人教新课标版数学高二-人教选修2-3学案设计独立重复试验与二项分布
高中数学选修2-3精品教案3:2.2.3 独立重复实验与二项分布教学设计
2.2.3独立重复试验与二项分布教学目标:1 认知目标:理解独立重复试验的概念,掌握n次独立重复试验中某事件恰好发生k次的概率公式并能熟练运用,了解该公式与二项式定理的联系.2 能力目标:培养学生观察分析的能力,归纳综合的能力以及类比思维和创新思维.3情感目标:a、让学生从概率的计算中领悟偶然中包含着必然的哲学思想.b、培养“禁赌”意识和踏实的生活作风.教学重点和难点:重点:公式的引出与公式的运用难点:独立重复试验的判定教学过程:教学过程设计为:一.情景创设,激发兴趣师:展示情景:A君走在大街上,看见路旁有一群人,他挤进去,见一板木牌上写着:只需投掷二十次,便可拥有双倍财富(恰好10次正面朝上者中奖),他一阵窃喜:数学老师刚讲过,投硬币时,正面朝上和正面朝下为等可能事件,概率均为12,20×12不就是10吗?这公式推导情景创设概念理解中心内容P(X=k)=(1)k k n knC p p--公式特征公式应用简直是必然事件嘛!!他于是走上前去,将仅有的30元押在桌上.学生探究:A 君运气如何呢?(设计意图:概率起源于赌,形成于赌,但并不服务于赌.A 君事实上是多数中学生的代表,这样的情景创设抓住了学生的好奇心,让学生在这节课中保持一种探究的兴奋.) 师:为了解决上面的问题,我们先来分析投掷n 次硬币.引导:在n 次投掷硬币的过程中,各次投掷的结果是否会影响到其他实验的结果? 生:不会,各次投掷是相互独立的师生:共同回忆复习独立事件.师:12()n P A A A =? (其中1A 为第i 次试验的结果)生:由相互独立事件同时发生的概率可知1212()()()()n n P A A A P A P A P A = 师:给出定义:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. 师:怎样理解定义中的“在相同条件下”生:每次试验都在同一条件下进行,即各次试验的结果不会影响到其他实验的结果,各次试验相互独立师生:共同总结独立重复试验满足的条件:(1)各次试验中是相互独立的(2)每次试验都在同一条件下进行(3)只研究事件发生或不发生两种情况如:重复投掷同一枚硬币,正面朝上与正面朝下;上体育课练习投篮;购买体育彩票若干,中奖与不中奖二师生探究:展示问题:投掷一枚图钉,设针尖向上的概率是P ,针尖向下的概率为q =1-p ,连续投掷一枚图钉3次,恰好一次针尖向上的概率是多少?记第i 次投掷针尖向上为事件i A ,针尖向下记为i A师:3次投掷是否独立重复试验?生:是师:恰好第一次针尖向上的概率是多少?生:学生思考得出:恰好第一次针尖向上为第一次针尖向上为事件第一次针尖向上,第二次针尖向下第三次针尖向下这三个相互独立事件同时发生,且2123()P A A A pq =师:恰有3次针尖向上的情况有几种?每种情况发生的概率是多少?生:13C 种:第一次针尖向上,第二次与第三次针尖向下123A A A ,第二次针尖向上,第一次与第三次针尖向下123A A A ,第三次针尖向上第一次与第二次针尖向下123A A A ,2123123123()()()P A A A P A A A P A A A pq ===师:以上三个事件是__________事件生:互斥事件师:投掷3次,恰有1次针尖向上的概率是多少?生:恰有1次针尖向上是三个互斥事件有一个发生,故概率为1221231231233()3P A A A A A A A A A C pq pq ++==师:投掷n 次,恰有1次针尖向上的情况有几种?概率是多少?生:1n C 种,11n n C pq -师:投掷n 次,恰有2次针尖向上的情况有几种?概率是多少?生:2n C 种,222n n C p q -师:如此递推,投掷n 次,恰有K 次针尖向上的情况有几种?概率是多少?生:k n C 种,k k n k n C p q -(设计意图:一是引导学生自主思考,充分发挥学生的主体作用,二是将综合的复杂问题转化为单一的容易的问题,三是三个参数逐次引入,给学生的思维一个缓冲,也让不完全归纳法来得更自然)由此得出结论:一般地,在n 次独立重复试验中,用x 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则()(1)k k n k n P X k C p p -==-,(k=0,1,2,…,n )三、公式特征列表:引导学生根据自己刚学的公式列出表中的第二行,然后引导学生观察.表中四项的重复认知和格式的有意雷同都暗示着与二项式定理的联系,学生很容易通过这种类比得出结论,借此告诉他们概率()P X k =的分布也叫二项分布.此时称随机变量X 服从二项分布,记作X ~(,)B n p ,并称p 为成功概率.四、公式应用例:某射手每次射击击中的概率是0.8,他射击10次,(1)、恰好击中8次的概率是多少?(2)、至少击中8次的概率是多少?解:设x 表示事件A 发生的次数,则X ~(10,0.8)B(1)在10次射击中恰好击中8次的概率为8810810(8)0.8(10.8)0.30P X C -==-≈ (2)在10次射击中,至少击中8次的概率为881089910910101010101010(8)(8)(9)(10)0.8(10.8)0.8(10.8)0.8(10.8)0.68P X P X P X P X C C C ---≥==+=+==-+-+-≈师:回到课程开始的问题:你能测算A 君的命运了吗? 生:计算得出:获奖的概率为10101020110.1822C ⎛⎫⎛⎫≈ ⎪ ⎪⎝⎭⎝⎭ 结果与当初的设想形成反差,这是所有赌民的体验,顺势引入情感主题:他用100分的热情只买到了18分的希望,现在多少码民正执着地做着独立重复试验,难道……(1)P X =(2)P X =()P X k =()P X n =他们为此输掉金钱,甚至输掉生命仅仅是一个偶然吗?五.小结(1) 独立重复试验的判定(2) n 次独立重复试验中某事件恰好发生K 次的概率公式(3) 概率公式()P X k 的分布规律六、作业(1).习题2.2 A 组第3题 B 组第1、3题(2)要求学生思考:我们的每一次考试也是独立重复试验吗?你在每次考试中成功的概率“V”是多少呢?世界上许多事情都可以进行独立重复试验,唯有人生不能重来,我们应该把握好一生中的每一次机会,并努力提高成功的概率!七.板书设计:(略)八.教后记:。
人教版高中数学选修2-3第二章2.2.3《独立重复试验与二项分布》学案
2.2.3独立重复试验与二项分布使用说明&学法指导1.对照学习目标,先用15分钟自学教材第54~56页内容,用红色笔做好疑难标记。
2.独立思考,找出疑难点,准备讨论解决。
3.参考资源:关注公众号数学微课堂,利用老师提供多媒体资源(微课、微博),加深知识的认知与理解。
学习目标:1.理解独立重复试验的概念及二项分布的定义; 2.能求简单的服从二项分布的随机变量的分布列。
预习案一、课前思考:掷一枚图钉,针尖向上的概率为p ,则针尖向下的概率为1p -问题1. 用(1,2,3,,)i A i n =… 表示第i 次掷得针尖朝上的事件,这n 次试验相互独立么?问题2. 若连续抛掷3次,3次中恰有1次针尖向上,有几种情况?问题3. 这3次中恰有1次针尖向上的概率是多少?问题4. 连续掷n 次,恰有k 次针尖向上的概率是多少?根据上述问题,你能得出那些结论? 二、归纳总结: 1.独立重复试验定义:在________________ , _________________ , _______________ ,称为n 次独立重复试验. 思考:独立重复实验有什么特点?2.独立重复试验的概率公式:在n 次独立重复试验中,事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中事件A 恰好发生k 次的概率()P X k == , 此时称随机变量X 服从 ,记作 ,并称p 为 . 三、概念深化判断下列试验是不是独立重复试验。
1. 抛掷一颗质地均匀的骰子 次,每一次抛掷可能出现“5”,也可能不出现“5”,而且每次掷出“5”的概率P 都是相等的。
( )2.种植n 粒棉花种子,每一粒种子可能出苗,也可能不出苗,其出苗率是67%。
( )3.某人射击1次,击中目标的概率是0.8,他射击10次。
( )4.依次投掷四枚质地不同的硬币,3次正面向。
( )5.某人射击,击中目标的概率是稳定的,他连续射击了10次,其中6次击中。
高中数学2_2_3独立重复试验与二项分布学案新人教B版选修2-3
2.2.3 独立重复试验与二项分布1.理解n 次独立重复试验的模型.2.理解二项分布.(难点)3.能利用独立重复试验的模型及二项分布解决一些简单的实际问题.(重点)[基础·初探]教材整理 独立重复试验与二项分布 阅读教材P 54~P 56,完成下列问题. 1.n 次独立重复试验在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.2.二项分布若将事件A 发生的次数设为X ,发生的概率为p ,不发生的概率q =1-p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是P (X =k )=C k n p k qn -k(k =0,1,2,…,n ),于是得到X 的分布列(q +p )n=C 0n p 0q n+C 1n p 1qn -1+…+C k n p k qn -k+…+C n n p n q 0各对应项的值,称这样的离散型随机变量X 服从参数为n ,p 的二项分布,记做X ~B (n ,p ).1.独立重复试验满足的条件是________.(填序号) ①每次试验之间是相互独立的; ②每次试验只有发生和不发生两种情况; ③每次试验中发生的机会是均等的; ④每次试验发生的事件是互斥的.【解析】 由n 次独立重复试验的定义知①②③正确. 【答案】 ①②③2.一枚硬币连掷三次,只有一次出现正面的概率为________.【解析】 抛掷一枚硬币出现正面的概率为12,由于每次试验的结果不受影响,故由独立重复试验可知,所求概率为P =C 13⎝ ⎛⎭⎪⎫12⎝ ⎛⎭⎪⎫122=38.【答案】 383.已知随机变量X 服从二项分布,X ~B ⎝ ⎛⎭⎪⎫6,13,则P (X =2)等于________.【导学号:】【解析】 P (X =2)=C 26⎝ ⎛⎭⎪⎫1-134⎝ ⎛⎭⎪⎫132=80243.【答案】80243[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]独立重复试验中的概率问题(1)某射手射击一次,击中目标的概率是0.9,他连续射击三次,且他每次射击是否击中目标之间没有影响,有下列结论:①他三次都击中目标的概率是0.93; ②他第三次击中目标的概率是0.9;③他恰好2次击中目标的概率是2×0.92×0.1; ④他恰好2次未击中目标的概率是3×0.9×0.12.其中正确结论的序号是________(把正确结论的序号都填上).(2)某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位): ①5次预报中恰有2次准确的概率; ②5次预报中至少有2次准确的概率;③5次预报中恰有2次准确,且其中第3次预报准确的概率.【自主解答】 (1)三次射击是三次独立重复试验,故正确结论的序号是①②④. 【答案】 ①②④(2)①记预报一次准确为事件A ,则P (A )=0.8. 5次预报相当于5次独立重复试验,2次准确的概率为P =C 25×0.82×0.23=0.051 2≈0.05, 因此5次预报中恰有2次准确的概率约为0.05.②“5次预报中至少有2次准确”的对立事件为“5次预报全部不准确或只有1次准确”,其概率为P =C 05×(0.2)5+C 15×0.8×0.24=0.006 72≈0.01.所以所求概率为1-P =1-0.01=0.99.所以5次预报中至少有2次准确的概率约为0.99. ③说明第1,2,4,5次中恰有1次准确.所以概率为P =C 14×0.8×0.23×0.8=0.02 048≈0.02, 所以恰有2次准确,且其中第3次预报准确的概率约为0.02.独立重复试验概率求法的三个步骤1.判断:依据n 次独立重复试验的特征,判断所给试验是否为独立重复试验.2.分拆:判断所求事件是否需要分拆.3.计算:就每个事件依据n 次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.[再练一题]1.(1)甲、乙两队进行排球比赛,已知在一局比赛中甲队胜的概率为23,没有平局.若进行三局两胜制比赛,先胜两局者为胜,甲获胜的概率为________.(2)在4次独立重复试验中,事件A 至少发生1次的概率为6581,则事件A 在1次试验中出现的概率为________.【解析】 (1)“甲获胜”分两类:①甲连胜两局;②前两局中甲胜一局,并胜最后一局.即P =⎝ ⎛⎭⎪⎫232+C 12×23×13×23=2027.(2)由题意知,C 04p 0(1-p )4=1-6581,p =13.【答案】 (1)2027 (2)13二项分布一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列. 【精彩点拨】 (1)首先判断ξ是否服从二项分布,再求分布列.(2)注意“首次遇到”“或到达”的含义,并明确η的取值.再求η取各值的概率.【自主解答】 (1)ξ~B ⎝ ⎛⎭⎪⎫5,13,ξ的分布列为P (ξ=k )=C k 5⎝ ⎛⎭⎪⎫13k ⎝ ⎛⎭⎪⎫235-k,k =0,1,2,3,4,5.(2)η的分布列为P (η=k )=P (前k 个是绿灯,第k +1个是红灯)=⎝ ⎛⎭⎪⎫23k ·13,k =0,1,2,3,4;P (η=5)=P (5个均为绿灯)=⎝ ⎛⎭⎪⎫235.故η的分布列为1.中的试验次数n 与成功概率p .2.解决二项分布问题的两个关注点 (1)对于公式P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n )必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验是独立重复地进行了n 次.[再练一题]2.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做每道题的可能性均为12,且各人的选择相互之间没有影响.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的人数为ξ名,求ξ的分布列.【解】 (1)设事件A 表示“甲选做14题”,事件B 表示“乙选做14题”,则甲、乙2名考生选做同一道题的事件为“A ∩B +A ∩B ”,且事件A ,B 相互独立.∴P (A ∩B +A ∩B )=P (A )P (B )+P (A )P (B ) =12×12+⎝ ⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-12=12.(2)随机变量ξ的可能取值为0,1,2,3,4,且ξ~B ⎝ ⎛⎭⎪⎫4,12.∴P (ξ=k )=C k 4⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫1-124-k=C k 4⎝ ⎛⎭⎪⎫124(k =0,1,2,3,4).∴随机变量ξ的分布列为ξ 01234P独立重复试验与二项分布综合应用探究1 王明在做一道单选题时,从A 、B 、C 、D 四个选项中随机选一个答案,他做对的结果数服从二项分布吗?二点分布与二项分布有何关系?【提示】 做一道题就是做一次试验,做对的次数可以为0次、1次,它服从二项分布.二点分布就是一种特殊的二项分布,即是n =1的二项分布.探究2 王明做5道单选题,每道题都随机选一个答案,那么他做对的道数服从二项分布吗?为什么?【提示】 服从二项分布.因为每道题都是随机选一个答案,结果只有两个:对与错,并且每道题做对的概率均相等,故做5道题可以看成“一道题”重复做了5次,做对的道数就是5次试验中“做对”这一事件发生的次数,故他做对的“道数”服从二项分布.探究3 王明做5道单选题,其中2道会做,其余3道均随机选一个答案,他做对的道数服从二项分布吗?如何判断一随机变量是否服从二项分布?【提示】 不服从二项分布.因为会做的两道题做对的概率与随机选取一个答案做对的概率不同,不符合二项分布的特点,判断一个随机变量是否服从二项分布关键是看它是否是n 次独立重复试验,随机变量是否为在这n 次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布.(2016·泰兴高二检测)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为23,23,12,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.(1)求随机变量ξ的分布列;(2)用A 表示“甲、乙两个队总得分之和等于3”这一事件,用B 表示“甲队总得分大于乙队总得分”这一事件,求P (AB ).【精彩点拨】 (1)由于甲队中每人答对的概率相同,且正确与否没有影响,所以ξ服从二项分布,其中n =3,p =23;(2)AB 表示事件A 、B 同时发生,即甲、乙两队总得分之和为3且甲队总得分大于乙队总得分.【自主解答】 (1)由题意知,ξ的可能取值为0,1,2,3,且p (ξ=0)=C 03⎝⎛⎭⎪⎫1-233=127, P (ξ=1)=C 1323⎝⎛⎭⎪⎫1-232=29, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23=49,P (ξ=3)=C 33⎝ ⎛⎭⎪⎫233=827. 所以ξ的分布列为(2)用C 表示“甲得23分乙得0分”这一事件,所以AB =C ∪D ,且C ,D 互斥,又P (C )=C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23⎣⎢⎡ 23×13×12+13×23×⎦⎥⎤12+13×13×12=1034, P (D )=C 33⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫13×13×12=435,由互斥事件的概率公式得P (AB )=P (C )+P (D )=1034+435=3435 =34243. 对于概率问题的综合题,首先,要准确地确定事件的性质,把问题化归为古典概型、互斥事件、独立事件、独立重复试验四类事件中的某一种;其次,要判断事件是A +B 还是AB ,确定事件至少有一个发生,还是同时发生,分别运用相加或相乘事件公式,最后,选用相应的求古典概型、互斥事件、条件概率、独立事件、n 次独立重复试验的概率公式求解.[再练一题]3.(2016·浙江余姚质检)为拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的12,13,16.现有3名工人独立地从中任选一个项目参与建设.(1)求他们选择的项目所属类别互不相同的概率;(2)记ξ为3人中选择的项目属于基础设施工程或产业建设工程的人数,求ξ的分布列.【解】 记第i 名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件A i ,B i ,C i ,i =1,2,3.由题意知A 1,A 2,A 3相互独立,B 1,B 2,B 3相互独立,C 1,C 2,C 3相互独立,A i ,B j ,C k (i ,j ,k =1,2,3且i ,j ,k 互不相同)相互独立,用P (A i )=12,P (B j )=13, P (C k )=16.(1)他们选择的项目所属类别互不相同的概率.P =3! P (A 1B 2C 3)=6P (A 1)P (B 2)P (C 3)=6×12×13×16=16.(2)法一:设3名工人中选择的项目属于民生工程的人数为η,由已知,η~B ⎝ ⎛⎭⎪⎫3,13,且ξ=3-η,所以P (ξ=0)=P (η=3)=C 33⎝ ⎛⎭⎪⎫133=127,P (ξ=1)=P (η=2)=C 23⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫23=29,P (ξ=2)=P (η=1)=C 13⎝ ⎛⎭⎪⎫13⎝ ⎛⎭⎪⎫232=49,P (ξ=3)=P (η=0)=C 03⎝ ⎛⎭⎪⎫233=827. 故ξ的分布列是法二:记第i D i ,i =1,2,3.由已知,D 1,D 2,D 3相互独立,且P (D i )=P (A i ∪C i )=P (A i )+P (C i )=12+16=23,所以ξ~B ⎝ ⎛⎭⎪⎫3,23,即P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫133-k ,k =0,1,2,3. 故ξ的分布列是1.已知X ~B ⎝ ⎛⎭⎪⎫6,13,则P (X =2)等于( )A.316 B.4243 C.13243D.80243【解析】 P (X =2)=C 26⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫234=80243.【答案】 D2.某电子管正品率为34,次品率为14,现对该批电子管进行测试,设第ξ次首次测到正品,则P (ξ=3)=( )A.C 23⎝ ⎛⎭⎪⎫142×34B.C 23⎝ ⎛⎭⎪⎫342×14C.⎝ ⎛⎭⎪⎫142×34D.⎝ ⎛⎭⎪⎫342×14【解析】 ξ=3表示第3次首次测到正品,而前两次都没有测到正品,故其概率是⎝ ⎛⎭⎪⎫142×34. 【答案】 C3.某市公租房的房源位于A ,B ,C 三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的.该市的4位申请人中恰有2人申请A 片区房源的概率为________.【导学号:】【解析】 每位申请人申请房源为一次试验,这是4次独立重复试验, 设申请A 片区房源记为A ,则P (A )=13,所以恰有2人申请A 片区的概率为C 24·⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫232=827.【答案】8274.设X ~B (4,p ),且P (X =2)=827,那么一次试验成功的概率p 等于________.【解析】 P (X =2)=C 24p 2(1-p )2=827,即p 2(1-p )2=⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫232,解得p =13或p =23.【答案】 13或235.甲、乙两人各射击一次击中目标的概率分别是23和34,假设两人射击是否击中目标,相互之间没有影响,每次射击是否击中目标,相互之间也没有影响.(1)求甲射击4次,至少1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.【解】 设“甲、乙两人各射击一次击中目标分别记为A ,B ”,则P (A )=23,P (B )=34.(1)甲射击4次,全击中目标的概率为C 44P 4(A )[1-P (A )]0=⎝ ⎛⎭⎪⎫234=1681.所以甲射击4次至少1次未击中目标的概率为 1-1681=6581. (2)甲、乙各射击4次,甲恰好击中2次,概率为C 24P 2(A )·[1-P (A )]2=6×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132=827.乙恰好击中3次,概率为C 34P 3(B )·[1-P (B )]1=2764.故所求概率为827×2764=18.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)学业分层测评 (建议用时:45分钟)[学业达标]一、选择题1.一头病猪服用某药品后被治愈的概率是90%,则服用这种药的5头病猪中恰有3头猪被治愈的概率为( )B.1-(1-0.9)3C.C 35×0.93×0.12D.C 35×0.13×0.92【解析】 由独立重复试验恰好发生k 次的概率公式知,该事件的概率为C 35×0.93×(1-0.9)2.【答案】 C2.假设流星穿过大气层落在地面上的概率为14,现有流星数量为5的流星群穿过大气层有2个落在地面上的概率为( )A.116B.135512C.45512D.271 024【解析】 此问题相当于一个试验独立重复5次,有2次发生的概率,所以P =C 25·⎝ ⎛⎭⎪⎫142·⎝ ⎛⎭⎪⎫343=135512. 【答案】 B3.在4次独立重复试验中事件出现的概率相同.若事件A 至少发生1次的概率为6581,则事件A 在1次试验中出现的概率为( )A.13B.25C.56D.34【解析】 设所求概率为p ,则1-(1-p )4=6581,得p =13.【答案】 A4.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位于点(2,3)的概率是( )A.⎝ ⎛⎭⎪⎫125B.C 25×⎝ ⎛⎭⎪⎫125C.C 35×⎝ ⎛⎭⎪⎫123D.C 25×C 35×⎝ ⎛⎭⎪⎫125【解析】 如图,由题可知,质点P 必须向右移动2次,向上移动3次才能位于点(2,3),问题相当于5次独立重复试验向右恰好发生2次的概率.所以概率为P =C 25×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫123=C 25⎝ ⎛⎭⎪⎫125.故选B.【答案】 B5.若随机变量ξ~B ⎝ ⎛⎭⎪⎫5,13,则P (ξ=k )最大时,k 的值为( ) A.1或2 B.2或3 C.3或4D.5【解析】 依题意P (ξ=k )=C k5×⎝ ⎛⎭⎪⎫13k ×⎝ ⎛⎭⎪⎫235-k ,k =0,1,2,3,4,5.可以求得P (ξ=0)=32243,P (ξ=1)=80243,P (ξ=2)=80243,P (ξ=3)=40243,P (ξ=4)=10243,P (ξ=5)=1243.故当k =2或1时,P (ξ=k )最大.【答案】 A 二、填空题6.已知汽车在公路上行驶时发生车祸的概率为0.001,如果公路上每天有1 000辆汽车通过,则公路上发生车祸的概率为________;恰好发生一起车祸的概率为________.(已知0.9991 000≈0.367 70,0.999999≈0.368 06,精确到0.000 1)【导学号:】【解析】 设发生车祸的车辆数为X ,则X ~B (1 000,0.001). (1)记事件A :“公路上发生车祸”,则P (A )=1-P (X =0)=1-0.9991 000≈1-0.367 70=0.632 3.(2)恰好发生一次车祸的概率为P (X =1)=C 11 000×0.001×0.999999≈0.368 06≈0.368 1. 【答案】 0.632 3 0.368 17.在等差数列{a n }中,a 4=2,a 7=-4,现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为______.(用数字作答)【解析】 由已知可求通项公式为a n =10-2n (n =1,2,3,…),其中a 1,a 2,a 3,a 4为正数,a 5=0,a 6,a 7,a 8,a 9,a 10为负数,∴从中取一个数为正数的概率为410=25,取得负数的概率为12.∴取出的数恰为两个正数和一个负数的概率为C 23×⎝ ⎛⎭⎪⎫252×⎝ ⎛⎭⎪⎫121=625.【答案】6258.下列说法正确的是________(填序号).①某同学投篮的命中率为0.6,他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6);②某福彩的中奖概率为p ,某人一次买了8张,中奖张数X 是一个随机变量,且X ~B (8,p );③从装有5个红球、5个白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数X 是随机变量,且X ~B ⎝⎛⎭⎪⎫n ,12.【解析】 ①②显然满足独立重复试验的条件,而③虽然是有放回地摸球,但随机变量X 的定义是直到摸出白球为止,也就是说前面摸出的一定是红球,最后一次是白球,不符合二项分布的定义.【答案】 ①② 三、解答题9.(2016·滨州高二检测)某市医疗保险实行定点医疗制度,按照“就近就医,方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区有A ,B ,C 三家社区医院,并且他们的选择相互独立.设4名参加保险人员选择A 社区医院的人数为X ,求X 的分布列.【解】 由已知每位参加保险人员选择A 社区的概率为13,4名人员选择A 社区即4次独立重复试验,即X ~B ⎝ ⎛⎭⎪⎫4,13,所以P (X =k )=C k4·⎝ ⎛⎭⎪⎫13k ·⎝ ⎛⎭⎪⎫234-k (k =0,1,2,3,4),所以X 的分布列为三局的队获胜,并且比赛就此结束,现已知甲、乙两队每比赛一局,甲队获胜的概率为35,乙队获胜的概率为25,且每局比赛的胜负是相互独立的.(1)求甲队以3∶2获胜的概率; (2)求乙队获胜的概率.【解】 (1)设甲队以3∶2获胜的概率为P 1,则P 1=C 24⎝ ⎛⎭⎪⎫352·⎝ ⎛⎭⎪⎫252·35=6483 125. (2)设乙队获胜的概率为P 2,则P 2=⎝ ⎛⎭⎪⎫253+C 23⎝ ⎛⎭⎪⎫252·35·25+C 24⎝ ⎛⎭⎪⎫252·⎝ ⎛⎭⎪⎫352·25=9923 125.[能力提升]1.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( )【解析】 甲获胜有两种情况,一是甲以2∶0获胜,此时p 1=0.62=0.36;二是甲以2∶1获胜,此时p 2=C 12×0.6×0.4×0.6=0.288,故甲获胜的概率p =p 1+p 2=0.648.【答案】 D2.(2016·孝感高级中学期中)掷一枚质地均匀的骰子n 次,设出现k 次点数为1的概率为P n (k ),若n =20,则当P n (k )取最大值时,k 为( )A.3B.4C.8D.10【解析】 掷一枚质地均匀的骰子20次,其中出现点数为1的次数为X ,X ~B ⎝⎛⎭⎪⎫20,16,P n (k )=C k 20·⎝ ⎛⎭⎪⎫5620-k ·⎝ ⎛⎭⎪⎫16k. P n k P n k -1=15⎝ ⎛⎭⎪⎫21k -1.当1≤k ≤3时,15⎝ ⎛⎭⎪⎫21k -1>1,P n (k )>P n (k -1).当k ≥4时,15⎝ ⎛⎭⎪⎫21k -1<1,P n (k )<P n (k -1).因此k =3时,P n (k )取最大值.故选A.【答案】 A3.有n 位同学参加某项选拔测试,每位同学能通过测试的概率都是p (0<p <1),假设每位同学能否通过测试是相互独立的,则至少有一位同学通过测试的概率为________.【解析】 所有同学都不通过的概率为(1-p )n,故至少有一位同学通过的概率为1-(1-p )n.【答案】 1-(1-p )n4.“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的.(1)求在1次游戏中玩家甲胜玩家乙的概率;(2)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记做随机变量X ,求X 的分布列.【解】 (1)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是(石头,石头),(石头,剪刀),(石头,布),(剪刀,石头),(剪刀,剪刀),(剪刀,布),(布,石头),(布,剪刀),(布,布),共有9个基本事件.玩家甲胜玩家乙的基本事件分别是(石头,剪刀),(剪刀,布),(布,石头),共有3个.所以在1次游戏中玩家甲胜玩家乙的概率P =13.(2)X 的可能取值分别为0,1,2,3,X ~B ⎝ ⎛⎭⎪⎫3,13, 则P (X =0)=C 03·⎝ ⎛⎭⎪⎫233=827,P (X =1)=C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫232=49,P (X =2)=C 23·⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫231=29, P (X =3)=C 33·⎝ ⎛⎭⎪⎫133=127. X 的分布列如下:。
人教版高中数学选修2-3第二章《2.2.3独立重复试验与二项分布》教学设计
《2.2.3 独立重复试验与二项分布》教学设计课题2.2.3独立重复试验与二项分布课型新授课教师时间班级高二2班教具多媒体、实物展台教学目标1.知识与技能(1)理解n次独立重复试验的概念及二项分布模型。
(2)能判断一个具体问题是否服从二项分布,并能解决此问题。
2.过程与方法(1)在聆听数学故事和参加游戏活动中,激发学生学习热情,积极参与,主动交流,归纳出独立重复试验概念,并建构出伯努利概型;(2)学生经历知识发生、发展的过程中渗透由特殊到一般、由具体到抽象的数学思想方法。
3.情感、态度与价值观(1)学生通过对概率论的产生以及伯努利家族的了解,感受数学来源与生活又应用于生活;(2)生活处处皆学问,引导学生学会勇于探索、敢于创新、善于应对新知识的科学态度。
重点独立重复试验概念、伯努利概型问题的理解以及应用二项分布模型解决一些简单的实际问题。
难点二项分布概率模型的理解与应用。
教学策略1.通过设置游戏活动、问题探究和归纳建构等环节,完成科学探究中“发现问题——分析问题——解决问题”的一般方法的引领;通过对本节知识的探究学习,让学生感知和自主构建概率分布模型以及体会应用该模型求解实际问题的方法。
2.学生采取自主探究、小组讨论、合作交流的学习方式,并展示自己的学习成果。
教学过程教学内容师生活动教学设计意图故事引入探究1.故事引入—赌场里产生的数学1651年夏天,法国数学家帕斯卡偶遇一位名叫梅雷的贵族公子,他是一名赌场好手,向帕斯卡请教了他曾经在赌博中遇到的“分赌注”问题。
梅雷说他和赌友掷骰子,各押32个金币的赌注,约定如果梅雷先掷出三次6点或者对方先掷出4点,就算赢了对方。
结果当梅雷两次掷出6点,赌友一次掷出4点时,梅雷因有事只好中断赌博。
剩下的问题是如何分这64个金币?赌友认为该分得三分之一,梅雷认为自己该分得四分之三。
到底谁说的对呢?梅雷提出的“分赌注”问题把帕斯卡这位神童数学家难住了,他苦苦思索不得要领,写信给好友费尔马讨论这个问题,两人一致认为梅雷的分法是对的。
高中数学选修2-3优质学案10:2.2.3 独立重复试验与二项分布
2.2.3 独立重复试验与二项分布新知初探 1.独立重复试验在条件下重复做的n 次试验称为n 次独立重复试验. 2.二项分布在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n .此时称随机变量X 服从二项分布,记作X ~,并称p 为. 点睛 两点分布与二项分布的区别1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)独立重复试验每次试验之间是相互独立的.( ) (2)独立重复试验每次试验只有发生与不发生两种结果.( ) (3)独立重复试验各次试验发生的事件是互斥的.( ) 2.已知X ~B ⎝⎛⎭⎫6,13,则P (X =4)=________. 3.连续掷一枚硬币5次,恰好有3次出现正面向上的概率是________.4.某人射击一次击中目标的概率为0.6, 经过3次射击,此人至少有两次击中目标的概率为________. 课堂讲练题型一独立重复试验概率的求法典例 某人射击5次,每次中靶的概率均为0.9,求他至少有2次中靶的概率. 类题通法独立重复试验概率求解的关注点(1)解此类题常用到互斥事件概率加法公式,相互独立事件概率乘法公式及对立事件的概率公式.(2)运用独立重复试验的概率公式求概率时,首先判断问题中涉及的试验是否为n 次独立重复试验,判断时注意各次试验之间是相互独立的,并且每次试验的结果只有两种(即要么发生,要么不发生),在任何一次试验中某一事件发生的概率都相等,然后用相关公式求概率. 活学活用某射手进行射击训练,假设每次射击击中目标的概率为35,且每次射击的结果互不影响,已知射手射击了5次,求:(1)其中只在第一、三、五次击中目标的概率; (2)其中恰有3次击中目标的概率;(3)其中恰有3次连续击中目标,而其他两次没有击中目标的概率.题型二二项分布问题典例 已知某种从太空飞船中带回来的植物种子每粒成功发芽的概率都为13,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,如果某次没有发芽,则称该次试验是失败的.(1)第一小组做了3次试验,记该小组试验成功的次数为X ,求X 的概率分布列. (2)第二小组进行试验,到成功了4次为止,求在第4次成功之前共有3次失败的概率. 类题通法判断一个随机变量是否服从二项分布的关键(1)对立性,即一次试验中,事件发生与否二者必居其一. (2)重复性,即试验独立重复地进行了n 次. (3)随机变量是事件发生的次数. 活学活用1.已知X ~B ⎝⎛⎭⎫10, 13,则P (X =2)=________.2.某一中学生心理咨询中心服务电话接通率为34,某班3名同学商定明天分别就同一问题询问该服务中心.且每人只拨打一次,求他们中成功咨询的人数X 的分布列.——★ 参 考 答 案 ★——新知初探 1.相同2.B (n ,p ) 成功概率 小试身手1.[[答案]](1)√ (2)√ (3)× 2.[[答案]]202433.[[答案]]5164.[[答案]]0.648 课堂讲练题型一独立重复试验概率的求法 典例 解:[法一 直接法]在5次射击中恰好有2次中靶的概率为C 25×0.92×0.13; 在5次射击中恰好有3次中靶的概率为C 35×0.93×0.12; 在5次射击中恰好有4次中靶的概率为C 45×0.94×0.1; 在5次射击中5次均中靶的概率为C 55×0.95. 所以至少有2次中靶的概率为C 25×0.92×0.13+C 35×0.93×0.12+C 45×0.94×0.1+C 55×0.95=0.008 1+0.072 9+0.328 05+0.590 49=0.999 54. [法二 间接法]至少有2次中靶的对立事件是至多有1次中靶,它包括恰好有1次中靶与全没有中靶两种情况,显然这是两个互斥事件.在5次射击中恰好有1次中靶的概率为C 15×0.9×0.14; 在5次射击中全没有中靶的概率为0.15, 所以至少有2次中靶的概率为1-C 15×0.9×0.14-0.15=1-0.000 45-0.000 01=0.999 54. 活学活用解:(1)该射手射击了5次,其中只在第一、三、五次击中目标,是在确定的情况下击中目标3次,也就是在第二、四次没有击中目标,所以只有一种情况,又因为各次射击的结果互不影响,故所求概率为P =35×⎝⎛⎭⎫1-35×35×⎝⎛⎭⎫1-35×35=1083 125. (2)该射手射击了5次,其中恰有3次击中目标.根据排列组合知识,5次当中选3次,共有C 35种情况,因为各次射击的结果互不影响,所以符合n 次独立重复试验概率模型.故所求概率为P =C 35×⎝⎛⎭⎫353×⎝⎛⎭⎫1-352=216625.(3)该射手射击了5次,其中恰有3次连续击中目标,而其他两次没有击中目标,应用排列组合知识,把3次连续击中目标看成一个整体可得共有C 13种情况. 故所求概率为P =C 13·⎝⎛⎭⎫353·⎝⎛⎭⎫1-352=3243 125. 题型二二项分布问题典例 解:(1)由题意,随机变量X 可能取值为0,1,2,3, 则X ~B ⎝⎛⎭⎫3,13. 即P (X =0)=C 03⎝⎛⎭⎫130⎝⎛⎭⎫1-133=827, P (X =1)=C 13⎝⎛⎭⎫131⎝⎛⎭⎫1-132=49, P (X =2)=C 23⎝⎛⎭⎫132⎝⎛⎭⎫1-131=29, P (X =3)=C 33⎝⎛⎭⎫133=127. 所以X 的概率分布列为(2)第二小组第7每次试验又是相互独立的,因此所求概率为P =C 36⎝⎛⎭⎫133×⎝⎛⎭⎫1-133×13=1602 187. 活学活用 1.[[答案]]1 2806 561[[解析]]P (X =2)=C 210⎝⎛⎭⎫132⎝⎛⎭⎫238=1 2806 561. 2.解:由题意可知:X ~B ⎝⎛⎭⎫3,34, 所以P (X =k )=C k 3⎝⎛⎭⎫34k ·⎝⎛⎭⎫143-k ,k =0,1,2,3. 即P (X =0)=C 03×⎝⎛⎭⎫340×⎝⎛⎭⎫143=164; P (X =1)=C 13×34×⎝⎛⎭⎫142=964; P (X =2)=C 23×⎝⎛⎭⎫342×14=2764; P (X =3)=C 33×⎝⎛⎭⎫343=2764.分布列为。
人教版数学高二A版选修2-3学案独立重复试验与二项分布
课堂导学三点剖析一、没有限制条件的独立重复试验问题 【例1】 某人射击一次命中目标的概率是21,求此人射击6次恰好3次命中目标的概率. 思路分析:这是独立重复试验问题,分为33C 个互斥事件的和,每一事件的概率都是(21)3(1-21)6-3. 解:依题意,此人射击6次恰3次命中目标的概率为P(x=3)= 36C (21)3(1-21)6-3=165. 温馨提示若X —B(n,P),则P(x=k)= kn C p k (1-p)n-k ,此公式用于计算一次试验中事件发生的概率为p时,n 次独立重复试验中这个事件恰k 次发生的概率.这k 次是哪k 次呢?它有kn C 种可能的情况,从而这个问题转化为kn C 个互斥事件的和,每一个互斥事件又是n 个相互独立的事件的积,其中该事件发生k 次,其对立事件发生n-k 次,概率都为p k (1-p)n -k ,这样,n 次独立重复试验中这个事件恰好发生k 次的概率为P(x=k)= kn C p k (1-p)n -k.必须特别明确的是,kn C 有特定的意义,是具有相同概率p k (1-p)n -k 的互斥事件发生k 次的所有可能数目.二、有限制条件的独立重复试验问题 【例2】 某人射击一次命中目的概率为21,求此人射击6次3次命中且恰有两次连续命中的概率.思路分析:这是独立重复试验问题,但是6次射击命中三次时又有了限制条件“恰有两次连续命中”,这样,这个问题就不是36C 个互斥事件的和了,那么该问题有多少个互斥事件的和呢?这两次连续命中与另一次命中是间隔排到问题,共有24A 种可能情况,从而该问题转化为24A 个互斥事件的和的概率问题.解:“6次射击三次命中且恰有两次连续命中”包含24A 个互斥事件,其概率为:24A ·(21)3(1-21)3=163.温馨提示公式p(x=k)= kn C p k (1-p)n -k只能用于计算不附带限制条件的独立重复试验问题.附带限制条件的独立重复试验问题关键是求出可以转化为互斥事件的个数,而每一个互斥事件的概率都还是p k (1-p)n-k三、有关二项分布问题【例3】 某小组有10台各为7.5千瓦的机床,如果每台机床的使用情况是相互独立的,且每台机床平均每小时开动12分钟,问全部机床用电超过48千瓦的可能性有多少? 解析:由于每台机床正在工作的概率是6012=51,而且每台机床有“工作”与“不工作”两种情况,故某一时刻正在工作的机床台数ξ服从二项分布,即ξ—B(10,51)且 P(ξ=k)=k C 10(51)k (54)10-k ,(k=0,1,2,…,10). 48千瓦可供6台机床同时工作,“用电超过48千瓦”,就意味着“有7台或7台以上的机床在工作”,这一事件的概率为P(ξ≥7)=P(ξ=7)+P(ξ=8)+P(ξ=9)+P(ξ=10)=710C (51)7(54)3+810C (51)8(54)2+910C (51)9(54)1+1010C (51)10(54)0≈11571这说明用电超过48千瓦的可能性很小,根据这一点,我们可以选择适当的供电设备.做到既保证供电又合理节约电源. 各个击破【类题演练1】假设每一架飞机引擎在飞行中故障率为1-P,且各引擎是否故障是独立的,如果至少50%的引擎能正常运行,飞机就可以成功地飞行,问对于多大的P 而言,4引擎飞机比2引擎的飞机更为安全?解析:4引擎飞机成功飞行的概率为24C P 2(1-P)2+34C P 3(1-P)+44C P 4=6P 2(1-P)2+4P 3(1-P)+P 4.2引擎飞机成功飞行的概率为12C P(1-P)+ 22C P 2=2P(1-P)+P 2.要使4引擎飞机比2引擎飞机安全,只要6P 2(1-P)2+4P 3(1-P)+P 4≥2P(1-P)+P 2. 化简,分解因式得(P-1)2(3P-2)≥0. 所以3P-2≥0, 即得P≥32. 答:当引擎不出故障的概率不小于32时,4引擎飞机比2引擎飞机安全. 【变式提升1】一批产品的废品率p=0.03,进行20次重复抽样(每次抽一个,观察后放回去再抽下一个),求出现废品的频率为0.1的概率.解析:令ξ表示20次重复抽取中废品出现的次数,它服从二项分布. P(20=0.1)=P(ξ=2)=0.098 8【类题演练2】某人射击一次命中目标的概率是21,求此人射击6次命中目标且不连续命中的概率.解析:此人射击6次三次命中且不连续命中的概率为:P=34C (21)3(1-21)3=161. 【变式提升2】某产品的出厂要经过五个指标的抽检,有两项或两项以上指标的抽检不合格时,该产品不能出厂,每项指标不合格的概率都为13,试求该项产品经过五项指标的抽检,恰有连续三项不合格而不能出厂的概率.解析:相邻三项为:1,2,3;2,3,4;3,4,5.此时所求事件包含三个互斥事件,且每个事件的概率为(31)3(1-31)2,故所求概率为: P=3(31)3(1-31)2=814【类题演练3】某厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取解析:由题意“任意地连续取出2件”可认为两次独立重复试验,则次品数ξ服从二项分布,即 ξ-(2,0.05),∴ξ=0时,P 0=02C (0.95)2=0.902 5; ξ=1时,P 1=12C 0.95×0.05=0.095; ξ=2时,P 2=22C 0.052=0.002 5.【变式提升3】10部机器各自独立工作,因修理调整等原因,每部机器停车的概率为0.2.求同时停车数目ξ的分布.。
2012高中数学人教新课标选修2-3第二章《独立重复试验与二项分布》教案2
高中数学选修2-3修订教案2.2.3独立重复试验与二项分布(第二课时)教学目标:了解n 次独立重复试验的模型及二项分布的简单应用教学重点:了解n 次独立重复试验的模型及二项分布的简单应用教学过程一、复习引入:1. 已知事件B 发生条件下事件A 发生的概率称为事件A 关于事件B 的条件概率,记作(|)P A B .2. 对任意事件A 和B ,若()0P B ≠,则“在事件B 发生的条件下A 的条件概率”,记作P(A | B),定义为 (|)P AB P A B P B ()=()3. 事件B 发生与否对事件A 发生的概率没有影响,即 (|)()P A B P A =. 称A 与B 独立 4 独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验5.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)nP P -+展开式的第1k +项二、讲解新课:例1.十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?解:依题意,从低层到顶层停不少于3次,应包括停3次,停4次,停5次,……,直到停9次∴从低层到顶层停不少于3次的概率 3364455549999991111111()()()()()()()2222222P C C C C =++++ 3459990129999999911()()2()()22C C C C C C C ⎡⎤=+++=-++⎣⎦+991233(246)()2256=-= 设从低层到顶层停k 次,则其概率为k 9999111C ()()()222k k k C -=, ∴当4k =或5k =时,9k C 最大,即991()2k C 最大, 答:从低层到顶层停不少于3次的概率为233256,停4次或5次概率最大.例2.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率. 解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12. 记事件A = “甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”,记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜∴甲打完3局取胜的概率为33311()()28P A C ==. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为2231113()()22216P B C =⨯⨯⨯=. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完5局才能取胜的概率为22241113()()()22216P C C =⨯⨯⨯=. (2)事件D =“按比赛规则甲获胜”,则D A B C =++,又因为事件A 、B 、C 彼此互斥, 故1331()()()()()816162P D P A B C P A P B P C =++=++=++=. 答:按比赛规则甲获胜的概率为12. 例3.一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(2)若每穴种3粒,求恰好两粒发芽的概率.(lg 20.3010=) 解:记事件A =“种一粒种子,发芽”,则()0.8P A =,()10.80.2P A =-=,(1)设每穴至少种n 粒,才能保证每穴至少有一粒发芽的概率大于98%.∵每穴种n 粒相当于n 次独立重复试验,记事件B =“每穴至少有一粒发芽”,则00()(0)0.8(10.8)0.2n n n n P B P C ==-=. ∴()1()10.2n P B P B =-=-.由题意,令()98%P B >,所以0.20.02n <,两边取常用对数得,lg 0.2lg 0.02n <.即(lg 21)lg 22n -<-, ∴lg 22 1.6990 2.43lg 210.6990n ->=≈-,且n N ∈,所以取3n ≥. 答:每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于98%.(2)∵每穴种3粒相当于3次独立重复试验,∴每穴种3粒,恰好两粒发芽的概率为2230.80.20.384P C =⨯⨯==,答:每穴种3粒,恰好两粒发芽的概率为0.384课堂小节:本节课学习了n 次独立重复试验的模型及二项分布的简单应用 课堂练习:课后作业:。
高中数学选修2-3优质学案:2.2.3 独立重复试验与二项分布
2.2.3 独立重复试验与二项分布[学习目标] 1.理解n次独立重复试验的模型.2.理解二项分布.3.能利用独立重复试验的模型及二项分布解决一些简单的实际问题.知识点一独立重复试验1.独立重复实验的定义一般地,在相同条件下重复做的n次试验称为n次独立重复实验.2.独立重复试验中事件A恰好发生k次的概率一般地,如果在1次实验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n.思考1有放回地抽样试验是独立重复试验吗?思考2在n次独立重复试验中,各次试验的结果相互有影响吗?知识点二二项分布一般地,在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,_________________,k=0,1,2,…,n.此时称随机变量X服从二项分布,记作X~__________,并称p为____________.思考你能说明两点分布与二项分布之间的关系吗?题型一独立重复试验的判断例1判断下列试验是不是独立重复试验:(1)依次投掷四枚质地不同的硬币,3次正面向上.(2)某人射击,击中目标的概率是稳定的,他连续射击了10次,其中6次击中.(3)口袋中装有5个白球,3个红球,2个黑球,依次从中抽取5个球,恰好抽出4个白球.反思与感悟判断的依据要看该实验是不是在相同的条件下可以重复进行,且每次试验相互独立,互不影响.跟踪训练1下列事件:①运动员甲射击一次,“射中9环”与“射中8环”;②甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”;③甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没射中目标”;④在相同的条件下,甲射击10次,5次击中目标.其中是独立重复试验的是()A.①B.②C.③D.④题型二独立重复试验的概率例2某单位6个员工借助互联网开展工作,每个员工上网的概率是0.5(相互独立).(1)求至少3人同时上网的概率;(2)至少几人同时上网的概率小于0.3.反思与感悟解答独立重复试验中的概率问题要注意以下几点:(1)先要判断问题中所涉及的试验是否为n次独立重复试验;(2)要注意分析所研究的事件的含义,并根据题意划分为若干个互斥事件的并.(3)要善于分析规律,恰当应用排列、组合数简化运算.跟踪训练2 甲、乙两队进行排球比赛,已知在一局比赛中甲队胜的概率为23,没有平局.(1)若进行三局两胜制比赛,先胜两局者为胜,甲获胜的概率是多少? (2)若进行五局三胜制比赛,甲获胜的概率为多少?题型三 二项分布的应用例3 100件产品中有3件不合格品,每次取一件,有放回地抽取3次,求取得不合格品的件数X 的分布列.反思与感悟 利用二项分布来解决实际问题的关键在于在实际问题中建立二项分布的模型,也就是看它是否为n 次独立重复试验,随机变量是否为在这n 次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布.跟踪训练3 某公司安装了3台报警器,它们彼此独立工作,且发生险情时每台报警器报警的概率均为0.9.求发生险情时,下列事件的概率: (1)3台都未报警; (2)恰有1台报警; (3)恰有2台报警; (4)3台都报警; (5)至少有2台报警;(6)至少有1台报警.1.若X ~B (5,0.1),则P (X ≤2)等于( ) A .0.665 B .0.00856 C .0.91854D .0.991442.一头猪服用某药品后被治愈的概率是90%,则服用这种药的5头猪中恰有3头被治愈的概率为( ) A .0.93B .1-(1-0.9)3C .C 35×0.93×0.12D .C 35×0.13×0.923.在4次独立重复试验中,事件出现的概率相同,若事件A 至少出现一次的概率为6581,则事件A 在一次试验中出现的概率为( ) A.23B.25C.56D.134.将一枚均匀的硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________. 5.在等差数列{a n }中,a 4=2,a 7=-4.现从数列{a n }的前10项中随机取数,每次取出一个数,取后放回,连续抽取三次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为________.1.独立重复试验要从三方面考虑:第一,每次试验是在相同条件下进行的;第二,各次试验中的事件是相互独立的;第三,每次试验都只有两种结果,即事件要么发生,要么不发生. 2.如果一次试验中某事件发生的概率是p ,那么n 次独立重复试验中这个事件恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k .此概率公式恰为[(1-p )+p ]n 展开式的第k +1项,故称该公式为二项分布公式.提醒:完成作业 2.2.3[答案]精析知识梳理 知识点一思考1 是.有放回地抽样试验是相同条件下重复做的n 次试验,是独立重复试验. 思考2 在n 次独立重复试验中,各次试验的结果相互之间无影响.因为每次试验是在相同条件下独立进行的,所以第i 次试验的结果不受前i -1次结果的影响(其中i =1,2,…,n ). 知识点二P (X =k )=C k n p k (1-p )n -kB (n ,p ) 成功概率 思考 两点分布是特殊的二项分布,即X ~B (n ,p )中,当n =1时,二项分布便是两点分布,也就是说二项分布是两点分布的一般形式. 题型探究例1 解 (1)由于试验的条件不同(质地不同),因此不是独立重复试验. (2)某人射击且击中的概率是稳定的,因此是独立重复试验.(3)每次抽取,试验的结果有三种不同的颜色,且每种颜色出现的可能性不相等,因此不是独立重复试验.跟踪训练1 D [①③符合互斥事件的概念,是互斥事件;②是相互独立事件;④是独立重复试验.]例2 解 (1)至少3人同时上网的概率等于1减去至多2人同时上网的概率,即p =1-C 06×(0.5)6-C 16×(0.5)1×(0.5)5-C 26×(0.5)2×(0.5)4=2132. (2)至少4人同时上网的概率为C 46×(0.5)4×(0.5)2+C 56×(0.5)5×(0.5)1+C 66×(0.5)6=1132>0.3. 至少5人同时上网的概率为C 56×(0.5)5×(0.5)1+C 66×(0.5)6=764<0.3. ∴至少5人同时上网的概率小于0.3.跟踪训练2 解 (1)甲第一、二局胜,或第二、三局胜,或第一、三局胜,则P =(23)2+C 12×23×13×23=2027. (2)甲前三局胜,或甲第四局胜,而前三局仅胜两局,或甲第五局胜,而前四局仅胜两局,则 P =(23)3+C 23×(23)2×13×23+C 24×(23)2×(13)2×23=6481. 例3 解 X 的可能取值为0,1,2,3.由于是有放回地每次取一件,连续取3次,所以相当于做了3次独立重复试验,每次抽取到不合格品的概率p =0.03,因此X ~B (3,0.03).P (X =0)=C 03×0.030×(1-0.03)3=0.912673, P (X =1)=C 13×0.031×(1-0.03)2=0.084681, P (X =2)=C 23×0.032×(1-0.03)1=0.002619, P (X =3)=C 33×0.033×(1-0.03)0=0.000027.所以X 的分布列为跟踪训练3 ,则它的分布列为P (X =k )=C k 30.9k (1-0.9)3-k (k =0,1,2,3). (1)3台都未报警的概率为P (X =0)=C 03×0.90×0.13=0.001;(2)恰有1台报警的概率为P (X =1)=C 13×0.91×0.12=0.027;(3)恰有2台报警的概率为P (X =2)=C 23×0.92×0.1=0.243;(4)3台都报警的概率为P (X =3)=C 33×0.93×0.10=0.729;(5)至少有2台报警的概率为P (X ≥2)=P (X =2)+P (X =3)=0.243+0.729=0.972; (6)至少有1台报警的概率为P (X ≥1)=1-P (X =0)=1-0.001=0.999. 当堂检测 1.D 2.C 3.D 4.1132 5.625[解析] 由a 4=2,a 7=-4可得等差数列{a n }的通项公式为a n =10-2n (n =1,2,…,10).由题意知三次取数相当于三次独立重复试验,在每次试验中取得正数的概率为25,取得负数的概率为12.在三次取数中,取出的数恰好为两个正数和一个负数的概率为C 23×⎝⎛⎭⎫252×⎝⎛⎭⎫121=625.。
2.2.3 独立重复试验与二项分布 教学设计 人教版高中数学选修2-3
《独立重复试验与二项分布第1课时》教学设计课型:新授课一、教学内容解析理解教学内容是教师教好数学学科的基本素养,掌握教学内容是合理开展一堂课的重要前提,首先谈谈我对本节教学内容的分析和理解。
《独立重复试验与二项分布》是《高中数学人教 A 版》(选修2-3)第二章 2.2.3 节的内容,为了更好的驾驭课堂,从教材内容到教学内容需要进行合理的加工。
本节课具有着承前启后的作用,既是前面的互斥事件概率、条件概率、相互独立事件概率的求法以及分布列有关内容等知识的延续和扩展,又为后续内容提供理论基础。
二项分布是继超几何分布后的又一应用广泛的概率模型,在自然现象和现实生活中,大量的随机变量都服从或近似的服从二项分布,而且独立重复试验与二项分布是高考中的重要考点。
本节课是从实际出发,通过抽象思维,建立数学模型,进而认知数学理论,应用于实际的过程。
学生通过本节课的学习会对今后数学及相关学科的学习产生深远的影响,因此本节课的教学重点是:独立重复试验、二项分布知识的理解及应用。
二、学生学情分析理解学生学情是教好数学、发挥数学育人功能的前提条件,下面对我任教的两个班学生的具体学情进行分析。
教学对象:市直属高中学生。
学生对超几何分布、事件相互独立性、条件概率等知识掌握良好,已经具备了基本数学建模的能力,因此对本节课的学习有着良好的理论基础和知识储备。
学生思维比较活跃,善于表达和沟通,善于观察发现问题,乐于和教师分享他们的学习情况和解题心得。
识别概率模型是解决概率问题的关键,由于学习本节课前学生刚刚接触概率模型,在引入新的概率模型时,学生对概率模型的识别能力较为薄弱,在课堂教学中需要教师加以引导,因此本节课的教学难点是:概率模型的辨别和二项分布模型的构建。
三、教学目标设置基于本节课的教学内容、学生的实际学情以及教学的重难点,我设置了如下教学目标(一)知识目标:1.理解独立重复试验的定义及二项分布模型的意义;2.会判断具体问题中的随机变量是否服从二项分布;3.能利用独立重复试验与二项分布的相关知识解决简单的概率问题。
人教课标版高中数学选修2-3:《独立重复实验与二项分布(第1课时)》教案-新版
2.2.2 独立重复试验与二项分布(第1课时)一、教学目标1.核心素养根据由特殊到一般的思维方式,归纳二项分布的概念及其概率计算公式,从而提升学生数学建模能力和逻辑推理能力.2.学习目标(本课时的目标应与后面的“问题探究”对应,每个探究解决一个目标)(1)从具体情境中理解n次独立重复试验及其特点及二项分布,并能解决一些简单的实际问题.(2)从具体情境中理解二项分布及其概率计算公式.(3)能解决一些简单与n次独立重复试验的模型及二项分布有关的实际问题3.学习重点理解掌握n次独立重复试验的模型及其基本特点,正确掌握二项分布.4.学习难点能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算.二、教学设计(一)课前设计预习任务任务1(可以多个任务,问是学生提问,编者不用考虑)阅读教材,思考:n次独立重复试验的定义是什么?二项分布的内容是什么?任务2归纳出n次独立重复试验的基本特点,默写二项分布的计算公式.预习自测1.n次独立重复试验应满足的条件:①每次试验之间是相互独立的;②每次试验只有发生与不发生两种结果之一;③每次试验发生的机会是均等的;④各次试验发生的事件是互斥的.其中正确的是()A .①②B .②③C .①②③D .①②④ 解:C .2.二项分布计算公式()=(1)kn k k n P X k C p p -=-中,,,1,n p p k -分别表示的是( )①事件不发生的概率;②事件发生的概率;③实验总次数;④事件发生的次数. A .①②③④ B .③①②④ C .③②①④ D .①②④③ 解:C . (二)课堂设计 1.知识回顾(1)不可能同时发生的事件A 与事件B 称为互斥事件,且()=()()P A B P A P B ++.(2)在事件A 发生的条件下事件B 发生的概率叫做“在A 条件下B 发生的概率”,记作(|)P B A ,且()(|)=()P AB P B A P A . (3)事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫做相互独立事件,且()=()()P AB P A P B .(4)事件12,,n A A A ⋅⋅⋅是相互独立的,则1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅. (5)二项式定理. 2.问题探究问题探究一 独立重复试验的定义及其基本特点? ●活动一 观察探究(1)某篮球队员罚球3次,每次命中率为0.7.(2)投掷一枚相同的硬币4次,每次正面向上的概率为0.5. (3)某射击选手射击6次,每次射击击中的概率为0.9. (4)一纸箱内装有5个白球、3个黑球,有放回地抽取5个球. (5)投掷一枚图钉8次,每次时针尖向上的概率为0.4. 问题:上面这些试验有什么共同的特点? 提示:从下面几个方面探究:(1)实验的条件; (2)每次实验间的关系; (3)每次试验可能的结果; (4)每次试验的概率;通过归纳发现:(1)每个例中的每次试验在相同条件下发生的; (2)每个例中的每次试验是相互独立的;(3)每个例中的每次试验都只有两种结果:发生与不发生; (4)每个例中的每次试验发生的概率都是相同的. ●活动二 归纳总结(1)定义:一般地,在相同条件下重复做的n 次试验,各次试验的结果相互独立,就称n 次独立重复试验.(2)特点:①条件相同;②相互独立;③结果有二;④概率相等. ●活动三 学以致用例1 判断下列试验是不是独立重复试验:(说明理由) (1)依次投掷四枚质地不同的硬币,3次正面向上;(2)姚明作为中锋,他职业生涯的每次罚球命中率为0.9,他连续投篮3次,恰有2次命中; (3)一纸箱内装有5个白球,3个黑球,2个红球,从中依次抽取5个球,恰好抽出4个白球; (4)一纸箱内装有5个白球,3个黑球,2个红球,从中有放回地抽取5个球,恰好抽出4个白球. 【知识点:独立重复试验】详解:(1)不是,因为条件不相同;(2)是;(3)不是,因为每次发生的概率不等;(4)是; 问题探究二 什么是二项分布?其概率计算公式是什么? ●活动一 计算观察问题:姚明作为中锋,他职业生涯的每次罚球命中率为0.9, (1)他连续投篮3次,恰有1次命中的概率是多少; (2)他连续投篮3次,恰有2次命中的概率是多少; (3)他连续投篮3次, 3次都命中的概率是多少; 解答:(1)3次中恰有1次命中有几种情况?共有3种情况:123A A A ,123A A A ,123A A A (设(1,2,3)i A i =表示事件“第i ”次命中)每一种情况的概率都是:120.9(10.9)⨯- 则恰有1次命中的概率是:1230.9(10.9)P =⨯⨯- (2)3次中恰有2次命中有几种情况?共有3种情况:123A A A ,123A A A ,123A A A (设(1,2,3)i A i =表示事件“第i ”次命中)每一种情况的概率都是:210.9(10.9)⨯-则恰有1次命中的概率是:2130.9(10.9)P =⨯⨯-;(3)3次都命中只有1种情况,即:123A A A (设(1,2,3)i A i =表示事件“第i ”次命中) 则概率是:310.9P =⨯; 观察三个试验的共同点: (1)都是独立重复试验;(2)每次试验分别有3(1,2,3)iC i =种情况;(3)每次试验的每种情况发生的概率相同.(4)他连续投篮n 次,恰有k 次命中的概率是多少;此次试验有k n C 种情况,每种情况发生的概率都是:0.9(10.9)k n k -⨯- 则此次试验发生的概率是:0.9(10.9)k k n k n P C -=-●活动二 归纳总结归纳:一般地,在n 次独立重复试验,设事件A 发生的次数是X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)k k n k n P X k C p p -==-,其中n k ,,2,1,0⋅⋅⋅=.此时称随机变量X 服从二项分布,记作(,)X B n p :,并称p 为成功概率.理解:1)公式()(1)k k n k n P X k C p p -==-中各字母的含义,n —试验发生的总次数;k —试验中事件A 恰好发生的次数;p —事件A 发生概率;(1-p )—事件A 恰不发生的概率. 2)二项式()1-np p ⎡⎤+⎣⎦的展开式中第k +1项为1(1)kn k k k n T C p p -+=-,那么()(1)k kn k n P X k C p p -==-就是二项式()1-np p ⎡⎤+⎣⎦展开式中中第k +1项,所以公式()(1)k k n k n P X k C p p -==-(),0,1,2,...,.k n =所以公式叫做二项分布.3)当n =1时,二项分 布就是两点分布.问题探究三 初步利用n 次独立重复试验的模型及二项分布解决一些简单的问题 例2 某射手每次射击击中目标的概率是0.9,求这名射手在5次射击中,(1)恰有4次击中目标的概率;(2)至少有4次击中目标的概率.(列出算式即可) 【知识点:二项分布,互斥事件的概率;数学思想:分类讨论】详解:设X 为击中目标的次数,则(5,0.9)X B :(1)在5次射击中,恰有4次击中目标的概率为:44(54)540.9(10.9)P X C -==⨯⨯-(). (2)在5次射击中,至少有4次击中目标的概率为:44(54)55(55)5544+5=0.9(10.9)+0.9(10.9)P X P X P X C C --≥===⨯⨯-⨯⨯-()()()例3 重复抛掷一枚骰子6次,求至少4次得到点数为6的概率. 【知识点:二项分布,互斥事件的概率;数学思想:分类讨论】详解:设X 为得到点数6的次数,则1(6,)6X B :重复抛掷一枚骰子6次,至少4次得到点数为6的概率为:4(64)5(65)6(66)45666644+5+6111111=1+1+1666666P X P X P X P X C C C ---≥====⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯-⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()()例4 重复抛掷一枚骰子6次,求至少1次得到点数为6的概率.【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】详解:设X 为得到点数6的次数,则1(6,)6X B :重复抛掷一枚骰子6次,至少1次得到点数为6的概率为:1(61)2(62)3(63)1256664(64)456641+2+3+4+5+6111111=1+1+1666666111 +1+66P X P X P X P X P X P X P X C C C C C ----≥=======⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯-⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭()()()()()()() 5(65)6(66)661111+16666C --⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭另解:设X 为得到点数6的次数,则1(6,)6X B :记事件A 为“至少1次得到点数为6”,则事件A 为 “没有1次得到点数为6”,又由于0(60)6110=166P A P X C -⎛⎫⎛⎫==⨯⨯- ⎪ ⎪⎝⎭⎝⎭()()则0(60)06111=1166P A P A C -⎛⎫⎛⎫=--⨯⨯- ⎪ ⎪⎝⎭⎝⎭()()例5 重复抛掷一枚骰子6次,求至少2次得到点数为6的概率.【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】详解:设X 为得到点数6的次数,则1(6,)6X B :记事件A 为“至少2次得到点数为6”,则事件A 为 “没有1次得到点数为6和恰好有1次得到点数为6”,又由于0(60)1(61)16611110+1=1+16666P A P X P X C C --⎛⎫⎛⎫⎛⎫⎛⎫===⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()则0(60)1(61)16611111=1116666P A P A C C --⎛⎫⎛⎫⎛⎫⎛⎫=--⨯⨯--⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()3.课堂总结 【知识梳理】(1)一般地,在相同条件下重复做的n 次试验,各次试验的结果相互独立,就称为n 次独立重复试验.(2)一般地,在在n 次独立重复试验,设事件A 发生的次数是X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)k kn k n P X k C p p -==-,其中n k ,,2,1,0⋅⋅⋅=.此时称随机变量X 服从二项分布,记作(,)X B n p :,并称p 为成功概率.【重难点突破】(1)独立重复试验的判断①每次试验是在相同的条件下进行的;②每次试验的结果不会受其他试验的影响,即每次试验是相互独立的; ③基本事件的概率可知,且每次试验保持不变; ④每次试验只有两种结果,要么发生,要么不发生. (2)二项分布的判断①在一次试验中,事件A 发生与不发生二者必居其一. ②事件A 在每次试验中,发生的概率相同.③试验重复地进行了n 次(n ≥2),且每次试验结果互不影响. 4.随堂检测1.一个学生通过某种英语听力测试的概率是12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,那么n 的最小值为( )A .3B .4C .5D .6【知识点:二项分布,对立事件的概率;数学思想:正难则反】 解:B2.若某射手每次射击击中目标的概率是0.9,每次射击的结果相互独立,那么在他连续4次的射击中,第一次未击中目标,后三次都击中目标的概率是( )A.33140.90.1C ⨯⨯B.30.9C.130.10.9⨯D.11340.90.1C ⨯⨯【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 解:C3.有10门炮同时各向目标各发一枚炮弹,如果每门炮的命中率都是0.1,则目标被击中的概率约是( ) A.0.55 B.0.45 C.0.75 D.0.65【知识点:独立重复试验,对立事件的概率】 解:D4.一批产品共有100个,次品率为 3%,从中有放回抽取3个恰有1个次品的概率是( )A.123973100C C CB.1230.030.97C ⨯⨯ C.1330.03C ⨯D.1230.030.97C ⨯⨯【知识点:二项分布】 解:B5.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为 8081,则此射手射击一次的命中率是( )A.13B.23C.14D.25【知识点:二项分布,对立事件的概率;数学思想:正难则反】 解:B 4801(1)81p --= (三)课后作业 基础型 自主突破1.已知随机变量ξ~B (6,13),则P (ξ≥2)=( ) A.16143 B.471729 C.473729 D.1243【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 解:C0(60)1(61)1661111212=101=11+13333P P P P C C ξξξξ--⎛⎫⎛⎫⎛⎫⎛⎫≥=-≤-=-=-⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()()2.某一试验中事件A 发生的概率为p ,则在n 次试验中,A 发生k 次的概率为( ) A .1-p k B .(1-p )k ·p n -k C .(1-p )kD .C k n (1-p )k ·p n -k【知识点:二项分布,对立事件的概率】 解:D3.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是( ) A .(12)5 B .C 25(12)5C .C 35(12)3D .C 25C 35(12)5【知识点:二项分布】解:D 5次移动中有2次向右,剩下3次向上.4.某电子管正品率为34,次品率为14,现对该批电子管进行测试,设第ξ次首次测到正品,则P (ξ=3)的值为( ) A .C 23(14)2×34 B .C 23(34)2×14 C .(14)2×34 D .(34)2×14【知识点:二项分布,对立事件的概率】 解:D5.某种植物的种子发芽率是0.7,4颗种子中恰有3颗发芽的概率是________. 【知识点:二项分布】解:0.4116 33(43)430.7(10.7)P X C -==⨯⨯-()6.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为________(用数字作答).【知识点:二项分布】解:0.9477 33(43)44(44)443=3+=4=0.9(10.9)+0.9(10.9)P X P X P X C C --≥=⨯⨯-⨯⨯-()()()能力型 师生共研7.某单位6个员工借助互联网开展工作,每天每个员工上网的概率是0.5(相互独立),则一天内至少3人同时上网的概率为________.【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 解:2132 666012666111X 1012=1222P P X P X P X C C C ⎛⎫⎛⎫⎛⎫≥=-=-=-=-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)()()() 8.2013年初,一考生参加北京大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道题被考生正确做出的概率都是34. (1)求该考生首次做错一道题时,已正确做出了两道题的概率;(2)若该考生至少做出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率. 【知识点:对立、互斥事件的概率,独立重复试验,二项分布;数学思想:分类讨论】解:(1)记“该考生正确做出第i 道题”为事件A i (i =1,2,3,4),则P (A i )=34,由于每一道题能否被正确做出是相互独立的,所以这名考生首次做错一道题时,已正确做出两道题的概率为 P (A 1A 2A 3)=P (A 1)·P (A 2)·P (A 3)=34×34×14=964.(2)记“这名考生通过书面测试”为事件B ,则这名考生至少正确做出3道题,即正确做出3道或4道题,故P (B )=C 34×(34)3×14+C 44×(34)4=189256. 9.9粒种子分种在3个坑中,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种的费用,写出ξ的分布列. 【知识点:对立事件的概率,二项分布】解:每个坑内3粒种子都不发芽的概率为(1-0.5)3=18,所以每个坑不需要补种的概率为p =1-18=78.利用3次独立重复试验的公式求解即可.补种费用ξ的分布列为10.一批玉米种子,其发芽率是0.8.问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(lg2=0.301 0)【知识点:独立重复试验,对立事件的概率,二项分布;数学思想:正难则反】解:记事件A =“种一粒种子,发芽”,则P (A )=0.8,P (A -)=1-0.8=0.2.设每穴至少种n 粒,才能保证每穴至少有一粒发芽的概率大于98%.因为每穴种n 粒相当于n 次独立重复试验,记事件B =“每穴至少有一粒发芽”,则P (B -)=C 0n ·0.80·0.2n =0.2n .所以P (B )=1-P (B -)=1-0.2n .由题意有1-0.2n >98%,所以0.2n <0.02,两边取对数得n lg0.2<lg0.02.即n (lg2-1)<lg2-2.所以n >lg2-2lg2-1≈2.43,且n ∈N ,所以n ≥3. 故每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于98%.探究型 多维突破11.某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中X 名男同学.(1)求X 的分布列;(2)求去执行任务的同学中有男有女的概率.【知识点:对超几何分布】解:(1)X 的可能取值为0,1,2,3,且X 服从超几何分布,因此:P (X =0)=C 33C 38=156,P (X =1)=C 15C 23C 38=1556, P (X =2)=C 25C 13C 38=1528,P (X =3)=C 35C 38=528. ∴X 的分布列为(2)由上面的分布列,可知去执行任务的同学有男有女的概率为P (X =1)+P (X =2)=1556+1528=4556.12.一名学生骑自行车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1 3.(1)设ξ为这名学生在途中遇到的红灯次数,求ξ的分布列;(2)设η为这名学生在首次停车前经过的路口数,求η的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.【知识点:对立事件的概率,二项分布;数学思想:正难则反】解:(1)将遇到每个交通岗看做一次试验,遇到红灯的概率都是13,且每次试验结果相互独立,故ξ~B(6,13).所以ξ的分布列为P(ξ=k)=Ck6·(13)k·(23)6-k(k=0,1,2,…,6).(2)η=k(k=0,1,2,…,5)表示前k个路口没有遇上红灯,但在第k+1个路口遇上红灯,其概率为P(η=k)=(23)k·13,η=6表示一路没有遇上红灯,故其概率为P(η=6)=(23)6.所以η的分布列为(3)所求概率即P(ξ≥1)=1-P(ξ=0)=1-(23)6=665729.自助餐1.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p1和p2.则()A.p1=p2B.p1<p2C.p1>p2D.以上三种情况都有可能【知识点:古典概型】解:B2.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n}:a n =⎩⎨⎧-1,第n 次摸取红球,1,第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( ) A .C 57×(13)2×(23)5 B .C 47×(23)2×(13)5 C .C 27×(23)2×(13)5 D .C 37×(13)2×(23)5 【知识点:独立重复试验,二项分布】解:C3.某厂大量生产某种小零件,经抽样检验知道其次品率是1%,现把这种零件每6件装成一盒,那么每盒中恰好含一件次品的概率是( )A .(99100)6B .0.01C.C 16100(1-1100)5D .C 26(1100)2(1-1100)4 【知识点:对立事件的概率,二项分布】解:C4.在4次独立重复试验中,事件A 出现的概率相同,若事件A 至少发生一次的概率为6581,则事件A 在1次试验中出现的概率为( )A.13B.25C.56D .都不对【知识点:对立事件的概率,二项分布;数学思想:正难则反】解:A5.抛掷三个骰子,当至少有一个5点或一个6点出现时,就说这次试验成功,则在54次试验中成功次数X ~( )A .B (54,427)B .B (52,1927)C .B (54,1927)D .B (54,1724)【知识点:二项分布】解:C6.已知随机变量ξ服从二项分布ξ~B (6,13),则P (ξ=2)=( )A.316B.4243C.16243D.80243【知识点:二项分布】解:D7.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值等于( )A .0B .1C .2D .3【知识点:二项分布】解:C8.有n 位同学参加某项选拔测试,每位同学能通过测试的概率都是p (0<p <1),假设每位同学能否通过测试是相互独立的,则至少有一位同学能通过测试的概率为( )A .(1-p )nB .1-p nC .p nD .1-(1-p )n【知识点:对立事件的概率,二项分布;数学思想:正难则反】解:D9.一个袋中有5个白球,3个红球,现从袋中每次取出1个球,取出后记下球的颜色然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P (ξ=12)=________.(写出表达式不必算出最后结果)【知识点:二项分布】解:C 911(38)9(58)2·3810.某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进了3球的概率为________.(用数字作答)【知识点:二项分布】解:1512811.A ,B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片,若某人已赢得所有卡片,则游戏终止.求掷硬币的次数不大于7次时游戏终止的概率.【知识点:互斥事件的概率,二项分布】解:P =(12)5×2+2×C 45(12)5(12)2=116+2×5×(12)7=964.12.如图,一圆形靶分成A ,B ,C 三部分,其面积之比为1∶1∶2.某同学向该靶投掷3枚飞镖,每次1枚.假设他每次投掷必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中投中A 区域的概率;(2)设X 表示该同学在3次投掷中投中A 区域的次数,求X 的分布列;(3)若该同学投中A ,B ,C 三个区域分别可得3分,2分,1分,求他投掷3次恰好得4分的概率.【知识点:互斥事件的概率,二项分布】解:(1)设该同学在一次投掷中投中A 区域的概率为P (A ),依题意,P (A )=14.(2)依题意知,X ~B ⎝ ⎛⎭⎪⎫3,14,从而X 的分布列为:(3)设B i 表示事件“第i 次击中目标时,击中B 区域”,C i 表示事件“第i 次击中目标时,击中C区域”,i =1,2,3.依题意知P =P (B 1C 2C 3)+P (C 1B 2C 3)+P (C 1C 2B 3)=3×14×12×12=316.。
高中数学选修2-3精品教案2:2.2.3 独立重复实验与二项分布教学设计
2.2.3独立重复试验与二项分布
一、教学目标
知识与技能:
理解n次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布,
培养学生的自主学习能力、数学建摸能力,并能解决相应的实际问题.
过程与方法:
通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,使学生充
分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象的数学思想方法.
情感态度与价值观:
使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯物主义思
想,培养学生对新知识的科学态度,勇于探索和敢于创新的精神.
二、教学重点、难点
重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题.
难点:二项分布模型的构建.
三、教学方法与手段
教学方法:诱思探究教学法
学习方法:自主探究、观察发现、合作交流、归纳总结.
教学手段:多媒体辅助教学
四、教学过程。
高中新课程数学(新课标人教A版)选修2-3《2.2.3独立重复实验与二项分布》教案(最新整理)
2.2.3独立重复实验与二项分布教学目标:知识与技能:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
过程与方法:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题教学难点:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近A m n 某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作.A ()P A 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为10,必然事件和不可能事件看作随机事件的两个极端情形0()1P A ≤≤5基本事件:一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件A 6.等可能性事件:如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都n 相等,那么每个基本事件的概率都是,这种事件叫等可能性事件1n7.等可能性事件的概率:如果一次试验中可能出现的结果有个,而且所有结果都是等可n 能的,如果事件包含个结果,那么事件的概率A m A ()m P A n =8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件中的任何两个都是互斥的,那么就说事件12,,,n A A A 12,,,n A A A 彼此互斥11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件彼此互斥,那么12,,,n A A A=12()n P A A A +++ 12()()()n P A P A P A +++ 13.相互独立事件:事件(或)是否发生对事件(或)发生的概率没有影响,这样A B B A 的两个事件叫做相互独立事件若与是相互独立事件,则与,与,与也相互独立A B A B A B A B 14.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅一般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个12,,,n A A A n 事件发生的概率的积,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅ 二、讲解新课:1独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是,那么在次独立重复试验中这个P n 事件恰好发生次的概率.k k n k k n n P P C k P --=)1()(它是展开式的第项[](1)n P P -+1k +3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是,(k =0,1,2,…,n ,).k n k k n n q p C k P -==)(ξp q -=1于是得到随机变量ξ的概率分布如下:ξ01…k …n Pn n q p C 00111-n n q p C …k n k k n q p C -…0q p C n n n 由于恰好是二项展开式k n k k n q p C -011100)(qp C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+-- 中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),记作ξ~B (n ,p ),其中n ,p 为参数,并记=b (k ;n ,p ).k n k k n q p C -三、讲解范例:例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)解:设X 为击中目标的次数,则X ~B (10, 0.8 ) .(1)在 10 次射击中,恰有 8 次击中目标的概率为P (X = 8 ) =.88108100.8(10.8)0.30C -⨯⨯-≈(2)在 10 次射击中,至少有 8 次击中目标的概率为P (X ≥8) = P (X = 8) + P ( X = 9 ) + P ( X = 10 )8810899109101010101010100.8(10.8)0.8(10.8)0.8(10.8)C C C ---⨯⨯-+⨯⨯-+⨯⨯-.0.68≈例2.(2000年高考题)某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.解:依题意,随机变量ξ~B (2,5%).所以,P (ξ=0)=(95%)=0.9025,P (ξ=1)=(5%)(95%)=0.095,02C 212C P ()=(5%)=0.0025.2=ξ22C 2因此,次品数ξ的概率分布是ξ012P 0.90250.0950.0025例3.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).解:依题意,随机变量ξ~B .⎪⎭⎫ ⎝⎛61,5 ∴P (ξ=4)==,P (ξ=5)==.6561445⋅⎪⎭⎫ ⎝⎛C 77762555C 561⎪⎭⎫ ⎝⎛77761∴P (ξ>3)=P(ξ=4)+P (ξ=5)=388813例4.某气象站天气预报的准确率为,计算(结果保留两个有效数字):80%(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件.预报5次相当于5次独立重复试验,A 根据次独立重复试验中某事件恰好发生次的概率计算公式,5次预报中恰有4次准确的n k 概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯-450.80.80.4100.3280.74=+≈+≈答:5次预报中至少有4次准确的概率约为0.74.例5.某车间的5台机床在1小时内需要工人照管的概率都是,求1小时内5台机床14中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件=“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5A 次独立重复试验1小时内5台机床中没有1台需要工人照管的概率,55513(0)(1)()44P =-=1小时内5台机床中恰有1台需要工人照管的概率,145511(1)(1)44P C =⨯⨯-所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)0.37P P P =-+≈答:1小时内5台机床中至少2台需要工人照管的概率约为.0.37点评:“至多”,“至少”问题往往考虑逆向思维法例6.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击次n 记事件=“射击一次,击中目标”,则.A ()0.25P A =∵射击次相当于次独立重复试验,n n ∴事件至少发生1次的概率为.A 1(0)10.75nn P P =-=-由题意,令,∴,∴,10.750.75n -≥31(44n ≤1lg4 4.823lg 4n ≥≈∴至少取5.n 答:要使至少命中1次的概率不小于0.75,至少应射击5次例7.十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?解:依题意,从低层到顶层停不少于3次,应包括停3次,停4次,停5次,……,直到停9次∴从低层到顶层停不少于3次的概率3364455549999991111111()(()()(()(2222222P C C C C =++++ 3459990129999999911()(2()()22C C C C C C C ⎡⎤=+++=-++⎣⎦+ 991233(246)()2256=-=设从低层到顶层停次,则其概率为,k k 9999111C (()()222k k k C -=∴当或时,最大,即最大,4k =5k =9k C 991()2k C 答:从低层到顶层停不少于3次的概率为,停4次或5次概率最大.233256例8.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为,乙获胜的概率为.1212记事件=“甲打完3局才能取胜”,记事件=“甲打完4局才能取胜”,A B 记事件=“甲打完5局才能取胜”.C ①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜∴甲打完3局取胜的概率为.33311()()28P A C ==②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为.2231113()()22216P B C =⨯⨯⨯=③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完5局才能取胜的概率为.22241113()(()22216P C C =⨯⨯⨯=(2)事件=“按比赛规则甲获胜”,则,D D A B C =++又因为事件、、彼此互斥,A B C 故.1331()()()()()816162P D P A B C P A P B P C =++=++=++=答:按比赛规则甲获胜的概率为.12例9.一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于?(2)若每穴种3粒,求恰好两粒发芽的概率.()98%lg 20.3010=解:记事件=“种一粒种子,发芽”,则,,A ()0.8P A =()10.80.2P A =-=(1)设每穴至少种粒,才能保证每穴至少有一粒发芽的概率大于.n 98%∵每穴种粒相当于次独立重复试验,记事件=“每穴至少有一粒发芽”,则n n B .00()(0)0.8(10.8)0.2n n n n P B P C ==-=∴.()1()10.2nP B P B =-=-由题意,令,所以,两边取常用对数得,()98%P B >0.20.02n <.即,lg 0.2lg 0.02n <(lg 21)lg 22n -<-∴,且,所以取.lg 22 1.6990 2.43lg 210.6990n ->=≈-n N ∈3n ≥答:每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于.98%(2)∵每穴种3粒相当于3次独立重复试验,∴每穴种3粒,恰好两粒发芽的概率为,2230.80.20.384P C =⨯⨯==答:每穴种3粒,恰好两粒发芽的概率为0.384四、课堂练习:1.每次试验的成功率为,重复进行10次试验,其中前7次都未成功后3次(01)p p <<都成功的概率为( )()A 33710(1)C p p -()B 33310(1)C p p -()C 37(1)p p -()D 73(1)p p -2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )()A 32100.70.3C ⨯⨯()B 1230.70.3C ⨯⨯()C 310()D 21733103A A A ⋅3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( )()A 33351A A -()B 211232323355A A A A A A ⋅⋅+ ()C 331()5-()D 22112333232((()()5555C C ⨯⨯+⨯⨯4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为,比赛时均能正常发挥技3:2术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332(55C ⋅()B 22332((53C ()C 33432()(55C ()D 33421()(33C 5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 .(设每次命中的环数都是自然数)6.一名篮球运动员投篮命中率为,在一次决赛中投10个球,则投中的球数不少于960%个的概率为 .7.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为,则此射手的8081命中率为 .8.某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为,求:(1)在任一时刻车间有3台车床处于停车的概率;(2)至少有31一台处于停车的概率9.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率; ⑵全部死亡的概率;⑶恰好成活3棵的概率; ⑷至少成活4棵的概率10.(1)设在四次独立重复试验中,事件至少发生一次的概率为,试求在一次试验中A 8081事件发生的概率(2)某人向某个目标射击,直至击中目标为止,每次射击击中目标的概A 率为,求在第次才击中目标的概率13n 答案:1. C 2. D 3. A 4. A 5. 0.784 6. 0.0467. 8.(1)(2)23()323551240333243P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭()()5552211113243P B P B C ⎛⎫=-=-= ⎪⎝⎭9.⑴; ⑵;5550.90.59049C =5550.10.00001C =⑶; ⑷()3325530.90.10.0729P C =⋅=()()55450.91854P P P =+=10.(1) (2) 23P =112()33n P -=⋅五、小结 :1.独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行第二:各次试验中的事件是相互独立的第三,每次试验都只有两种结果,即事件要么发生,要么不发生2.如果1次试验中某事件发生的概率是,那么次独立重复试验中这个事件恰好发生P n k 次的概率为对于此式可以这么理解:由于1次试验中事件要么k n k k n n P P C k P --=)1()(A 发生,要么不发生,所以在次独立重复试验中恰好发生次,则在另外的次中n A k n k -A 没有发生,即发生,由,所以上面的公式恰为展A ()P A P =()1P A P =-n P P ])1[(+-开式中的第项,可见排列组合、二项式定理及概率间存在着密切的联系1k +六、课后作业:课本58页 练习1、2、3、4第60页 习题 2. 2 B 组2、3七、板书设计(略)八、课后记:教学反思:1. 理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
高二数学选修2-3:2.2.3独立重复实验与二项分布共案
板书设计
教学反思
(1)全部活到65岁的概率;
(2)恰有2人活到65岁的概率
(3)恰有1人活到65岁的概率;
(4)都活不到65岁的概率.
例2、设一射手平均每射击10次中靶4次,求在5次射击中:
(1)恰击中1次的概率;
(2)第二次击中的概率;
(3)有且只有第二次击中目标;
(4)恰击中2次的概率;
()第二、三两次击中的概率;
课题
独立重复实验与二项分布
设计教师
高朋
授课教师
时间
课型
新授课
课时
教学
目标
理解 次独立重复试验的模型和二项分布,并能利用它们解决一些简单的实际问题
认真体会模型化思想在解决问题中的作用,感受概率在生活中的应用,提高数学的应用意识.
重点
难点
理解 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题
次独立重复试验的模型及二项分布的判断
教法
尝试、变式、互动
教具
教学过程设
教材处理
师生活动
新知:
1. 次独立重复试验:在_____的条件下,重复地做 次试验,各次试验的结果__________,则称它们为 次独立重复试验.
2.在 次独立重复试验中,事件 恰好发生 次的概率公式为_________________________________
3.二项分布:在 次独立重复试验中,设事件 发生的次数为 ,在每次试验中事件 发生的概率为 ,那么在 次独立重复试验中事件 恰好发生 次的概率为______________.则 的分布列
称为离散型随机变量 服从参数为 的二项分布,记作:_______________.
人教新课标版数学高二-选修2-3导学案 独立重复试验与二项分布
2.2.3独立重复试验与二项分布导学案周;使用时间17 年月日;使用班级;姓名(配合配套课件、限时练使用效果更佳)【学习目标】1.理解n次独立重复试验的模型.2.理解二项分布.3.能利用独立重复试验的模型及二项分布解决一些简单的实际问题.【检查预习】预习相应课本,完成导学案“自主学习”部分,准备上课回答.【自主学习】知识点一独立重复试验思考1要研究抛掷硬币的规律,需做大量的掷硬币试验.思考2试验结果有哪些?思考3各次试验的结果有无影响?(1)定义:在________条件下重复做的n次试验称为n次独立重复试验.(2)基本特征:①每次试验是在同样条件下进行.②每次试验都只有两种结果:发生与不发生.③各次试验之间相互独立.④每次试验,某事件发生的概率都是一样的.知识点二二项分布在体育课上,某同学做投篮训练,他连续投篮3次,每次投篮的命中率都是0.8,用A i(i=1,2,3)表示第i次投篮命中这件事,用B k表示仅投中k次这件事.思考1用A i如何表示B1,并求P(B1).思考2 试求P (B 2)和P (B 3).思考3 由以上问题的结果你能得出什么结论?在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=__________,k =0,1,2,…,n .此时称随机变量X 服从二项分布,记作________,并称p 为____________.【合作探究】类型一 独立重复试验的概率问题例1 某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位):(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.类型二 二项分布例2 某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X 表示这5位乘客在第20层下电梯的人数,求随机变量X 的分布列.类型三 二项分布的综合应用例3 一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是13. (1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列;(3)这名学生在途中至少遇到一次红灯的概率.【学生展示】探究点一、二【教师点评】探究点三及【学生展示】出现的问题【当堂检测】1.若随机变量X ~B ⎝⎛⎭⎫5,13,则P (X =2)=( ) A.⎝⎛⎭⎫132×⎝⎛⎭⎫233 B.⎝⎛⎭⎫232×⎝⎛⎭⎫133C .C 25⎝⎛⎭⎫232⎝⎛⎭⎫133D .C 25⎝⎛⎭⎫132×⎝⎛⎭⎫233 2.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8081,则此射手的命中率是( )A.13B.23C.14D.253.下列说法正确的是________.①某同学投篮的命中率为0.6,他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6); ②某福彩的中奖概率为p ,某人一次买了8张,中奖张数X 是一个随机变量,且X ~B (8,③从装有5个红球、5个白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数X 是随机变量,且X ~B ⎝⎛⎭⎫n ,12. 4.将一枚均匀的硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________.【小结作业】小结:作业:本节限时练。
高中数学选修2-3精品学案:2.2.3 独立重复试验与二项分布
2.2.3 独立重复试验与二项分布学习目标 1.理解n次独立重复试验的模型.2.掌握二项分布公式.3.能利用独立重复试验的模型及二项分布解决一些简单的实际问题.知识点一独立重复试验思考1要研究抛掷硬币的规律,需做大量的掷硬币试验.其前提是什么?思考2试验结果有哪些?思考3各次试验的结果有无影响?梳理(1)定义:在______条件下重复做的n次试验称为n次独立重复试验.(2)基本特征:①每次试验是在同样条件下进行.②每次试验都只有两种结果:发生与不发生.③各次试验之间相互独立.④每次试验,某事件发生的概率都是一样的.知识点二二项分布在体育课上,某同学做投篮训练,他连续投篮3次,每次投篮的命中率都是0.8,用A i(i=1,2,3)表示第i次投篮命中这个事件,用B k表示仅投中k次这个事件.思考1用A i如何表示B1,并求P(B1).思考2 试求P (B 2)和P (B 3).思考3 由以上问题的结果你能得出什么结论?梳理 在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=________,k =0,1,2,…,n .此时称随机变量X 服从二项分布,记作________,并称p 为__________.类型一 求独立重复试验的概率例1 甲、乙两人各射击一次,击中目标的概率分别是23和34,假设每次射击是否击中目标,相互之间没有影响.(结果需用分数作答)(1)求甲射击3次,至少有1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率. 引申探究若本例条件不变,求两人各射击2次,甲、乙各击中1次的概率.反思与感悟 独立重复试验概率求法的三个步骤(1)判断:依据n 次独立重复试验的特征,判断所给试验是否为独立重复试验. (2)分拆:判断所求事件是否需要分拆.(3)计算:就每个事件依据n 次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.跟踪训练1 9粒种子分别种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为12.若一个坑内至少有1粒种子发芽,则这个坑不需要补种,否则这个坑需要补种种子. (1)求甲坑不需要补种的概率;(2)记3个坑中恰好有1个坑不需要补种的概率为P 1,另记有坑需要补种的概率为P 2,求P 1+P 2的值.类型二 二项分布例2 学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱). (1)求在1次游戏中, ①摸出3个白球的概率; ②获奖的概率;(2)求在2次游戏中获奖次数X 的分布列.反思与感悟 (1)当X 服从二项分布时,应弄清X ~B (n ,p )中的试验次数n 与成功概率p . (2)解决二项分布问题的两个关注点①对于公式P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),必须在满足“独立重复试验”时才能应用,否则不能应用该公式.②判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验是独立重复地进行了n 次.跟踪训练2 袋子中有8个白球,2个黑球,从中随机地连续抽取三次,求有放回时,取到黑球个数X 的分布列.类型三 二项分布的综合应用例3 一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列; (3)这名学生在途中至少遇到一次红灯的概率.反思与感悟 对于概率问题的综合题,首先,要准确地确定事件的性质,把问题化归为古典概型、互斥事件、独立事件、独立重复试验四类事件中的某一种;其次,要判断事件是A +B 还是AB ,确定事件至少有一个发生,还是同时发生,分别应用相加或相乘事件公式;最后,选用相应的求古典概型、互斥事件、条件概率、独立事件、n 次独立重复试验的概率公式求解.跟踪训练3 一个口袋内有n (n >3)个大小相同的球,其中3个红球和(n -3)个白球,已知从口袋中随机取出1个球是红球的概率为p .若6p ∈N ,有放回地从口袋中连续4次取球(每次只取1个球),在4次取球中恰好2次取到红球的概率大于827,求p 与n 的值.1.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在1次试验中发生的概率p 的取值范围是( ) A .[0.4,1] B .(0,0.4] C .(0,0.6]D .[0.6,1]2.某人进行射击训练,一次击中目标的概率为35,经过三次射击,此人至少有两次击中目标的概率为( ) A.36125B.54125C.72125D.811253.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3∶2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲队打完4局才胜的概率为____________. 4.下列说法正确的是________.①某同学投篮的命中率为0.6,他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6); ②某福彩的中奖概率为p ,某人一次买了8张,中奖张数X 是一个随机变量,且X ~B (8,p );③从装有5个红球、5个白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数X 是随机变量,且X ~B ⎝⎛⎭⎫n ,12. 5.从学校乘汽车到火车站的途中有三个交通灯,假设在各个交通灯遇到红灯的事件是相互独立的,并且概率都是25,设ξ为途中遇到红灯的次数,求随机变量ξ的分布列.1.独立重复试验要从三方面考虑:第一,每次试验是在相同条件下进行的;第二,各次试验的结果是相互独立的;第三,每次试验都只有两种结果,即事件发生,事件不发生. 2.如果1次试验中某事件发生的概率是p ,那么n 次独立重复试验中这个事件恰好发生k次的概率为P n (k )=C k n p k·(1-p )n -k .此概率公式恰为[(1-p )+p ]n 展开式的第k +1项,故称该公式为二项分布公式.[答案]精析问题导学 知识点一思考1 条件相同.思考2 正面向上或反面向上,即事件发生或者不发生. 思考3 无,即各次试验相互独立. 梳理 (1)相同 知识点二 思考1 B 1=(A 1A2A 3)∪(A 1A 2A 3)∪(A1A 2A 3),因为P (A 1)=P (A 2)=P (A 3)=0.8, 且A 1A2A 3、A 1A 2A 3、A1A 2A 3两两互斥,故P (B 1)=0.8×0.22+0.8×0.22+0.8×0.22=3×0.8×0.22=0.096. 思考2 P (B 2)=3×0.2×0.82=0.384, P (B 3)=0.83=0.512.思考3 P (B k )=C k 30.8k 0.23-k (k =0,1,2,3). 梳理 C k n p k (1-p )n -kX ~B (n ,p ) 成功概率 题型探究例1 解 (1)记“甲射击3次,至少有1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1-P (A 1)=1-(23)3=1927.(2)记“甲射击2次,恰有2次击中目标”为事件A 2,“乙射击2次,恰有1次击中目标”为事件B 2,则P (A 2)=C 22×(23)2=49,P (B 2)=C 12×(34)1×(1-34)=38,由于甲、乙射击相互独立,故P (A 2B 2)=49×38=16.引申探究解 记“甲击中1次”为事件A 4,记“乙击中1次”为事件B 4, 则P (A 4)=C 12×23×(1-23)=49, P (B 4)=C 12×34×(1-34)=38. 所以甲、乙各击中1次的概率为P (A 4B 4)=49×38=16.跟踪训练1 解 (1)因为甲坑内3粒种子都不发芽的概率为⎝⎛⎭⎫1-123=18. 所以甲坑不需要补种的概率为1-18=78.(2)3个坑恰有1个坑不需要补种的概率为P 1=C 13×78×⎝⎛⎭⎫182=21512. 由于3个坑都不需补种的概率为⎝⎛⎭⎫783, 则有坑需要补种的概率为 P 2=1-⎝⎛⎭⎫783=169512.所以P 1+P 2=21512+169512=95256.例2 解 (1)①设“在1次游戏中摸出i 个白球”为事件A i (i =0,1,2,3),则P (A 3)=C 23C 25·C 12C 23=15.②设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3.又P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12,且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710.(2)由题意可知,X 的所有可能取值为0,1,2,则P (X =0)=(1-710)2=9100,P (X =1)=C 12×710×(1-710)=2150, P (X =2)=(710)2=49100.所以X 的分布列为跟踪训练2 解 取到黑球个数X 的可能取值为0,1,2,3.又由于每次取到黑球的概率均为15,所以P (X =0)=C 03⎝⎛⎭⎫150·⎝⎛⎭⎫453=64125, P (X =1)=C 13⎝⎛⎭⎫15·⎝⎛⎭⎫452=48125,P (X =2)=C 23⎝⎛⎭⎫152·⎝⎛⎭⎫45=12125, P (X =3)=C 33⎝⎛⎭⎫153·⎝⎛⎭⎫450=1125. 故X 的分布列为例3 解 (1)由ξ~B ⎝⎛⎭⎫5,13,则P (ξ=k )=C k 5⎝⎛⎭⎫13k ⎝⎛⎭⎫235-k ,k =0,1,2,3,4,5. 故ξ的分布列为(2)η的分布列为P (η=k )=P (前k 个是绿灯,第k +1个是红灯)=⎝⎛⎭⎫23k ·13,k =0,1,2,3,4; P (η=5)=P (5个均为绿灯)=⎝⎛⎭⎫235. 故η的分布列为(3)所求概率为P (ξ=1-⎝⎛⎭⎫235=211243.跟踪训练3 解 由题设知, C 24p 2(1-p )2>827.∵p (1-p )>0,∴不等式化为p (1-p )>29,解得13<p <23,故2<6p <4.又∵6p ∈N ,∴6p =3,即p =12.由3n =12,得n =6. 当堂训练1.A 2.D 3.162625 4.①②5.解 由题意知ξ~B (3,25),则P (ξ=0)=C 03(25)0(35)3=27125, P (ξ=1)=C 13(25)1(35)2=54125, P (ξ=2)=C 23(25)2(35)1=36125,P (ξ=3)=C 33×(25)3=8125. 所以随机变量ξ的分布列为。
高中数学选修2-3精品教案4:2.2.3 独立重复实验与二项分布教学设计
2.2.3独立重复试验与二项分布教学目标:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题.德育目标:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值教学重点:独立重复试验的概念形成及二项分布公式的发现与应用教学难点:概率模型的识别与应用教学过程:一、引入课本引例:掷一枚图钉,针尖向上的概率为0.6,则针尖向下的概率为 1-0.6=0.4 问题(1)第1次、第2次、第3次…第n 次针尖向上的概率是多少?第1次、第2次、第3次…第n 次针尖向上的概率都是0.6二、新课1、形成概念“独立重复试验”的概念:在同样条件下进行的,各次之间相互独立的一种试验.特点:⑴在同样条件下重复地进行的一种试验;⑵各次试验之间相互独立,互相之间没有影响;⑶每一次试验只有两种结果,即某事要么发生,要么不发生,并且任意一次试验中发生的概率都是一样的.问题(2):掷一枚图钉,针尖向上的概率为0.6,则针尖向下的概率为1-0.6=0.4,则连续掷3次,恰有1次针尖向上的概率是多少?分解问题(2)问题a :3次中恰有1次针尖向上,有几种情况?共3种情况123123123,,A A A A A A A A A 即13C问题b 它们的概率分别是多少?概率都是20.6(10.6)⨯-问题c 3次中恰有1次针尖向上的概率是多少?引申推广:连续掷n 次,恰有k 次针尖向上的概率是0.6(10.6)k k n k n p C -=⨯⨯-2定义:在n 次独立重复试验中,事件A 发生的次数为X ,在每次试验中事件A 发生的概率为P ,那么在在n 次独立重复试验中事件A 恰好发生k 次的概率是(X )(1)p k k n p k C P p ==-,K =0,1,2,3,……n此时称随机变量X 服从二项分布,记作X ~B (n ,p ).并称P 为成功概率.注:(1)n ,p ,k 分别表示什么意义?(2)这个公式和前面学习的哪部分内容有类似之处?典例解析:例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)解:设X 为击中目标的次数,则X ~B (10, 0.8 ) .(1)在 10 次射击中,恰有 8 次击中目标的概率为P (X = 8 )=88108100.8(10.8)0.30C -⨯⨯-≈. (2)在 10 次射击中,至少有 8 次击中目标的概率为P (X≥8) = P (X = 8) + P ( X = 9 ) + P ( X = 10 )8810899109101010101010100.8(10.8)0.8(10.8)0.8(10.8)C C C ---⨯⨯-+⨯⨯-+⨯⨯-0.68≈.例2.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验11230.6(10.6)P C =⨯⨯-1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=,1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-, 所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)0.37P P P =-+≈ 答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.点评:“至多”,“至少”问题往往考虑逆向思维法.例3.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次.记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75nn P P =-=-. 由题意,令10.750.75n -≥,∴31()44n ≤,∴1lg4 4.823lg 4n ≥≈, ∴n 至少取5.答:要使至少命中1次的概率不小于0.75,至少应射击5次.课堂练习:1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为()()A 33710(1)C p p -()B 33310(1)C p p -()C 37(1)p p -()D 73(1)p p - 2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为()()A 32100.70.3C ⨯⨯()B 1230.70.3C ⨯⨯()C 310()D 21733103A A A ⋅ 3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是()()A 33351A A -()B 211232323355A A A A A A ⋅⋅+()C 331()5-()D 22112333232()()()()5555C C ⨯⨯+⨯⨯ 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为()()A 23332()55C ⋅()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 答案:1. C 2.D 3. A 4. A课堂小结:独立重复试验两个对立的结果每次事件A 发生概率相同n 次试验事件A 发生k 次板书设计:(略)教学反思:。
人教版数学高二A版选修2-3教案独立重复试验与二项分布
2.2.3独立重复试验与二项分布整体设计教材分析本节内容是新课标教材选修2—3第二章《随机变量及其分布》的第二节《二项分布及其应用》的第三小节.通过前面的学习,学生已经学习掌握了有关概率和统计的基础知识:古典概率、互斥事件概率、条件概率、相互独立事件概率的求法以及分布列的有关内容.独立重复试验是研究随机现象的重要途径之一,很多概率模型的建立都以独立重复试验为背景,二项分布就是来自于独立重复试验的一个概率模型.二项分布是继超几何分布后的又一应用广泛的概率模型,而超几何分布在产品数量n相当大时可以近似地看成二项分布.在自然现象和社会现象中,大量的随机变量都服从或近似地服从二项分布,实际应用广泛,理论上也非常重要.可以说本节内容是对前面所学知识的综合应用,是一种模型的构建,是从实际入手,通过抽象思维,建立数学模型,进而认知数学理论,应用于实际的过程.会对今后数学及相关学科的学习产生深远的影响.课时分配1课时教学目标知识与技能理解n次独立重复试验的模型及二项分布,能解答简单实际问题;能进行与n次独立重复试验的模型及二项分布有关的概率的计算.过程与方法通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象的数学思想方法.情感、态度与价值观感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事求是的科学态度和锲而不舍的钻研精神.重点难点教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题.教学难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算.教学过程复习旧知互斥事件:不可能同时发生的两个事件.P(A+B)=P(A)+P(B).一般地,如果事件A1,A2,…,A n彼此互斥,那么P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n).相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件.相互独立事件同时发生的概率:P(AB)=P(A)P(B)一般地,如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积,P(A1A2…A n)=P(A1)P(A2)…P(A n).探究新知提出问题:分析下面的试验,它们有什么共同特点?(1)某人射击1次,击中目标的概率是0.8,他连续射击3次;(2)实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即先赢3局就胜出);(3)连续投掷一个骰子5次.活动结果:在同一条件下多次重复地做某个试验.(由学生归纳后给出定义)1.n次独立重复试验的定义:一般地,在相同条件下重复做的n次试验称为n次独立重复试验.在n次独立重复试验中,记A i(i=1,2,…,n)是“第i次试验的结果”.显然,P(A1A2…A n)=P(A1)P(A2)…P(A n)提出问题:在前面问题(1)基础上,求:①第一次命中,后面两次不中的概率;②恰有一次命中的概率;③恰有两次命中的概率.活动设计:由浅入深,增加梯度,旨在引导学生归纳独立重复试验的概率公式.活动结果:记事件“第i次击中目标”为A i(i=1,2,3),则A1、A2、A3相互独立,且P(A1)=P(A2)=P(A3)=0.8.①第一次命中,后面两次不中的事件即A1A2A3,∴P(A1A2A3)=P(A1)[1-P(A2)][1-P(A3)]=0.032.②三次射击恰有一次命中的事件即A1A2A3+A1A2A3+A1A2A3,∴三次射击恰有一次命中的事件的概率为P3(1)=3×0.8×0.2×0.2=0.096.③三次射击恰有两次命中的事件即A1A2A3+A1A2A3+A1A2A3,∴三次射击恰有两次命中的事件的概率为P3(2)=3×0.8×0.8×0.2=0.384.教师指出:由刚才的问题不难发现这样一个事实:P3(1)=3×0.8×0.2×0.2=C13×0.8×(1-0.8)2=0.096,P3(2)=3×0.8×0.8×0.2=C23×0.82×(1-0.8)=0.384,推广到一般形式:n次射击试验,命中k次的概率P n(k)=C k n0.8k(1-0.8)n-k.理解新知2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率P n(k)=C k n p k(1-p)n-k,它是二项式[(1-p)+p]n展开式的第k+1项.设计意图:理所当然引出二项分布概念.3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数X是一个随机变量.如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(X=k)=C k n p k q n-k(k=0,1,2,…,n,q=1-p).由于C k n p k q n k恰好是二项展开式:(q+p)n=C0n p0q n+C1n p1q n1+…+C k n p k q n k+…+C n n p n q0中的第k+1项的值,所以称这样的随机变量X服从二项分布,记作X~B(n,p),其中p称为成功概率.运用新知例1实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)求按比赛规则甲获胜的概率.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12. (1)记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”,记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜.∴甲打完3局取胜的概率为P(A)=C 33(12)3=18. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负.∴甲打完4局才能取胜的概率为P(B)=C 23×(12)2×12×12=316. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负.∴甲打完5局才能取胜的概率为P(C)=C 24×(12)2×(12)2×12=316. (2)记事件D =“按比赛规则甲获胜”,则D =A +B +C ,又因为事件A 、B 、C 彼此互斥,故P(D)=P(A +B +C)=P(A)+P(B)+P(C)=18+316+316=12. 答:按比赛规则甲获胜的概率为12. 例2重复抛掷一枚骰子5次得到点数为6的次数记为ξ,求P(ξ>3).解:依题意,随机变量ξ~B(5,16). ∴P(ξ=4)=C 45(16)4·56=257 776,P(ξ=5)=C 55(16)5=17 776. ∴P(ξ>3)=P(ξ=4)+P(ξ=5)=133 888. 【变练演编】甲乙两选手比赛,假设每局比赛甲胜的概率为0.6,乙胜的概率为0.4,那么采取三局两胜制还是五局三胜制对甲更有利?你对局制长短的设置有何认识?设计意图:此题设计新颖,贴近生活,贴近高考,一下子把学生带到了全新的知识场景中,强大的诱惑力促使每个学生积极思考.此题是开放性试题,不是直接要你求什么、证什么,培养学生的发散性思维和创造性思维.解:三局两胜制中,甲获胜分三种情形:甲连胜两局;甲前两局中胜一局,第三局胜. 故P(甲获胜)=0.62+C 12×0.62×0.4=0.648. 五局三胜制中,甲获胜分三种情形:甲连胜三局;甲前三局中胜两局,第四局胜;甲前四局中胜两局,第五局胜.故P(甲获胜)=0.63+C 23×0.63×0.4+C 24×0.63×0.42≈0.683. 可以看出五局三胜制对甲有利,并由此可以猜测比赛的总局数越多甲获胜的概率越大.因此,为使比赛公平,比赛的局数不能太少.变式:如果要求在这两种赛制比赛中必须打完全部比赛,结论会有变化吗?解:设甲获胜的局数为随机变量X ,在三局两胜制中,X ~B(3,0.6),因此甲获胜的概率为P(X≥2)=P(X =2)+P(X =3)=C 23×0.62×0.4+0.63=0.648. 在五局三胜制中,X ~B(5,0.6),因此甲获胜的概率为P(X≥3)=P(X =3)+P(X =4)+P(X =5)=C 35×0.63×0.42+C 45×0.64×0.4+0.65≈0.683. 【达标检测】1.每次试验的成功率为p(0<p<1),重复进行10次试验,其中前7次都未成功,后3次都成功的概率为( )A .C 310p 3(1-p)7B .C 310p 3(1-p)3C .p 3(1-p)7D .p 7(1-p)32.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )A .C 310×0.72×0.3B .C 13×0.72×0.3 C.310 D.3A 27·A 13A 310答案:1.C 2.B课堂小结1.独立重复试验要从三方面考虑.第一:每次试验是在相同条件下进行.第二:各次试验中的事件是相互独立的.第三,每次试验都只有两种结果,即事件要么发生,要么不发生.2.如果1次试验中某事件发生的概率是p ,那么n 次独立重复试验中这个事件恰好发生k 次的概率为P n (k)=C k n p k (1-p)n -k .对于此式可以这么理解:由于1次试验中事件A 要么发生,要么不发生,所以在n 次独立重复试验中A 恰好发生k 次,则在另外的n -k 次中A 没有发生,即A 发生,由P(A)=p ,P(A )=1-p ,所以上面的公式恰为[(1-p)+p]n 展开式中的第k +1项,可见排列组合、二项式定理及概率间存在着密切的联系.补充练习【基础练习】1.将一枚硬币连续抛掷5次,则正面向上的次数X 的分布为( )A .X ~B(5,0.5)B .X ~B(0.5,5)C .X ~B(2,0.5)D .X ~B(5,1)2.随机变量X ~B(3,0.6),则P(X =1)等于( )A .0.192B .0.288C .0.648D .0.2543.某人考试,共有5题,解对4题为及格,若他解一道题的正确率为0.6,则他及格的概率为( )A.81125B.81625C.1 0533 125D.243625答案:1.A 2.B 3.C【拓展练习】有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2.(1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部检验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).解:(1)这批食品不能出厂的概率是:P=1-0.85-C15×0.84×0.2≈0.263.(2)五项指标全部检验完毕,这批食品可以出厂的概率是:P1=C14×0.2×0.83×0.8,五项指标全部检验完毕,这批食品不能出厂的概率是:P2=C14×0.2×0.83×0.2,由互斥事件只能有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:P=P1+P2=C14×0.2×0.83=0.409 6≈0.410.设计说明在整个教学过程中,主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线,思维为主攻”的“四为主”原则.教师不是抛售现成的结论,而是充分利用学生的思维,展示“发现”的过程,突出“师生互动”的教学,这种设计充分体现了教师的主导作用.学生在一系列的思考、探究中逐步完成了本节的学习任务,充分实现了学生的主体性地位,在整个教学过程中,始终着眼于培养学生的思维能力,这种设计符合现代教学观和学习观的精神,体现了素质教育的要求.备课资料备选例题:1.某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的使用寿命有关,该型号的灯泡的使用寿命为1年以上的概率为p1,使用寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作中,至少需要更换4只灯泡的概率(结果保留两位有效数字).分析:对于(Ⅰ),不需要换灯泡,则说明这5只灯泡的使用寿命都在1年以上,每只发生的概率均为p1;更换2只灯泡,则说明这5只灯泡中有且仅有2只灯泡的使用寿命均不超过1年,其发生的概率均为(1-p1),但是哪两只不确定;而对于(Ⅱ),一是这盏灯是确定的;二是这盏灯有两种可能,一种是第一、二次均更换;另一种是第一次未换,但第二次需要更换;对于(Ⅲ),包括换4只和换5只两种情况.解:(Ⅰ)在第一次更换灯泡工作中,不需要换灯泡的概率为p51;需要更换2只灯泡的概率为C25p31(1-p1)2;(Ⅱ)对该盏灯来说,在第一、二次都更换了灯泡的概率为(1-p1)2;在第一次未更换灯泡,而在第二次需要更换灯泡的概率为p1(1-p2),故所求的概率为p=(1-p1)2+p1(1-p2);(Ⅲ)在第二次灯泡更换工作中,至少换4只灯泡包括换4只和换5只两种情况,换5只的概率为p5(其中p为(Ⅱ)中所求,下同),换4只的概率为C15p4(1-p),故至少换4只灯泡的概率为p3=p5+C15p4(1-p).又当p1=0.8,p2=0.3时,p=0.22+0.8×0.7=0.6,∴p3=0.65+5×0.64×0.4=0.34.即满2年至少需要换4只灯泡的概率为0.34.点评:分情况进行讨论,一定要注意不重不漏地全部考虑到.2.某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).(Ⅰ)求至少3人同时上网的概率;(Ⅱ)至少几人同时上网的概率小于0.3?解:(Ⅰ)方法1:利用分类讨论的思想解决.将“至少3人同时上网的概率”转化为“恰有3人同时上网,恰有4人同时上网,恰有5人同时上网,恰有6人同时上网”四种情形,即C 36(0.5)6+C 46(0.5)6+C 56(0.5)6+C 66(0.5)6=2132. 方法2:利用正难则反的思想解决.将“至少3人同时上网的概率”转化为“1减去至多2人同时上网的概率”,即1-C 06(0.5)6-C 16(0.5)6-C 26(0.5)6=1-1132=2132. (Ⅱ)至少4人同时上网的概率为C 46(0.5)6+C 56(0.5)6+C 66(0.5)6=1132>0.3, 至少5人同时上网的概率为(C 56+C 66)(0.5)6=764<0.3,因此,至少5人同时上网的概率小于0.3.(设计者:王宏东 李王梅)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.3 独立重复试验与二项分布问题导学一、独立重复试验活动与探究1某气象站天气预报的准确率为80%,计算:(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.迁移与应用1.(2013四川广元模拟)打靶时,某人每打10发可中靶8次,则他打100发子弹有4发中靶的概率为()A.C41000.84×0.296B.0.84C.0.84×0.296D.0.24×0.2962.某市公租房的房源位于A,B,C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的.该市的4位申请人中恰有2人申请A片区房源的概率为__________.(1)n次独立重复试验的特征:①每次试验的条件都完全相同,有关事件的概率保持不变;②每次试验的结果互不影响,即各次试验相互独立;③每次试验只有两种结果,这两种可能的结果是对立的.(2)独立重复试验概率求解的关注点:①运用独立重复试验的概率公式求概率时,要判断问题中涉及的试验是否为n次独立重复试验,判断时可依据n次独立重复试验的特征.②解此类题常用到互斥事件概率加法公式,相互独立事件概率乘法公式及对立事件的概率公式.二、二项分布活动与探究2某市医疗保险实行定点医疗制度,按照“就近就医,方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社会医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区有A,B,C三家社区医院,并且他们的选择相互独立.设4名参加保险人员选择A社区医院的人数为X,求X的分布列.迁移与应用1.某射手每次射击击中目标的概率是0.8,现在连续射击4次,则击中目标的次数X 的概率分布列为__________.2.如图,一个圆形游戏转盘被分成6个均匀的扇形区域,用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每位家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).若规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.(1)求某个家庭获奖的概率;(2)若共有5个家庭参加家庭抽奖活动,记获奖的家庭数为X,求X的分布列.利用二项分布来解决实际问题的关键在于在实际问题中建立二项分布的模型,也就是看它是否是n次独立重复试验,随机变量是否为在这n次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布.三、二项分布的综合应用活动与探究3甲、乙两队参加世博会知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错者得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为23,23,12,且各人答对正确与否相互之间没有影响.用ξ表示甲队的总得分.(1)求随机变量ξ的分布列;(2)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).迁移与应用某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min .(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)求这名学生在上学路上因遇到红灯停留的总时间至多是4 min 的概率.对于概率问题的综合题,首先,要准确地确定事件的性质,把问题化归为古典概型、互斥事件、独立事件、独立重复试验四类事件中的某一种;其次,要判断事件是A +B 还是AB ,确定事件至少有一个发生,还是同时发生,分别运用相加或相乘事件公式,最后,选用相应的求古典概型、互斥事件、条件概率、独立事件、n 次独立重复试验的概率公式求解.答案: 课前·预习导学 【预习导引】 1.相同预习交流1 提示:①在相同条件下重复做n 次试验的过程中,各次试验的结果都不会受到其他试验结果的影响,即P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ),A i (i =1,2,…,n )是第i 次试验的结果.②在独立重复试验中,每一次试验只有两个结果,也就是事件要么发生,要么不发生,并且任何一次试验中,某事件发生的概率都是一样的.2.C kn p k (1-p )n -k 成功概率预习交流2 (1)提示:两点分布是特殊的二项分布,即X ~B (n ,p )中,当n =1时,二项分布也就是两点分布,因此它们的关系是特殊与一般的关系.(2)提示:B 课堂·合作探究 【问题导学】活动与探究1 思路分析:由于5次预报是相互独立的,且结果只有两种(准确或不准确),符合独立重复试验模型.解:(1)记预报一次准确为事件A ,则P (A )=0.8. 5次预报相当于5次独立重复试验,2次准确的概率为P =25C ×0.82×0.23=0.051 2≈0.05, 因此5次预报中恰有2次准确的概率为0.05.(2)“5次预报中至少有2次准确”的对立事件为“5次预报全部不准确或只有1次准确”,其概率为P =05C ×(0.2)5+15C ×0.8×0.24=0.006 72≈0.01. ∴所求概率为1-P =1-0.01=0.99. (3)说明第1,2,4,5次中恰有1次准确.∴概率为P =C 14×0.8×0.23×0.8=0.020 48≈0.02.∴恰有2次准确,且其中第3次预报准确的概率约为0.02.迁移与应用 1.A 解析:由题意可知中靶的概率为0.8,故打100发子弹有4发中靶的概率为C 4100·0.84×0.296. 2.827 解析:每位申请人申请房源为一次试验,这是4次独立重复试验, 设申请A 片区房源记为A ,则P (A )=13,∴恰有2人申请A 片区的概率为P (2)=24C ·⎝⎛⎭⎫132·⎝⎛⎭⎫232=827.活动与探究2 思路分析:本题符合二项分布模型,根据题意,可直接利用二项分布的概率计算方法解答.解:由已知每位参加保险人员选择A 社区的概率为13,4名人员选择A 社区即4次独立重复试验,即X ~B ⎝⎛⎭⎫4,13,∴P (X =k )=4C k ·⎝⎛⎭⎫13k ·⎝⎛⎭⎫234-k=4C k ·24-k 81(k =0,1,2,3,4),∴X 的分布列为迁移与应用 1.在独立重复射击中,击中目标的次数X 服从二项分布X ~B (n ,p ).由已知,n =4,p =0.8,P (X =k )=C k 4×0.8k ×0.24-k ,k =0,1,2,3,4, ∴P (X =0)=C 04×0.80×0.24=0.001 6, P (X =1)=C 14×0.81×0.23=0.025 6, P (X =2)=C 24×0.82×0.22=0.153 6, P (X =3)=C 34×0.83×0.21=0.409 6, P (X =4)=C 44×0.84×0.20=0.409 6.∴X 的概率分布列为2.解:(1)记事件A :某个家庭在游戏中获奖,则符合获奖条件的得分包括(5,3),(5,5),(3,5)共3种情况,∴P (A )=13×13+13×13+13×13=13.∴某个家庭获奖的概率为13.(2)由(1)知每个家庭获奖的概率都是13,5个家庭参加游戏相当于5次独立重复试验.∴X ~B ⎝⎛⎭⎫5,13. ∴P (X =0)=05C ·⎝⎛⎭⎫130·⎝⎛⎭⎫235=32243, P (X =1)=15C ·⎝⎛⎭⎫131·⎝⎛⎭⎫234=80243, P (X =2)=25C ·⎝⎛⎭⎫132·⎝⎛⎭⎫233=80243, P (X =3)=35C ·⎝⎛⎭⎫133·⎝⎛⎭⎫232=40243, P (X =4)=45C ·⎝⎛⎭⎫134·⎝⎛⎭⎫231=10243, P (X =5)=55C ·⎝⎛⎭⎫135·⎝⎛⎭⎫230=1243. ∴X 的分布列为活动与探究3 思路分析:(1)可用二项分布的概率公式求出,(2)可把AB 划分为两个互斥事件.解:(1)由已知,甲队中3人回答问题相当于3次独立重复试验,∴ξ~B ⎝⎛⎭⎫3,23. P (ξ=0)=03C ×⎝⎛⎭⎫1-233=127, P (ξ=1)=13C ×23×⎝⎛⎭⎫1-232=29, P (ξ=2)=23C ×⎝⎛⎭⎫232⎝⎛⎭⎫1-23=49, P (ξ=3)=33C ×⎝⎛⎭⎫233=827, 所以ξ的分布列为(2)用C 表示“甲得2分乙得1分”这一事件,用D 表示“甲得3分乙得0分”这一事件,AB =C ∪D ,C ,D 互斥.P (C )=23C ×⎝⎛⎭⎫232×⎝⎛⎭⎫1-23×⎝⎛ 23×13×12+13×⎭⎫23×12+13×13×12=1081.P (D )=827×⎝⎛⎭⎫1-23⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-12=4243. ∴P (AB )=P (C )+P (D )=1081+4243=34243.迁移与应用 解:(1)记“这名学生在上学路上到第三个路口时首次遇到红灯”为事件A .因为事件A 等价于事件“这名学生在第一和第二个路口都没有遇到红灯,在第三个路口遇到红灯”,所以事件A 发生的概率为:P (A )=⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-13×13=427. (2)记“这名学生在上学路上因遇到红灯停留的总时间至多是4 min ”为事件B ,“这名学生在上学路上遇到k 次红灯”为事件B k (k =0,1,2,3,4).由题意,得P (B 0)=⎝⎛⎭⎫234=1681,P (B 1)=C 14×⎝⎛⎭⎫131×⎝⎛⎭⎫233=3281, P (B 2)=C 24×⎝⎛⎭⎫132×⎝⎛⎭⎫232=827. 由于事件B 等价于事件“这名学生在上学路上至多遇到2次红灯”,所以事件B 发生的概率为P (B )=P (B 0)+P (B 1)+P (B 2)=89.当堂检测1.某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是( )A .49125 B .48125 C .1625 D .925答案:B 解析:∵每1粒发芽的概率为定值,∴播下3粒种子相当于做了3次试验,设发芽的种子数为X ,则X 服从二项分布,即X ~B 43,5⎛⎫ ⎪⎝⎭,∴P (X =2)=C23×214155⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭=48125.故选B .2.设随机变量ξ服从二项分布ξ~B 162⎛⎫ ⎪⎝⎭,,则P (ξ≤3)等于( ) A .1132 B .732 C .2132 D .764答案:C 解析:P (ξ≤3)=P (ξ=0)+P (ξ=1)+P (ξ=2)+P (ξ=3)=6666012366661111C C C C 2222⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+++ =2132. 3.一只蚂蚁位于数轴x =0处,这只蚂蚁每隔一秒钟向左或向右移动一个单位,设它向右移动的概率为23,向左移动的概率为13,则3秒后,这只蚂蚁在x =1处的概率为__________.答案:49解析:由题意知,3秒内蚂蚁向左移动一个单位,向右移动两个单位,所以蚂蚁在x =1处的概率为2123214C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭.4.某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9; ②他恰好击中目标3次的概率是0.93×0.1; ③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是__________.(写出所有正确结论的序号)答案:①③ 解析:②中恰好击中目标3次的概率应为34C ×0.93×0.1=0.93×0.4,①③正确.5.9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.求:(1)甲坑不需要补种的概率; 答案:解:因为甲坑内3粒种子都不发芽的概率为(1-0.5)3=18, 所以甲坑不需要补种的概率为1-18=78=0.875. (2)3个坑中恰有1个坑不需要补种的概率; 答案:3个坑恰有一个坑不需要补种的概率为21371C 0.04188⎛⎫⨯⨯≈ ⎪⎝⎭.(3)有坑需要补种的概率.(精确到0.001)答案:方法一:因为3个坑都不需要补种的概率为378⎛⎫⎪⎝⎭,所以有坑需要补种的概率为1-378⎛⎫⎪⎝⎭≈0.330.方法二:3个坑中恰有1个坑需要补种的概率为21317C 0.28788⎛⎫⨯⨯≈ ⎪⎝⎭;恰有2个坑需要补种的概率为22317C 0.04188⎛⎫⨯⨯≈ ⎪⎝⎭;3个坑都需要补种的概率为303317C 0.00288⎛⎫⎛⎫⨯⨯≈ ⎪ ⎪⎝⎭⎝⎭.所以有坑需要补种的概率为0.287+0.041+0.002=0.330.。