第1课时 算术平方根
第1课时 算术平方根
第六章实数6.1 平方根第1课时算术平方根1.理解并掌握算术平方根的概念,会用根号表示一个正数的算术平方根,并了解算术平方根的非负性,会求一个非负数的算术平方根.2.能用夹值法求一个数的算术平方根.3.会用计算器求一个数的算术平方根.自学指导:阅读教材第40至44页,独立完成下列问题.知识探究一般地,如果一个非负数的平方等于a,那么这个非负数叫做a的算术平方根.a的算术平方根记为a,a叫做被开方数.规定:0的算术平方根是0.自学反馈(1)25的算术平方根是5,3是9的算术平方根,16的算术平方根是2.(2)切一块面积为16 cm2的正方形钢板,它的边长是多少?解:4 cm.(3)3表示3的算术平方根;如果-x2有平方根,那么x的值为0.(4)一个数的算术平方根是a,则比这个数大8的数是(D)A.a+8B.a-4C.a2-8D.a2+8(5)若81=9,那么0.0081=0.09,810000=900.(6)用计算器求下列各数的算术平方根.①625; ②101.203 6; ③5(精确到0.01).对于实际问题可以转化成数学问题来解决,如题(2),就是求平方等于16的正数.若被开方数的小数点向左或向右移2n位,则其算术平方根的小数点向相同的方向移动n位.活动1 学生独立完成例1求下列各式的值:(1)3·25; (2)81+36; (3)0.04-124; (4)0.36·4121.解:(1)原式=3×5=15;(2)原式=9+6=15;(3)原式=0.2-1.5=-1.3;(4)原式=35×211=655.1.求一个数a(a>0)的算术平方根就是确定一个正数x,使得x2=a.2.求一个代分数的算术平方根,应先将代分数化成假分数,再求其算术平方根.例2试比较下列各对数的大小:(1)123与112; (2)412与25.解:(1)∵112=94,而213=73>94,∴123>112.(2)∵412=814,25=20,而814>20,∴814>20,即412>25.要比较两个数的大小,可以由算术平方根的意义,去比较它们的被开方数的大小.本题就是用“转化”的数学思想,将其“转化”成比较根号下被开方数的大小.例3试估算7的取值范围是2<7<3.活动2 跟踪训练1.一个自然数的算术平方根是a,则下一个自然数的算术平方根是(D)A.a+1B.a2+1C.a+1D.21a 注意审题,先确定这个自然数,再确定下一个自然数的算术平方根.2.估算31-2的值(C)A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间31.3.9a b,则a+b=900.000 009.活动3 课堂小结1.算术平方根的意义是求一个正数的算术平方根的基本方法.2.运用“转化”的数学思想方法,并通过恒等变形达到求解目的是对能力的一种考察.教学至此,敬请使用学案当堂训练部分.。
第1课时 算术平方根
例1 求下列各数的算术平方根:
(1)100
(2)4694
(3)0.0001
解:(1)因为102=100, 所以100的算术平方根是10, 即 100 =10.
例1 求下列各数的算术平方根:
(1)100
(2)4694
(3)0.0001
2解:(2)因为7 8 =第六章 实数
6.1 平方根 第1课时 算术平方根
R·七年级下册
• 学习目标: 知道什么是算术平方根及其符号表示方法,会
求一个数的算术平方根.
情景导入
学校要举行美术 作品比赛,小鸥想裁出一 块面积为25 dm2的正方形 画布,画上自己的得意之 作参加比赛,这块正方形 画布的边长应取多少?
探究新知
课堂小结
a = x a的算术平方根
被开方数 0的算术平方根是0.
5.计算: 32 =__3__, 0.72 =_0_._7_, 02 =__0__,
(6)2
=__6__,
(
3 )2 4
=__43__.
(1)根据计算结果,回答 a2 一定等于a吗?你 发现其中的规律了吗?请你用自己的语言描述出来.
除此以外,将本文件任何内容用于其他用途时,应获 得授权,如发现未经授权用于商业或盈利用途将追加侵权 者的法律责任。
武汉天成贵龙文化传播有限公司 湖北山河律师事务所
练习
1.求下列各数的算术平方根:
(1)0.0025 (2)81 (3)32
解:(1) 0.0025 =0.05 (2) 81 =9 (3) 32 =3
2.求下列各式的值:
(1) 1
(2)
9 25
=1
=3
5
算术平方根第1课时(1)
加比赛,这块正方形画布的边长应取多少?2、面积为16、9、4的正方形的边长分别是多少?3、上述两个问题的实质是什么?4、阅读课本P68-69页,并回答下列问题(1)如果一个________的______等于a ,那么_________就叫做______的算术平方根(2)正数a 的算术平方根表示 读作_______规定:0的算术平方根为0。
(3)因为( )2=100,所以100的算术平方根是_______,即__________; (4)仿照(3)格式探求下列各数的算术平方根:0.0025;121;32;0.0001 (5)求算术平方根的运算与求平方运算有什么关系?上是已知一个正数的平方求这个证书的问题,其中问题1中的5叫做25的算术平方根,问题2中的4就叫做16的算术平方根,一般情况下,什么叫算术平方根?怎样表示一个数的算术平方根?怎样求一个数的算术平方根?算术平方根有哪些性质?(2)出示问题组织自学,提两名学生回答,关注学困生的表现,教师进行点拨引导评价。
(3)板书算术平方根的概念、符号表示,强调:(1)被开方数、根指数的意义。
(2)0的算术平方根是0是算术平方根的重要组成部分。
1-3,参与对同伴表现情况的评价。
(2)自学教科书相关内容,独立解决问题4,配合教师检查,对照同伴表现,检查自己的自学情况。
(3)学生讨论 思考并回答,师生共同总结。
足的时间和空间,理解和感知算术平方根概念,通过小组间的讨论、交流,释疑解难,提出共同的问题,使学生的自主性和合作性得到很好的发展,教学目标得到很好的落实。
活动三 例题讲解 理解新知 例1:求下列各数的算术平方根(1)121 (2)0.0064例2:计算下列各式的值【教师活动】 教师出示题目 引导学生思考并解答,巡视学生完成情况 适时指导点拨【学生活动】两名同学板演,学生独立完成后,共同完善解题过程【设计意图】规范解题格式,帮助理解新知活动四 应用迁移,巩固提高 一、判断下列说法是否正确,若不正确,请改正:(1)5是25的算术平方根; (2)-6是 36 的算术平方根; (3)0的算术平方根是0;【教师活动】 (1)出示问题1,提出答题要求,根据学生回答,适时评价学生的表现,用PPT 展示确认。
6.1.1 算术平方根(第一课时)(课件)七年级数学下册(人教版)
−0.3 2 =0.3.
迁移应用
1.计算:(1) 9 =_____;
(4) (−6)2 =_____;
(2) 0.25=_____;
.
(3)﹣
64
=______;
−
49
(5) 36+ 16- 25=_____.
2.已知 + 4=3,则x=______.
3.若单项式2xmy3与3xym+n是同类项,则 2 + 的值为______.
解:因为(x-2)2+ + 1+|z-3|=0,
(x-2)2≥0, + 1≥0,|z-3|≥0,
所以(x-2)2=0, + 1=0,|z-3|=0.
所以x-2=0,y+1=0,z-3=0.
所以x=2,y=-1,z=3.
所以(x+3y)z=[2+3×(-1)]3=(-1)3=-1.
迁移应用
所以|3x-3|=0, − 2 =0.
所以3x-3=0,y-2=0,即x=1,y=2.
所以x+4y=1+4×2=9.
因为 9=3,所以x+4y的算术平方根为+ + 3=0,求a(b+c)的值.
解:因为(a+1)2+|b-2|+ + 3=0,
所以a+1=0,b-2=0,c+3=0,
4.若4是3x-2的算术平方根,则x的值是______.
迁移应用
5.求下列各数的算术平方根:
121
(2) ;
100
(1)0.64;
人教版数学七年级下册第六章第1课时《算术平方根》说课稿
课后作业布置如下:
1.完成教材上的练习题,巩固平方根的计算方法和应用。
2.探究平方根与算术平方根的关系,提高学生的探究能力。
3.解决生活中的实际问题,培养学生的应用意识。
作业的目的是巩固所学知识,提高学生的计算能力和解决问题的能力,同时培养学生的自主学习意识和探究精神。
五、板书设计与教学反思
为应对这些问题,我将:
1.加强对平方根概念的解释和实例演示,确保学生理解;
2.及时发现并纠正学生在计算过程中的错误,进行有针对性的指导;
3.设计互动环节时,注意调动每个学生的积极性,确保全员参与。
课后,我将通过以下方式评估教学效果:
1.课后作业的完成情况;
2.学生课堂表现的观察;
3.学生对知识点的掌握程度。
3.合作学习:依据社会建构主义理论,通过小组合作交流,促进学生之间的互动与沟通,培养学生的团队协作能力和共同解决问题的能力。
(二)媒体资源
我将使用以下教具、多媒体资源和技术工具辅助教学:
1.教具:平方根计算器、图形计算器等,用于直观展示平方根的计算过程,便于学生理解和掌握。
2.多媒体资源:PPT课件、教学视频等,通过丰富的视觉和听觉刺激,提高学生的学习兴趣,增强教学效果。
本节课的教学内容与整个课程体系紧密相连,既是对之前所学知识的巩固,也为后续学习勾股定理、二次方程等内容打下基础。
(二)教学目标
知识与技能目标:使学生理解平方根的概念,掌握算术平方根的计算方法,并能够解决实际问题。
过程与方法目标:通过自主探究、合作交流,培养学生的逻辑思维能力和解决问题的能力。
情感态度与价值观目标:激发学生的学习兴趣,增强学生的自信心和自主学习意识,使学生体会数学在生活中的实际应用。
七年级数学下册教学课件《算术平方根》
3. (1)若一个数的算术平方根是 13 ,则这个数 是___1_3___.
4
(2)① 16 =___4__, 16的算术平方根是___2___;
② ( - 5)2 =___5___,( - 5)2 的算术平方根是 ___5___,(-5)2的算术平方根是____5___.
概念
提取 ( 0 )2 = 0 ,规定:0 的算术平方根是 0.
一般地,如果一个正数 x 的平方等于 a,
即 x2 = a,那么这个正数 x 叫做 a 的算术平
方根.
(非负数 x )2 = a
非负数 x 是非负数 a 的算术平方根
那么 1,9,16,36,4 的算术平方根是?
25
概念 提取
a 的算术平方根记为 a ,读作“根 号 a”,a 叫做被开方数.
(1)根据计算结果,回答 a2 一定等于 a 吗?你
发现其中的规律了吗?请你用自己的语言描述出来. (2)利用你总结的规律,计算:(3.14-)2 .
解:(1) a2 不一定等于a, a2 a .
(2)原式 = |3.14-π| = π-3.14 .
课堂总结
一般地,如果一个正数 x 的平方等于 a, 即 x2 = a,那么这个正数 x 叫做 a 的算术平
从
100 10
从
大 到
49 7 64 8
大 到
小
小
0.0001 0.1
被开方数越大,对应的算术平方根也越大.
若a b 0,则 a __>___ b.
对应训练
【选自教材P41练习 第1题】
1. 求下列各数的算术平方根: (1)0.0025;(2)81;(3)32.
人教版七年级数学下册 (平方根)实数教学课件(第1课时算术平方根)
课堂小结
6.1 平方根
第六章 实 数
第2课时 用计算器求算术平方根及其大小比较
2.判断下列各数有没有算术平方根?如果有,请求出它们的算术平方根. -36 , 0.09 , , 0 , 2 , .
填表:
表1
思考:你能从表1发现什么共同点吗?
4
0. 25
正方形的面积
1
4
0.36
49
正方形的边长
已知一个正数的平方,求这个正数.
表2
表一和表二中的两种运算有什么关系?
1
2
0.6
7
思考:你能从表2发现什么共同点吗?
小数位数无限,且小数部分不循环
事实上,继续重复上述的过程,可以得到
小数位数无限,且小数部分不循环的小数称为无限不循环小数.
一、无限不循环小数的概念
例1:估算 -2的值 ( ) A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间
1.填空:(看谁算得又对又快) (1) 一个数的算术平方根是3,则这个数是 . (2) 一个自然数的算术平方根为a,则这个自然数 是___;和这个自然数相邻的下一个自然数是 . (3) 的算术平方根为 . (4) 2的算术平方根为____.
解:(1)由于102=100,
典例精析
(3)由于0.72=0.49,
不难看出:被开方数越大,对应的算术平方根也越大.这个结论对所有正数都成立.
例2 计算:(1) ; (2) .
典例精析
B
估计一个有理数的算术平方根的近似值,必 须先判断这个有理数位于哪两个数的平方之间
第1课时 算术平方根
谢谢观赏!
.
18.(2023 东平月考)已知 a,b 满足 -+(b-3) =0.2来自(1)求 a,b 的值;
(2)若 a,b 为△ABC 的两边长,第三边长 c= ,求△ABC 的面积.
解:(1)根据题意,得a-2=0,b-3=0,解得a=2,b=3.
(2)因为 a +b =2 +3 =13,c =( ) =13,
A.4
B.2
C.±2
D.3
15.(2024 济宁期末) 的算术平方根的相反数是 -2
.
16.(2023 湖北)请写出一个正整数 m 的值,使得 是整数:m= 2(答案
不唯一) .
17.有这样一个探究活动:如图①所示,把两个边长为1 dm 的小正方形
分别沿对角线剪开,将所得的4个直角三角形拼在一起,就可以得到一个
s).若导线电阻为5 Ω,2 s时间导线产生90 J的热量,求电流I.
解:由题意可得R=5 Ω,t=2 s,Q=90 J,
所以90=I2×5×2,
所以I2=9,
所以I=3,
所以电流I是3 A.
能力提升练
14.(2024 广饶期末)若 =3,|b|=5,且 ab<0,则 a+b 的算术平方根为
(
B )
(6) .=2.5.
=- .
算术平方根的性质
6.有下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是
正数;③a2的算术平方根是a;④(π-4)2的算术平方根是π-4;⑤算术平方
根不可能是负数.其中不正确的有(
A.2个
B.3个 C.4个
) C
D.5个
7.(2024 牟平期末)若 (-) =2 则 a 的值为(
人教版数学七年级下册6.1平方根第1课时算术平方根优秀教学案例
3.引导学生发现数学与现实生活的联系,提高学习兴趣。
在教学过程中,我注重启发式教学,让学生在探索中发现规律,培养他们的逻辑思维能力。同时,通过小组合作、讨论交流等方式,提高学生的合作精神和团队意识。
本节课结束后,我对教学效果进行了反思,认为学生在掌握算术平方根的概念和求法方面取得了较好的成果,但在解决实际问题时,部分学生仍存在困难。针对这一情况,我在课后进行了针对性的辅导,帮助学生巩固所学知识,提高解决问题的能力。
人教版数学七年级下册6.1平方根第1课时算术平方根优秀教学案例
一、案例背景
本案例背景基于人教版数学七年级下册6.1平方根第1课时算术平方根的内容。在教学前,我进行了学情分析,了解到学生已经掌握了有理数的乘方,但对平方根的概念和性质还不够熟悉。因此,我制定了以下教学目标:
1.让学生理解平方根的概念,掌握求一个数的平方根的方法。
二、教学目标
(一)知识与技能
1.理解平方根的概念,掌握求一个数的平方根的方法。
2.了解平方根的性质,能够运用平方根解决实际问题。
3.熟练运用平方根的定义和性质,求解各种形式的平方根问题。
4.能够运用平方根解决生活中的实际问题,如计算面积、体积等。
(二)过程与方法
1.通过实例引入平方根的概念,引导学生探究平方根的性质。
(二)问题导向
在教学过程中,我提出了与平方根相关的问题,引导学生进行思考和探究。例如,我提出了“什么是平方根?如何求解一个数的平方根?”等问题,激发学生的思考。同时,我还引导学生思考平方根的性质,如“一个数的平方根是正数还是负数?两个平方根是否相等?”等问题。通过问题导向,学生可以更深入地理解平方根的概念和性质。
(五)作业小结
算术平方根(第1课时)-【名师经典教学设计课件】
加速度教学设计加速度是力学中的重要概念,它是联系动力学和运动学的桥梁,本节课的重点是加速度的概念及其物理意义,难点是加速度和速度的区别。
加速度是用比值定义法定义的物理量,教材从加速度的定义出发,提出了变化率的概念,正确理解变化率的含义,对学习和正确理解其他用比值定义的物理量具有非常重要的意义。
以学生为主导,让学生自己定义概念。
在定义加速度的过程中,通过学生的讨论与交流,引导学生自己用△v/△t的比值来描述速度变化的快慢,把加速度看成是一个比值的符号,“加速度”只是一个符号的名称而已,实现了把抽象的概念具体化,把生硬的概念形象化的目的。
学生把加速度看作是一个新认识的朋友,对陌生的概念产生了亲切感,他们亲身经历了定义加速度概念的全过程,对概念的理解就更加深刻了。
但教后的感觉还有待于提高。
本节课有意识进行控制变量法和用比值定义物理量的方法教育,对于控制变量法的教育是在潜移默化中进行的,对于用比值定义物理量的方法,不但向学生指明是用比值来定义加速度,且和学生一起回顾了平均速度的定义及初中学习的压强、密度、电阻等物理量的定义。
其目的是让学生明白,很多物理量是为了研究或描述的方便而定义出来的,使学生消除了对物理量的神秘感和恐惧感进而产生亲切感。
本节课的教学难点是加速度的方向和加速度与速度的区别,对于加速度的方向的教学,是让学生根据位移和速度的矢量性来讨论加速度的矢量性,需选择更有效的教学方法进行授课。
加速度教学设计加速度是力学中的重要概念,它是联系动力学和运动学的桥梁,本节课的重点是加速度的概念及其物理意义,难点是加速度和速度的区别。
加速度是用比值定义法定义的物理量,教材从加速度的定义出发,提出了变化率的概念,正确理解变化率的含义,对学习和正确理解其他用比值定义的物理量具有非常重要的意义。
以学生为主导,让学生自己定义概念。
在定义加速度的过程中,通过学生的讨论与交流,引导学生自己用△v/△t的比值来描述速度变化的快慢,把加速度看成是一个比值的符号,“加速度”只是一个符号的名称而已,实现了把抽象的概念具体化,把生硬的概念形象化的目的。