人教版八年级上册三角形单元测试题
人教版八年级数学上册第十一章三角形单元测试卷-(含答案)
人教版八年级数学上册第十一章三角形单元测试卷一、单选题(共30分,每小题3分)1.能用三角形的稳定性解释的生活现象是()A.B.C.D.2.如图,BE、CF都是ABC的角平分线,且115BDC∠=︒,则A∠=()A.45°B.50°C.65°D.70°3.如果一个多边形的每一个外角都是90︒,那么这个多边形的内角和是()A.180︒B.360︒C.540︒D.720︒4.若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.135.一个多边形截去一个角后,得到的多边形的内角和为1980,那么原来的多边形的边数为().A.12或13取14B.13或14C.12或13D.13或14或15 6.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60︒C.直角三角形仅有一条高D .直角三角形斜边上的高等于斜边的一半7.下列各组线段,能构成三角形的是( )A .1,3,5cm cm cmB .2,4,6cm cm cmC .4,4,1cm cm cmD .8,8,20cm cm cm8.在三角形的①三条中线;①三条角平分线;①三条高中,一定相交于一点的是( )A .①①①B .①C .①D .①① 9.如图,在①ABC 中,D 是BC 延长线上一点,①B =40°,①ACD =120°,则①A 等于A .60°B .70°C .80°D .90° 10.如图在△ABC 中,BO ,CO 分别平分①ABC ,①ACB ,交于O ,CE 为外角①ACD 的平分线,BO 的延长线交CE 于点E ,记①BAC =①1,①BEC =①2,则以下结论①①1=2①2,①①BOC =3①2,①①BOC =90°+①1,①①BOC =90°+①2正确的是( )A .①①①B .①①①C .①①D .①①①二、填空题(共24分,每小题3分) 11.若一个多边形的内角和是 1980°,则这个多边形的边数为________. 12.等腰三角形一边长为5,另一边长为7,则周长为__________.13.如图,①BCD =145°,则①A +①B +①D 的度数为_____.14.一个多边形的每一个外角都等于60°,则这个多边形的内角和为_____度. 15.如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点可以连___________条对角线.16.小华从点A 出发向前走10m ,向右转36︒然后继续向前走10m ,再向右转36︒,他以样的方法继续走下去,当他走回到点A 时共走_________米.17.如图,在①ABC 中,①CAD =①CDA ,①CAB −①ABC =30°,则①BAD =________︒.18.如图,在ABC 中,12∠=∠,34∠=∠,80A ∠=︒,则x =______.三、解答题(共66分) 19.如图,ABCD 是四根木条钉成的四边形,为了使它不变形,小明加了根木条AE ,小明的做法正确吗?说说你的理由.(共6分)20.如图①A =20°,①B =45°,①C =40°,求①DFE 的度数.(共6分)21.已知,如图,在ABC ∆中,AD 、AE 分别是ABC ∆的高和角平分线,若30ABC ∠=,60ACB ∠=(共8分)(1)求DAE ∠的度数;(2)写出DAE ∠与C B ∠-∠的数量关系 ,并证明你的结论22.若一个多边形的内角和比外角和多540°,求这个多边形的边数.(共8分)23.如图:(共8分)(1)画出△ABC 的BC 边上的高线AD ;(2)画出△ABC 的角平分线CE .24.已知在△ABC 中,∠A :∠B :∠C =2:3:4,CD 是∠ACB 平分线,求∠A 和∠CDB 的度数.(共10分)25.如图,已知:点P 是ABC ∆内一点.(共10分)(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数.26.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求①CAD的度数.(共10分)答案第1页,共1页 参考答案:1.C2.B3.B4.C5.A6.B7.C8.D9.C10.C 11.1312.17或1913.145°14.72015.616.10017.1518.13020.小明的做法正确,21.105°22.(1)15°;(2)()12DAE C B ∠=∠-∠, 23.724.略25.∠A =40°,∠CDB =80°.26.(1)略;(2)110°27.①CAD =36°.。
人教版八年级数学上册 三角形 单元测试题(pdf版,含答案)
三角形单元测试题(考试时长:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下面四个图形中,线段BE是△ABC的高的图是()A. B. C.D.2.下列长度的三条线段能组成三角形的是()A.3,4,8 B. 5,6,11 C. 1,2,3 D. 5,6,10 3.若三角形三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形4.把三角形的面积分为相等的两部分的是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上都不对5.如图,在△ABC中,AD平分∠BAC且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C 的度数是()A.70°B. 80°C. 100°D. 110°第5题第9题6.已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形7.已知三角形的两边a=3,b=7,第三边是c,且a<b<c,则c的取值范围是()A.4<c<7 B. 7<c<10 C. 4<c<10 D. 7<c<138.下列说法中错误的是()A.三角形三条角平分线都在三角形的内部B.三角形三条中线都在三角形的内部C.三角形三条高都在三角形的内部D.三角形三条高至少有一条在三角形的内部9.如图(上一页),将一等边三角形剪去一个角后,∠1+∠2等于()A.120°B. 240°C. 300°D. 360°10.如果正多边形的一个内角是144°,则这个多边形是()A.正十边形B.正九边形C.正八边形D.正七边形二、填空题(每小题3分,共18分)11.如图,CD,BE相交于点A,若∠B=70°,∠DAE=60°,则∠C=°.第11题第13题第16题12.已知四条线段的长分别为2,3,4,5,用其中的三条线段构成的三角形的周长是.13.如图,AB∥CD,直线EF分别交AB、CD于点E、F,FH平分∠EFD,若∠FEH=110°,则∠EFH=.14.若n边形的每一个外角都等于30°,则n=.15.如果三角形的两条边长分别为23cm和10cm,第三边与其中一边的长相等,那么第三边的长为cm.16.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B 两岛的视角∠ACB等于度.三、解答题(本大题共8小题,共72分)17.如图,在△ABC中,∠A=80°,∠C=75°,求∠B的度数.(6分)18.如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.(8分)19.已知a、b、c满足.(8分)(1)求a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,请求出三角形的周长,若不能,请说明理由.20.已知△ABC三边长是a、b、c,试化简代数式|a+b﹣c|﹣|b﹣c﹣a|.(8分)21.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE∥DF 吗?为什么?(8分)22.如图,AD、AF分别是△ABC在BC边上的高和∠BAC的角平分线,已知∠B=36°,∠C=76°,求∠DAF的大小.(10分)23.已知四边形ABCD的周长是24cm,边AB=xcm,边BC比AB的两倍长3cm,边CD的长等于AB与BC两条边长的和.(12分)(1)用含x的代数式表示边AD的长;(2)求x的取值范围.24.如图,∠B=∠ACD,∠B+∠BCD=90°,DE⊥BC,垂足为E.(12分)(1)AC与DE平行吗?为什么?(2)∠B与∠CDE相等吗?为什么?参考答案一、选择题1、D;2、D;3、设一份为x 0,根据三角形内角和定理,可知k °+2k °+3k °=180°,得k °=30°,那么三角形三个内角的度数分别是30°,60°和90°.故选B . 4、解:把三角形的面积分为相等的两部分的是三角形的中线.故选B .5、解:AD 平分∠BAC ,∠BAD =30°,∴∠BAC =60°,∴∠C =180°﹣60°﹣40°=80°.故选B .6、解:根据多边形的内角和可得:(n ﹣2)180°=540°,解得:n =5,则这个多边形是五边形.故选B . 7、B; 8、C; 9、B; 10、A 二、填空题11、设060DAE ∠=∴∠BAC =∠DAE =60°, ∵∠B =70°,∴∠C =180°﹣∠B ﹣∠BAC =180°﹣60°﹣70°=50°, 故答案为:50.12、解:由这四条线段组成三角形的情况有:(2,3,4)、(2,4,5)、(3,4,5),故周长为9或11或12. 故答案为:9或11或12. 13、350;14、12;15、23; 16、900 三、解答题(本大题共8小题,共72分) 17、解:∵∠A =80°,∠C =75°,∴∠B =180°﹣∠A ﹣∠C =180°﹣80°﹣75°=25°.18、解:∵∠A =70°,∠B =50°,∴∠ACB =180°﹣70°﹣50°=60°(三角形内角和定义). ∵CD 平分∠ACB ,∴∠BEC+∠EBC=90°,∴∠FDC=∠BEC,∴BE∥DF.22、解:∵∠BAC+∠B+∠C=180°,又∵∠B=36°,∠C=76°,∴∠BAC=68°.∵AD为∠BAC的平分线,∴∠BAD=34°,∴∠ADC=∠BAD+∠B=70°.又∵AF为BC边上的高,∴∠DAF=90°﹣∠ADC=20°.23、解:(1)由题意可得BC=(2x+3)cm,CD=BC+AB=(3x+3)cm,AD=24﹣AB﹣BC﹣CD=(18﹣6x)cm;。
人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案
人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列长度的各组线段能组成一个三角形的是()A.1cm,2cm,3cm B.3cm,8cm,5cmC.4cm,5cm,10cm D.4cm,5cm,6cm2.以下四个图片中的物品,没有利用到三角形的稳定性的是()A.B.C.D.3.在△ABC中,若∠A=80°,∠B=20°则∠C=()A.80°B.70°C.60°D.100°4.如图,△ABC的面积为8,AD为BC边上的中线,E为AD上任意一点,连接BE,CE,图中阴影部分的面积为()A.2 B.3 C.4 D.55.如图AB∥CD,AE交CD于点F,连接DE,若∠D=28°,∠E=112°则∠A的度数为()A.48°B.46°C.42°D.40°6.如图∠A=100°,∠B=20°则∠ACD的度数是()A.100°B.110°C.120°D.140°7.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE= 91°∠DCE=124°,则∠AEC的度数是( )A.29°B.30°C.31°D.33°8.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米二、填空题9.如图,A\B为池塘岸边两点,小丽在池塘的一侧取一点O,得到△OAB,测得OA=16米OB=12米,A\B 间最大的整数距离为米.10.正n形的每个内角都是120°,这个正n边形的对角线条数为条.11.如图,BD是△ABC的中线,DE⊥BC于点E,已知△ABD的面积是3,BC的长是4,则DE的长是.12.如图AB∥CD,若∠A=65°.∠E=38°,则∠C=.13.如图,△ABC中,AD\AE分别为角平分线和高∠B=46°,∠C=64°则∠DAE=.三、解答题14.若一个多边形的内角和比它的外角和的3倍多180°,求这个多边形的边数和对角线的条数.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.16.如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=60°,∠BED=70°,求∠BAC的度数.17.如图,在△BCD中BC=3,BD=5.(1)若CD的长是偶数,直接写出CD的值;(2)若点A在CB的延长线上,点E、F在CD的延长线上,且AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数.18.如图,在五边形ABCDE中AE∥CD,∠A=100°,∠B=120°.(1)若∠D=110°,请求∠E的度数;(2)试求出∠C的度数.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】2710.【答案】911.【答案】3212.【答案】27°13.【答案】9°14.【答案】解:设这个多边形的边数为n,则内角和为180°(n−2),依题意得:180(n−2)=360×3+180解得n=9=27对角线条数:9×(9−3)2答:这个多边形的边数是9,对角线有27条15.【答案】解:∵∠C=∠ABC=2∠A∴∠C+∠ABC+∠A=5∠A=180°∴∠A=36°则∠C=∠ABC=2∠A=72°又BD是AC边上的高则∠DBC=90°-∠C=18°16.【答案】解:∵AD是△ABC的高.即AD⊥BC∴∠ADB=90°∵在Rt△EBD中∠BED=70°∴∠DBE=20°∵BE平分∠ABC∴∠ABE=∠DBE=20°∴∠ABD=40°∴∠BAC=180°−∠ABD−∠C=180°−40°−60°=80°17.【答案】(1)解:在△BCD中BC=3,BD=5∴2<CD<8∵CD的长是偶数∴CD的长为4或6故答案为:4或6;(2)解:∵AE∥BD∴∠CBD=∠A=55°∵∠BDE=∠C+∠CBD=125°∴∠C=∠BDE−∠CBD=125°−55°=70°18.【答案】(1)解:∵AE∥CD∴∠D+∠E=180°∴∠E=180°−∠D=180°−110°=70°(2)解:五边形ABCDE中∵∠D+∠E=180°,∠A=100°∴∠C=540°−(∠D+∠E)−∠A−∠B=140°。
人教版数学八年级上册《三角形》单元综合测试题含答案
人教版数学八年级上学期《三角形》单元测试满分:100分时间:90分钟一.选择题(共12小题)1.三角形按边可分为()A.等腰三角形,直角三角形,锐角三角形B.直角三角形,不等边三角形C.等腰三角形,不等边三角形D.等腰三角形,等边三角形2.若三角形两边长分别是4、5,则第三边c的范围是()A.1<c<9B.9<c<14C.10<c<18D.无法确定3.如图在△ABC中,∠ACB>90°,AD⊥BD,BE⊥AE,CF⊥AB,垂足分别是点D、E、F,则下列说法错误的是()A.AD是△ABD的高B.CF是△ABC的高C.BE是△ABC的高D.BC是△BCF的高4.已知:如图,AD是△ABC的角平分线,AE是△ABC的外角平分线,若∠DAC=20°,问∠EAC=()A.60°B.70°C.80°D.90°5.可以把三角形分成两个面积相等的三角形的是()A.三角形的中线B.三角形的高线第4题C.三角形的角平分线D.三角形一边的垂线6.在现实的生产、生活中有以下四种情况:①用“人”字梁建筑屋顶;②自行车车梁是三角形结构;③用窗钩来固定窗扇;④商店的推拉防盗铁门.其中用到三角形稳定性的是()A.①②B.②③C.①②③D.②③④7.在△ABC中,O为∠CAB和∠CBA的角平分线的交点,若∠AOB=120°,则∠C 的度数为()A.120°B.60°C.50°D.308.如图,对任意的五角星,结论正确的是()A.∠A+∠B+∠C+∠D+∠E=90°B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°9.直角三角形中有一锐角为15°,则另一锐角为()A.85°B.75°C.15°D.90°第8题10.角度是多边形的内角和的是()A.1900°B.1800°C.560°D.270°11.若正多边形的一个外角等于45°,那么这个正多边形的内角和等于()A.1 080°B.720°C.540°D.360°12.已知△ABC的三边长分别是a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是()A.2a B.﹣2b C.2(a+b)D.2(b﹣c)二.填空题(共4小题)13.如图所示,其中∠1=°.14.如图所示,求∠D+∠E+∠F+∠G+∠M+∠N=.第13题第14题第15题15.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=°.16.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1,∠A1BC和∠A1CD的平分线交于点A2,得∠A1…;求∠A2014=.三.解答题(共8小题)17.已知:在△ABC中,∠A+∠B=2∠C,∠A﹣∠B=20°,求三角形三个内角的度数.18.已知等腰三角形ABC中,一腰AC上的中线BD将三角形的周长分成9cm和15cm两部分,求这个三角形的腰长和底边的长.19.已知:△ABC中,BC=2cm,AB=8cm,AC的长度是奇数,求△ABC的周长.20.如图,△ABC中,∠1=∠2,∠3=∠4,∠5=∠6.∠A=60°.求∠ECF、∠FEC的度数.21.如图,在△ABCC 中,∠ACB =90°,CD ⊥AB ,AF 是角平分线,交CD 于点E .求证:∠1=∠2.22.如图所示,△ABC 中,∠B :∠C =3:4,FD ⊥BC ,DE ⊥AB ,且∠AFD =146°,求∠EDF 的度数.23.如图,AD 、AE 分别为△ABC 的高和角平分线,∠B =35°,∠C =45°,求∠DAE 的度数. 24.(1)如图1,点P 为△ABC 的内角平分线BP 与CP 的交点,求证:∠BPC =90°+21∠A ; (2)如图2,点P 为△ABC 内角平分线BP 与外角平分线CP 的交点,请直接写出∠BPC 与∠A 的关系;(3)如图3,点P 是△ABC 的外角平分线BP 与CP 的交点,请直接∠BPC 与∠A 的关系.参考答案一.选择题(共12小题)1.三角形按边可分为()A.等腰三角形,直角三角形,锐角三角形B.直角三角形,不等边三角形C.等腰三角形,不等边三角形D.等腰三角形,等边三角形【分析】三角形按边分类即有三条边都不相等和有两条边相等,所以分为了不等边三角形和等腰三角形.等边三角形是特殊的等腰三角形.【解答】解:三角形按边分类分为不等边三角形和等腰三角形.故选C.2.若三角形两边长分别是4、5,则第三边c的范围是()A.1<c<9B.9<c<14C.10<c<18D.无法确定【分析】直接利用三角形的三边关系进而得出答案.【解答】解:∵三角形两边长分别是4、5,∴第三边c的范围是:5﹣4<c<4+5,则1<c<9.故选:A.3.如图在△ABC中,∠ACB>90°,AD⊥BD,BE⊥AE,CF⊥AB,垂足分别是点D、E、F,则下列说法错误的是()A.AD是△ABD的高B.CF是△ABC的高C.BE是△ABC的高D.BC是△BCF的高【分析】根据三角形的一个顶点到对边的垂线段叫做三角形的高对各选项分析判断后利用排除法求解.【解答】解:A 、AD 是△ABD 的高正确,故本选项错误;B 、CF 是△ABC 的高正确,故本选项错误;C 、BE 是△ABC 的高正确,故本选项错误;D 、BC 是△BCF 的高错误,故本选项正确.故选:D .4.已知:如图,AD 是△ABC 的角平分线,AE 是△ABC 的外角平分线,若∠DAC =20°,问∠EAC =( )A .60°B .70°C .80°D .90°【分析】根据三角形的外角性质得到∠EAC =∠B +∠ACD ,求出∠EAC 的度数,根据角平分线的定义求出即可.【解答】解:∵AD 是△ABC 的角平分线,∠DAC =20°,∴∠BAC =2∠DAC =40°,∴∠B +∠ACD =140°,∴. 故选:B .5.可以把三角形分成两个面积相等的三角形的是( )A .三角形的中线B .三角形的高线C .三角形的角平分线D .三角形一边的垂线【分析】三角形的中线把三角形分成面积相等的两个三角形.【解答】解:能够把一个三角形分成面积相等的两部分的线段是三角形的中线.故选:A .()︒=∠+∠=∠=∠702121ACD B FAC EAC6.在现实的生产、生活中有以下四种情况:①用“人”字梁建筑屋顶;②自行车车梁是三角形结构;③用窗钩来固定窗扇;④商店的推拉防盗铁门.其中用到三角形稳定性的是()A.①②B.②③C.①②③D.②③④【分析】根据生活常识对各小题进行判断即可得解.【解答】解:①用“人”字梁建筑屋顶,是利用三角形具有稳定性;②自行车车梁是三角形结构,是利用三角形具有稳定性;③用窗钩来固定窗扇,是利用三角形具有稳定性;④商店的推拉防盗铁门,不是利用三角形具有稳定性;综上所述,用到三角形稳定性的是①②③.故选:C.7.在△ABC中,O为∠CAB和∠CBA的角平分线的交点,若∠AOB=120°,则∠C的度数为()A.120°B.60°C.50°D.30【分析】根据三角形的内角和求得∠OAB+∠OBA,利用角平分线的定义求得∠CAB+∠CBA,利用三角形的内角和定理列式计算求得答案即可.【解答】解:∵∠CAB与∠CBA的平分线相交于O点,1∴∠OAB+∠OBA=(∠ABC+∠BAC)=180°﹣120°=60°,2∴∠ABC+∠BAC=120°,∴∠C=180°﹣(∠ABC+∠BAC)=60°.故选:B.8.如图,对任意的五角星,结论正确的是()A.∠A+∠B+∠C+∠D+∠E=90°B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°【分析】根据三角形的一个外角等于和它不相邻的两个内角的和得到∠1=∠2+∠D,∠2=∠A+∠C,根据三角形内角和定理得到答案.【解答】解:∵∠1=∠2+∠D,∠2=∠A+∠C,∴∠1=∠A+∠C+∠D,∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°,故选:B.9.直角三角形中有一锐角为15°,则另一锐角为()A.85°B.75°C.15°D.90°【分析】根据直角三角形中两个锐角互余即可得出答案.【解答】解:∵直角三角形中有一锐角为15°,根据直角三角形中两个锐角互余,∴另一锐角=90°﹣15°=75°,故选:B.10.角度是多边形的内角和的是()A.1900°B.1800°C.560°D.270°【分析】根据多边形的内角和公式(n﹣2)•180°可知多边形的内角和是180°的倍数,然后找出各选项中180°的倍数的选项即可.【解答】解:多边形的内角和公式(n﹣2)•180°可知,多边形的内角和是180°的倍数,纵观各选项,只有1800°是180°的倍数,所以,角度是多边形的内角和的是1800°.故选:B.11.若正多边形的一个外角等于45°,那么这个正多边形的内角和等于()A.1 080°B.720°C.540°D.360°【分析】先根据多边形的外角和定理求出多边形的边数,再根据多边形的内角和公式求出这个正多边形的内角和.【解答】解:正多边形的边数为:360°÷45°=8,则这个多边形是正八边形,所以该多边形的内角和为(8﹣2)×180°=1080°.故选:A.12.已知△ABC的三边长分别是a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是()A.2a B.﹣2b C.2(a+b)D.2(b﹣c)【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故选:D.二.填空题(共4小题)13.如图所示,其中∠1=145°.【分析】首先求得∠2,然后根据三角形的外角的性质即可求解.【解答】解:∠2=180°﹣100°=80°,∴∠1=65°+∠2=65°+80°=145°.故答案是:145°.14.如图所示,求∠D+∠E+∠F+∠G+∠M+∠N=360°.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠D+∠E=∠1,∠F+∠G=∠2,∠M+∠N=∠3,再根据三角形的外角和等于360°解答.【解答】解:如图,由三角形的外角性质得,∠D+∠E=∠1,∠F+∠G=∠2,∠M+∠N=∠3,∵△ABC的外角和等于360°,即∠1+∠2+∠3=360°,∴∠D+∠E+∠F+∠G+∠M+∠N=360°.故答案为:360°.15.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=65°.【分析】利用三角形内角和定理求得∠AED=75°;然后根据已知条件和三角形外角定理可以求得∠BAE 的度数;最后结合三角形角平分线的定义和三角形内角和定理进行解答.【解答】解:如图,∵AD ⊥BC ,∴∠ADE =90°.又∵∠DAE =15°,∴∠AED =75°.∵∠B =35°,∴∠BAE =∠AED ﹣∠B =40°.又∵AE 为∠BAC 的平分线,∴∠BAC =2∠BAE =80°,∴∠C =180°﹣∠B ﹣∠BAC =65°.故答案是:65.16.如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1,∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 1…;求∠A 2014= ()° .【分析】利用角平分线的性质、三角形外角性质,易证∠A 1=∠A ,进而可求∠A 1,由于∠A 1=∠A ,∠A 2=∠A 1=∠A ,…,以此类推可知∠A 2014∠A .【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC =∠ABC ,∠A 1CA =∠ACD , ∵∠A 1CD =∠A 1+∠A 1BC ,即∠ACD =∠A 1+∠ABC , ∴∠A 1=(∠ACD ﹣∠ABC ), ∵∠A +∠ABC =∠ACD ,20142m2121212121212121∴∠A =∠ACD ﹣∠ABC ,∴∠A 1=∠A , ∠A 2=∠A 1∠A ,…, 以此类推可知∠A 2014=∠A )°.故答案为:)°.三.解答题(共8小题)17.已知:在△ABC 中,∠A +∠B =2∠C ,∠A ﹣∠B =20°,求三角形三个内角的度数.【分析】设∠B =x °,则∠A =x °+20,∠C =x °+10°,根据∠A +∠B +∠C =180°得出方程x +20+x +x +10=180,求出方程的解即可.【解答】解:∵在△ABC 中,∠A +∠B =2∠C ,∠A ﹣∠B =20°,∴设∠B =x °,∠A =x °+20,∴∠A +∠B =2x °+20°,∴∠C =x °+10°,∵∠A +∠B +∠C =180°,∴x +20+x +x +10=180解得:x =50则∠A =70°,∠B =50°,∠C =60°.18.已知等腰三角形ABC 中,一腰AC 上的中线BD 将三角形的周长分成9cm 和15cm 两部分,求这个三角形的腰长和底边的长.2121【分析】分腰长与腰长的一半是9cm 和15cm 两种情况,求出腰长,再求出底边,然后利用三角形的任意两边之和大于第三边进行判断即可.【解答】解:设腰长为xcm ,①腰长与腰长的一半是9cm 时,x +x =9, 解得x =6,所以,底边=15﹣×6=12, ∵6+6=12,∴6cm 、6cm 、12cm 不能组成三角形;②腰长与腰长的一半是15cm 时,x +x =15, 解得x =10,所以,底边=9﹣×10=4, 所以,三角形的三边为10cm 、10cm 、4cm ,能组成三角形,综上所述,三角形的腰长为10cm ,底边为4cm .19.已知:△ABC 中,BC =2cm ,AB =8cm ,AC 的长度是奇数,求△ABC 的周长.【分析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围后,根据AC 的长度是奇数,求出周长即可.【解答】解:设第三边AC 是x ,∵BC =2cm ,AB =8cm∴6<x <10.∴x =7、8或9.∵AC 的长度是奇数,21212121∴AC =7cm 或9cm ,∴△ABC 的周长为:2+8+7=17(cm );2+8+9=19(cm ).20.如图,△ABC 中,∠1=∠2,∠3=∠4,∠5=∠6.∠A =60°.求∠ECF 、∠FEC 的度数.【分析】先根据三角形内角和定理及角平分线的性质求出∠2+∠3的度数,再由三角形外角的性质求出∠FEC 的度数;根据B 、C 、D 共线,∠3=∠4,∠5=∠6,可得出∠4+∠5=90°,故可求出∠ECF 的度数.【解答】解:∵∠A =60°,且∠1=∠2,∠3=∠4,∴∠2+∠3=(180°﹣∠A )=(180°﹣60°)=60°, ∵∠FEC 是△BCE 的外角,∴∠FEC =∠2+∠3=60°,又∵B 、C 、D 共线,∠3=∠4,∠5=∠6,∴∠4+∠5=90°;∴∠FCE =∠4+∠5=90°.21.如图,在△ABCC 中,∠ACB =90°,CD ⊥AB ,AF 是角平分线,交CD 于点E .求证:∠1=∠2.【分析】根据角平分线的定义可得∠CAF =∠BAF ,再根据直角三角形两锐互余列式证明即可.【解答】证明:∵AF 是角平分线,∴∠CAF =∠BAF ,∵∠ACB =90°,CD ⊥AB ,∴∠CAF +∠2=90°,∠BAF +∠AED =90°,∴∠2=∠AED ,∵∠1=∠AED ,∴∠1=∠2.212122.如图所示,△ABC 中,∠B :∠C =3:4,FD ⊥BC ,DE ⊥AB ,且∠AFD=146°,求∠EDF 的度数. 【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠C 的度数,然后求出∠B 的度数,再根据直角三角形两锐角互余求出∠BDE ,然后根据垂直的定义列式计算即可得解.【解答】解:∵∠AFD =146°,FD ⊥BC ,∴∠C =∠AFD ﹣∠FDC =146°﹣90°=56°,∵∠B :∠C =3:4,∴∠B =56=42°,∵DE ⊥AB ,∴∠BED =90°,∴∠BDE =90°﹣42°=48°,∵∠BDE +∠EDF =90°,∴∠EDF =90°﹣∠BDE =90°﹣48°=42°.23.如图,AD 、AE 分别为△ABC 的高和角平分线,∠B =35°,∠C =45°,求∠DAE 的度数.【分析】根据三角形内角和定理求得∠BAC 的度数,则依据角平分线的定义求得角∠EAC ,然后在直角△ACD 中,求得∠DAC 的度数,则∠DAE =∠CAE ﹣∠DAC 即可求解.【解答】解:在△ABC 中,∵AE 平分∠BAC ,∴∠CAE =∠BAC , ∵∠B =35°,∠C =45°,∴∠BAC =100°,∠DAC =45°,∴∠CAE =50°,21∴∠DAE =∠CAE ﹣∠DAC =5°.24.(1)如图1,点P 为△ABC 的内角平分线BP 与CP 的交点,求证:∠BPC =90°+∠A ;(2)如图2,点P 为△ABC 内角平分线BP 与外角平分线CP 的交点,请直接写出∠BPC 与∠A 的关系;(3)如图3,点P 是△ABC 的外角平分线BP 与CP 的交点,请直接∠BPC 与∠A 的关系.【分析】(1)先根据三角形内角和定理求出∠PBC +∠PCB 的度数,再根据角平分线的性质求出∠ABC +∠ACB 的度数,由三角形内角和定理即可求出答案.(2)根据角平分线的定义得∠PBC =∠ABC ,∠PCD =∠ACD ,再根据三角形外角性质得∠ACD =∠A +∠ABC ,∠PCD =∠PBC +∠P ,所以(∠A +∠ABC )=∠PBC +∠P =∠ABC +∠P ,然后整理可得∠P =∠A ; (3)根据题意得∠PBC =(∠A +∠ACB ),∠PCB =(∠A +∠ABC ),由三角形的内角和定理以及三角形外角的性质,求得∠P 与∠A 的关系,从而计算出∠P 的度数.【解答】证明:(1)∵∠PBC +∠BCP +∠BPC =180°,∵∠BPC =120°,∴∠ABC +∠ACB =60°,∵BP 、CP 是角平分线,∴∠ABC =2∠PBC ,∠ACB =2∠BCP ,∵∠ABC +∠ACB +∠A =180°,21212121212121∴∠BPC =90°+∠A ; (2)∠P =∠A (3)∠P =90°﹣∠A 212121。
人教版八年级上册数学12章全等三角形单元测试题(含答案)
人教版八年级上册数学12章全等三角形单元测试题一、单选题1.如图,AC 与BD 相交于点O ,,OA OD OB OC ==,不添加辅助线,判定ABO DCO △≌△的依据是( )A .SSSB .SASC .AASD .HL 2.如图,在Rt △ABC 中,∠C =90°,AC =8m ,13DC AD =,BD 平分∠ABC ,则点D 到AB 的距离为( )A .2mB .3mC .4mD .6m 3.如图,AD 是∠ABC 的角平分线,DE ∠AB 于点E ,S △ABC =9,DE =2,AB =5,则AC 的长是( )A .2B .3C .4D .5 4.平面上有△ACD 与△BCE ,其中AD 与BE 相交于P 点,如图.若AC =BC ,AD =BE ,CD =CE ,∠ACE =55°,∠BCD =155°,则∠BPD 的度数为( )A .110°B .125°C .130°D .155°5.如图,已知点A ,D ,C ,F 在同一条直线上,AB =DE ,AD =CF ,要使△ABC ∠∠DEF ,则下列条件可以添加的是( )A .∠B =∠E B .∠A =∠EDFC .AC =DFD .BC ∠EF 6.如图,在ABC 中,AB AC =,AB BC >,点D 在边BC 上,2CD BD =,点E 、F 在线段AD 上,12BAC ∠=∠=∠,若ABC 的面积为21,则FAC 与BDE 的面积之和是( )A .6B .7C .8D .9 7.如图,BD 是∠ABC 的角平分线,AE ∠BD ,垂足为M .若∠ABC =30°,∠C =38°,则∠CDE 的度数为( )A .68°B .70°C .71°D .74° 8.如图,等腰直角三角形ABC 的直角顶点C 与坐标原点重合,分别过点A 、B 作x 轴的垂线,垂足为D 、E ,点A 的坐标为(-2,5),则线段DE 的长为( )A .4B .6C .6.5D .7 9.如图,在锐角∠ABC 中,∠BAC =45°,点B 到AC 的距离为2,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是( )A .1B .1.5C .2D .3 10.如图,在ABC 和ADE 中,90ACB ADE ∠=∠=︒,AB AE =,12∠=∠,线段BC 的延长线交DE 于点F ,连接AF .若14ABF S =,4=AD ,54CF =,则线段EF 的长度为( )A .4B .92C .5D .112二、填空题11.已知ABC DEF ≅,5AB =,6BC =,4DF =,则EF =______.12.如图,∠ABC 中,BD 平分∠ABC ,AD ∠BD ,∠BCD 的面积为10,∠ACD 的面积为6,则∠ABD 的面积是_________.13.如图,在ABC 中,45ABC ∠=︒,F 是高AD 和BE 的交点,8AC =cm ,则线段BF 的长度为______.14.一个等腰三角形的两边长分别为4cm 和8cm ,则周长是 _____cm . 15.如图,AD 是ABC 中BAC ∠的角平分线,DE AB ⊥于点E ,7ABC S =△,2DE =,4AB =,则AC 长是______.16.如图,已知BE =DC ,请添加一个条件,使得△ABE ∠∠ACD :_____.17.如图,四边形ABCD 中,AC 平分∠BAD ,CE ∠AB 于点E ,且∠B +∠D =180°,若BE =3,CE =4,S △ACE =14,则S △ACD =________.18.如图,在△ABC 中,BD =CD ,BE 交AD 于F ,AE =EF ,若BE =7CE ,52AE =,则BF =_______.19.如图,点B 、C 、E 三点在同一直线上,且AB =AD ,AC =AE ,BC =DE ,若∠+∠+∠=︒,则∠3=______°.1239420.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF∠a于点F,DE∠a于点E,若DE=8,BF=5,则EF的长为__.三、解答题21.如图,四边形ABCD中,BC=CD=2AB,AB//CD,∠B=90°,E是BC的中点,AC与DE相交于点F.(1)求证:ABC∠ECD;(2)判断线段AC与DE的位置关系,并说明理由.22.如图,已知AB∥CD,OA=OD,AE=DF.试说明:EB∥CF.23.如图,在∠ABC 中,BD ∠AC 于点D ,CE ∠AB 于点E ,BD 、CE 相交于点G ,BD =DC ,DF ∠BC 交AB 于点F ,连接FG .求证:(1)∠DAB ∠∠DGC ;(2)CG =FB +FG .24.如图,点D 和点C 在线段BE 上,BD CE =,AB EF =,AB EF ∥.求证:AC DF ∥.25.如图,在四边形ABCD 中,AD =AB ,DC =BC ,∠DAB =60°,∠DCB =120°,E 是AD 上一点,F 是AB 延长线上一点,且DE =BF .(1)求证:CE =CF ;(2)若G 在AB 上且∠ECG =60°,试猜想DE ,EG ,BG 之间的数量关系,并证明.26.如图1,在∠ABC中,∠BAC=90°,AB=AC,点D在边AC上,CD∠DE,且CD =DE,连接BE,取BE的中点F,连接DF.(1)请直接写出∠ADF的度数及线段AD与DF的数量关系;(2)将图1中的△CDE绕点C按逆时针旋转,∠如图2,(1)中∠ADF的度数及线段AD与DF的数量关系是否仍然成立?请说明理由;∠如图3,连接AF,若AC=3,CD=1,求S△ADF的取值范围.参考答案:1.B2.A3.C4.C5.B6.B7.D8.D9.C10.B11.612.1613.8 cm14.2015.316.∠B=∠C17.818.10 319.4720.1321.(2)AC∠DE,25.(2)DE+BG=EG,26.(1)∠ADF=45°,AD(2)∠成立,∠1≤S△ADF≤4.答案第1页,共1页。
人教版数学八年级上册 第11章 三角形单元测试(配套练习附答案)
∵E是AC的中点,
∴EH是△ACG的中位线,
∴EH∥AD,
∴∠GDF=∠HEF,
∵F是DE的中点,
∴DF=EF,
在△DFG和△EFH中, ,
∴△DFG≌△EFH(ASA),
∴FG=FH,S△EFH=S△DGF,
又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,
所以,由题意可得180(n-2)=2×360º
解得:n=6
16.十边形的外角和是_____°.
【答案】360
【解析】
【分析】
根据多边形外角和等于360°性质可得.
【详解】根据多边形的外角和等于360°,即可得十边形的外角和是360°.
【点睛】本题考查了多边形的外角和.熟记多边形外角和是关键.
17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.
考点:找规律-图形的变化
点评:解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题.
C. 一个等腰三角形一定不是锐角三角形
D. 一个等边三角形一定不是钝角三角形
【答案】
【解析】
【分析】
根据三角形的分类方法进行分析判断.三角形按角分为锐角三角形、直角三角形和钝角三角形;三角形按边分为不等边三角形和等腰三角形(等边三角形).
【详解】解:A、如等腰直角三角形,既是直角三角形,也是等腰三角形,故该选项错误;
A.4cm2B.6cm2C.8cm2D.9cm2
【答案】A
【解析】
试题分析:取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.
人教版数学八年级上学期《三角形》单元检测题(带答案)
(2)当E在A D上移动时,∠B、∠C、∠DEF之间存在怎样的等量关系?请写出这个等量关系,并说明理由.
参考答案
一、选择题(每小题3分,共30分)
1.下列各组中的三条线段能组成三角形的是()
A.3,4,8B.5,6,11C.5,6,10D.4,4,8
点睛:本题主要考查考生三角形的三边关系:两边之和大于第三边,两边之差小于第三边.由此可以得到A>3,A<7,因此可以判断A-3和A-7的正负情况.此题还考查了考生绝对值的运算法则:正数的绝对值是其本身,负数的绝对值是它的相反数,零的绝对值还是零.由此可化简|A-3|+|A-7|
[结束]
10.如图,把△A B C纸片沿DE折叠,当点A在四边形B C DE的外部时,记∠AEB为∠1,∠A D C为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()
A. 10°B. 15°C. 20°D. 25°
[答案]B
[解析]
试题分析:根据三角形的外角的性质可得,∠A+45°=60°,解得∠A=15°.
故选B.
考点:三角形的外角的性质.
7.下列度数不可能是多边形内角和的是()
A.360°B.720°
C.810°D.2 160°
[答案]C
[解析]
试题分析:多边形内角和公式为(n-2)×180°,可将四个选项代入公式,计算出n为正整数就是多边形内角和,若不是则说明不是多边形的内角和.经计算可得810°除以180°等于4.5不是整数,所以810°不是多边形的内角和.故选C
二、填空题(每小题3分,共18分)
11.如图,共有______个三角形.
12.如图,点B,C,E,F 一直线上,A B∥D C,DE∥GF,∠B=∠F=72°,则∠D=_____度.
人教版八年级数学上册第1章三角形单元测试(含答案)
第11章三角形一、选择题1.平行四边形的内角和为()A.180°B.270°C.360°D.640°2.如图,正六边形的每一个内角都相等,则其中一个内角α的度数是()A.240°B.120°C.60°D.30°3.五边形的内角和是()A.180°B.360°C.540°D.600°4.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形5.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.88.一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9 C.8 D.79.一个多边形的内角和是360°,这个多边形是()A.三角形B.四边形C.六边形D.不能确定10.一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7 C.6 D.511.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°12.已知正多边形的一个外角等于60°,则该正多边形的边数为()A.3 B.4 C.5 D.613.如果一个多边形的每一个外角都是60°,则这个多边形的边数是()A.3 B.4 C.5 D.614.八边形的内角和等于()A.360°B.1080°C.1440°D.2160°15.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形二、填空题16.若一个正多边形的一个内角等于135°,那么这个多边形是正______边形.17.正多边形一个外角的度数是60°,则该正多边形的边数是______.18.正多边形的一个外角等于20°,则这个正多边形的边数是______.19.n边形的每个外角都等于45°,则n=______.20.一个多边形的内角和比外角和的3倍多180°,则它的边数是______.21.一个正多边形的一个外角等于30°,则这个正多边形的边数为______.22.五边形的内角和为______.23.四边形的内角和是______.24.若正多边形的一个外角为40°,则这个正多边形是______边形.25.内角和与外角和相等的多边形的边数为______.26.若正n边形的一个外角为45°,则n=______.27.四边形的内角和为______.28.如图,一个零件的横截面是六边形,这个六边形的内角和为______.29.某正n边形的一个内角为108°,则n=______.30.正多边形的一个外角是72°,则这个多边形的内角和的度数是______.第11章三角形参考答案一、选择题(共15小题)1.C;2.B;3.C;4.C;5.C;6.C;7.C;8.D;9.B;10.C;11.A;12.D;13.D;14.B;15.C;二、填空题(共15小题)16.八;17.六;18.18;19.8;20.9;21.12;22.540°;23.360°;24.九;25.四;26.8;27.360°;28.720°;29.5;30.540°;先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
人教版初中数学八年级上册第十一单元《三角形》综合测试卷(解析版)
⼈教版初中数学八年级上册第⼗⼀单元《三⾓形》综合测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2023八上·双鸭⼭期中)下列各图中,正确画出△ABC中AC边上的⾼的是( )A.B.C.D.2.(3分)(2023七上·沭阳⽉考)⼀块矩形草坪的⻓比宽多10米,它的周⻓是132米,求宽x所列的⽅程是( )A.x+10=132B.2x+10=132C.22x+10=132D.2x−10=132 3.(3分)(2020七上·庆云⽉考)代数式|x−2|+3的最⼩值是( )A.0B.2C.3D.54.(3分)(2020八上·余⼲⽉考)在△ABC中,∠A:∠B:∠C=1:2:3,则△ABC为( )A.等腰三⾓形B.锐⾓三⾓形C.直⾓三⾓形D.钝⾓三⾓形5.(3分)(2023七下·承德期末)下列四个选项中,∠1与∠2互为邻补⾓的是( )A.B.C.D.6.(3分)(2024八上·合江期末)根据图中的数据,可得∠B的度数为( )A .40°B .50°C .60°D .70°7.(3分)(2022七上·晋州期中)已知射线OC 在∠AOB 的内部,下列4个表述中:①∠AOC =12∠AOB ;②∠AOC =∠BOC ;③∠AOB =2∠BOC ;④∠AOC +∠BOC =∠AOB ,能表⽰射线OC 是∠AOB 的⾓平分线的有( )A .1个B .2个C .3个D .4个8.(3分)(2022八上·港南期中)下列图形具有稳定性的是( )A .B .C .D .9.(3分)(2021九下·曹县期中)如图,在平⾯直⾓坐标系中,点 A 1 , A 2 , A 3 ,…, A n 在 x 轴上,点 B 1 , B 2 ,…, B n 在直线 y 上,若点 A 1 的坐标为 (1,0) ,且 △A 1B 1A 2 , △A 2B 2A 3 ,…, △A n B n A n +1 都是等边三⾓形,从左到右的⼩三⾓形(阴影部分)的⾯积分别记为 S 1 , S 2 ,.., S n ,则 S n 可表⽰为( )A .22B .22n −C .22n −D .22n −10.(3分)(2021八上·诸暨⽉考)如图,BF 是∠ABD 的平分线,CE 是∠ACD 的平分线,BF 与CE 交于G ,若∠BDC =130°,∠BGC =100°,则∠A 的度数为( )A .60°B .70°C .80°D .90°⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)过⼗边形的⼀个顶点可作对⾓线的条数为m,则m的值为 .12.(3分)(2024七下·⽞武期中)如图1,点D在△ABC边BC上,我们知道若BDCD=ab,则S△ABDS△ACD=ab;反之亦然.如图2,BE是△ABC的中线,点F在边AB上,BE、CF相交于点O,若AFBF =m,则OEOB= .13.(3分)(2024七下·⻄安期中)已知三⾓形两边的⻓分别为1cm,5cm,第三边⻓为整数,则第三边的⻓为 .14.(3分)(2024七下·淮阴期中)如图,在△ABC中,点D是边BC的中点,点E是AC边上⼀点,AD和BE交于点O,CE=14AC,△ABC的⾯积是2024,若把△ABO的⾯积记为S1,把四边形CDOE的⾯积记为S 2,则S1−S2的值为 .15.(3分)(2018八上·武汉⽉考)图中x的值为 .三、解答题(共7题,共65分)(共7题;共65分)16.(10分)(2018八上·潘集期中)某零件如图所⽰,按规定∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=146°,就断定这个零件不合格,你能说出其中的道理吗?17.(5分)(2023八上·鹿寨期中)已知⼀个多边形中,每个内⾓都相等,并且每个外⾓等于与它相,求这个多边形的边数及内⾓和.邻的内⾓的1818.(5分)(2023八上·城厢开学考)已知:△ABC中,图①中∠B、∠C的平分线相交于M,图②中∠B、∠C的外⾓平分线相交于N,(1)(1分)若∠A=80°,∠BMC= °,∠BNC= ° .(2)(1分)若∠A=β,试⽤β表⽰∠BMC和∠BNC19.(11分)(2016八上·肇庆期末)⼀个零件的形状如图所⽰,按规定∠A=90º,∠C=25º,∠B=25º,检验员已量得∠BDC=150º,请问:这个零件合格吗?说明理由。
人教版八年级上册数学全等三角形(全是经典习题)单元测试题附详细解析
人教版八年级上册数学全等三角形(全是经典习题)单元测试题附详细解析一、单选题(共10题;共30分)1.(3分)如图,△ABC△△ADE,△C=40°,则△E的度数为()A.80°B.75°C.40°D.70°2.(3分)如图,在△ABC中,∠C=90°,AD是∠CAB的角平分线,DE⊥AB于点E,若BC=6cm,BD=4cm.则DE的长是()A.5cm B.4cm C.3cm D.2cm3.(3分)用直尺和圆规作一个角等于已知角,如图,能得出△A′O′B′=△AOB的依据是().A.SAS B.AAS C.ASA D.SSS4.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,则△1的度数是()A.76°B.62°C.42°D.76°、62°或42°都可以5.(3分)如图,正方形纸片ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0),若h1=5,h2=2,则正方形ABCD的面积S等于()A.34B.89C.74D.1096.(3分)下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等7.(3分)如图,直线l1,l2,l3表示三条公路。
现要建造一个洗手台P,使P到三条公路的距离都相等,则洗手台P可选择的点有()A.一处B.二处C.三处D.四处8.(3分)如图,一块玻璃被打碎成三块,如果要去玻璃店配一块完全一样的玻璃,那么最合理的办法是()A.带①去B.带②去C.带③去D.带①②③去9.(3分)如图,若要用“HL”证明Rt△ABC△Rt△ABD,则还需补充的条件是()A.AC=AD或BC=BD B.AC=AD且BC=BDC.△BAC=△BAD D.以上都不对10.(3分)如图,边长为5的大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,连结AF并延长交CD于点M.若AH=GH,则CM的长为()A.12B.34C.1D.54二、填空题(共5题;共15分)11.(3分)如图所示,AB=AC,AD=AE,△BAC=△DAE,△1=25°,△2=30°,则△3=.12.(3分)如图,△ABC的三边AB、BC、CA的长分别为30、40、15,点P是三条角平分线的交点,将△ABC分成三个三角形,则SΔAPB︰SΔBPC︰SΔCPA等于13.(3分)如图,AB⊥BC,AD⊥DC,请你添加一个条件,利用“HL”,证明Rt△ABC≌Rt△ADC.14.(3分)如图,△AOB=30°,OP平分△AOB,PD△OB于D,PC△OB交OA于C,若PC=10,则PD=.15.(3分)如图,C 为线段AE 上一动点(不与A、E 重合),在AE 同侧分别作等边△ABC 和等边△CDE,AD 与BE 交于点O,AD 与BC 交于点P,BE 与CD 交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ△AE;③AP=BQ;④DE=DP;⑤△AOB=60°,其中正确的结论是(把你认为正确的结论的序号都填上).三、解答题(共11题;共75分)16.(5分)如图,点E,F在BC上,BE=CF,△A=△D ,△B=△C.求证:△ABF△△DCE。
人教版八年级上册数学《三角形》单元测试题带答案
人教版数学八年级上学期《三角形》单元测试时间:90分钟总分: 100一、选择题1.能将三角形面积平分的是三角形的..)A.角平分..B...C.中..D.外角平分线2.已知三角形的两边长分别为4cm和9cm, 则下列长度的四条线段中能作为第三边的是.. )A.13c..B.6c..C.5c..D.4cm3.三角形一个外角小于与它相邻的内角, 这个三角形是...)A.直角三角..B.锐角三角..C.钝角三角..D.属于哪一类不能确定4.若一个多边形每一个内角都是135º, 则这个多边形的边数是...)A...B...C.1..D.125.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面, 可供选择的地砖共有( )A.4..B.3..C.2..D.1种6.一个多边形的外角和是内角和的一半, 则它是. )边形A...B...C...D.47.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S △DGF的值为. )学*科*网...学*科*网...A.4cm..B.6cm..C.8cm..D.9cm28.已知△ABC中, ∠A=20°, ∠B=∠C, 那么三角形△ABC是()A.锐角三角..B.直角三角..C.钝角三角..D.正三角形9.试通过画图来判定, 下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形10.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35..B.55..C.60..D.70°二、填空题11.如果点G是△ABC的重心.AG的延长线交BC于点D.GD=12.那么AG=________.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1= ,∠2= ,则∠3=_____________°.13.若一个多边形的内角和比外角和大360°, 则这个多边形的边数为_______________.14.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D.E、F,则线段___是△ABC中AC边上的高.15.一个多边形的内角和是外角和的2倍, 则这个多边形的边数为___.16.十边形的外角和是_____°.17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.18.如图,⊿ABC中,∠..40°,∠..72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CD.=_________度。
2023-2024学年人教版八年级数学上册第11章三角形 单元同步达标测试题(含答案)
2023年秋人教版八年级数学上册《第11章三角形》同步达标测试题一、单选题(满分40分)1.下列长度的三条线段能组成三角形的是()A.4cm,5cm,9cm B.5cm,5cm,11cmC.8cm,9cm,15cm D.7cm,12cm,20cm2.正十二边形的外角和为( )A.30°B.150°C.360°D.1800°3.如图,在△ABC中,BC边上的高为()A.线段AD B.线段BF C.线段BE D.线段CG4.如图,有一个与水平地面成20°角的斜坡,现要在斜坡上竖起一根与水平地面垂直的电线杆,电线杆与斜坡所夹的角∠1的度数为()A.50°B.60°C.70°D.80°5.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,就是平面图形的镶嵌.只用下面一种图形能够进行平面镶嵌的是()A.正三角形B.正五边形C.正八边形D.正十二边形6.如图,在△ABC中,D是BC中点,E是AD中点,连结BE、CE,若△ABC的面积为20,则△BCE的面积为()A.5B.10C.15D.187.将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND的大小为()A.100°B.105°C.110°D.115°8.如图,∠B=20°,∠C=60°,AD平分∠BAC,AE⊥BC,则∠DAE度数是()A.30°B.25°C.20°D.15°10.一个多边形的内角和是外角和的14.如图,在△ABC中,D为AC边的中点,积为4,则△BFC的面积为.15.如图,在△ABC中,∠ABC∠A的度数为____________.16.图①是一盏可折叠台灯,图为固定支撑杆,∠A是∠B的两倍,灯体旋转到CD′位置(图②中虚线所示∠BCD−∠DCD′=120°,则∠DCD三、解答题(满分40分)17.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?18.如图,在ΔABC中,AD是高,∠DAC=10°,AE是ΔABC外角∠MAC的平分线,交BC 的延长线于点E,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB和∠E的度数.19.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移5格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为__________;(4)在图中能使S△ABC=S△PBC的格点P的个数有__________个(点P异于A).20.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∥EC;(2)若CE⊥AE于点E,∠F=50°,求∠ADF的度数.21.如图,已知△ABC中,点D、E分别在边AB、AC上,点F在BE上.(1)若∠ADE=∠ABC,(2)若D、E、F分别是△ABC的面积.(1)如图1,这是一个五角星,则(2)如图2,将五角星截去一个角后多出一个角,求参考答案∵电线杆与水平地面垂直,∴∠2=90°,∴∠1=∠3=180°−20°−90°故答案为:三角形具有稳定性.10.解:由题意,得:(n−2)180°=2×360°,解得:n=6;∴这个多边形的边数为6;故答案为:611.解:∵a+b>c,b−a<c,c+b>a,∴a+b−c>0,b−a−c<0,c−a+b>0,∴|a+b−c|+|b−a−c|+|c−a+b|=a+b−c+a+c−b+c−a+b=a+b+c故答案为:a+b+c.12.解:由折叠的性质得∠ADE=∠ADC=110°,∵∠ADB=180°−∠ADC=70°,∴∠BDE=110°−∠ADB=110°−70°=40°,∵DE∥AB,∴∠B=∠BDE=40°.故答案为:40.13.解:∵AB∥CD,∠B+∠D=70°,∴∠B=∠HGD,∵∠EHF是△HGD的一个外角,∴∠EHF=∠HGD+∠D,∴∠EHF=∠B+∠D=70°,∵∠1+∠2+∠EHF=180°,∴∠1+∠2=180°−∠EHF=110°.∵CD∥OE,∴OA⊥CD,∵AO⊥OE,D′G⊥AB,∴∠AGC=∠AFC=90°,在四边形AFCG中,∠AGC+∠GCF+∠AFC(4)如图,利用等高模型,在图中能使S△ABC=S△PBC的格点P在直线m,n上(除点A 外),总共有21个;故答案为21.20.(1)证明:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥CE;(2)解:∵CE⊥AE,∴∠CEF=90°,由(1)知AD∥CE,∴∠DAF=∠CEF=90°,在△AFD中,∠F=50°∴∠ADF=180°−90°−50°=40°.21.(1)证明:∵∠ADE=∠ABC,∴DE∥BC,∴∠AED=C,∵∠EDF=∠C,∴∠EDF=∠AED,∴DF∥AC;(2)解:∵点F是BE中点,∴S△DEF=S△DBF,设S△DEF=S△DBF=x,∵D是AB中点,∴S△ADE=S△BDE=2x,∵E是AC中点,∴S△ABE=S△CBE=4x,S△CEF=2x,=3x∴S四边形DECF∵S=9,四边形DECF∴3x=9,x=3,∴S△ABC=2S△ABE=8x=24.22. 解:(1)如图,由三角形的外角性质,得∠A+∠C=∠1,∠B+∠D=∠2,∵∠2+∠1+∠E=180°∴∠A+∠B+∠C+∠D+∠E=180°,故答案为:180°;(2)如图,延长CA与DG相较于点H,∠CAG和∠AGD是△HAG的两个外角,则∠CAG=∠H+∠AGH,∠AGD=∠H+∠HAG,∴∠CAG+∠AGD=∠H+∠HGA+∠H+∠HAG=∠H+180°,∴∠GAC+∠B+∠C+∠D+∠E+∠AGD=180°+180°=360°,故∠A+∠B+∠C+∠D+∠E+∠G的度数为360°.(3)由(2)知,每截去图1中的一个角,剩余角的度数会增加180°,图1中,∠A+∠B+∠C+∠D+∠E=180°,在题图3中,去掉五个角后,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠J =180°+5×180°=1080°.。
人教版数学八年级上册《三角形》单元测试题附答案
A.9°B.18°C.27°D.36°
【答案】B
【解析】
【分析】
设较小的锐角是x度,根据直角三角形两锐角互余得到方程进行求解即可.
【详解】设较小的锐角是x度,则另一角是4x度.由题意得:
x+4x=90,
解得:x=18.
A 锐角三角形B.直角三角形C.钝角三角形D.无法确定
6.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().
A.45°B.60°C.75°D.85°
7.如果直角三角形的一个锐角是另一个锐角的4倍,那么这个直角三角形中一个锐角的度数是( )
【答案】D
【解析】
【分析】
依据四边形BCDE的内角和,可得∠BCD+∠CBE=160°,再根据∠EBC和∠DCB的角平分线相交于点F,可得∠BCF+∠CBF= ×160°=80°,进而得出△BCF中,∠F=180°-80°=100°.
【详解】解:∵BE⊥AD,
∴∠BED=90°,
又∵∠ADC=110°,
【答案】C
【解析】
【分析】
AA1之间添加两条边,可得B1+∠C1+∠D1=∠EAD+∠AEA1+∠EA1B1,再根据边形的内角和公式即可求解.
【详解】解:如图,
AA1之间添加两条边,可得B1+∠C1+∠D1=∠EAD+∠AEA1+∠EA1B1
则∠A+∠B+∠C+∠D+∠A1+∠B1+∠C1+∠D1=∠EAB+∠B+∠C+∠D+∠DA1E+∠E=720°;
人教版八年级上册数学《三角形》单元检测题(含答案)
人教版数学八年级上学期《三角形》单元测试(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. 在△AB C中,∠A=95°,∠B=40°,则∠C的度数是()A. 35°B. 40°C. 45°D. 50°2. 若一个多边形的每个内角都为135°,则它的边数为( )A. 6B. 8C. 5D. 103. 在△AB C中,∠A=20°,∠B=60°,则△ABC的形状是( )A. 等边三角形B. 锐角三角形C. 直角三角形D. 钝角三角形4. 已知三角形三边长分别为2,x,7,若x为正整数,则这样的三角形个数有( )A. 2个B. 3个C. 5个D. 7个5. 用形状、大小完全相等的下列图形不能进行密铺的是()A. 等腰三角形B. 平行四边形C. 正五边形D. 正六边形6. 如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A. 180°B. 360°C. 540°D. 720°7. 如图,在△AB C中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°8. 如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m).则点E的坐标是()A. (2,-3)B. (2,3)C. (3,2)D. (3,-2)9. 下列长度的三条线段能组成钝角三角形的是()A. 3,4,4B. 3,4,5C. 3,4,6D. 3,4,710. 已知△AB C中,∠A=80°,∠B、∠C的平分线的夹角是()A.130°B.60°C.130°或50°D.60°或120°二、填空题(本大题共10小题,每小题3分,共30分)11.如图,AD⊥BC于D,那么图中以AD为高的三角形有________个.12.长度为2cm、3cm、4cm和5cm的4根木棒,从中任取3根,可搭成________种不同的三角形.13.下列图形中具有稳定性有________ (填序号)14.三角形纸片AB C中,∠A=55°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内(如图),则∠1+∠2的度数为________ 度.15.一个三角形的两边长分别是2和7,另一边长a为偶数,且2<a<8,则这个三角形的周长为________.16.要使六边形木架不变形,至少再钉上________根木条.17.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,且△ABC的面积为16cm2,则△BEF的面积:________ cm2.18.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是________.19.如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为________.20. 如图,在△AB C中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC=4 cm2,则阴影部分的面积为________.三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21. 已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.22.如图,在△AB C中,AD是高线,点M在AD上,且∠BAD=∠DCM,求证:CM⊥AB.23. 在△AB C中,∠ABC的平分线与在∠ACE的平分线相交于点D.已知∠ABC=70°,∠ACB=30°,求∠A和∠D的度数.24. 如图,△AB C中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,求∠CDF的度数.25. 如图,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.26. 如图,在△ABC中,∠B=32°,∠C =48°,AD⊥BC于点D,AE平分∠BAC交BC于点E,DF⊥AE于点F,求∠ADF的度数.27.如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF的平分线,试探索∠BDC与∠A之间的数量关系.28.(1)如图①,△ABC是锐角三角形,高BD、CE相交于点H,找出∠BHC和∠A之间存在何种等量关系;(2)如图②,若△ABC是钝角三角形,∠A>90°,高BD、CE所在的直线相交于点H,把图②补充完整,并指出此时(1)中的等量关系是否仍然成立?参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. 在△AB C中,∠A=95°,∠B=40°,则∠C的度数是()A. 35°B. 40°C. 45°D. 50°【答案】C【解析】∵三角形的内角和是180°,又∠A=95°,∠B=40°∴∠C=180°-∠A-∠B=180°-95°-40°=45°,故选C.2. 若一个多边形的每个内角都为135°,则它的边数为( )A. 6B. 8C. 5D. 10【答案】B【解析】一个正多边形的每个内角都为135°,这个正多边形的每个外角都为:180°﹣135°=45°,这个多边形的边数为:360°÷45°=8.故选B.3. 在△AB C中,∠A=20°,∠B=60°,则△ABC的形状是( )A. 等边三角形B. 锐角三角形C. 直角三角形D. 钝角三角形【答案】D【解析】根据三角形的内角和定理求出∠C,即可判定△ABC的形状:∠A=20°,∠B=60°,∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,△ABC是钝角三角形。
人教版八年级上册数学《三角形》单元测试题带答案
人教版八年级上册数学《三角形》单元测试题带答案一、选择题1. 下列关于三角形的说法中,错误的是()。
A. 三角形的内角和为180度B. 一个三角形有三个顶点C. 三角形的三条边互相垂直D. 三角形的一个外角等于另外两个内角的和答案:C2. 在直角三角形ABC中,已知∠A=30°,∠B=60°,则∠C=()。
A. 60°B. 30°C. 90°D. 120°答案:C3. 三角形的一个内角是60°,一个外角是120°,则另一个内角是()。
A. 60°B. 120°C. 90°D. 150°答案:D4. 已知在三角形ABC中,∠A=50°,∠B=70°,AB=BC,则AC的大小为()。
A. 50°B. 70°C. 60°D. 80°答案:D5. 若两个三角形的对应角相等,则这两个三角形是()。
A. 相似三角形B. 对称三角形C. 同位角三角形D. 直角三角形答案:A二、填空题1. 三角形的外角是()。
答案:两个不相邻的内角的和2. 一个三角形的外角等于一个角的两个不相邻内角的和,这个角是一个()。
答案:内角3. 相似三角形对应角相等,对应边(比例/成比例)。
答案:成比例4. 三角形的一个内角为60度,则这个角的补角是()。
答案:120度5. 等边三角形的三个角都是()。
答案:60度三、计算题1. 已知在三角形ABC中,∠B=50°,∠C=60°,AC=7cm,求BC的长度。
答案:由三角形内角和的性质可得∠A=180°-50°-60°=70°。
由正弦定理可得:$\frac{BC}{\sin 50^\circ}=\frac{7}{\sin 70^\circ}$,解得BC=6cm。
八年级数学上册《第十一章 三角形》单元测试卷-带答案(人教版)
八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、单选题1.下列语句正确的是()A.三角形的角平分线、中线和高都在三角形内B.直角三角形的高只有一条C.三角形的高至少有一条在三角形内D.钝角三角形的三条高都在三角形外2.正多边形的每一个外角都等于45°,则这个多边形的边数是()A.6 B.7 C.8 D.93.已知三角形的两边长分别是4、7,则第三边长a的取值范围是()A.3<a<11 B.3≤a≤11 C.a>3 D.a<114.如图,∠1+∠2+∠3+∠4+∠5+∠6=()A.180°B.270°C.360°D.不能确定5.如图,在△ABC中AB=AC,点D是B C延长线上一点,且∠BAC=2∠CAD已知BC=4,AD= 7则△ACD的面积为()A.7 B.14 C.21 D.286.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3B.S1>S2>S3C.S1=S2=S3D.S2<S1<S37.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°8.如图,将三角尺的直角顶点放在直尺的一边上∠1=30°,∠2=50°则∠3的度数等于()A.20°B.30°C.50°D.80°二、填空题9.在△ABC中,∠A=50°,∠B,∠C的角平分线相交于点O,则∠BOC的度数是.10.正多边形的每一个内角比相邻的外角大90°,则这个多边形的边数是11.已知△ABC的三个内角的度数之比∠A:∠B:∠C=1:3:5则∠B=度,∠C=度.12.如图,已知AB//DE,∠ABC=70°,∠CDE=140°则∠BCD=.13.如图,△ABC中,点D在BC上且BD=2DC,点E是AC中点,已知△CDE面积为2,那么△ABC的面积为.14.如图所示,在△ABC中∠A=66°,点I是三条角平分线的交点,则∠BIC的大小为三、解答题15.将长度为24的一根铝丝折成各边均为正整数的三角形,这个三角形的三边分别记为a、b、c,且a≤b≤c,请写出满足题意的a、b、c.16.已知:如图,△ABC的两条高线BD、CE相交于H点∠A=56°求∠BHC的度数.17.探索归纳:(1)如图1,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( ) A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中∠A=40°,剪去∠A后成四边形,则∠1+∠2=(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.18.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.19.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.20.如图,已知直线AB,CD,AC上的点M,N,E满足ME⊥NE,∠AME+∠CNE=90°,∠ACD的平分线CG 交MN于G,作射线GF∥AB.(1)直线AB与CD平行吗?为什么?(2)若∠CAB=66°,求∠CGF的度数.参考答案1.C2.C3.A4.C5.A6.C7.C8.A9.115°10.811.60;10012.30°13.1214.123°15.解答:∵a+b+c=24,且a+b>c,a≤b≤c,∴8≤c≤11,即c=8,9,10,11,故可得(a,b,c)共12组:当c=11时,有:2,11,11; 3,10,11;4,9,11;5,8,1;6,7,11.当c=10时,有:4,10,10;5,9,10;6,8,10;7,7,10.当c=9时,有: 6,9,9;7,8,9.当c=8时,有:8,8,8.16.∵BD⊥AC,CE⊥AB∴∠AEH=∠ADH=90°在四边形AEHD中,∠AEH=∠ADH=90°,∠A=56°∴∠EHD=360°-∠AEH-∠ADH-∠A=360°-90°-90°-56°=124°∵∠BHC与∠EHD是对顶角∴∠BHC=∠EHD=124°.17.(1)C(2)220°(3)∠1+∠2=180°+∠A(4)∵△EFP是由△EFA折叠得到的∴∠AFE=∠PFE,∠AEF=∠PEF∴∠1=180°﹣2∠AFE,∠2=180°﹣2∠AEF∴∠1+∠2=360°﹣2(∠AFE+∠AEF)又∵∠AFE+∠AEF=180°﹣∠A∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A.18.解:∵DE=EB∴设∠BDE=∠ABD=x∴∠AED=∠BDE+∠ABD=2x∵AD=DE∴∠AED=∠A=2x∴∠BDC=∠A+∠ABD=3x∵BD=BC∴∠C=∠BDC=3x∵AB=AC∴∠ABC=∠C=3x在△ABC中,3x+3x+2x=180°解得x=22.5°∴∠A=2x=22.5°×2=45°.19.(1)解:∵六边形ABCDEF的内角相等∴∠B=∠A=∠BCD=120°∵CF∥AB∴∠B+∠BCF=180°∴∠BCF=60°∴∠FCD=60°(2)解:∵∠AFC=360°﹣120°﹣120°﹣60°=60°∴∠AFC=∠FCD∴AF∥CD20.(1)解:平行,理由如下:∵ ME⊥NE,即∠MEN=90°∴∠AEM+∠CEN=90°又∵∠AME+∠CNE=90°∴∠A+∠ECN=180°+180°-(∠AEM+∠CEN+∠AME+∠CNE) =360°-90°×2=180°∴ AB∥CD.(2)解:∵GF∥AB, AB∥CD∴GF∥CD∴∠GNC=∠FGN∴∠CGF=∠CGN+∠FGN=∠CGN+GNC=180°-∠GCN∵AB∥CD,∠CAB=66°∴∠ACD=180°-∠CAB=180°-66°=114°∴CG 平分∠ACD∠ACD=57°∴∠GCN=12∴∠CGF=180°-∠GCN=180°-57°=123°。
八年级数学上册《第十一章-三角形》单元测试卷-带答案(人教版)
八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、选择题(共9题)1.下列图形中具有稳定性的是( )A.B.C.D.2.判断下列说法,正确的是( )A.三角形的外角大于任意一个内角B.三角形的三条高相交于一点C.各条边都相等的多边形叫做正多边形D.四边形的一组对角互补,则另一组对角也互补3.等腰三角形的两边长分别是5cm和11cm,则它的周长是( )A.27cm B.21cmC.27cm或21cm D.无法确定4.两根木棒分别为5cm和6cm,要选择第三根,将它们钉成一个三角形,如果第三根木棒长为偶数,则方法有( )A.3种B.4种C.5种D.6种5.如图所示,直线m∥n,∠1=63∘,∠2=34∘则∠BAC的大小是( )A.73∘B.83∘C.77∘D.87∘6.如图l1∥l2,∠1=120∘,∠2=100∘,则∠3=( )A.20∘B.40∘C.50∘D.60∘7.将一副直角三角板按如图所示的位置放置,使含30∘角的三角板的一条直角边和含45∘角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.35∘B.45∘C.60∘D.75∘8.如图,在△ABC中,E,F分别是AD,CE边的中点,且S△ABC=8cm2,则S△BEF为( )A.4cm2B.3cm2C.2cm2D.1cm29.如图,△ABC中,∠ABC=50∘,∠ACB=70∘,AD平分线∠BAC,过点D作DE⊥AB于点E,则∠ADE的度数是( )A.45∘B.50∘C.60∘D.70∘二、填空题(共5题)10.一个正多边形的每个内角都是150∘,则它是正边形.11.如图,△ABC中,∠BAC=70∘,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=度.12.如图,直线a∥b,∠1=60∘,∠2=40∘则∠3=∘.13.如图,△ABC的∠A为40∘,剪去∠A后得到一个四边形,则∠1+∠2=度.14.如图∠A=20∘,∠B=30∘,∠C=50∘则∠ADB的度数.三、解答题(共6题)15.已知:如图,△ABC中,AD是高,AE平分∠BAC,∠B=50∘,∠C=80∘求∠DAE的度数.16.如图,在△ABC中∠B=∠C=45∘点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1) 当∠BAD=60∘,则∠CDE的度数是:.(2) 当点D在BC(点B,C除外)边上运动时,设∠CDE=α,请用α表示∠BAD,并说明理由.17.在△ABC中∠B<∠C,AQ平分∠BAC,交BC于点Q,P是AQ上的一点(不与点Q重合)PH⊥BC于点H.(1) 若∠C=2∠B=60∘,如图1,当点P与点A重合时,求∠QPH的度数;(2) 当△ABC是锐角三角形时,如图2,试探索∠QPH,∠C,∠B之间的数量关系,并说明理由.18.如图,已知点E,F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1) 请说出AB∥CD的理由.(2) 若∠EHF=100∘,∠D=30∘,求∠AEM的度数.19.如图,在四边形ABCD中∠B=50∘,∠C=110∘,∠D=90∘,AE⊥BC,AF是∠BAD的平分线,与边BC交于点F.求∠EAF的度数.20.如图,已知点E,F为四边形ABDC的边CA的延长线上的两点,连接DE,BF,作∠BDH的平分线DP交AB的延长线于点P.若∠1=∠2,∠3=∠4,∠5=∠C.(1) 判断DE与BF是否平行?并说明理由;(2) 试说明:∠C=2∠P.参考答案1.【答案】A2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】D8.【答案】C9.【答案】C10.【答案】十二11.【答案】3512.【答案】8013.【答案】22014. 100°15. 【答案】∵△ABC中∠B=50∘,∠C=80∘∴∠BAC=180∘−∠B−∠C=180∘−50∘−80∘=50∘,∵AE是∠BAC的平分线∠BAC=25∘∴∠EAC=12∵AD是BC边上的高∴在直角△ADC中∠DAC=90∘−∠C=90∘−80∘=10∘∴∠DAE=∠EAC−∠DAC=25∘−10∘=15∘.16.【答案】(1) 30∘ (2) ∠BAD=2α.证明:设∠BAD=x∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=45∘+x∵∠AED是△CDE的外角∴∠AED=∠C+∠CDE∵∠B=∠C,∠ADE=∠AED∴∠ADC−α=∠45∘+x−α=45∘+α解得:∠BAD=2∠CDE=2α.17.【答案】(1) ∵∠C=2∠B=60∘∴∠B=30∘,∠BAC=180∘−60∘−30∘=90∘.∵AQ平分∠BAC∠BAC=45∘∴∠BAQ=∠QAC=12∴∠AQH=∠B+∠BAQ=30∘+45∘=75∘∵PH⊥BC∴∠PHQ=90∘∴∠QPH=∠QAH=90∘−75∘=15∘.(2) 如图,过点A作AG⊥BC于点G 则∠PHQ=∠AGQ=90∘∴PH∥AG∴∠QPH=∠QAG设∠QPH=∠QAG=x∵AQ平分∠BAC∴∠BAQ=∠QAC=x+∠GAC∵∠AQH=∠B+∠BAQ又∠AQH=90∘−x∴∠BAQ=90∘−x−∠B.∴x+∠GAC=90∘−x−∠B∵AG⊥BC∴∠GAC=90∘−∠C∴x+90∘−∠C=90∘−x−∠B∴x=12(∠C−∠B),即∠QPH=12(∠C−∠B).18. 【答案】 (1) ∵∠CED=∠GHD∴CE∥GF∵∠C=∠FGD又∵∠C=∠EFG∴∠FGD=∠EFG∴AB∥CD∴∠AED+∠D=180∘.(2) ∵∠DHG=∠EHF=100∘,∠D=30∘∴∠CGF=100∘+30∘=130∘∵CE∥GF∴∠C=180∘−130∘=50∘∵AB∥CD∴∠AEC=50∘∴∠AEM=180∘−50∘=130∘.19. 【答案】∵AE⊥BC∴∠AEC=∠AEB=90∘∵∠B=50∘∴∠BAE=180∘−90∘−50∘=40∘∵∠C=110∘,∠D=90∘∴∠DAE=360∘−∠D−∠C−∠AEC=70∘∴∠DAB=∠BAE+∠DAE=40∘+70∘=110∘∵AF平分∠DAB∴∠FAB=12∠DAB=12×110∘=55∘∴∠EAF=∠FAB−∠BAE=55∘−40∘=15∘.20. 【答案】 (1) DE∥BF理由是:因为∠3=∠4所以BD∥CE所以∠5=∠FAB因为∠5=∠C所以∠C=∠FAB所以AB∥CD所以∠2=∠BGD因为∠1=∠2所以∠1=∠BGD所以DE∥BF.(2) 因为AB∥CD所以∠P=∠PDH因为DP平分∠BDH所以∠BDP=∠PDH所以∠BDP=∠PDH=∠P 因为∠5=∠P+∠BDP所以∠5=2∠P所以∠C=∠5所以∠C=2∠P.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
D
B
C
八年级上册数学 三角形 单元测试题
(考试时间90分钟,总分120分) 姓名 成绩 家长签字 一. 选择题(每题3分,共30分)
1.下列长度的三条线段中,能组成三角形的是 ( ) A 、3cm ,5cm ,8cm B 、8cm ,8cm ,18cm C 、0.1cm ,0.1cm ,0.1cm D 、3cm ,40cm ,8cm 2.在下图中,正确画出AC 边上高的是( ).
B
A
A B
A B
B
E
E
A B C D
3.下列不能够镶嵌的正多边形组合是( )
A.正三角形与正六边形
B.正方形与正六边形
C.正三角形与正方形
D.正五边形与正十边形 4.一个多边形内角和是10800
,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9
5.已知,如图,AB ∥CD ,∠A=70°,∠B=40°,则∠ACD=( ) A 、 55° B 、 70° C 、 40° D 、 110°
6.如图所示,已知△ABC 为直角三角形,∠B=90°,若沿图中虚线剪去∠B ,则∠1+∠2 等于( ) A 、90° B 、135° C 、270° D 、315°
7. 如图所示,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于点P ,若∠A=500
,则 ∠BPC 等于( ) A 、90° B 、130° C 、270° D 、315° 8.能把一个任意三角形分成面积相等的两部分是( )
A.角平分线
B.中线
C.高 、B 、C 都可以 9.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( ) 第5题图
D
C
B
A
第7题图
第6题图
A .直角三角形
B .等腰三角形
C .锐角三角形
D .钝角三角形
10.三角形的一个外角是锐角,则此三角形的形状是( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.无法确定 二、填空题(每题4分,共24分)
11. 若三角形的两条边长分别为6cm 和8cm ,且第三边的边长为偶数,则第三边长为 。
12.已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b-c|=_____________。
13. 要使五边形木架(用5根木条钉成)不变形,至少要再钉 根木条。
14.在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶2∶3,③∠A=90°-∠B ,④∠A=∠B=∠C 中,能确定△ABC 是直角三角形的条件有 (填番号)。
15.如图,∠1+∠2+∠3+∠ 4的值为 。
16.如图,若∠A =70°,∠ABD =120°,则∠ACE = 。
三、解答下列各题 17.一个等腰三角形一边长为4,周长为13,这个等腰三角形的各边的长是多少?(6分)
18.如图直线AD 和BC 相交于O ,AB ∥CD ,∠AOC=95°,∠B=50°,求∠A 和∠D 。
(6分)
19.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,求∠ACB 。
(6分) 1
2
3
4
第15题图
第16题图
A
B
C
D
O
南北E
D
A
20、(7分)如图7,四边形ABCD中,∠A=∠C=90°,BE、CF分别是∠B、∠D的平分线. (1)∠1与∠2有何关系,为什么?
(2)BE与DF有何关系?请说明理由.
21.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,
CD⊥AB于D,DF⊥CE于F,求∠CDF的度数。
(7分)
22.如图所示,在△ABC中,∠B=∠C,∠BAD=40°,并且∠ADE= ∠AED,•求∠CDE的度数.(7分)
23.某零件如图所示,图纸要求∠A=90°,∠B=32°,∠C=21°,
当检验员量得∠BDC=145°,就断定这个零件不合格,
你能说出其中的道理吗?(9分)
3
2
1
F
E
D
C B
A
图7
C
A
B
D
E
F
A B
C
D
A I
24、(9分)如图,ΔABC 中,∠ABC 与∠ACB 的平分线交于点I ,根据下列条件,求∠BIC 的度数。
①若∠ABC =40°,∠ACB =60°,则∠BIC = 。
②若∠ABC +∠ACB =100°,则∠BIC= 。
③若∠A =80°,则∠BIC = 。
④从上述计算中,我们能发现已知∠A=x , 则∠BIC = 。
25.(9分)(1)如图1∠1+∠2与∠B +∠C 有什么关系?为什么?
(2)把图1中△ABC 沿DE 折叠,得到图2,填空:∠1+∠2_______∠B +∠C(填“>”“<”“=”),
当∠A =40°时,∠B +∠C +∠1+∠2=______ (3)如图3,是由图1的△ABC 沿DE 折叠得到的,
如果∠A =30°,则x +y =360°-(∠B +∠C +∠1+∠2)= , 猜想:∠BDA +∠CEA 与∠A 有什么关系?为什么?
23.如
图,
12
A D
C
B E
1
2
A
D C
B E
y°
x°A
D
C
B
E。