廓线雷达工作原理是基于多普勒效应。

它通过测量反射回来的无线电波的频率变化,从而得出大气中不同高度处的风速和风向信息。

风廓线雷达可以获取垂直方向的风廓线数据,为研究气象变化提供了重要数据支持。

应用
•气象研究:风廓线雷达可以用于监测大气中风场的变化,为天气和气候研究提供了有力数据支持。

•天气预报:通过监测大气中风速和风向的变化,风廓线雷达可以提供精准的风暴预警,为应急管理提供重要信息。

•航空领域:风廓线雷达可以用于监测飞机起降过程中的气象条件,确保航班安全。

发展趋势
随着气象技术的不断发展,风廓线雷达的性能和精度不断提高。

未来,风廓线雷达将更加智能化、精准化,为气象预测和气候研究提供更好的支持。

结论
风廓线雷达作为一种重要的气象探测设备,发挥着重要作用。

随着技术的不断发展,风廓线雷达将在气象领域发挥越来越重要的作用,为人类的生活和发展提供更好的服务。

风廓线雷达的原理及其应用

风廓线雷达的原理及其应用

U tan1 E
UN
2 2 VH UE UN

垂直波束的径向速度URd与大气垂直速度一致。 由于倾斜波束偏离垂直的角度较小,取其水平分量的误差较大,因此,垂直波束的测量误 差要小于水平分量的误差,即风廓线雷达最适于大气垂直气流的测量。 3、风廓线雷达测风的分层高度 风廓线雷达可采用不同的模式工作,由发射脉冲宽度确定测风的分层高度。边界层、对流 层和平流层风廓线雷达有不同的分层高度。 如某对流层风廓线雷达的三种工作模式对应的脉冲宽度分别是0.5μs、2μs、10μs。1μs 电磁波传输了300m的距离,则低、中、高模式的体平均值分别为75m、300m和1500m。表 明每种模式分别对应厚度风的平均值。如图10所示。




业务应用的风,如规定等压面,规定高度等都是在计算层风的时间和风向风 速关系曲线上用线性内插的方法求得。 由于大部分业务应用的风正好落在计算层风对应时间的概率很小,业务所需 的风向风速几乎都是内插求得的。 《规范》规定的风内插方法,风向风速是 分别进行的。 在进行风的内插处理时,风速都作为正值处理。而风速是有方向的,采用线 性内插法忽视了其方向性。而风向在一个圆周上取平均值,尤其是在间隔时 间较大的情况下,也是有问题的。 因此,在应用传统测风方法所得风向风速的数据时,应注意以下问题: 1)风是相对于某一高度层的平均风,忽略了层内的风向风速变化,即湍流运 动。在计算层内,当风向风速有较大变化时,不能代表该层风的实际情况。 2)在探空同时测风的情况下,风的分层高度分别约为400米、800米和1600 米。小球单测风是上述分层高度的一半。 3)气球定位测风并不是测站上空的风,其高层风的测量结果可能是 100公里 以外的情况,当大气流场不均和锋面过境时,可能完全不能代表测站上空的 情况。

新一代天气雷达风廓线产品的可用性研究

新一代天气雷达风廓线产品的可用性研究

新一代天气雷达风廓线产品的可用性研究摘要:本文通过南昌单部多普勒雷达风廓线产品利用速度方位显示来计算得出各层高度中的风向风速的工作原理,利用VAD原理计算得出在非均匀流场中的风向、风速、辐散和形变信息,并与气球携带电子探空仪综合探测得到的各层高度中的风向风速的资料进行对比,来研究多普勒天气雷达风廓线产品的可用性,综合研究表明多普勒天气雷达风廓线(VWP)产品对天气预报、强天气识别、水文、航天等领域提供了重要的参考风资料。

关键词:风廓线;VAD;风场反演;综合探测风新一代天气雷达是监测与预警灾害性天气的重要手段,多普勒雷达风场反演技术能提供回波区域风场信息,是研究灾害性天气和超短期预报有效的工具之一,也对研究大气边界层起了重要作用。

新一代天气雷达?vCINRAD/SA?w风廓线产品即速度方位显示风廓线(表示号#48,标识符VWP),是利用VAD技术测量风场结构的原理,根据不同时刻的不同仰角同一距离或者不同时刻的同一仰角不同距离上的多普勒速度V(θ)分布资料,应用VAD技术就可以得到几个规定高度的平均风向风速,并说明了运用VAD技术测量风场的可用性和局限性。

风廓线产品是速度方位显示(VAD)在各层导出水平平均风的垂直廓线。

风被描绘于坐标格点上。

X轴为时间,Z轴是高度,以km为单位,只显示最近11个体扫的数据,每个体扫可以显示30个高度层的风资料。

这些用于显示的平均高度在UCP上选择,两层间的最小间隔必须大于0.3Km(约1000英尺),而最低层选择必须高于台站雷达拔海高度.高度可以选择到21Km,但高于14Km 的风场质量不是很高,它被推荐在雷达产品请求列表中。

风场使用风羽图绘制,风向杆的长度总是相同。

南昌新一代天气雷达?vCINRAD/SA?w风廓线产品的选择的拔海高度分别为:0.3、0.6、0.9、1.2、1.5、1.8、2.1、2.4、2.7、3.0、3.4、3.7、4.0、4.3、4.6、4.9、5.2、5.5、5.8、6.1、6.7、7.3、7.6、7.9、8.5、9.1、10.7、12.2、13.7、15.2(单位为Km)。

(完整版)讲稿-风廓线雷达简介

(完整版)讲稿-风廓线雷达简介
Bragg散射-在弹性散射(elastic scattering)中, 入射光的能量没有损耗,但入射光的传播 方向发生变化。 当入射光的波长与散射目标的直径接近时,为布拉格散射 (Bragg scattering);布拉格父子1915年共同获诺贝尔物理学奖:William Henry Bragg & William Lawrence Bragg; 当入射光的波长远大于散射目标的直径时,为雷利散射 (Rayleigh scattering).
TWP8 (敏视达) Troposphere Windprofiler
1.4 风廓线雷达的探测优势
1. 自动化程度较高; 2. 全天候无人值守地长期连续运行; 3. 较高的可靠性和稳定性; 4. 探测资料种类多,分辨率高,精度高;
2 风廓线雷达探测原理
2.1 晴空的电磁波散射
1. Bragg散射——折射率空间分布周期性的变化引起对相 同波长电磁波造成散射。大气中的湍流活动造成折射率 的空间涨落,也称作湍流散射;
假设均匀风场的风矢量为 V [u,v,w]
eE, eN分别表示沿正东和东北波束的单位向量。
evE [sin,0,cos]
evN [0,sin,cos]
由向量内积的物理意义,有
Vrx

v V
*
evE
Vry

v V
*
evN
Vrx usin wcos

Vry vsin wcos
国外风廓线雷达探测网
美国的NPN探测网 欧洲的WINPROF计划
日本的WINDAS探测网
• 美国
➢ NPN(35部对流层),间隔200公 里,每个站配有一套GPS水汽监 测系统。CAP(60多部各种型号), 由35个部门建设的风廓线雷达组 成。

风廓线雷达——精选推荐

风廓线雷达——精选推荐

简介风廓线雷达是通过向高空发射不同方向的电磁波束,接收并处理这些电磁波束因大气垂直结构不均匀而返回的[1]信息进行高空风场探测的一种遥感设备。

风廓线雷达利用多普勒效应能够探测其上空风向、风速等气象要素随高度的变化情况,具有探测时空分辨率高、自动化程度高等优点。

在风廓线雷达基础上增加声发射装置构成无线电——声探测系统,可以遥感探测大气中温度的垂直廓线。

风廓线雷达能够提供以风场为主的多种数据产品。

其基本数据产品包括径向速度、谱宽、信噪比、水平风向、水平风速、垂直速度和反映大气湍流善的折射率结构常数cn2等的廓线[2]。

编辑本段风廓线雷达原理大气中折射率的不均匀能够引起对电磁波的散射,其中大气中的湍流活动导致折射率涨落而引起的散射(即湍流散射),散射层的运动和湍流块的运动都可造成返回电磁波信号的多普勒频移,采用多普勒技术可以获得其相对于雷达的径向速度,通过进行多射向的速度测量,在一定的假定条件下可估测出回波信号所在高度上的风向、风速和垂直运动,从而获取大气风廓线资料。

用于这一探测目的的脉冲多普勒雷达称为风廓线雷达[2]。

编辑本段风廓线雷达工作频带编辑本段风廓线雷达的归属与分类风廓线雷达(wind profiler)主要是利用大气湍流对电磁波的散射作用对大气风场等物理量进行探测的遥感设备。

根据天线制式的不同,风廓线雷达可以分为两大类:一类是采用相控阵天线的风廓线雷达,另一类是采用抛物面天线的风廓线雷达,相控阵风廓线雷达体制适用于各种高度的探测,成为目前普遍采用的技术体制。

近年来,也出现了抛物面天线的风廓线雷达,但是由于发射功率等技术条件的限制,抛物面天线风廓线雷达的探测高度仅限于边界层。

因为风廓线雷达在进行气流速度测量的同时,还要对气流进行空间定位,所以不论是相控阵天线风廓线雷达,还是抛物面天线风廓线雷达,都需要发射脉冲电磁波并具有多普勒测速功能,因此,可以将风廓线雷达归类于脉冲多普勒雷达,其中,采用相控阵体制的风廓线雷达也可以归类于相控阵雷达.根据探测高度的不同,可以将风廓线雷达分为边界层风廓线雷达、对流层风廓线雷达以及中间层一平流层一对流层雷达(MST)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气风、温、湿等要素的连续遥感探测,是一种新 的高空大气探测系统。
多普勒天气雷达探测的局限性
• 以降水粒子为示踪物 • 对于无降水粒子的大气,测不出大气流场
风廓线雷达的探测优势
• 以大气折射指数起伏(湍流块)为示踪物
• 可以测量从边界层到中层大气的流场 • 对于较长波长的雷达,在有云或小雨天气 仍可观测
风廓线雷达简介
魏鸣
2013-4-9
主要内容
1 2 3 4 风廓线雷达概述 探测原理 风速计算方法 风廓线雷达的应用
目的 • 掌握风廓线雷达探测原理 • 了解风廓线雷达应用现状
1 风廓线雷达概述
1.1 风廓线雷达的探测内容
• 风廓线雷达 (wind profiler radar,WPR) 是利用大气湍流对电磁波的散射作用进行 大气风场等物理量探测的遥感设备。风廓 线雷达常被称为风廓线仪,但从硬件系统 技术体制上它应当属于现代雷达的一种。
RASS(无线电声探测)系统
发射频率:404、449MHz,波长:74cm 发射脉宽:3.3(低),20(高)μs 数据处理:128点FFT 天线面积:144m2 声波频率:850~900Hz(~37cm) 测温原理:
静止大气,声波径向速度Vs: A仅依赖于相对湿度,其对径向速度的贡献小于1m/s
各库上的谱参数
谱平均后的功率谱
持续性噪声源
背景噪声
地物杂波
3 风速计算方法
3.1 水平风场均匀假设下风的计算
由径向速度求解水平风,需要对水平风场的分布做一定的假设, 1)水平风均匀的假设,2)线性风场的假设
在直角坐标系中,将风速分解为u, v, w三个 分量,规定垂直风向上为正。分廓线雷达测得 的径向速度用Vr表示,规定径向速度远离雷达 方向为正,朝向雷达为负。为方便讨论,以指
2. 涨落现象十分明显;
3. 伴随多种杂波
2.4 风廓线雷达数据
一致性风
估算的合成风 大尺度气象特征(几小时-数天) 中尺度的气象特征(一小时-数小时) 微/小尺度气象特征(几分钟-1小时) 飞机 谱变换后的功率谱 间歇性噪声源 鸟类、昆虫等点状目标物 非稳定的风场(大尺度湍流) 降水 (或有速度折叠)
Vs AT
1/ 2
2.2 风廓线雷达分类
• 根据大气湍流散射理论,对雷达发射的电 磁波能够产生有效后向散射的湍流涡旋尺 度等于雷达波长的一半。 在风廓线雷达的探测高度确定之后,风廓 线雷达可使用的工作频段也就随之确定。 即探测高度达到对流层以上的风廓线雷达 选择VHF频段,典型工作频率约为45MHz。 对流层和低对流层风廓线雷达选择UHF(P 波段)频段,典型工作频率约在 450-900 MHz。 边界层风廓线雷达选择L波段,典型工作频 率在1200 MHz 左右。
假设均匀风场的风矢量为
V [u, v, w]
eE, eN分别表示沿正东和东北波束的单位向量。
eE [sin ,0,cos ] eN [0,sin ,cos ]
由向量内积的物理意义,有
Vrx V * eE Vry V * eN
Vrx u sin w cos
• 风廓线雷达探测的主要对象是晴空或多云 大气,对降水天气也有一定的探测能力
风廓线雷达发射的电磁波在大气中传播过程
中,由于大气折射率的空间不均匀分布而产生散
射,其后向散射能量被风廓线雷达所接收,能实
时提供大气的三维风场信息。
增加无线电声学探测系统(RASS),与微波
辐射仪或GPS/MET水汽监测系统配合,可实现对大
理论研究和实际使用的结果都表明NOAA风廓线雷 达网对于天气预报具有很重要的价值,尤其是监 测墨西哥湾水汽输送过程中的低空急流。NOAA风 廓线雷达网的数据对于预测这种低空急流引起的 夜间雷暴非常重要。
• 日本
WINDAS(31部1.3G风廓线 雷达),间隔130公里。 经过台站级处理的10分 钟平均的风数据传输到 风廓线雷达控制中心, 通过进一步的一致性检 验后用于数值天气预报。 WINDAS用于预报台风、 梅雨和中纬度低压引起 的强降水。
CFL-16 (23所) Troposphere Wind Profiler I
Virtual Temperature
CFL-08 (23所) Troposphere Wind Profiler II
CFL-03B (23所) Boundary Layer Wind Profiler
SCRTWP-01 (四创) Troposphere Wind profiler
网” 。
• • • •
我国从2004年开始建设风廓线雷达网。 目前国内约布设了十四部。 北京及其周边地区的风廓线雷达示范网已初具规模。 计划在2010年前再完成30部风廓线雷达的建设。
张北 延 庆 海 淀 南 郊 密 云
唐山
高对流层 风廓线雷达
低对流层 风廓线雷达
边界层 风廓线雷达
中电集团14所
2 风廓线雷达探测原理
2.1 晴空的电磁波散射
1. Bragg 散射 —— 折射率空间分布周期性的变化引起对相
同波长电磁波造成散射。大气中的湍流活动造成折射率 的空间涨落,也称作湍流散射; 2. Fresnal 散射 —— 折射率梯度很大的水平层状结构上对 电磁波的反射; 3. Thomson 散射 —— 电离层中的大量自由电子对入射电磁 波的散射。
O
GLC-24
CLC-8
航天科工集团二院23所
CFL-16
CFL-08
CFL-03B
安徽四创电子股份有限公司
O
SCRTWP-01 Airda8000
TWP8
K/LLX802 Airda3000
O
爱尔达公司 敏视达雷达有限公司
ห้องสมุดไป่ตู้
Airda16000
O
GLC-24 (14所) Troposphere Wind Profiler II
最大探测高度:3~5km 起始高度:60m 高度分辨率:60m
重点区域气体消 散过程监测
2.3 风廓线雷达测风原理
散射层和湍流随环境平均 气流运动都可造成返回电磁波 信号的多普勒频移。
通过进行多射向的速度测 量,在一定的假定条件下可估
测出回波信号所在高度上的风 向、风速和垂直运动。
回波信号经过相干积分、谱变换、谱平均处理之后,得到相对平 稳的功率谱密度函数。计算各谱矩参数,其中一阶矩代表了目标运动引 起的多普勒频移。

Vry v sin w cos
V rz w

因此,可由以下方程组计算该高度的风矢量, Vrx Vrz cos u sin
Vry Vrz cos v sin
w V rz

3.1.2 五波束 采用五波束时,同样一个波束指向天顶,用于测量垂 直速度;四个倾斜波束在方位上均匀分布,天顶角是状态 量,均为φ ,先将两个相对方向的倾斜波束的径向速度进 行平均,如西波束VrW和东波束VrE,北波束VrN和南波束VrS, 方程如下所示
1 N 1 N f ( j )f ( f j )f 2 P r j 0
通过多普勒频移和多普勒速度 之间的关系得到多普勒速度。
fd
2Vr

经过计算,即可获得个高度层上的水平风向风速、垂直气 流速度、功率谱密度、大气折射率结构常数Cn2等各种数 据产品和图像产品
风廓线雷达回波信号的特点: 1. 微弱;
风廓线雷达监测网将有助于:
1. 弥补常规高空探测网在时空密度上的不足; 2. 天气系统的识别; 3. 中小尺度灾害性天气的监测; 4. 减少数值预报模式中对短时风场预报误差。
1.2 国外风廓线雷达进展
1950和1960 年代:位于地面的雷达能够通过探测晴空湍流的后向散射信 号,测量包括风速在内的一些大气参数。 1974年,建立观测高层大气风的风廓线雷达模型。 1986年,美国海洋大气管理局(NOAA)率先在美国中部布设包括 31部风 廓线雷达的观测网,并在1992年最终完成了NPN(NOAA Profiler Network, NOAA风廓线网)。 1987年,欧盟委员会 COST-74 项目( COST 表示由欧盟委员会支持的欧 洲国家间协调开展的科学技术领域合作研究项目)开始支持风廓线雷达的 开发和利用。 1988年,日本气象厅(JMA)下属的气象研究所建造了一台UHF风廓线雷达 1994年,欧盟委员会 COST-76 项目继续给予支持。 2001年,日本气象厅完成了25部风廓线雷达所组成的业务网WINDAS。
湍流散射(Bragg散射)探测原理
0.39Cn
2 4/3
2 1 / 3
Cn a L0 M
2
Cn为大气折射率结构常数,M是水平折射率的垂直梯度,L0是 湍流外尺度
Bragg散射-在弹性散射(elastic scattering)中, 入射光的能量没有损耗,但入射光的传播 方向发生变化。 当入射光的波长与散射目标的直径接近时,为布拉格散射 (Bragg scattering);布拉格父子1915年共同获诺贝尔物理学奖:William Henry Bragg & William Lawrence Bragg; 当入射光的波长远大于散射目标的直径时,为雷利散射 (Rayleigh scattering).
• 欧洲 已有约 28 部风廓线 雷达投入运行,并 将资料发送给英国 气象局,并通过因 特网实时显示获得 的探测数据。 欧洲的风廓线雷达 网采用的频段包括 50MHz 、 400MHz 及 1000MHz。
1.3 国内风廓线雷达发展现状
目前国内的风廓线雷达技术已趋于成熟,有能力立 足于国内技术组建适宜气象业务需求的风廓线雷达网。 《我国高空探测系统发展规划(1996-2010)》提出 “逐步发展风廓线雷达和 GPS探测系统”,“在中尺度天 气监测预报服务基地优先布设风廓线雷达,风廓线雷达 宜安插在常规探空测站之间或天气变化的敏感区;风廓 线雷达站间距以200-250公里为宜,建立风廓线雷达探测
相关文档
最新文档